28.11.2014 Views

Introduction to Embedded Systems - Chess

Introduction to Embedded Systems - Chess

Introduction to Embedded Systems - Chess

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Introduction</strong> <strong>to</strong><br />

<strong>Embedded</strong> <strong>Systems</strong><br />

Edward A. Lee & Sanjit A. Seshia<br />

UC Berkeley<br />

EECS 149<br />

Spring 2009<br />

Copyright © 2008-09, Edward A. Lee & Sanjit A. Seshia, All rights reserved<br />

Lecture 6: Hybrid <strong>Systems</strong>, Part I<br />

Material drawn from notes by T. Henzinger, J. Lygeros, G, Pappas,<br />

S. Sastry, C. Tomlin<br />

Discrete System (FSM)<br />

Continuous System<br />

Hybrid System<br />

jump<br />

flow<br />

EECS 149, UC Berkeley: 2<br />

1


Topics in Today’s Lecture<br />

Examples of Hybrid <strong>Systems</strong><br />

The Hybrid Au<strong>to</strong>ma<strong>to</strong>n Model<br />

properties of this kind of model<br />

EECS 149, UC Berkeley: 3<br />

A Thermostat<br />

(happen instantaneously)<br />

EECS 149, UC Berkeley: 4<br />

2


Dynamics of Thermostat<br />

x<br />

82<br />

80<br />

70<br />

68<br />

on<br />

off<br />

t<br />

EECS 149, UC Berkeley: 5<br />

Hybrid Au<strong>to</strong>ma<strong>to</strong>n for Thermostat<br />

Is this au<strong>to</strong>ma<strong>to</strong>n deterministic?<br />

EECS 149, UC Berkeley: 6<br />

3


Formal Representation of Hybrid Au<strong>to</strong>ma<strong>to</strong>n<br />

EECS 149, UC Berkeley: 7<br />

Where do Hybrid <strong>Systems</strong> arise?<br />

Digital controller of physical “plant”<br />

thermostat<br />

controller for power plant<br />

intelligent cruise control in cars<br />

aircraft au<strong>to</strong> pilot<br />

Phased operation of natural phenomena<br />

bouncing ball<br />

biological cell growth<br />

Multi-agent systems<br />

ground and air transportation systems<br />

interacting robots (e.g., RoboSoccer)<br />

EECS 149, UC Berkeley: 8<br />

4


Another example<br />

Example due <strong>to</strong> George Pappas, UPenn<br />

EECS 149, UC Berkeley: 9<br />

Nuclear reac<strong>to</strong>r example (contd.)<br />

Example due <strong>to</strong> George Pappas, UPenn<br />

EECS 149, UC Berkeley: 10<br />

5


Hybrid Au<strong>to</strong>ma<strong>to</strong>n for Bouncing Ball<br />

x – vertical distance from ground (position)<br />

v – velocity<br />

c – coefficient of restitution, 0 c 1<br />

EECS 149, UC Berkeley: 11<br />

Behavior of Bouncing Ball Au<strong>to</strong>ma<strong>to</strong>n:<br />

Plot position x as a function of time t ,<br />

where x starts at height x max<br />

What kind of plot would you expect?<br />

EECS 149, UC Berkeley: 12<br />

6


Simulation of Bouncing Ball Au<strong>to</strong>ma<strong>to</strong>n in<br />

P<strong>to</strong>lemy II / HyVisual<br />

EECS 149, UC Berkeley: 13<br />

Zeno Behavior<br />

Informally:<br />

The system makes an infinite number of jumps<br />

in finite time<br />

EECS 149, UC Berkeley: 14<br />

7


A Run/Execution of a Hybrid Au<strong>to</strong>ma<strong>to</strong>n<br />

time<br />

EECS 149, UC Berkeley: 15<br />

Zeno Behavior: Formal Definition<br />

time<br />

EECS 149, UC Berkeley: 16<br />

8


Analysis of Zeno Behavior of Bouncing Ball<br />

EECS 149, UC Berkeley: 17<br />

Why does Zeno Behavior Arise?<br />

Our model is a mathematical artifact<br />

Zeno behavior is mathematically possible, but it is<br />

infeasible in the real, physical world<br />

Points <strong>to</strong> some unrealistic assumption in the model<br />

EECS 149, UC Berkeley: 18<br />

9


Hybrid Au<strong>to</strong>ma<strong>to</strong>n for Bouncing Ball: What’s<br />

Unrealistic about this model?<br />

x – vertical distance<br />

v – velocity<br />

c – coefficient of restitution, 0 c 1<br />

EECS 149, UC Berkeley: 19<br />

Eliminating Zeno Behavior: Regularization<br />

An instantaneous mode change (jump) is unrealistic<br />

What happens as ε goes <strong>to</strong> 0?<br />

EECS 149, UC Berkeley: 20<br />

10


Simulation for ε = 0.3<br />

EECS 149, UC Berkeley: 21<br />

Simulation for ε = 0.15<br />

EECS 149, UC Berkeley: 22<br />

11


Exercise: Construct a Hybrid Au<strong>to</strong>ma<strong>to</strong>n Model of<br />

iRobot Hill Climber<br />

EECS 149, UC Berkeley: 23<br />

12

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!