18.11.2014 Views

Weathering and Erosion - Learning Services Home

Weathering and Erosion - Learning Services Home

Weathering and Erosion - Learning Services Home

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Glencoe Science<br />

Chapter Resources<br />

<strong>Weathering</strong><br />

<strong>and</strong> <strong>Erosion</strong><br />

Includes:<br />

Reproducible Student Pages<br />

ASSESSMENT<br />

✔ Chapter Tests<br />

✔ Chapter Review<br />

HANDS-ON ACTIVITIES<br />

✔ Lab Worksheets for each Student Edition Activity<br />

✔ Laboratory Activities<br />

✔ Foldables–Reading <strong>and</strong> Study Skills activity sheet<br />

MEETING INDIVIDUAL NEEDS<br />

✔ Directed Reading for Content Mastery<br />

✔ Directed Reading for Content Mastery in Spanish<br />

✔ Reinforcement<br />

✔ Enrichment<br />

✔ Note-taking Worksheets<br />

TRANSPARENCY ACTIVITIES<br />

✔ Section Focus Transparency Activities<br />

✔ Teaching Transparency Activity<br />

✔ Assessment Transparency Activity<br />

Teacher Support <strong>and</strong> Planning<br />

✔ Content Outline for Teaching<br />

✔ Spanish Resources<br />

✔ Teacher Guide <strong>and</strong> Answers


Glencoe Science<br />

Photo Credits<br />

Section Focus Transparency 1: Marco Cristofori/The Stock Market<br />

Section Focus Transparency 2: Margaret Kois/The Stock Market<br />

Copyright © by The McGraw-Hill Companies, Inc. All rights reserved.<br />

Permission is granted to reproduce the material contained herein on the condition<br />

that such material be reproduced only for classroom use; be provided to students,<br />

teachers, <strong>and</strong> families without charge; <strong>and</strong> be used solely in conjunction with the<br />

<strong>Weathering</strong> <strong>and</strong> <strong>Erosion</strong> program. Any other reproduction, for use or sale, is prohibited<br />

without prior written permission of the publisher.<br />

Send all inquiries to:<br />

Glencoe/McGraw-Hill<br />

8787 Orion Place<br />

Columbus, OH 43240-4027<br />

ISBN 0-07-867195-7<br />

Printed in the United States of America.<br />

1 2 3 4 5 6 7 8 9 10 071 09 08 07 06 05 04


Reproducible<br />

Student Pages<br />

Reproducible Student Pages<br />

■ H<strong>and</strong>s-On Activities<br />

MiniLAB: Dissolving Rock with Acids. . . . . . . . . . . . . . . . . . . . . . . . . . 3<br />

MiniLAB: Try at <strong>Home</strong> Analyzing Soils . . . . . . . . . . . . . . . . . . . . . . . . 4<br />

Lab: Classifying Soils. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5<br />

Lab: Design Your Own Measuring Soil <strong>Erosion</strong> . . . . . . . . . . . . . . . . . . 7<br />

Laboratory Activity 1: Chemical <strong>and</strong> Mechanical <strong>Weathering</strong> . . . . . . . 9<br />

Laboratory Activity 2: <strong>Erosion</strong> <strong>and</strong> Soil Permeability . . . . . . . . . . . . . 13<br />

Foldables: Reading <strong>and</strong> Study Skills. . . . . . . . . . . . . . . . . . . . . . . . . . 17<br />

■ Meeting Individual Needs<br />

Extension <strong>and</strong> Intervention<br />

Directed Reading for Content Mastery . . . . . . . . . . . . . . . . . . . . . . . 19<br />

Directed Reading for Content Mastery in Spanish . . . . . . . . . . . . . . 23<br />

Reinforcement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27<br />

Enrichment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29<br />

Note-taking Worksheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31<br />

■ Assessment<br />

Chapter Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35<br />

Chapter Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37<br />

■ Transparency Activities<br />

Section Focus Transparency Activities . . . . . . . . . . . . . . . . . . . . . . . . 42<br />

Teaching Transparency Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45<br />

Assessment Transparency Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . 47<br />

<strong>Weathering</strong> <strong>and</strong> <strong>Erosion</strong> 1


H<strong>and</strong>s-On Activities<br />

H<strong>and</strong>s-On<br />

Activities<br />

2 <strong>Weathering</strong> <strong>and</strong> <strong>Erosion</strong>


Name Date Class<br />

Dissolving Rock with Acids<br />

Procedure<br />

WARNING: Do not remove goggles until lab cleanup <strong>and</strong> h<strong>and</strong>washing are<br />

completed.<br />

1. Use an eyedropper to put several drops of vinegar on pieces of chalk <strong>and</strong><br />

limestone. Observe the results with a magnifying lens. Record your<br />

observations in the table below.<br />

2. Put several drops of 5% hydrochloric acid on the chalk <strong>and</strong> limestone.<br />

Observe the results. Record your observations.<br />

Data <strong>and</strong> Observations<br />

H<strong>and</strong>s-On Activities<br />

Vinegar<br />

Hydrochloric Acid<br />

chalk<br />

limestone<br />

Analysis<br />

1. Describe the effect of the hydrochloric acid <strong>and</strong> vinegar on chalk <strong>and</strong> limestone.<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

2. Research what type of acid vinegar contains.<br />

<strong>Weathering</strong> <strong>and</strong> <strong>Erosion</strong> 3


Name Date Class<br />

H<strong>and</strong>s-On Activities<br />

Analyzing Soils<br />

Procedure<br />

1. Obtain a sample of soil from near your home.<br />

2. Spread the soil out over a piece of newspaper.<br />

3. Carefully sort through the soil. Separate out organic matter from weathered<br />

rock.<br />

4. Wash h<strong>and</strong>s thoroughly after working with soils.<br />

Analysis<br />

1. Besides the organic materials <strong>and</strong> the remains of weathered rock, what else is present in the soil?<br />

2. Is some of the soil too fine-grained to tell if it is organic or weathered rock?<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

4 <strong>Weathering</strong> <strong>and</strong> <strong>Erosion</strong>


Name Date Class<br />

Classifying Soils<br />

Lab Preview<br />

Directions: Answer these questions before you begin the Lab.<br />

1. What is the reason for the disposal safety precaution?<br />

H<strong>and</strong>s-On Activities<br />

2. How do you determine whether you have a clay soil?<br />

Not all soils are the same. Geologists <strong>and</strong> soil scientists classify soils based on<br />

the amounts <strong>and</strong> kinds of particles they contain.<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

Real-World Question<br />

How is soil texture determined?<br />

Materials<br />

soil sample<br />

stereomicroscope<br />

*magnifying lens<br />

*Alternate materials<br />

Safety Precautions<br />

Goals<br />

■ Classify a soil using an identification key.<br />

■ Observe soil with a stereomicroscope.<br />

Procedure<br />

1. Place a small sample of moistened soil<br />

between your fingers. Then follow the<br />

directions in the classification key below.<br />

a. Slide your fingers back <strong>and</strong> forth past<br />

each other. If your sample feels gritty, go<br />

to b. If it doesn’t feel gritty, go to c.<br />

b. If you can mold the soil into a firm ball,<br />

it’s s<strong>and</strong>y loam soil. If you cannot mold<br />

it into a firm ball, it’s s<strong>and</strong>y soil.<br />

c. If your sample is sticky, go to d. If your<br />

sample isn’t sticky, go to e.<br />

d. If your sample can be molded into a<br />

long, thin ribbon, it’s clay soil. If your<br />

soil can’t be molded into a long, thin<br />

ribbon, it’s clay loam soil.<br />

e. If your sample is smooth, it’s silty loam<br />

soil. If it isn’t smooth, it’s loam soil.<br />

2. After classifying your soil sample, examine<br />

it under a microscope. In the space under<br />

Data <strong>and</strong> Observations, draw the particles<br />

<strong>and</strong> any other materials that you see.<br />

3. Wash your h<strong>and</strong>s thoroughly after you are<br />

finished working with soils.<br />

<strong>Weathering</strong> <strong>and</strong> <strong>Erosion</strong> 5


Name Date Class<br />

(continued)<br />

H<strong>and</strong>s-On Activities<br />

Data <strong>and</strong> Observations<br />

Drawings:<br />

Conclude <strong>and</strong> Apply<br />

1. Determine the texture of your soil sample.<br />

2. Describe two characteristics of loam soil.<br />

3. Describe two features of s<strong>and</strong>y loam soil.<br />

4. Record Observations Based on your observations with the stereomicroscope, what types of<br />

particles <strong>and</strong> other materials did you see? Did you observe any evidence of the activities of<br />

organisms?<br />

Communicating Your Data<br />

Compare your conclusions with those of other students in your class. For more help,<br />

refer to the Science Skill H<strong>and</strong>book.<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

6 <strong>Weathering</strong> <strong>and</strong> <strong>Erosion</strong>


Name Date Class<br />

Design Your Own<br />

Measuring Soil <strong>Erosion</strong><br />

Lab Preview<br />

Directions: Answer these questions before you begin the Lab.<br />

1. Why is it important to wash your h<strong>and</strong>s when you are finished with the lab?<br />

H<strong>and</strong>s-On Activities<br />

2. Why does it help to use a data table?<br />

During urban highway construction, surface mining, forest harvesting, or<br />

agricultural cultivation, surface vegetation is removed from soil. These practices<br />

expose soil to water <strong>and</strong> wind. Does vegetation significantly reduce soil<br />

erosion?<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

Real-World Question<br />

How much does vegetation reduce soil erosion?<br />

Form a Hypothesis<br />

Based on what you’ve read <strong>and</strong> observed,<br />

hypothesize about how a grassy field will have<br />

less erosion than a field that is bare soil.<br />

Possible Materials<br />

blocks of wood pails (2)<br />

*books<br />

1,000-mL beaker<br />

paint trays (2)<br />

triple-beam balance<br />

soil<br />

calculator<br />

grass sod<br />

watch<br />

water<br />

*Alternate materials<br />

Goals<br />

■ Design an experiment to measure soil loss<br />

from grass-covered soil <strong>and</strong> from soil<br />

without grass cover.<br />

■ Calculate the percent of soil loss with <strong>and</strong><br />

without grass cover.<br />

Safety Precautions<br />

Wash your h<strong>and</strong>s thoroughly when you are<br />

through working with soils.<br />

Test Your Hypothesis<br />

Make a Plan<br />

1. As a group, agree upon the hypothesis<br />

<strong>and</strong> decide how you will test it. Identify<br />

which results challenge or confirm the<br />

hypothesis.<br />

2. List the steps you will need to take to test<br />

your hypothesis. Describe exactly what you<br />

will do in each step.<br />

3. Record your observations in the data table.<br />

4. Read over the entire experiment to make<br />

sure all steps are in logical order, <strong>and</strong> that<br />

you have all necessary materials.<br />

5. Identify all constants <strong>and</strong> variables <strong>and</strong> the<br />

control of the experiment. A control is a<br />

st<strong>and</strong>ard for comparing the results of an<br />

experiment. One possible control for this<br />

experiment would be the results of the<br />

treatment of an uncovered soil sample.<br />

Follow Your Plan<br />

1. Make sure your teacher approves your plan<br />

before you start.<br />

2. Carry out the experiment step by step as<br />

planned.<br />

3. While doing the experiment, record your<br />

observations <strong>and</strong> complete the data table<br />

on the next page.<br />

<strong>Weathering</strong> <strong>and</strong> <strong>Erosion</strong> 7


Name Date Class<br />

(continued)<br />

H<strong>and</strong>s-On Activities<br />

Data <strong>and</strong> Observations<br />

Covered soil<br />

sample<br />

Uncovered soil<br />

sample<br />

(A) Mass of<br />

Soil at Start<br />

(B) Mass of<br />

Eroded Soil<br />

Percent Soil Loss<br />

(B/A) ✕ 100<br />

Analyze Your Data<br />

1. Compare the percent of soil loss from each soil sample.<br />

2. Compare your results with those of other groups.<br />

3. What was your control in this experiment? Why is it a control?<br />

4. Which were the variables you kept constant? Which did you vary?<br />

Conclude <strong>and</strong> Apply<br />

1. Did the results support your hypothesis? Explain.<br />

2. Infer what effect other types of plants would have in reducing soil erosion. Do you think that<br />

grass is better or worse than most other plants at reducing erosion? Explain your answer.<br />

Communicating Your Data<br />

Write a letter to the editor of a newspaper. In your letter, summarize what you learned in<br />

your experiment about the effect of plants on soil erosion.<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

8 <strong>Weathering</strong> <strong>and</strong> <strong>Erosion</strong>


Name Date Class<br />

1<br />

Laboratory<br />

Activity<br />

Chemical <strong>and</strong> Mechanical<br />

<strong>Weathering</strong><br />

When chemical weathering affects rocks, a chemical reaction occurs between the minerals in<br />

the rocks <strong>and</strong> chemical agents. The acidity in rainwater is one agent of chemical weathering. It<br />

can react with certain minerals to change rocks chemically. Mechanical weathering is the result<br />

of physical forces only. The mechanical weathering of rocks does not change them chemically,<br />

only physically.<br />

Strategy<br />

You will test the acidity of the rainwater in your area.<br />

You will demonstrate chemical weathering using cement <strong>and</strong> vinegar.<br />

H<strong>and</strong>s-On Activities<br />

Materials<br />

5 small jars<br />

marker <strong>and</strong> labels<br />

100 mL tap water<br />

100 mL local rainwater<br />

100 mL lemon juice<br />

100 mL cola<br />

100 mL ammonia<br />

litmus paper strips<br />

small piece of cement<br />

beaker<br />

white vinegar<br />

20 sugar cubes<br />

jar with a lid<br />

10 pieces of pea gravel<br />

WARNING: Do not eat, drink, or taste any of the materials used in this lab.<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

Procedure<br />

Part A<br />

1. Pour tap water into the first jar. Label the<br />

jar Tap Water.<br />

2. Pour the rainwater into the second jar.<br />

Label the jar Rainwater.<br />

3. Pour lemon juice into the third jar. Label<br />

the jar Lemon Juice.<br />

4. Pour the cola into the fourth jar. Label the<br />

jar Cola.<br />

5. Pour the ammonia into the fifth jar. Label<br />

the jar Ammonia.<br />

6. Dip the litmus paper into each jar <strong>and</strong> record<br />

the results in Table 1 under Data <strong>and</strong> Observations.<br />

(If the litmus paper turns red, it indicates<br />

an acidic material; if the litmus paper<br />

turns blue, it indicates a basic material. No<br />

change at all indicates a neutral material.)<br />

Part B<br />

7. Describe the piece of cement in Table 2<br />

under Data <strong>and</strong> Observations.<br />

8. Place the piece of cement in a beaker.<br />

9. Pour enough vinegar over the cement to<br />

cover it.<br />

10. Leave the cement <strong>and</strong> vinegar in the glass<br />

for two to three days.<br />

11. Record your observations.<br />

Part C<br />

12. Describe the appearance of the sugar cubes<br />

in Table 3 under Data <strong>and</strong> Observations.<br />

13. Place 10 sugar cubes in the jar, cover, <strong>and</strong><br />

shake 20 times.<br />

14. Pour the contents of the jar onto a piece of<br />

paper. Separate the cubes <strong>and</strong> the crumbs.<br />

Describe the changes you observe.<br />

15. Repeat steps 13 <strong>and</strong> 14 using the cubes<br />

<strong>and</strong> crumbs from step 14.<br />

16. Repeat steps 13 <strong>and</strong> 14, using 10 new sugar<br />

cubes <strong>and</strong> the 10 pieces of pea gravel.<br />

<strong>Weathering</strong> <strong>and</strong> <strong>Erosion</strong> 9


Name Date Class<br />

Laboratory Activity 1 (continued)<br />

H<strong>and</strong>s-On Activities<br />

Data <strong>and</strong> Observations<br />

Table 1<br />

Materials Tested<br />

Tap water<br />

Rainwater<br />

Lemon juice<br />

Cola<br />

Ammonia<br />

Table 2<br />

Description of<br />

Cement at Start<br />

Color of Litmus Strip<br />

Description of Cement<br />

After Soaking in Vinegar<br />

Table 3<br />

At start<br />

After 1st shaking<br />

After 2nd shaking<br />

After shaking with pea gravel<br />

Appearance of Sugar Cubes<br />

Questions <strong>and</strong> Conclusions<br />

1. Which material in Part A was the most acidic? The least acidic? Which material was neutral?<br />

How could you tell?<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

10 <strong>Weathering</strong> <strong>and</strong> <strong>Erosion</strong>


Name Date Class<br />

Laboratory Activity 1 (continued)<br />

2. How acidic did the local rainwater test? How do you think acid rainwater contributes to the<br />

weathering of rocks? Based on your results, will your rainwater contribute significantly to<br />

chemical weathering in your area? Explain.<br />

H<strong>and</strong>s-On Activities<br />

3. What happened to the cement in Part B? Explain the results.<br />

4. Are the results obtained in Part B an example of chemical weathering or mechanical weathering?<br />

Explain.<br />

5. Were the changes you observed in the sugar cubes in Part C due to chemical or mechanical<br />

weathering?<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

6. Did the second shaking in Part C produce different results? Did the addition of pea gravel<br />

produce different results? Why or why not?<br />

Strategy Check<br />

Can you test the acidity of rainwater?<br />

Can you demonstrate chemical weathering using cement <strong>and</strong> vinegar?<br />

<strong>Weathering</strong> <strong>and</strong> <strong>Erosion</strong> 11


Name Date Class<br />

2<br />

Laboratory<br />

Activity<br />

<strong>Erosion</strong> <strong>and</strong> Soil Permeability<br />

The permeability of soil, which describes how water can flow through the soil, can be a<br />

contributing factor in erosion. Soil that is very porous can have high permeability. However, if a<br />

soil’s pores are not connected, permeability can still be low. In order for water to flow easily, the<br />

pores in soil must be connected. The porosity of different soils is one factor that determines how<br />

erosion will affect them.<br />

Strategy<br />

You will compare the permeability of three different soil types by conducting “perc” tests.<br />

You will see how soils with different permeabilities are eroded by water.<br />

H<strong>and</strong>s-On Activities<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

Materials<br />

small coffee cans with both ends removed (3)<br />

permanent marker<br />

metric ruler<br />

plastic tubs, about 30 cm ✕ 30 cm ✕ 30 cm (3)<br />

h<strong>and</strong> shovel<br />

s<strong>and</strong>y soil, approximately 2.5 kg<br />

loamy soil, approximately 2.5 kg<br />

clay soil, approximately 2.5 kg<br />

500-mL beaker<br />

water<br />

stopwatch<br />

*watch with second h<strong>and</strong><br />

10-cm wooden block<br />

sprinkler can<br />

*Alternate materials<br />

WARNING: Be sure to wash your h<strong>and</strong>s after touching the materials used in this lab.<br />

Procedure<br />

Part A—Determining Porosity<br />

1. Use the marker to make a line 3 cm from<br />

one end of each coffee can. Label the tubs<br />

S<strong>and</strong>y, Loamy, <strong>and</strong> Clay to designate the<br />

soil types you will be testing.<br />

2. Fill each of the plastic tubs with the type of<br />

soil that corresponds to the label. Use the<br />

shovel to pack down the soil.<br />

3. For each soil type, observe the color <strong>and</strong><br />

texture of the soil <strong>and</strong> presence of any<br />

organisms in the soil. Record your observations<br />

in Table 1 in the Data <strong>and</strong> Observations<br />

section.<br />

4. Predict the permeability of each soil as low,<br />

medium, or high. Record your predictions<br />

in Table 1.<br />

5. Press a coffee can into the s<strong>and</strong>y soil up to<br />

the mark at the 3-cm line. Press a coffee<br />

can into each of the two other soils.<br />

6. Perform a “perc” test on the s<strong>and</strong>y soil by<br />

pouring water in the cans. Have your stopwatch<br />

ready to begin timing when the<br />

water first reaches the soil. Slowly pour 500<br />

mL of water from the beaker into the can<br />

in the s<strong>and</strong>y soil. Stop timing when all the<br />

water has sunk into the soil. In Table 1,<br />

record the amount of time it took for all<br />

the water to sink below the soil surface.<br />

7. Repeat steps 5 <strong>and</strong> 6 for the other two soils.<br />

Try to keep your rate <strong>and</strong> style of pouring<br />

the water the same in each perc test.<br />

<strong>Weathering</strong> <strong>and</strong> <strong>Erosion</strong> 13


Name Date Class<br />

Laboratory Activity 2 (continued)<br />

H<strong>and</strong>s-On Activities<br />

Part B—Observing <strong>Erosion</strong><br />

1. Remove the cans from the tubs. Use the<br />

h<strong>and</strong> shovel to smooth out the soil. Make<br />

sure the tub is full of soil <strong>and</strong> the surface is<br />

level. Take the three tubs of soil outside,<br />

preferably to a grassy area that won’t be<br />

harmed by water <strong>and</strong> soil flowing onto it.<br />

Make certain that the amount of soil that<br />

will flow out can be seen <strong>and</strong> will not<br />

disappear into the grass<br />

2. Set the wooden block under one end of the<br />

tub with the s<strong>and</strong>y soil. The tub should be<br />

at a noticeable tilt.<br />

3. Fill the sprinkling can with water up to the<br />

top. Use the same amount of water when<br />

you test the other tubs of soil.<br />

4. Hold the sprinkling can about 36 cm above<br />

the raised end of the tub of s<strong>and</strong>y soil.<br />

Slowly <strong>and</strong> gently sprinkle the water over<br />

the soil. The water <strong>and</strong> any eroded soil will<br />

drain out of the lower end of the tub.<br />

Data <strong>and</strong> Observations<br />

Table 1<br />

Type of<br />

Soil<br />

S<strong>and</strong>y<br />

Loamy<br />

Clay<br />

Characteristics<br />

5. Observe how much erosion occurs.<br />

Describe the erosion in Table 2 in the Data<br />

<strong>and</strong> Observations section.<br />

6. Repeat steps 2 through 5 for the other two<br />

soil types. Remember to try to keep the<br />

experimental conditions constant for testing<br />

all three tubs of soil. Control the amount of<br />

water you put in the sprinkling can, the<br />

height of the sprinkling can above the tub of<br />

soil, <strong>and</strong> the rate of sprinkling.<br />

Permeability<br />

Prediction<br />

Drainage Time<br />

(Seconds)<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

14 <strong>Weathering</strong> <strong>and</strong> <strong>Erosion</strong>


Name Date Class<br />

Laboratory Activity 2 (continued)<br />

Table 2<br />

Type of<br />

Soil<br />

S<strong>and</strong>y<br />

Observations on <strong>Erosion</strong><br />

H<strong>and</strong>s-On Activities<br />

Loamy<br />

Clay<br />

Questions <strong>and</strong> Conclusions<br />

1. Of the three types of soil, which was the most permeable? The least permeable? Explain how<br />

you know.<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

2. How do your results agree with or differ from your predictions about the permeability of the<br />

three soil types?<br />

3. Describe the evidence of erosion in the three different types of soil.<br />

<strong>Weathering</strong> <strong>and</strong> <strong>Erosion</strong> 15


Name Date Class<br />

Laboratory Activity 2 (continued)<br />

H<strong>and</strong>s-On Activities<br />

4. What relationship did you observe between the permeability of a soil <strong>and</strong> the water erosion of it?<br />

Strategy Check<br />

Can you compare the permeability of different soil types?<br />

Can you compare the rates <strong>and</strong> permeabilities of different soil types?<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

16 <strong>Weathering</strong> <strong>and</strong> <strong>Erosion</strong>


Name Date Class<br />

<strong>Weathering</strong> <strong>and</strong> <strong>Erosion</strong><br />

Directions: Use this page to label your Foldable at the beginning of the chapter.<br />

<strong>Weathering</strong><br />

H<strong>and</strong>s-On Activities<br />

<strong>Erosion</strong><br />

Both<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

<strong>Weathering</strong> <strong>and</strong> <strong>Erosion</strong> 17


Meeting Individual Needs<br />

Meeting Individual<br />

Needs<br />

18 <strong>Weathering</strong> <strong>and</strong> <strong>Erosion</strong>


Name Date Class<br />

Directed Reading for<br />

Content Mastery<br />

Overview<br />

<strong>Weathering</strong> <strong>and</strong> <strong>Erosion</strong><br />

Directions: Use the terms in the list below to complete the concept maps.<br />

gravity water rock slides mudflows<br />

creep mechanical ice<br />

<strong>Weathering</strong><br />

ice wedging <strong>and</strong><br />

living organisms is<br />

1.<br />

caused by<br />

Agents of erosion<br />

natural acids<br />

<strong>and</strong> oxygen is<br />

chemical<br />

Meeting Individual Needs<br />

include include include include<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

2.<br />

5.<br />

wind<br />

soil particles<br />

moving downhill, or<br />

wet sediment<br />

moving downhill, or<br />

6.<br />

Types of mass<br />

movement include<br />

3.<br />

rock layers<br />

breaking loose, or<br />

sediment moving<br />

along curved surfaces, or<br />

slump<br />

4.<br />

7.<br />

<strong>Weathering</strong> <strong>and</strong> <strong>Erosion</strong> 19


Name Date Class<br />

Directed Reading for<br />

Content Mastery<br />

Section 1 ■ <strong>Weathering</strong> <strong>and</strong><br />

Soil Formation<br />

Meeting Individual Needs<br />

Directions: Write the term that matches each description below on the spaces provided. Then rearrange the<br />

boxed letters to answer the final question.<br />

1. ___ ___ ___ ___ ___<br />

2. ___ ___ ___ ___ ___ ___ ___ ___ ___<br />

3. ___ ___ ___ ___ ___ ___ ___ ___<br />

4. ___ ___ ___<br />

5. ___ ___ ___ ___ ___<br />

6. ___ ___ ___ ___ ___ ___ ___ ___ ___<br />

7. ___ ___ ___ ___ ___ ___ ___<br />

8. ___ ___ ___<br />

9. ___ ___ ___ ___ ___ ___ ___<br />

1. gas that is a major cause of chemical weathering<br />

2. surface l<strong>and</strong> features such as flat or hilly<br />

3. freezing <strong>and</strong> thawing cycle that causes potholes in roads <strong>and</strong> breaks in rocks<br />

4. mixture of weathered rock, organic matter, water, <strong>and</strong> air<br />

5. acid produced by some plant roots<br />

6. weathering that breaks down rocks without changing them chemically<br />

7. acid formed from water mixing with carbon dioxide<br />

8. caused by chemical reaction of iron <strong>and</strong> oxygen<br />

9. weathering that changes the chemical composition of rocks<br />

10. What is the natural process that causes rock to break down? ____________________<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

20 <strong>Weathering</strong> <strong>and</strong> <strong>Erosion</strong>


Name Date Class<br />

Directed Reading for<br />

Content Mastery<br />

Section 2 ■ <strong>Erosion</strong> of Earth’s<br />

Surface<br />

Directions: For each of the following, write the letter of the term or phrase that best completes the sentence.<br />

1. <strong>Erosion</strong> called mass movement is caused by ______.<br />

a. wind b. gravity c. earthquakes d. runoff<br />

2. The major result of heavy rains or melting snow <strong>and</strong> ice is ______.<br />

a. abrasion b. creep c. valley glaciers d. mudflow<br />

3. Sediment of different-sized particles left by ice from glaciers is<br />

called ______.<br />

a. till b. outwash c. cirque d. slump<br />

4. Small channels called ______ are cut into Earth’s surface when sheets of<br />

water flow around obstacles <strong>and</strong> become deeper.<br />

a. gullies b. s<strong>and</strong> bars c. rills d. deltas<br />

5. ______ are the most important agent of erosion on Earth.<br />

a. Winds b. Glaciers c. S<strong>and</strong> dunes d. Streams<br />

Meeting Individual Needs<br />

Directions: Complete the paragraphs by filling in the blanks using the terms listed below.<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

mudflows rock gravity ice<br />

glaciers mass movement erosion<br />

rock slides water slump cirques<br />

6. ________________ is the wearing away <strong>and</strong> removal of 7. _________________<br />

material. <strong>Erosion</strong> occurs because 8. __________________, 9. ________________,<br />

wind, <strong>and</strong> 10. ____________________ sculpt Earth’s surface. Gravity causes different<br />

kinds of 11. ____________________ such as 12. ____________________,<br />

creep, <strong>and</strong> 13. __________________. Gravity also causes 14. __________________,<br />

layers of rock breaking loose <strong>and</strong> sliding down slopes.<br />

In cold regions, snow can accumulate over many years to form huge masses of ice<br />

called 15. ____________________. They can remove rock from mountain tops,<br />

leaving depressions called 16. ____________________.<br />

<strong>Weathering</strong> <strong>and</strong> <strong>Erosion</strong> 21


Name Date Class<br />

Directed Reading for<br />

Content Mastery<br />

Key Terms<br />

<strong>Weathering</strong> <strong>and</strong> <strong>Erosion</strong><br />

Directions: Draw a line to connect the term on the left to its description on the right.<br />

Meeting Individual Needs<br />

1. slump<br />

2. mechanical weathering<br />

3. runoff<br />

4. soil<br />

5. mass movement<br />

6. creep<br />

mixture of weathered rock, organic<br />

matter, water, <strong>and</strong> air<br />

erosion caused by wind that can<br />

lower the l<strong>and</strong>’s surface<br />

gravity causing rock or sediment to<br />

move downhill<br />

thick layers of loose sediment moving<br />

downhill along a curved surface<br />

process in which composition of<br />

the rock changes<br />

wearing away <strong>and</strong> removal of rock<br />

material<br />

7. topography<br />

8. chemical weathering<br />

9. erosion<br />

10. deflation<br />

11. abrasion<br />

sediments moving slowly downhill<br />

due to freezing <strong>and</strong> thawing<br />

breaks rocks into pieces without<br />

changing their composition<br />

erosion, caused by wind, that<br />

produces smooth, polished rocks<br />

surface features of l<strong>and</strong> that<br />

influence type of soil<br />

water that flows over Earth’s surface<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

22 <strong>Weathering</strong> <strong>and</strong> <strong>Erosion</strong>


Nombre Fecha Clase<br />

Lectura dirigida para<br />

Dominio del contenido<br />

Sinopsis<br />

Meteorización y erosión<br />

Instrucciones: Usa los siguientes términos para completar el mapa de conceptos.<br />

gravedad agua deslizamientos de rocas corrientes de lodo<br />

corrimiento mecánica hielo<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

2.<br />

5.<br />

grietas debido al hielo y<br />

organismos vivos es la<br />

1.<br />

viento<br />

La meteorización<br />

causada por<br />

Los agentes de la<br />

erosión<br />

3.<br />

desprendimientos<br />

ácidos naturales<br />

y oxígeno es la<br />

química<br />

incluyen incluyen incluyen incluyen<br />

partículas de suelo que se<br />

mueven cuesta abajo o<br />

sedimento húmedo<br />

que se mueve<br />

cuesta abajo o<br />

6.<br />

Los tipos de<br />

movimientos de<br />

masas incluyen<br />

sedimentos que se<br />

mueven a lo largo de<br />

superficies curvas o<br />

capas de roca que<br />

se desprenden o<br />

4.<br />

7.<br />

Satisface las necesidades individuales<br />

Meteorización y erosión 23


Satisface las necesidades individuales<br />

Nombre Fecha Clase<br />

Sección 1 ■<br />

Meteorización y<br />

formación del<br />

suelo<br />

Instrucciones: Escribe el término que corresponde a cada descripción en las líneas dadas. Reorganiza luego las<br />

letras en las cajas para contestar la última pregunta.<br />

1. ___ ___ ___ ___ ___ ___<br />

2. ___ ___ ___ ___ ___ ___ ___ ___ ___<br />

___ ___ ___ ___ ___ ___ ___<br />

___ ___ ___<br />

3. ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___<br />

___ ___<br />

___ ___<br />

4. ___ ___ ___ ___<br />

5. ___ ___ ___ ___ ___ ___<br />

6. ___ ___ ___ ___ ___<br />

7. ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___<br />

8. ___ ___ ___ ___ ___ ___ ___ ___<br />

9. ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___<br />

___ ___<br />

Lectura dirigida para<br />

Dominio del contenido<br />

___ ___ ___ ___<br />

1. gas que es la causa principal de la meteorización química<br />

2. rasgos de la superficie, como llanuras o colinas<br />

3. ciclo de congelación y descongelación que causa hoyos en las calles y rupturas<br />

en las rocas<br />

4. mezcla de roca meteorizada, materia orgánica, agua y aire<br />

5. ácido producido por las raíces de algunas plantas<br />

6. meteorización que rompe las rocas sin cambiarlas químicamente<br />

7. ácido que se forma cu<strong>and</strong>o el agua se mezcla con el dióxido de carbono<br />

8. lo causa una reacción química entre el hierro y el oxígeno<br />

9. cu<strong>and</strong>o las rocas de la superficie experimentan cambios en su composición<br />

química<br />

10. ¿Qué proceso natural ocasiona cambios en las rocas de la superficie terrestre?<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

24 Meteorización y erosión


Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

Nombre Fecha Clase<br />

Lectura dirigida para<br />

Dominio del contenido<br />

Instrucciones: En cada una de las siguientes, escribe la letra del término o frase que completa mejor cada<br />

oración.<br />

1. La erosión llamada movimientos de masas es causada por ______.<br />

a. viento b. gravedad c. terremotos d. escorrentía<br />

2. Las lluvias torrenciales o la nieve y hielo que se derriten pueden<br />

producir ______.<br />

a. abrasión b. corrimiento c. glaciares de valle d. corrientes de lodo<br />

3. El sedimento de partículas de diferentes tamaños que es depositado por<br />

los glaciares se llama ______.<br />

a. tilita b. derrubio c. circo d. desprendimiento<br />

4. Canales pequeños llamados ______ cortan el suelo cu<strong>and</strong>o láminas de<br />

agua fluyen alrededor de obstáculos y se hacen más profundas.<br />

a. barrancos b. barras de arena c. regueras d corrientes<br />

5. Los(Las) ______ son los agentes erosivos más importantes en la Tierra.<br />

a. vientos b. glaciares c. dunas de arena d. corrientes<br />

Instrucciones: Completa los párrafos llen<strong>and</strong>o los espacios en blanco con los siguientes términos.<br />

corrientes de lodo roca gravedad hielo<br />

glaciares movimientos de masas erosión<br />

deslizamientos de rocas agua desprendimiento circos<br />

6. ____________________ es el desgaste y remoción del material de<br />

7. ___________________ . Ocurre erosión porque el(la) 8. ___________________ ,<br />

los(as) 9. ___________________ , viento y 10. ___________________ esculpen la<br />

superficie de la Tierra. La gravedad causa tipos diferentes de 11. ________________<br />

tales como 12. ___________________ , el corrimiento y 13. __________________.<br />

La gravedad también causa 14. ___________________ , cu<strong>and</strong>o las capas de roca se<br />

desprenden y se deslizan por las pendientes.<br />

En las regiones frías, la nieve puede acumularse durante muchos años para formar<br />

masas enormes de hielo llamadas 15. ____________________ . Estos pueden<br />

transportar rocas desde la cima de las montañas, dej<strong>and</strong>o depresiones llamadas<br />

16. ____________________ .<br />

Sección 2 ■<br />

Erosión en la<br />

superficie de la<br />

Tierra<br />

Satisface las necesidades individuales<br />

Meteorización y erosión 25


Nombre Fecha Clase<br />

Lectura dirigida para<br />

Dominio del contenido<br />

Términos claves<br />

Meteorización y erosión<br />

Instrucciones: Une con una línea cada término de la izquierda con su descripción a la derecha.<br />

1. desprendimiento<br />

mezcla de roca meteorizada, materia orgánica,<br />

agua y aire<br />

Satisface las necesidades individuales<br />

2. meteorización mecánica<br />

3. escorrentía<br />

4. suelo<br />

5. movimientos de masas<br />

6. corrimiento<br />

erosión causada por el viento, la cual puede<br />

hacer que baje el nivel del suelo<br />

la gravedad causa que las rocas y el sedimento<br />

se muevan pendiente abajo<br />

capas gruesas de sedimentos sueltos se<br />

mueven por las pendientes a lo largo de las<br />

superficies en curva<br />

la composición de la roca cambia<br />

desgaste y remoción del material rocoso<br />

7. topografía<br />

8. meteorización química<br />

9. erosión<br />

10. deflación<br />

11. abrasión<br />

los sedimentos se mueven lentamente por las<br />

pendientes debido a la congelación y descongelación<br />

quiebra las rocas sin cambiar su composición<br />

erosión causada por el viento que produce<br />

superficies lisas y pulidas<br />

rasgos de la superficie terrestre que influyen<br />

sobre el tipo de suelo<br />

el agua que fluye sobre la superficie del suelo<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

26 Meteorización y erosión


Name Date Class<br />

1<br />

Reinforcement<br />

<strong>Weathering</strong> <strong>and</strong> Soil<br />

Formation<br />

Directions: Answer the following questions on the lines provided.<br />

1. What is weathering?<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

2. What is the principal difference between mechanical weathering <strong>and</strong> chemical weathering?<br />

Directions: Complete the following sentences using the correct terms.<br />

3. Two causes of mechanical weathering are ice wedging <strong>and</strong> ____________________.<br />

4. Chemical weathering takes place fastest in a ____________________ <strong>and</strong><br />

____________________ climate.<br />

5. ____________________ takes place when the composition of the rock changes.<br />

6. When minerals in rocks combine with ____________________ in the air, chemical weathering<br />

takes place.<br />

7. ____________________ is a mixture of weathered rock, organic matter, water, <strong>and</strong> air.<br />

8. The lack of thick soils on steep hills is an example of how ____________________ influences<br />

soil development.<br />

Directions: Circle the term in parentheses that correctly completes the sentence.<br />

9. Ice wedging occurs because a given amount of ice has a volume (greater than, less than,<br />

the same as) an equal amount of water.<br />

10. A growing plant can cause (mechanical, chemical, both mechanical <strong>and</strong> chemical) weathering.<br />

11. (Carbon dioxide, Oxygen, Nitrogen) in air reacts with water to dissolve rocks such as marble<br />

<strong>and</strong> limestone.<br />

12. Deep soils develop quickly where rock weathers (slowly, rapidly, either slowly or quickly).<br />

13. In a tropical climate, (s<strong>and</strong>y soil, clayey soil, humus) develops.<br />

14. Many plants produce (carbonic acid, tannic acid, rust), which causes weathering in rocks.<br />

Meeting Individual Needs<br />

<strong>Weathering</strong> <strong>and</strong> <strong>Erosion</strong> 27


Name Date Class<br />

2<br />

Reinforcement<br />

<strong>Erosion</strong> of Earth’s Surface<br />

Directions: Answer the following questions on the lines provided.<br />

1. What is the difference between weathering <strong>and</strong> erosion?<br />

2. Name four agents of erosion.<br />

Meeting Individual Needs<br />

Directions: Identify each statement as true or false. If the statement is true, write T in the blank at the left. If<br />

the statement is false, change the underlined term to make the statement true.<br />

3. Mass movement is caused by ice.<br />

4. Creep is a flow of rock or sediment along a curved surface, often<br />

down an eroded cliff.<br />

5. Continental glaciers are located near the north <strong>and</strong> south poles.<br />

6. The most important agent of erosion is wind.<br />

7. If you see long striations on the surface of a rock, you would<br />

suspect mass movement.<br />

8. Water that flows over Earth’s surface is called sheet flow.<br />

Directions: Circle the term in parentheses that correctly completes the sentence.<br />

9. Creep is caused by (glacial erosion, wind, gravity).<br />

10. Sediment left behind when a glacier melts is called (till, loess, silt).<br />

11. (Slump, Mudflow, Creep) is a mass of wet sediment that flows downhill as a result of heavy<br />

rain, melting snow <strong>and</strong> ice, or a volcano.<br />

12. The wearing down of rocks by blowing s<strong>and</strong> is called (deflation, grinding, abrasion).<br />

13. Where the Mississippi River enters the Gulf of Mexico, there is a large accumulation of<br />

sediment called a (cirque, gully, delta).<br />

14. When wind lifts <strong>and</strong> carries off small particles of weathered rock, it is called (deflation,<br />

deposition, abrasion).<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

28 <strong>Weathering</strong> <strong>and</strong> <strong>Erosion</strong>


Name Date Class<br />

1<br />

Enrichment<br />

Rain Forest Soils<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

Tropical rain forests are very hot <strong>and</strong><br />

steamy places. The average annual temperature<br />

is about 25°C. Rainfall is usually<br />

between 150 cm <strong>and</strong> 350 cm per year, with<br />

the greatest rainfalls reaching 900 cm per<br />

year or more. Many different living things<br />

flourish in these warm, moist conditions, but<br />

there is a difficult side to these conditions,<br />

too. While the plentiful rain <strong>and</strong> warm<br />

temperatures nurture a wide variety of plants<br />

<strong>and</strong> animals, they also make it particularly<br />

difficult for tropical rain forests to recover<br />

from deforestation.<br />

The problem is that plants <strong>and</strong> animals<br />

cannot use all the water that falls as rain, <strong>and</strong><br />

the Sun cannot evaporate the excess water.<br />

Therefore, excess water runs off the soil, taking<br />

nutrients <strong>and</strong> organic material with it. As a<br />

result, the layer of soil that contains nutrients is<br />

very thin.<br />

Effects of Rapid Decomposition<br />

Leaves falling from trees are one of the<br />

many factors that influence soil nutrients. In<br />

tropical rain forests, different trees shed their<br />

leaves at different times. This means there is<br />

only a thin layer of leaf litter on the ground at<br />

any time. Decomposers, such as bacteria <strong>and</strong><br />

fungi, thrive in hot, wet conditions. The result<br />

is that leaf litter <strong>and</strong> other sources of nutrients<br />

break down quickly. Decomposers often can<br />

break down dead animals <strong>and</strong> plants within<br />

24 hours.<br />

Other plants take up the nutrients almost as<br />

soon as they are released. Rain forest trees<br />

have shallow root systems that allow them to<br />

absorb nutrients from the forest floor. They<br />

do this so rapidly that nutrients don’t have<br />

time to be stored in the soil. Therefore, unlike<br />

soil in temperate forests, the humus layer of<br />

rain forest soil is very thin.<br />

Effects of Deforestation<br />

As long as trees <strong>and</strong> plants growing in forest<br />

soil can quickly absorb the nutrients, many<br />

living things can thrive in these conditions.<br />

When rain forests are cleared for farming or<br />

cattle grazing, however, the soil can support<br />

crops or grasses for only a few years. By then,<br />

most of the remaining nutrients have been<br />

removed. The l<strong>and</strong> is then ab<strong>and</strong>oned. The soil<br />

is bare <strong>and</strong> exposed to the effects of rain, heat,<br />

<strong>and</strong> wind. <strong>Erosion</strong> quickly washes away the topsoil<br />

<strong>and</strong> any remaining nutrients, leaving behind<br />

a subsurface layer called laterite. This soil is<br />

colored red by aluminum <strong>and</strong> iron oxides.<br />

Exposed to the hot Sun, this layer can become as<br />

hard as concrete. It is nearly impossible for rain<br />

forests to regrow under these conditions.<br />

Meanwhile loggers, farmers, <strong>and</strong> cattle<br />

ranchers move to new areas of rain forest <strong>and</strong><br />

destruction begins again. In some areas, about<br />

2,000 trees per minute are cut down in the<br />

rain forests. Scientists estimate that an area of<br />

tropical rain forest about the size of the state<br />

of Wisconsin is being destroyed every year.<br />

1. Why would it be difficult to replant trees in an area of tropical rainforest that has been cleared?<br />

What do you think would have to be done before this could be attempted?<br />

2. How would the soil in a tropical rainforest be different from the soil in a tropical forest that has<br />

a wet season <strong>and</strong> a dry season?<br />

Meeting Individual Needs<br />

<strong>Weathering</strong> <strong>and</strong> <strong>Erosion</strong> 29


Name Date Class<br />

2<br />

Enrichment<br />

Canada’s L<strong>and</strong>scape<br />

Meeting Individual Needs<br />

About a million years ago, the climate over<br />

what is now Canada began to cool, <strong>and</strong> snow<br />

accumulated to form great ice sheets across<br />

the l<strong>and</strong>. As the ice became heavier, it began<br />

to move, scouring the l<strong>and</strong>scape <strong>and</strong> picking<br />

up a collection of clay, s<strong>and</strong>, <strong>and</strong> gravel that<br />

acted like a giant sheet of s<strong>and</strong>paper on the<br />

l<strong>and</strong>. The glaciers moved rocks, gouged out<br />

valleys, rounded off hilltops, <strong>and</strong> shaved the<br />

sides off mountains.<br />

Then, as the climate warmed, the glaciers<br />

melted <strong>and</strong> slowly retreated, but their<br />

imprint on the l<strong>and</strong>scape can be seen even<br />

today.<br />

Evidence Left Behind<br />

For example, Canada’s mountains still show<br />

the effects with cirques, or basins, eroded out of<br />

mountaintops. There are also arêtes, jagged<br />

knifelike ridges formed where cirques on<br />

opposite sides of a mountain meet. Other<br />

features include rugged peaks called horns,<br />

where the mountain was eroded on several sides,<br />

<strong>and</strong> cols, or gaps between two mountain horns.<br />

When the glaciers melted, the rushing water<br />

filled the depressions in the l<strong>and</strong> as well. Tarns,<br />

lakes at the bottom of cirques, filled with water,<br />

while other depressions also became lakes. In<br />

fact, the present-day Great Lakes are the<br />

remains of larger lakes that filled with the<br />

enormous amount of water from the glaciers.<br />

Glacial Features<br />

In addition, the makeup of the l<strong>and</strong> itself still<br />

shows the effects of the glaciers. Huge boulders<br />

were carried great distances <strong>and</strong> left behind<br />

when the ice retreated. Till, a mixture of clay<br />

<strong>and</strong> rock, was deposited in gently rolling plains<br />

when the glacier had picked up more debris<br />

than it could carry. Moraines, long ridges of<br />

material deposited by the melting glaciers, were<br />

formed, along with eskers, long ridges of sediment<br />

deposited in glacial streams.<br />

All of these features can be seen when traveling<br />

through Canada’s rugged terrain. While<br />

the ancient glaciers have been gone for thous<strong>and</strong>s<br />

of years, the evidence of their passing<br />

still can be found.<br />

Cirque<br />

1. Why is Canada an ideal location to study the effects of glacial movement?<br />

2. What is a cirque, <strong>and</strong> what other features does it help form?<br />

Horn<br />

Col<br />

Tarn<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

30 <strong>Weathering</strong> <strong>and</strong> <strong>Erosion</strong>


Name Date Class<br />

Note-taking<br />

Worksheet<br />

<strong>Weathering</strong> <strong>and</strong> <strong>Erosion</strong><br />

Section 1<br />

<strong>Weathering</strong> <strong>and</strong> Soil Formation<br />

A. Natural process that causes rocks to break down is called ____________________.<br />

B. ____________________ ____________________—breaks rocks into smaller pieces without<br />

changing them chemically<br />

1. __________________ _________________ is the freezing <strong>and</strong> thawing cycle that breaks<br />

rocks apart.<br />

2. Plant ____________________ <strong>and</strong> burrowing ______________________ exert pressure<br />

on rocks.<br />

C. When the chemical composition of rock changes, ________________ ____________________<br />

has occurred.<br />

1. __________________ ___________________, from water <strong>and</strong> carbon dioxide, reacts<br />

chemically with many rocks.<br />

2. ________________ ___________________, formed from a plant’s release of tannin,<br />

Meeting Individual Needs<br />

dissolves some rock minerals.<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

3. Oxygen can cause rocks containing iron to rust in the process of ___________________.<br />

D. ___________________—mixture of weathered rock, organic matter, water, <strong>and</strong> air that<br />

supports the growth of plant life<br />

1. The ________________ ______________ affects what kind of soil develops.<br />

2. ____________________ influences soil development.<br />

3. The _________________ in tropical regions increases the rate of weathering forming soil<br />

more quickly than in deserts.<br />

4. Rocks take ___________________, perhaps thous<strong>and</strong>s of years, to weather into soil.<br />

5. _______________ ___________________ affect soil development.<br />

<strong>Weathering</strong> <strong>and</strong> <strong>Erosion</strong> 31


Name Date Class<br />

Note-taking Worksheet (continued)<br />

Section 2<br />

<strong>Erosion</strong> of Earth’s Surface<br />

A. _________________—wearing away <strong>and</strong> removal of rock; occurs because of gravity, ice, wind,<br />

<strong>and</strong> water<br />

B. ______________ __________________—gravity pulls rock or sediment down slopes.<br />

1. _______________—sediments move downhill slowly.<br />

2. _______________—rock or sediment moves downhill along a curved slope.<br />

Meeting Individual Needs<br />

3. Rock layers break loose <strong>and</strong> slide downhill in a ______________ _______________.<br />

4. __________________—mass of wet sediment that flows downhill over the ground surface<br />

C. __________________ forms continental <strong>and</strong> valley glaciers.<br />

1. _________________ _________________ can occur as glaciers remove loose pieces of<br />

rock or as dragged rock scratches rock underneath the glacier.<br />

2. Glaciers can form _________________ <strong>and</strong> steep peaks in mountains, create lakes, or<br />

totally remove rock from the surface.<br />

3. Glaciers deposit __________________.<br />

a. ___________________, a mixture of different sized particles ranging from clay to<br />

boulders, is deposited directly from the bottom of a glacier.<br />

b. _________________ includes s<strong>and</strong> <strong>and</strong> gravel deposits moved by rivers from melting<br />

glaciers.<br />

D. Wind—blows small particles from Earth’s surface in a process called ___________________<br />

1. __________________ forms pits in rocks or polishes surfaces smooth as sediments are<br />

blown by strong winds.<br />

2. _______________ can form as the wind is slowed as it blows around irregular features such<br />

as rock or vegetation <strong>and</strong> deposits the sediment it carried.<br />

3. _____________, or fine silt, often collects downwind of large deserts or near glacial streams.<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

32 <strong>Weathering</strong> <strong>and</strong> <strong>Erosion</strong>


Name Date Class<br />

Note-taking Worksheet (continued)<br />

E. ________________—water flowing on Earth’s surface causes erosion.<br />

1. _______________ ______________—when water flows downhill as a thin sheet often<br />

carrying loose sediment grains<br />

2. _______________ <strong>and</strong> gullies are channels cut into Earth’s surface <strong>and</strong> are formed as runoff<br />

carries sediments along.<br />

3. Streams have water flowing through them ______________________; they eventually flow<br />

into the ocean or a large lake.<br />

4. ________________ water in streams is the most important agent of erosion; streams shape<br />

more of Earth’s surface than ice, wind, or gravity.<br />

Meeting Individual Needs<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

<strong>Weathering</strong> <strong>and</strong> <strong>Erosion</strong> 33


Assessment<br />

Assessment<br />

34 <strong>Weathering</strong> <strong>and</strong> <strong>Erosion</strong>


Name Date Class<br />

Chapter<br />

Review<br />

<strong>Weathering</strong> <strong>and</strong> <strong>Erosion</strong><br />

Part A. Vocabulary Review<br />

Directions: Use the clues below to complete the crossword puzzle.<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

Across<br />

9<br />

5. Breaking up rock without changing it<br />

chemically<br />

6. A mixture of weathered rock, organic<br />

matter, air, <strong>and</strong> water<br />

7. Removal of small loose particles of rock by<br />

the wind<br />

8<br />

Down<br />

1. Natural process that causes rock to break<br />

<strong>and</strong> crumble<br />

2. Breaking down rock by changing its<br />

chemical composition<br />

3. S<strong>and</strong>blasting of rock by wind-blown<br />

particles<br />

Assessment<br />

8. Wearing away <strong>and</strong> removal of rock material<br />

9. The flow of water over Earth’s surface<br />

4. Gravity causing rock or sediment to move<br />

downhill<br />

<strong>Weathering</strong> <strong>and</strong> <strong>Erosion</strong> 35


Name Date Class<br />

Chapter Review (continued)<br />

Assessment<br />

Part B. Concept Review<br />

Directions: Complete the following sentences using the correct terms.<br />

1. Two important causes of chemical weathering are ____________________ <strong>and</strong><br />

____________________.<br />

2. Two important causes of mechanical weathering are ____________________ <strong>and</strong><br />

____________________.<br />

3. Freezing <strong>and</strong> thawing cause rocks to break because the volume of ice is ____________________<br />

that of the same amount of water.<br />

4. Acid rain causes a ____________________ change in rock.<br />

5. Melting glaciers deposit _________________, sediment ranging from s<strong>and</strong> or clay to huge rocks.<br />

6. Rivers flowing from melting glaciers deposit ____________________ consisting mostly of<br />

s<strong>and</strong> <strong>and</strong> gravel.<br />

7. Glaciers can erode rock by ____________________ the rock below, or by<br />

____________________ large pieces of rock.<br />

8. When freezing <strong>and</strong> thawing cause sediments to move slowly downhill, ____________________<br />

takes place.<br />

9. ____________________ causes rocks <strong>and</strong> loose sediments to travel downward.<br />

Directions: Circle the term in parentheses that correctly completes the sentence.<br />

10. Carbon dioxide <strong>and</strong> water combine to form (iron carbonate, tannic acid, carbonic acid).<br />

11. Mass movement is caused by (gravity, ice, water).<br />

12. When valley glaciers remove rock from mountain tops, large basins or bowls called (craters,<br />

cirques, gullies) are carved out.<br />

13. When wind carrying s<strong>and</strong> slows down, it sometimes deposits sediment to form (rills, s<strong>and</strong> dunes,<br />

mudslides).<br />

14. The most important agent of erosion on Earth’s surface is (ice, wind, water).<br />

Directions: Answer the following questions on the lines provided.<br />

15. How are deltas formed?<br />

16. Describe five factors that influence soil formation.<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

36 <strong>Weathering</strong> <strong>and</strong> <strong>Erosion</strong>


Transparency<br />

Activities<br />

Transparency Activities<br />

<strong>Weathering</strong> <strong>and</strong> <strong>Erosion</strong> 41


Name Date Class<br />

1<br />

Section Focus<br />

Transparency Activity<br />

Congregation of Plants<br />

Plant growth can get so thick in the rainforest that it can hide an<br />

entire city. Angkor Preah Ko, a mountaintop temple in Cambodia, is<br />

being reclaimed by the rainforest through gradual processes.<br />

Transparency Activities<br />

1. Describe how plants are affecting the rock in this picture.<br />

2. How might climate affect the process you described in question<br />

one?<br />

3. Could animals have an effect on the rocks similar to that of the<br />

plants? Explain.<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

42 <strong>Weathering</strong> <strong>and</strong> <strong>Erosion</strong>


Name Date Class<br />

2<br />

Section Focus<br />

Transparency Activity<br />

Give <strong>and</strong> Take<br />

The effects of centuries of wind blasting s<strong>and</strong> particles against the<br />

surface of the Sphinx is easily seen. But wind has also helped preserve<br />

this ancient monument. For many years the Sphinx was buried by<br />

wind-blown s<strong>and</strong>, protecting it from further damage.<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

1. How has wind damaged the Sphinx?<br />

2. What happens to particles that the wind blasts off the Sphinx?<br />

3. How could the Sphinx be protected from further damage?<br />

Transparency Activities<br />

<strong>Weathering</strong> <strong>and</strong> <strong>Erosion</strong> 43


Name Date Class<br />

1<br />

Teaching Transparency<br />

Activity<br />

Feldspar <strong>and</strong> Kaolinite<br />

23%<br />

Silicon<br />

8%<br />

Aluminum<br />

8%<br />

Potassium<br />

61%<br />

Oxygen<br />

Feldspar<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

6%<br />

Aluminum<br />

13%<br />

Silicon<br />

56%<br />

Oxygen<br />

Kaolinite<br />

25%<br />

Hydrogen<br />

Transparency Activities<br />

<strong>Weathering</strong> <strong>and</strong> <strong>Erosion</strong> 45


Name Date Class<br />

Teaching Transparency Activity (continued)<br />

1. What elements are common in both kaolinite <strong>and</strong> feldspar?<br />

2. What elements are unique in each?<br />

3. The composition of the feldspar changed to form kaolinite. What caused the change?<br />

4. How does carbonic acid affect rocks?<br />

5. Explain each type of weathering <strong>and</strong> its causes.<br />

Transparency Activities<br />

6. Describe a region where chemical weathering would occur slowly.<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

46 <strong>Weathering</strong> <strong>and</strong> <strong>Erosion</strong>


Name Date Class<br />

Assessment<br />

Transparency Activity<br />

<strong>Weathering</strong> <strong>and</strong> <strong>Erosion</strong><br />

Directions: Carefully review the table <strong>and</strong> answer the following questions.<br />

Precipitation–Catch (mm at 990 m altitude)<br />

1980–1986 (November–April)<br />

Year<br />

Nov.<br />

Dec.<br />

Jan.<br />

Feb.<br />

Mar.<br />

Apr.<br />

1980<br />

313<br />

153<br />

253<br />

276<br />

142<br />

132<br />

1981<br />

100<br />

34<br />

280<br />

156<br />

237<br />

8<br />

1982<br />

126<br />

100<br />

28<br />

28<br />

32<br />

54<br />

1983<br />

89<br />

165<br />

77<br />

78<br />

12<br />

60<br />

1984<br />

138<br />

46<br />

170<br />

93<br />

44<br />

50<br />

1985<br />

32<br />

116<br />

181<br />

40<br />

189<br />

56<br />

1986<br />

31<br />

169<br />

17<br />

113<br />

13<br />

18<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

1. According to the table, the month <strong>and</strong> year that experienced the<br />

highest amount of precipitation-catch was ___.<br />

A April, 1980 C November, 1980<br />

B January, 1980 D February, 1980<br />

2. According to the information in the table, all of the following years<br />

had at least one month in which the monthly precipitation-catch<br />

was greater than 180 millimeters EXCEPT ___.<br />

F 1980 G 1981 H 1985 J 1986<br />

3. According to the information in the table, which month<br />

experienced the greatest amount of precipitation-catch?<br />

A November B December C January D February<br />

Transparency Activities<br />

<strong>Weathering</strong> <strong>and</strong> <strong>Erosion</strong> 47

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!