30.11.2014 Views

Reinforcement Loads in Geosynthetic Walls and the ... - ResearchGate

Reinforcement Loads in Geosynthetic Walls and the ... - ResearchGate

Reinforcement Loads in Geosynthetic Walls and the ... - ResearchGate

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Re<strong>in</strong>forcement</strong> <strong>Loads</strong> <strong>in</strong> <strong>Geosyn<strong>the</strong>tic</strong> <strong>Walls</strong> <strong>and</strong> <strong>the</strong> Case for a New<br />

Work<strong>in</strong>g Stress Design Method<br />

R.J. Bathurst<br />

GeoEng<strong>in</strong>eer<strong>in</strong>g Centre at Queen’s-RMC, Royal Military College, K<strong>in</strong>gston, Ontario, Canada<br />

bathurst-r@rmc.ca<br />

T. Allen<br />

Wash<strong>in</strong>gton State Department of Transportation, Olympia, Wash<strong>in</strong>gton, USA<br />

AllenT@wsdot.wa.gov<br />

D. Walters<br />

GeoEng<strong>in</strong>eer<strong>in</strong>g Centre at Queen’s-RMC, Queen’s University, K<strong>in</strong>gston, Ontario, Canada<br />

walters-d@rmc.ca<br />

ABSTRACT: The paper provides a syn<strong>the</strong>sis of work by <strong>the</strong> writers that has <strong>the</strong> objective of develop<strong>in</strong>g a<br />

new work<strong>in</strong>g stress method for <strong>the</strong> calculation of re<strong>in</strong>forcement loads <strong>in</strong> geosyn<strong>the</strong>tic re<strong>in</strong>forced soil walls. As<br />

a precursor to this objective, careful back-analyses of a database of <strong>in</strong>strumented <strong>and</strong> monitored full-scale field<br />

<strong>and</strong> laboratory walls are used to demonstrate that <strong>the</strong> current Simplified Method used <strong>in</strong> North America results<br />

<strong>in</strong> excessively conservative estimates of <strong>the</strong> volume of re<strong>in</strong>forcement required to generate satisfactory longterm<br />

wall performance. The new method is calibrated aga<strong>in</strong>st measured <strong>in</strong>-situ wall re<strong>in</strong>forcement loads us<strong>in</strong>g<br />

a careful <strong>in</strong>terpretation of re<strong>in</strong>forcement stra<strong>in</strong>s <strong>and</strong> <strong>the</strong> conversion of stra<strong>in</strong> to load us<strong>in</strong>g a suitably selected<br />

re<strong>in</strong>forcement stiffness value. A novel feature of <strong>the</strong> method is to design <strong>the</strong> wall re<strong>in</strong>forcement so that <strong>the</strong> soil<br />

with<strong>in</strong> <strong>the</strong> wall backfill is prevented from reach<strong>in</strong>g a failure limit state, consistent with <strong>the</strong> notion of work<strong>in</strong>g<br />

stress conditions.<br />

1 INTRODUCTION<br />

<strong>Geosyn<strong>the</strong>tic</strong> re<strong>in</strong>forced soil walls have been <strong>in</strong> use for more than 25 years <strong>and</strong> <strong>in</strong> <strong>the</strong> vast majority of cases<br />

have performed very well. Never<strong>the</strong>less, <strong>the</strong> <strong>in</strong>herent marg<strong>in</strong> of safety aga<strong>in</strong>st poor performance with respect<br />

to <strong>in</strong>ternal stability has not been quantified <strong>in</strong> a systematic manner. This lack of quantification can be argued to<br />

contribute to <strong>the</strong> current lack of acceptance for this technology by some practitioners <strong>and</strong> government agencies<br />

<strong>in</strong> North America.<br />

The paper reviews evidence of <strong>the</strong> conservatism <strong>in</strong> current North American practice for geosyn<strong>the</strong>tic<br />

re<strong>in</strong>forced soil walls with respect to design for <strong>in</strong>ternal stability. The quantitative assessment of conservatism<br />

is based on data collected from carefully selected <strong>in</strong>strumented <strong>and</strong> monitored geosyn<strong>the</strong>tic re<strong>in</strong>forced field<br />

structures <strong>in</strong> North America, Europe <strong>and</strong> Sc<strong>and</strong><strong>in</strong>avia, <strong>and</strong> full-scale laboratory walls constructed at <strong>the</strong> Royal<br />

Military College of Canada (RMC). An additional acceptance criterion for <strong>the</strong> case studies was <strong>the</strong> availability<br />

of project-specific or closely related laboratory test data for <strong>the</strong> component re<strong>in</strong>forcement materials <strong>and</strong><br />

reliable strength data for <strong>the</strong> granular soil backfill. The data taken from case studies have been used to identify<br />

sources of conservatism <strong>in</strong> current North American practice <strong>and</strong> identify quantitative behaviour with regard to<br />

magnitude <strong>and</strong> distribution of re<strong>in</strong>forcement loads at <strong>the</strong> end of construction <strong>and</strong> beyond.<br />

A fundamental requirement to assess conservatism <strong>in</strong> current design practice <strong>and</strong> to validate new design<br />

approaches is a reliable estimate of <strong>the</strong> load <strong>in</strong> re<strong>in</strong>forcement layers. However, direct measurement of<br />

re<strong>in</strong>forcement loads is rare <strong>in</strong> <strong>the</strong> case study literature. The paper describes how re<strong>in</strong>forcement stra<strong>in</strong><br />

measurements <strong>and</strong> <strong>the</strong> conversion of stra<strong>in</strong> to load through <strong>the</strong> use of a properly selected re<strong>in</strong>forcement<br />

stiffness value can be used to estimate re<strong>in</strong>forcement loads. This approach also requires quantification of <strong>the</strong><br />

reliability <strong>and</strong> accuracy of stra<strong>in</strong> measurements from different <strong>in</strong>strumentation techniques.<br />

Next <strong>the</strong> paper exam<strong>in</strong>es strategies to select appropriate stiffness values for geosyn<strong>the</strong>tic re<strong>in</strong>forcement<br />

products based largely on <strong>in</strong>terpretation of <strong>in</strong>-isolation laboratory test<strong>in</strong>g, but recognis<strong>in</strong>g <strong>the</strong> <strong>in</strong>fluence of soil<br />

conf<strong>in</strong>ement, stra<strong>in</strong> level, duration of load<strong>in</strong>g <strong>and</strong> temperature amongst o<strong>the</strong>r factors.<br />

3


Based on best estimates of re<strong>in</strong>forcement loads from <strong>the</strong> database of case studies, an empirical-based<br />

re<strong>in</strong>forcement load distribution that is trapezoidal <strong>in</strong> shape is shown to be more accurate than <strong>the</strong> triangular<br />

distribution that is assumed <strong>in</strong> current North America practice.<br />

F<strong>in</strong>ally, <strong>the</strong> paper reviews a new empirical-based design method that is demonstrated to give better<br />

predictions of <strong>in</strong>ternal re<strong>in</strong>forcement loads <strong>and</strong> stra<strong>in</strong>s under work<strong>in</strong>g stress conditions when compared to<br />

values taken from <strong>the</strong> database of monitored walls.<br />

2 CASE STUDIES<br />

The writers have collected a total of 20 case histories (<strong>in</strong>clud<strong>in</strong>g 35 different wall sections) from papers<br />

published <strong>in</strong> <strong>the</strong> open literature <strong>and</strong> <strong>in</strong> some cases from unpublished sources (Allen et al. 2002). The soil<br />

re<strong>in</strong>forcement products <strong>in</strong> <strong>the</strong>se structures <strong>in</strong>cluded geotextiles <strong>and</strong> geogrids manufactured from a variety of<br />

polymers <strong>in</strong>clud<strong>in</strong>g polypropylene (PP), high density polyethylene (HDPE), <strong>and</strong> polyester (PET). The<br />

materials were strip <strong>and</strong> cont<strong>in</strong>uous re<strong>in</strong>forcements with a wide range of <strong>in</strong>dex tensile strengths from 12 to 200<br />

kN/m, <strong>and</strong> re<strong>in</strong>forcement <strong>in</strong>dex stiffness values at <strong>the</strong> end of wall construction from 43 to 7,400 kN/m at 2%<br />

stra<strong>in</strong>. <strong>Re<strong>in</strong>forcement</strong> vertical spac<strong>in</strong>g varied from 0.3 to 1.6 m.<br />

Wall fac<strong>in</strong>g batter angles varied from 0° (vertical) to 27°, although most of <strong>the</strong> walls had fac<strong>in</strong>g batter<br />

angles of 8° or less. Wall heights varied from 3.0 to 12.6 m, with surcharge heights of up to 5.3 m of soil.<br />

Fac<strong>in</strong>g types <strong>in</strong>cluded geosyn<strong>the</strong>tic wrapped-face, welded wire, pre-cast concrete panels, <strong>and</strong> modular concrete<br />

blocks.<br />

Measured peak friction angles from triaxial or direct shear tests ranged from 39° to 49° (42° to 57° plane<br />

stra<strong>in</strong>). Peak friction angles reported <strong>in</strong> <strong>the</strong> source references from triaxial compression tests on granular soils<br />

were corrected to peak plane stra<strong>in</strong> friction angles us<strong>in</strong>g <strong>the</strong> equation by Lade <strong>and</strong> Lee (1976). Direct shear test<br />

peak friction angle values for dense s<strong>and</strong>s were converted to peak plane stra<strong>in</strong> values us<strong>in</strong>g an expression<br />

presented by Bolton (1986) <strong>and</strong> Jewell <strong>and</strong> Wroth (1987).<br />

Most conditions that are likely to be encountered <strong>in</strong> practice are <strong>in</strong>cluded <strong>in</strong> <strong>the</strong>se case histories. All of <strong>the</strong><br />

case histories used relatively clean granular backfills (i.e., less than 15% silt content <strong>and</strong> little, if any,<br />

plasticity), <strong>and</strong> were placed on relatively competent foundation soils. Therefore, <strong>the</strong> scope of this paper is<br />

limited to geosyn<strong>the</strong>tic walls with relatively clean non-cohesive s<strong>and</strong> or gravel backfill. F<strong>in</strong>ally, <strong>the</strong> wall case<br />

histories represented <strong>in</strong> this paper do not <strong>in</strong>clude tiered structures or walls used as bridge abutments.<br />

3 EVIDENCE OF EXCESSIVE CONSERVATISM IN CURRENT PRACTICE<br />

An approach to quantify <strong>the</strong> global marg<strong>in</strong> of safety for exist<strong>in</strong>g geosyn<strong>the</strong>tic reta<strong>in</strong><strong>in</strong>g walls is to calculate<br />

<strong>the</strong> sum of re<strong>in</strong>forcement load capacities (R - resistance) <strong>and</strong> divide this value by <strong>the</strong> total horizontal earth load<br />

that is assumed to be carried by <strong>the</strong> re<strong>in</strong>forcement layers (D - dem<strong>and</strong>) (Allen et al. 2002). The resistancedem<strong>and</strong><br />

ratio (RD) can be expressed as:<br />

RD =<br />

R<br />

D<br />

=<br />

0.5K<br />

ah<br />

n<br />

Ti<br />

i= 1<br />

2<br />

γH + K qH<br />

(1)<br />

where: T i = re<strong>in</strong>forcement load; K ah = K a (φ ps ,δ,ω) cos(δ − ω) = horizontal component of active earth<br />

pressure; φ ps = <strong>the</strong> measured peak plane stra<strong>in</strong> friction angle of <strong>the</strong> soil; ω = wall batter; δ = <strong>in</strong>terface shear<br />

angle between wall fac<strong>in</strong>g <strong>and</strong> backfill soil (assumed to be zero based on current practice as def<strong>in</strong>ed by<br />

AASHTO (2002)) H = total wall height measured from <strong>the</strong> toe of <strong>the</strong> wall to <strong>the</strong> soil surface immediately<br />

beh<strong>in</strong>d <strong>the</strong> wall fac<strong>in</strong>g; γ = <strong>the</strong> bulk unit weight of <strong>the</strong> soil <strong>and</strong>; q is <strong>the</strong> magnitude of any uniformly distributed<br />

surcharge load at <strong>the</strong> soil surface. This calculation can be carried out for conditions represent<strong>in</strong>g end of<br />

construction <strong>and</strong> at design-life (75 years).<br />

∑<br />

ah<br />

4


14<br />

12<br />

10<br />

Frequency<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5<br />

Ratio of AASHTO Long-term RD to Actual Long-term RD<br />

Figure 1. Degree of conservatism <strong>in</strong> long-term resistance to dem<strong>and</strong> ratio when us<strong>in</strong>g current practice<br />

(AASHTO 2002) for case histories with good long-term performance (Allen et al. 2002)<br />

Figure 1 shows <strong>the</strong> distribution of <strong>the</strong> ratio of RD values calculated us<strong>in</strong>g current AASHTO (2002)<br />

guidel<strong>in</strong>es <strong>and</strong> RD values us<strong>in</strong>g best estimates of <strong>the</strong> long-term capacity of <strong>the</strong> re<strong>in</strong>forcement layers<br />

(resistance) <strong>and</strong> dem<strong>and</strong>. These data are for walls that have exhibited good performance def<strong>in</strong>ed by Allen <strong>and</strong><br />

Bathurst (2002) as:<br />

• <strong>Re<strong>in</strong>forcement</strong> stra<strong>in</strong>s are small (typically less than 3%).<br />

• Creep stra<strong>in</strong>s <strong>and</strong> stra<strong>in</strong> rates decrease as time <strong>in</strong>creases (i.e., only primary creep observed).<br />

• The wall backfill soil does not exhibit signs of failure (crack<strong>in</strong>g, slump<strong>in</strong>g, etc.).<br />

• Post-construction deformations, which are typically greatest at <strong>the</strong> wall top, are less than 30 mm<br />

with<strong>in</strong> <strong>the</strong> first 10,000 hours.<br />

The data show that most exist<strong>in</strong>g walls would be over-designed with respect to <strong>the</strong>ir observed long-term<br />

good performance if <strong>the</strong> current AASHTO method is used. Put ano<strong>the</strong>r way, <strong>the</strong>se structures appear to be<br />

significantly under-designed based on current practice. Never<strong>the</strong>less, careful analyses showed that walls that<br />

exhibited good performance conta<strong>in</strong>ed less than one half <strong>the</strong> re<strong>in</strong>forcement typically required us<strong>in</strong>g current<br />

AASHTO specifications. In some cases only one-eighth <strong>the</strong> re<strong>in</strong>forcement was actually required. The potential<br />

to reduce excessive conservatism <strong>in</strong> current practice for <strong>the</strong> design of re<strong>in</strong>forcement is clear.<br />

4 ESTIMATION OF LOADS IN GEOSYNTHETIC REINFORCEMENT LAYERS<br />

While <strong>the</strong> previous section has identified excessive conservatism <strong>in</strong> current design methods us<strong>in</strong>g a global<br />

approach to re<strong>in</strong>forcement tensile capacity <strong>and</strong> dem<strong>and</strong>, conv<strong>in</strong>c<strong>in</strong>g arguments to ab<strong>and</strong>on or modify <strong>the</strong><br />

current Simplified Method must be based on a comparison of measured loads to predicted loads. Unfortunately,<br />

direct measurement of re<strong>in</strong>forcement loads has only been reported <strong>in</strong> one case history <strong>in</strong> <strong>the</strong> literature (Fann<strong>in</strong><br />

1988). Typically, loads <strong>in</strong> re<strong>in</strong>forcement layers are <strong>in</strong>ferred from measurements made by stra<strong>in</strong> gauges or<br />

pairs of extensometers attached to <strong>the</strong> layers. This section gives a review of issues related to <strong>the</strong> <strong>in</strong>terpretation<br />

of stra<strong>in</strong>s us<strong>in</strong>g different <strong>in</strong>strumentation techniques <strong>and</strong> <strong>the</strong> accuracy that may be expected from <strong>the</strong> read<strong>in</strong>gs.<br />

Next, techniques to properly select a re<strong>in</strong>forcement stiffness value to convert stra<strong>in</strong>s to load are discussed <strong>and</strong><br />

a protocol to carryout this selection us<strong>in</strong>g <strong>in</strong>-isolation laboratory test<strong>in</strong>g summarised.<br />

5


10<br />

8<br />

Gauge failure<br />

1<br />

CF =<br />

1.25<br />

1<br />

1<br />

Global stra<strong>in</strong> (%)<br />

6<br />

4<br />

5<br />

2<br />

HDPE uniaxial geogrid<br />

2% stra<strong>in</strong>/m<strong>in</strong>ute<br />

0<br />

0 2 4 6 8 10<br />

Local stra<strong>in</strong> (%)<br />

Figure 2. Example <strong>in</strong>-isolation global stra<strong>in</strong> versus stra<strong>in</strong> gauge response for HDPE geogrid (after Bathurst<br />

1992). Note: CF = calibration factor for local stra<strong>in</strong> ≤ 4%<br />

4.1 Stra<strong>in</strong> Measurements<br />

Interpretation of stra<strong>in</strong> read<strong>in</strong>gs from devices attached to geosyn<strong>the</strong>tic re<strong>in</strong>forcement layers depends on <strong>the</strong><br />

type of device (Perk<strong>in</strong>s <strong>and</strong> Lapeyre 1997). The most common types of devices are stra<strong>in</strong> gauges bonded<br />

directly to <strong>the</strong> surface of <strong>the</strong> geosyn<strong>the</strong>tic re<strong>in</strong>forcement material, <strong>and</strong> extensometers. Displacements recorded<br />

by pairs of extensometers are used to calculate global stra<strong>in</strong>s assumed to be constant over <strong>the</strong> distance between<br />

monitor<strong>in</strong>g po<strong>in</strong>ts. In one case study used by <strong>the</strong> writers, <strong>in</strong>ductance coils were used to <strong>in</strong>fer stra<strong>in</strong>s.<br />

4.1.1 Stra<strong>in</strong> Gauges<br />

Small, high-elongation stra<strong>in</strong> gauges glued to <strong>the</strong> re<strong>in</strong>forcement material must be calibrated aga<strong>in</strong>st <strong>the</strong><br />

“true” global stra<strong>in</strong> <strong>in</strong> <strong>the</strong> re<strong>in</strong>forcement. Stra<strong>in</strong> gauges bonded to woven geogrids or geotextiles typically<br />

generate a local “hard spot” caus<strong>in</strong>g under-registration of global tensile stra<strong>in</strong>s. Stra<strong>in</strong> gauges bonded to<br />

<strong>in</strong>tegral drawn PP <strong>and</strong> HDPE geogrids will record <strong>the</strong> local stra<strong>in</strong> at <strong>the</strong> attachment po<strong>in</strong>t which may vary from<br />

po<strong>in</strong>t to po<strong>in</strong>t due to product geometry (cross-sectional area) <strong>and</strong> polymer modulus (result of draw<strong>in</strong>g process<br />

dur<strong>in</strong>g manufacture). The calibration factor (CF) for a particular comb<strong>in</strong>ation of gauge, bond<strong>in</strong>g technique,<br />

re<strong>in</strong>forcement type <strong>and</strong> location of gauge is typically established from constant-rate-of-stra<strong>in</strong> <strong>in</strong>-isolation wide<br />

width strip tensile test<strong>in</strong>g (e.g., ASTM D 4595).<br />

Figure 2 demonstrates <strong>the</strong> relationship (under-registration) between global stra<strong>in</strong> correspond<strong>in</strong>g to <strong>the</strong><br />

average stra<strong>in</strong> over multiple apertures of a typical drawn HDPE geogrid <strong>and</strong> local stra<strong>in</strong>. In this case <strong>the</strong> local<br />

stra<strong>in</strong> was recorded by a s<strong>in</strong>gle stra<strong>in</strong> gauge mounted on a longitud<strong>in</strong>al member at <strong>the</strong> midpo<strong>in</strong>t between<br />

adjacent transverse members.<br />

Based on a review of available <strong>in</strong>-isolation tension test gauge calibration data <strong>the</strong> follow<strong>in</strong>g observations<br />

have been made by Bathurst et al. (2002):<br />

• The magnitude of stra<strong>in</strong> gauge under-registration (<strong>and</strong> hence magnitude of calibration factor CF) at a<br />

local stra<strong>in</strong> of 2% is greatest for woven or knitted geotextiles <strong>and</strong> close to unity for extruded drawn PP<br />

geogrids.<br />

• Variability <strong>in</strong> stra<strong>in</strong> gauge response is greatest for woven geotextiles.<br />

• Non-l<strong>in</strong>earity <strong>in</strong> CF values with magnitude of global stra<strong>in</strong> is greatest for woven geotextiles <strong>and</strong><br />

geogrids <strong>and</strong> least for uniaxial HDPE geogrids. An example of non-l<strong>in</strong>earity <strong>in</strong> stra<strong>in</strong> response at large<br />

stra<strong>in</strong>s is illustrated <strong>in</strong> Figure 2.<br />

• In all <strong>the</strong> wall case histories reviewed, <strong>the</strong> magnitude of calibration factor was greater than or equal to<br />

unity.<br />

6


5.0<br />

Gauge stra<strong>in</strong> (%)<br />

4.5<br />

4.0<br />

3.5<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

+95% prediction limit 1<br />

Limit of survival<br />

of both stra<strong>in</strong> gauges<br />

<strong>in</strong> a pair<br />

0.0<br />

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0<br />

Average stra<strong>in</strong> (%)<br />

1<br />

-95% prediction limit<br />

Figure 3. Variation <strong>in</strong> stra<strong>in</strong> gauge response versus average of stra<strong>in</strong> gauge pair mounted at nom<strong>in</strong>al identical<br />

distance beh<strong>in</strong>d <strong>the</strong> wall face on layers of PP geogrid (Bathurst et al. 2002)<br />

For <strong>the</strong> case of extruded drawn PP geogrid specimens <strong>in</strong>vestigated by <strong>the</strong> writers, <strong>the</strong> <strong>in</strong>terpretation of global<br />

stra<strong>in</strong> was complicated by <strong>the</strong> observation that lower CF values were obta<strong>in</strong>ed from constant-load calibration<br />

tests compared to <strong>the</strong> results for <strong>the</strong> same materials tested under constant-rate-of-stra<strong>in</strong> conditions.<br />

4.1.2 In-situ Global Stra<strong>in</strong>s from Extensometers<br />

A correction factor is not needed if extensometers attached to <strong>the</strong> geosyn<strong>the</strong>tic are used. Never<strong>the</strong>less,<br />

stra<strong>in</strong>s <strong>in</strong>ferred from extensometers may over-estimate geosyn<strong>the</strong>tic yarn or rib stra<strong>in</strong>s as <strong>in</strong>itial surface<br />

wr<strong>in</strong>kles or warps <strong>in</strong> <strong>the</strong> geosyn<strong>the</strong>tic are taken up dur<strong>in</strong>g fill placement or under-estimate stra<strong>in</strong>s due to <strong>in</strong>itial<br />

slackness <strong>in</strong> <strong>the</strong> extensometer cables.<br />

4.1.3 O<strong>the</strong>r Devices<br />

Inductance coil pairs attached to <strong>and</strong> <strong>in</strong> <strong>the</strong> same plane as <strong>the</strong> geogrid re<strong>in</strong>forcement have been used to <strong>in</strong>fer<br />

stra<strong>in</strong>s. Average global stra<strong>in</strong>s based on sets of three devices located at <strong>the</strong> same nom<strong>in</strong>al distance from <strong>the</strong><br />

wall face were as great as 0.9% at <strong>the</strong> end of surcharg<strong>in</strong>g (Fann<strong>in</strong> <strong>and</strong> Hermann 1990) <strong>and</strong> were reported to<br />

have a resolution of ± 0.1% (Fann<strong>in</strong> 1988). These devices are calibrated <strong>in</strong>-isolation <strong>and</strong> do not require a<br />

correction factor. However, <strong>the</strong> signal from <strong>in</strong>ductance coil pairs is sensitive to <strong>the</strong> magnitude of out-of-plane<br />

movements that may be generated due to fill placement, soil displacements <strong>and</strong> flexure of <strong>the</strong> re<strong>in</strong>forcement.<br />

4.1.4 Redundancy of <strong>Re<strong>in</strong>forcement</strong> Measurements<br />

In several case studies, multiple stra<strong>in</strong> gauges were placed at nom<strong>in</strong>al identical locations from <strong>the</strong> wall<br />

fac<strong>in</strong>g. This approach allows read<strong>in</strong>gs to be averaged across <strong>the</strong> width of <strong>the</strong> wall <strong>and</strong> also provides<br />

redundancy <strong>in</strong> <strong>the</strong> event of failure of an <strong>in</strong>dividual gauge <strong>in</strong> a set of two or more gauges.<br />

Figure 3 shows that <strong>the</strong> uncorrected response of a pair of stra<strong>in</strong> gauges mounted on a PP geogrid may vary<br />

by about ± 15% of <strong>the</strong> mean read<strong>in</strong>g of 2% stra<strong>in</strong> at a prediction level of 95%.<br />

The review of physical data from well-<strong>in</strong>strumented wall structures has allowed <strong>the</strong> writers to comment on<br />

<strong>the</strong> reliability of <strong>the</strong> stra<strong>in</strong> data, both qualitatively <strong>and</strong> quantitatively (Bathurst et al. 2002). Specifically:<br />

• Based on data available for an <strong>in</strong>strumented drawn PP geogrid, <strong>the</strong> coefficient of variation (COV) for<br />

stra<strong>in</strong> gauge read<strong>in</strong>gs was calculated to be 13% for stra<strong>in</strong>s ≥ 0.02%. Similar data for a knitted polyester<br />

geogrid gave a COV = 14% for stra<strong>in</strong>s ≥ 0.1%.<br />

• Based on data for <strong>in</strong>strumented PP geogrids, stra<strong>in</strong> gauges have proved accurate to estimate<br />

re<strong>in</strong>forcement stra<strong>in</strong>s at low stra<strong>in</strong> levels (0.02 to 2%). Extensometers are more reliable for<br />

re<strong>in</strong>forcement stra<strong>in</strong>s ≥ 2%. For a knitted polyester geogrid, stra<strong>in</strong> gauges gave reliable read<strong>in</strong>gs for<br />

stra<strong>in</strong>s greater than 0.1%.<br />

7


• Analysis of <strong>in</strong>ductance coil read<strong>in</strong>gs showed that <strong>the</strong>se <strong>in</strong>struments gave <strong>the</strong> least reliable read<strong>in</strong>gs of<br />

<strong>the</strong> three measurement techniques <strong>in</strong>vestigated (e.g., COV = 32% for stra<strong>in</strong>s <strong>in</strong> <strong>the</strong> range of 0.2 to<br />

0.9%).<br />

• Bonded stra<strong>in</strong> gauges <strong>in</strong> <strong>the</strong> field typically gave a non-l<strong>in</strong>ear response or failed at stra<strong>in</strong>s greater than<br />

3%, hence extensometers provide <strong>the</strong> only practical means of estimat<strong>in</strong>g re<strong>in</strong>forcement stra<strong>in</strong>s at large<br />

stra<strong>in</strong> levels.<br />

• Based on <strong>the</strong> data available, <strong>the</strong> COV for extensometer read<strong>in</strong>gs was shown to be <strong>in</strong> <strong>the</strong> range of 29 to<br />

56% for stra<strong>in</strong>s from 0.2 to 1%, but improved to a value of 9% if <strong>the</strong> devices are restricted to stra<strong>in</strong>s ≥<br />

2%.<br />

Strategies to improve confidence with <strong>in</strong>terpretation of stra<strong>in</strong> read<strong>in</strong>gs from field monitor<strong>in</strong>g are: use both<br />

stra<strong>in</strong> gauges <strong>and</strong> extensometers; <strong>in</strong>clude multiple stra<strong>in</strong> gauges at nom<strong>in</strong>al identical locations <strong>in</strong> <strong>the</strong> wall, <strong>and</strong>;<br />

use stra<strong>in</strong> gauge pairs mounted top <strong>and</strong> bottom at each re<strong>in</strong>forcement monitor<strong>in</strong>g po<strong>in</strong>t (Gnanendran <strong>and</strong><br />

Selvadurai 2001).<br />

4.2 Conversion of <strong>Geosyn<strong>the</strong>tic</strong> Stra<strong>in</strong> to Load us<strong>in</strong>g <strong>Re<strong>in</strong>forcement</strong> Stiffness<br />

The second step <strong>in</strong> <strong>the</strong> calculation of re<strong>in</strong>forcement load from global stra<strong>in</strong> is <strong>the</strong> selection of a suitable<br />

re<strong>in</strong>forcement stiffness value. The follow<strong>in</strong>g factors will <strong>in</strong>fluence <strong>the</strong> magnitude of geosyn<strong>the</strong>tic<br />

re<strong>in</strong>forcement stiffness <strong>in</strong>-situ at <strong>the</strong> end of construction (Bush 1990; Rimoldi <strong>and</strong> Montanelli 1993; Allen <strong>and</strong><br />

Bathurst 1994; Boyle et al. 1996; Yuan et al. 1998):<br />

• Load<strong>in</strong>g sequence.<br />

• Rate of load<strong>in</strong>g <strong>and</strong> time after application of load.<br />

• Soil conf<strong>in</strong>ement.<br />

• Stra<strong>in</strong> level.<br />

• Temperature.<br />

• Installation damage.<br />

4.2.1 Laboratory Test Methods<br />

The stiffness of a geosyn<strong>the</strong>tic at a given time or load<strong>in</strong>g rate, stra<strong>in</strong> level, <strong>and</strong> temperature is essentially <strong>the</strong><br />

slope of a load-stra<strong>in</strong> curve from a constant-rate-of-stra<strong>in</strong> (CRS) tensile test, or <strong>the</strong> slope of an isochronous<br />

load-stra<strong>in</strong> curve from ei<strong>the</strong>r a creep test or stress relaxation test. A secant slope is used to def<strong>in</strong>e <strong>the</strong><br />

re<strong>in</strong>forcement stiffness <strong>in</strong> this paper. The stiffness obta<strong>in</strong>ed from a family of creep curves is denoted as <strong>the</strong><br />

“creep stiffness” (J c ) <strong>and</strong> similarly, <strong>the</strong> “relaxation stiffness” (J r ) is obta<strong>in</strong>ed from a family of stress relaxation<br />

curves. The creep stiffness J c (typically kN/m) is expressed as follows:<br />

T<br />

i<br />

J<br />

c<br />

= (2)<br />

εi<br />

where T i is <strong>the</strong> load per metre width (kN/m) <strong>and</strong> ε i is <strong>the</strong> stra<strong>in</strong> at any time. The same equation can be used for<br />

<strong>the</strong> relaxation stiffness, although <strong>the</strong> magnitude of creep stiffness is not necessarily equal to <strong>the</strong> relaxation<br />

stiffness value.<br />

Figure 4 illustrates <strong>the</strong> approach to determ<strong>in</strong>e <strong>the</strong> stiffness of a geosyn<strong>the</strong>tic re<strong>in</strong>forcement product from<br />

each test method. The most common method to convert stra<strong>in</strong> to load has been <strong>the</strong> <strong>in</strong>-isolation isochronous<br />

creep approach.<br />

Walters et al. (2002) po<strong>in</strong>ted out that <strong>the</strong> load<strong>in</strong>g rate <strong>in</strong> a typical <strong>in</strong>dex test (ASTM D 4595) is<br />

approximately five orders of magnitude larger than <strong>the</strong> load<strong>in</strong>g rate of <strong>the</strong> re<strong>in</strong>forcement <strong>in</strong> several example<br />

full-scale walls. This difference <strong>in</strong> load<strong>in</strong>g rate leads to a large difference <strong>in</strong> <strong>the</strong> estimated stiffness value for<br />

<strong>the</strong> re<strong>in</strong>forcement at end-of-construction <strong>and</strong> beyond. For example, <strong>the</strong> simple use of stiffness values taken at<br />

2% stra<strong>in</strong> dur<strong>in</strong>g an <strong>in</strong>dex CRS test run at 10% stra<strong>in</strong>/m<strong>in</strong>ute (ASTM D 4595) can lead to an over-estimation<br />

of re<strong>in</strong>forcement loads for polyolef<strong>in</strong> products by a factor of 3 to 4 <strong>and</strong>, hence, lead to excessively<br />

8


a) constant-rate-of-stra<strong>in</strong> tests<br />

b) constant load (creep) tests<br />

c) constant stra<strong>in</strong> (stress relaxation) tests<br />

Figure 4. Determ<strong>in</strong>ation of re<strong>in</strong>forcement stiffness values as a function of time us<strong>in</strong>g different laboratory test<br />

methods<br />

conservative design. The correspond<strong>in</strong>g error for PET products is less, result<strong>in</strong>g <strong>in</strong> an over-estimation of<br />

re<strong>in</strong>forcement loads <strong>in</strong> <strong>the</strong> range of about 20 to 30%.<br />

In this study, 2% stra<strong>in</strong> has been taken as a target value for selection of re<strong>in</strong>forcement stiffness values from<br />

<strong>in</strong>-isolation creep test<strong>in</strong>g. With few exceptions, <strong>the</strong> corrected stra<strong>in</strong> values <strong>in</strong> full-scale walls under work<strong>in</strong>g<br />

stress conditions were less than 2% (Bathurst et al. 2002). In addition, a 2% stra<strong>in</strong> level facilitates estimation<br />

of re<strong>in</strong>forcement stiffness values from <strong>in</strong>-isolation laboratory test results. F<strong>in</strong>ally, <strong>the</strong> use of a 2% stiffness<br />

value results <strong>in</strong> a conservative (i.e., safe) estimate of re<strong>in</strong>forcement load capacity for design.<br />

Based on a review of published data for <strong>in</strong>-isolation creep <strong>and</strong> stress relaxation test<strong>in</strong>g, Walters et al. (2002)<br />

observed <strong>the</strong> follow<strong>in</strong>g general trends for stiffness values calculated at 2% stra<strong>in</strong>:<br />

9


300<br />

250<br />

CRS<br />

Creep<br />

Stiffness, J 2% (kN/m)<br />

200<br />

150<br />

100<br />

50<br />

In-isolation tests<br />

biaxial PP geogrid<br />

Relaxation<br />

0<br />

0.001 0.01 0.1 1 10 100 1000 10000<br />

Time to 2% stra<strong>in</strong>, t (hours)<br />

Figure 5. In-isolation CRS, creep <strong>and</strong> relaxation stiffness values at 2% stra<strong>in</strong> for a biaxial PP geogrid<br />

(Walters et al. 2002)<br />

• Stiffness values decrease at a decreas<strong>in</strong>g rate with logarithm of time for all <strong>the</strong> materials tested<br />

regardless of <strong>the</strong> method of test.<br />

• The stiffness of PET products is least affected by time compared to PP <strong>and</strong> HDPE geosyn<strong>the</strong>tics, at<br />

least for stra<strong>in</strong>s up to 2%.<br />

• The relaxation stiffness value is typically less than <strong>the</strong> creep stiffness value for all three polymer types.<br />

• The stiffness values obta<strong>in</strong>ed from <strong>the</strong> different test methods tend to converge at longer times for PP<br />

geosyn<strong>the</strong>tics (see example data <strong>in</strong> Figure 5). However, <strong>the</strong>re was not a consistent trend regard<strong>in</strong>g<br />

convergence or non-convergence for <strong>the</strong> PET <strong>and</strong> HDPE geosyn<strong>the</strong>tic materials tested.<br />

• The stiffness values obta<strong>in</strong>ed from <strong>the</strong> CRS tests as a function of time for HDPE <strong>and</strong> PP geosyn<strong>the</strong>tics<br />

are roughly <strong>the</strong> same or slightly lower than <strong>the</strong> stiffness values obta<strong>in</strong>ed from creep test<strong>in</strong>g, especially<br />

at longer times.<br />

• The stiffness curves based on creep test<strong>in</strong>g are significantly flatter at elapsed times <strong>in</strong> excess of 100<br />

hours which is less than <strong>the</strong> time required to construct walls <strong>in</strong> <strong>the</strong> field.<br />

4.3 Temperature <strong>and</strong> Installation Damage Effects<br />

Temperature will affect <strong>the</strong> stiffness value of geosyn<strong>the</strong>tics, with <strong>in</strong>creas<strong>in</strong>g temperature result<strong>in</strong>g <strong>in</strong> lower<br />

stiffness, especially for polyolef<strong>in</strong> materials (e.g., Bush 1990). Time-temperature superposition techniques are<br />

used to estimate <strong>the</strong> stiffness at any specific temperature (e.g., WSDOT 1998). The stiffness value used to<br />

estimate load from stra<strong>in</strong> measurements should be determ<strong>in</strong>ed at <strong>the</strong> temperature <strong>in</strong> <strong>the</strong> wall. Current US<br />

design practice considers <strong>the</strong> effective wall temperature to be <strong>the</strong> temperature that is <strong>the</strong> mean of <strong>the</strong> average<br />

yearly air temperature <strong>and</strong> <strong>the</strong> normal daily air temperature for <strong>the</strong> hottest month at <strong>the</strong> site (AASHTO 2002).<br />

Allen <strong>and</strong> Bathurst (1994) <strong>in</strong>vestigated <strong>the</strong> effect of <strong>in</strong>stallation damage on <strong>the</strong> stiffness of different types of<br />

geosyn<strong>the</strong>tic re<strong>in</strong>forcement. They determ<strong>in</strong>ed that for woven geotextiles, <strong>the</strong> decrease <strong>in</strong> stiffness is m<strong>in</strong>or for<br />

levels of damage that result <strong>in</strong> less than 40% peak tensile strength loss. For geogrids, <strong>the</strong> stiffness loss is<br />

<strong>in</strong>significant until very high levels of damage are achieved.<br />

Allen <strong>and</strong> Bathurst (1996) also <strong>in</strong>vestigated <strong>the</strong> comb<strong>in</strong>ed effect of <strong>in</strong>stallation damage <strong>and</strong> creep on <strong>the</strong><br />

stra<strong>in</strong> response to load of various geosyn<strong>the</strong>tics. They determ<strong>in</strong>ed that <strong>the</strong> creep stra<strong>in</strong> response is <strong>the</strong> same<br />

before <strong>and</strong> after <strong>in</strong>stallation damage, which <strong>in</strong>dicates that <strong>the</strong> creep stiffness will also be <strong>the</strong> same before <strong>and</strong><br />

after damage.<br />

Table 1 provides data for variability <strong>in</strong> stiffness values caused by <strong>in</strong>stallation damage. This table also shows<br />

<strong>the</strong> magnitude of COV values for different geosyn<strong>the</strong>tics. From <strong>the</strong>ir test data, <strong>the</strong> writers concluded that <strong>the</strong><br />

COV of <strong>the</strong> re<strong>in</strong>forcement stiffness at 2% stra<strong>in</strong>, consider<strong>in</strong>g <strong>the</strong> effects of significant <strong>in</strong>stallation damage <strong>and</strong><br />

time, can be expected to vary from 5 to 18% for geogrids to approximately 26% for woven geotextiles. If<br />

<strong>in</strong>stallation damage is light (say, strength losses less than 20%), <strong>the</strong> maximum COV values reported here will<br />

likely be less.<br />

10


Table 1. Coefficient of variation (COV) of re<strong>in</strong>forcement CRS stiffness value (J crs ) at 5% stra<strong>in</strong> for<br />

geosyn<strong>the</strong>tics <strong>in</strong> both virg<strong>in</strong> <strong>and</strong> damaged conditions (Walters et al. 2002)<br />

Product Type<br />

Condition<br />

COV (%) of CRS Stiffness<br />

Value at 5% Stra<strong>in</strong><br />

% Increase <strong>in</strong> COV due to<br />

Damage<br />

Geotextile Virg<strong>in</strong> 10.3 -<br />

Damaged 15.2 47.6<br />

HDPE Geogrid Virg<strong>in</strong> 2.6 -<br />

Damaged 3.1 19.2<br />

PET Geogrid Virg<strong>in</strong> 6.4 -<br />

Damaged 7.1 10.9<br />

PP Geogrid Virg<strong>in</strong> 8.2 -<br />

Damaged 10.3 25.6<br />

Note: All tests carried out at 10% stra<strong>in</strong>/m<strong>in</strong>ute<br />

4.4 Comparison of In-Isolation <strong>and</strong> In-Soil Test Results<br />

The writers reviewed <strong>the</strong> effect of <strong>in</strong>-isolation <strong>and</strong> <strong>in</strong>-soil test<strong>in</strong>g on <strong>the</strong> calculation of <strong>in</strong>-soil stiffness at <strong>the</strong><br />

times of <strong>in</strong>terest (100 to 1,000 hours or more) <strong>and</strong> found <strong>the</strong>m to be relatively small. An example of stiffness<br />

values as a function of time for a woven geotextile tested under <strong>in</strong>-isolation <strong>and</strong> <strong>in</strong>-soil conditions is illustrated<br />

<strong>in</strong> Figure 6. For woven geotextiles <strong>and</strong> geogrids, soil conf<strong>in</strong>ement appears to have little effect on <strong>the</strong> stiffness<br />

(less than a 5 to 15% <strong>in</strong>crease). Therefore, <strong>in</strong>-isolation test<strong>in</strong>g should be sufficient for <strong>the</strong>se materials. The<br />

available data show that <strong>the</strong> <strong>in</strong>-isolation creep tests gave <strong>the</strong> highest estimates of <strong>the</strong> long-term stiffness values.<br />

Thus <strong>the</strong> results of this test are conservative for <strong>the</strong> estimation of re<strong>in</strong>forcement loads <strong>in</strong> design. Fur<strong>the</strong>rmore,<br />

based on <strong>in</strong>-situ measured re<strong>in</strong>forcement stra<strong>in</strong>s <strong>in</strong> full-scale walls (Allen <strong>and</strong> Bathurst 2002), it appears that at<br />

<strong>the</strong> end of wall construction, <strong>the</strong> re<strong>in</strong>forcement tends to exhibit primarily creep, while at long times after<br />

construction, <strong>the</strong> re<strong>in</strong>forcement tends toward pure relaxation once <strong>the</strong> soil ceases to deform. Therefore, it can<br />

be concluded that <strong>the</strong> <strong>in</strong>-isolation creep test can be used to conservatively estimate <strong>the</strong> re<strong>in</strong>forcement stiffness<br />

at longer times (e.g., 500 to 1,000 hours or more) for woven geotextiles <strong>and</strong> geogrids for <strong>the</strong> purpose of<br />

calculat<strong>in</strong>g re<strong>in</strong>forcement loads <strong>in</strong> field-scale walls.<br />

4.5 Approach to Determ<strong>in</strong>e <strong>Re<strong>in</strong>forcement</strong> Stiffness<br />

For geogrids <strong>and</strong> woven geotextiles (<strong>the</strong> most common re<strong>in</strong>forcement products for re<strong>in</strong>forced soil walls) <strong>the</strong><br />

writers have developed <strong>the</strong> follow<strong>in</strong>g procedure to estimate <strong>the</strong> <strong>in</strong>-soil stiffness value:<br />

1. Determ<strong>in</strong>e <strong>the</strong> total length of time it will take to complete construction of <strong>the</strong> re<strong>in</strong>forced soil structure<br />

at a given section (i.e., <strong>the</strong> time after which no additional load<strong>in</strong>g will occur – limited data available<br />

to <strong>the</strong> writers shows that field walls are typically constructed <strong>in</strong> 500 to 1500 hours).<br />

2. Us<strong>in</strong>g <strong>the</strong> procedures illustrated <strong>in</strong> Figure 4, develop an <strong>in</strong>-isolation creep stiffness versus time curve<br />

at constant stra<strong>in</strong> levels of <strong>in</strong>terest, <strong>and</strong> select <strong>the</strong> creep stiffness based on <strong>the</strong> elapsed time to <strong>the</strong> end<br />

of wall construction. Select <strong>the</strong> stiffness at <strong>the</strong> anticipated maximum work<strong>in</strong>g stra<strong>in</strong>s for <strong>the</strong> wall, as<br />

<strong>the</strong> stiffness is likely to be stra<strong>in</strong>-level dependent. For design purposes, a 2% secant stiffness at 1,000<br />

hours is reasonable. If stra<strong>in</strong>s of 3 to 4% or more are anticipated, determ<strong>in</strong>e <strong>the</strong> stiffness at <strong>the</strong> higher<br />

stra<strong>in</strong> level. If stra<strong>in</strong>s significantly less than 2% are anticipated, <strong>and</strong> a geosyn<strong>the</strong>tic material is be<strong>in</strong>g<br />

used which is known to have a highly non-l<strong>in</strong>ear load-stra<strong>in</strong> curve over <strong>the</strong> stra<strong>in</strong> range of <strong>in</strong>terest<br />

(e.g., some PET geosyn<strong>the</strong>tics), <strong>the</strong>n a stiffness value determ<strong>in</strong>ed at a lower stra<strong>in</strong> should be<br />

considered.<br />

11


450<br />

400<br />

Creep, <strong>in</strong>-isolation<br />

Stiffness, J 1% (kN/m)<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

CRS<br />

<strong>in</strong>-isolation<br />

Creep/relaxation, <strong>in</strong>-soil<br />

0<br />

0.001 0.01 0.1 1 10 100 1000 10000 100000<br />

Time, t (hours)<br />

Figure 6. Comparison of CRS <strong>and</strong> isochronous creep stiffness values at 1% stra<strong>in</strong> from <strong>in</strong>-isolation <strong>and</strong> <strong>in</strong>-soil<br />

tests on woven PP geotextile (data from Boyle 1995)<br />

3. If <strong>the</strong> effective site temperature is anticipated to be significantly different from 20°C, <strong>the</strong> creep<br />

stiffness value may need to be temperature shifted, requir<strong>in</strong>g creep data at higher or lower<br />

temperatures to establish <strong>the</strong> appropriate shift factors. See Bush (1990) for an example of temperature<br />

shift<strong>in</strong>g.<br />

Correct <strong>the</strong> stiffness obta<strong>in</strong>ed <strong>in</strong> step 3 for soil conf<strong>in</strong>ement effects if <strong>the</strong> re<strong>in</strong>forcement is not a geogrid or<br />

slit film woven geotextile. For multi-filament woven geotextiles, <strong>the</strong> <strong>in</strong>-isolation stiffness may need to be<br />

<strong>in</strong>creased by a factor of 1.1 to 1.2 <strong>and</strong> for nonwoven geotextiles by a factor of 2 to 5.<br />

Estimates of <strong>the</strong> ratio of creep stiffness value at typical work<strong>in</strong>g conditions (i.e., stra<strong>in</strong>s at (say) 2% <strong>and</strong><br />

load<strong>in</strong>g times of 1000 hours) to <strong>the</strong> stiffness value from a conventional CRS test (ASTM D 4595) are<br />

summarised <strong>in</strong> Table 2. This table is useful for estimat<strong>in</strong>g re<strong>in</strong>forcement stiffness values <strong>in</strong> <strong>the</strong> absence of <strong>in</strong>isolation<br />

laboratory test data.<br />

Table 2. Ratio of typical work<strong>in</strong>g stress stiffness (at 1,000 hours) to<br />

<strong>the</strong> stiffness obta<strong>in</strong>ed <strong>in</strong> a CRS test at 10%/m<strong>in</strong>ute, per ASTM D<br />

4595 (Walters et al. 2002)<br />

<strong>Geosyn<strong>the</strong>tic</strong> Polymer J 1000 hours /J D 4595<br />

PP 0.25 to 0.35<br />

HDPE 0.25 to 0.35<br />

PET 0.75 to 0.85<br />

4.6 Accuracy of Stiffness Value <strong>and</strong> Estimate of Error <strong>in</strong> Calculation of <strong>Re<strong>in</strong>forcement</strong> Load<br />

The calculation of re<strong>in</strong>forcement load T based on best estimates of stiffness <strong>and</strong> stra<strong>in</strong> values is made us<strong>in</strong>g<br />

<strong>the</strong> follow<strong>in</strong>g expression:<br />

T = J x ε<br />

(3)<br />

i<br />

c<br />

i<br />

Associated with each load value is uncerta<strong>in</strong>ty <strong>in</strong> <strong>the</strong> predicted value that varies with <strong>the</strong> magnitude of <strong>the</strong><br />

estimate of error of <strong>the</strong> stiffness <strong>and</strong> stra<strong>in</strong> measurements as noted earlier. Uncerta<strong>in</strong>ty <strong>in</strong> stra<strong>in</strong> measurements<br />

(COV ε ) <strong>and</strong> stiffness values (COV J ) are uncorrelated (i.e., <strong>in</strong>dependent). Therefore, total uncerta<strong>in</strong>ty <strong>in</strong><br />

estimated re<strong>in</strong>forcement loads can be quantified by a coefficient of variation (COV T ) value calculated as<br />

follows (Ang <strong>and</strong> Tang 1975):<br />

12


Figure 7. Cross-section of RMC full-height propped alum<strong>in</strong>ium panel wall constructed with PP geogrid<br />

re<strong>in</strong>forcement layers (Wall GW14 – Bathurst <strong>and</strong> Benjam<strong>in</strong> 1990)<br />

COV<br />

2<br />

2<br />

= COV COV<br />

(4)<br />

T ε<br />

+<br />

This approach is used to calculate <strong>the</strong> error bars <strong>in</strong> <strong>the</strong> plots for estimated re<strong>in</strong>forcement load values<br />

presented later <strong>in</strong> <strong>the</strong> paper.<br />

4.7 Example Wall GW14<br />

Figure 7 shows a propped panel faced geogrid wall that was built to full scale <strong>in</strong> <strong>the</strong> laboratory to a<br />

maximum height of 3.0 m (Bathurst <strong>and</strong> Benjam<strong>in</strong> 1990). Figure 8 shows measured <strong>and</strong> predicted connection<br />

loads for this wall. <strong>Re<strong>in</strong>forcement</strong> loads were measured directly by load cells at <strong>the</strong> connection with <strong>the</strong> fac<strong>in</strong>g<br />

<strong>and</strong> estimated from stra<strong>in</strong>s measured us<strong>in</strong>g stra<strong>in</strong> gauges <strong>and</strong> extensometers attached to <strong>the</strong> re<strong>in</strong>forcement just<br />

beyond <strong>the</strong> load cells. Error bars <strong>in</strong> <strong>the</strong> figure represent ± 1 st<strong>and</strong>ard deviation on estimates of re<strong>in</strong>forcement<br />

load us<strong>in</strong>g stra<strong>in</strong> gauge <strong>and</strong> extensometer read<strong>in</strong>gs. The load levels at <strong>the</strong> connection from <strong>the</strong> load cells are<br />

slightly lower than those estimated from <strong>the</strong> stra<strong>in</strong> gauge read<strong>in</strong>gs. The high load estimated us<strong>in</strong>g <strong>the</strong> stra<strong>in</strong><br />

gauge <strong>in</strong> <strong>the</strong> top re<strong>in</strong>forcement layer relative to <strong>the</strong> load measured by <strong>the</strong> load cell may be attributed to <strong>the</strong><br />

vertical settlement of <strong>the</strong> soil directly beh<strong>in</strong>d <strong>the</strong> fac<strong>in</strong>g, lead<strong>in</strong>g to <strong>the</strong> generation of additional down-drag<br />

stra<strong>in</strong>s. The stra<strong>in</strong> gauges are able to record additional stra<strong>in</strong>s due to changes <strong>in</strong> re<strong>in</strong>forcement out-of-plane<br />

geometry while <strong>the</strong> load cells were configured to record only <strong>the</strong> <strong>in</strong>-plane horizontal load <strong>in</strong> <strong>the</strong> re<strong>in</strong>forcement.<br />

Notwithst<strong>and</strong><strong>in</strong>g <strong>the</strong> complications noted above, <strong>the</strong> measured loads <strong>and</strong> estimated loads from <strong>in</strong>terpretation of<br />

re<strong>in</strong>forcement stra<strong>in</strong>s are considered to be <strong>in</strong> reasonable agreement. Additional examples of this type of<br />

comparison are provided by Walters et al. (2002).<br />

J<br />

13


0<br />

End of construction<br />

End of 80 kPa surcharge<br />

Depth below wall top, z (m)<br />

1<br />

2<br />

connection load cells<br />

us<strong>in</strong>g stra<strong>in</strong> gauges<br />

connection load cells<br />

us<strong>in</strong>g stra<strong>in</strong> gauges<br />

<strong>and</strong> extensometers<br />

3<br />

0 1 2 3 4 5<br />

<strong>Re<strong>in</strong>forcement</strong> load at connection, T (kN/m)<br />

Figure 8. Measured re<strong>in</strong>forcement connection loads <strong>and</strong> connection loads predicted from stra<strong>in</strong> gauge <strong>and</strong><br />

extensometer measurements (Wall GW14 – Walters et al. 2002)<br />

5 COMPARISON OF MEASURED LOADS WITH CURRENT PRACTICE<br />

The methodologies described <strong>in</strong> <strong>the</strong> preced<strong>in</strong>g sections can now be used to estimate re<strong>in</strong>forcement loads <strong>in</strong><br />

<strong>the</strong> full-scale re<strong>in</strong>forced soil walls <strong>in</strong>vestigated by <strong>the</strong> writers (Section 2) <strong>and</strong> <strong>the</strong>se loads used to exam<strong>in</strong>e <strong>the</strong><br />

accuracy of predicted loads us<strong>in</strong>g current North American practice.<br />

5.1 Simplified Method<br />

The primary design method <strong>in</strong> North America for geosyn<strong>the</strong>tic re<strong>in</strong>forced soil walls is called <strong>the</strong> Tieback<br />

Wedge or Simplified Method (AASHTO 1996, 2002). In this approach <strong>the</strong> wall is assumed for <strong>in</strong>ternal design<br />

to be flexible with enough deformation to generate an active state of stress. Hence, <strong>the</strong> lateral earth pressure<br />

coefficient K a is used to convert vertical stress to lateral stress. K a is determ<strong>in</strong>ed <strong>in</strong> this method assum<strong>in</strong>g a<br />

horizontal backslope <strong>and</strong> no wall-soil <strong>in</strong>terface friction <strong>in</strong> all cases. The re<strong>in</strong>forcement is assumed to resist<br />

lateral stresses occurr<strong>in</strong>g with<strong>in</strong> <strong>the</strong> wall, with each re<strong>in</strong>forcement layer designed to resist <strong>the</strong> lateral stress<br />

over a tributary area. The Rank<strong>in</strong>e failure wedge is held <strong>in</strong> horizontal equilibrium by <strong>the</strong> re<strong>in</strong>forcement layers<br />

that act as tiebacks. The maximum tensile load <strong>in</strong> a re<strong>in</strong>forcement layer, T max (<strong>in</strong> units of force per runn<strong>in</strong>g unit<br />

length of wall) is calculated accord<strong>in</strong>g to:<br />

( γ [ z + S]<br />

q)<br />

Tmax = SvK<br />

a<br />

+<br />

(5)<br />

where, S v = tributary area (assumed equivalent to <strong>the</strong> vertical spac<strong>in</strong>g of <strong>the</strong> re<strong>in</strong>forcement when analyses are<br />

carried out per unit length of wall), K a = active lateral earth pressure coefficient, γ = soil unit weight, z = depth<br />

to <strong>the</strong> re<strong>in</strong>forcement level relative to <strong>the</strong> wall top at <strong>the</strong> wall face, S = average soil surcharge depth above <strong>the</strong><br />

wall top, <strong>and</strong> q = vertical stress due to traffic surcharge.<br />

5.2 Comparison of Predicted <strong>and</strong> Estimated <strong>Loads</strong><br />

Figure 9 illustrates how well <strong>the</strong> Simplified Method predicts re<strong>in</strong>forcement loads <strong>in</strong> geosyn<strong>the</strong>tic walls built<br />

<strong>in</strong> <strong>the</strong> field. The error bars <strong>in</strong> <strong>the</strong> figure show <strong>the</strong> variance (± 1 st<strong>and</strong>ard deviation) <strong>in</strong> <strong>the</strong> “best estimate of<br />

measured” re<strong>in</strong>forcement loads based on <strong>the</strong> estimate of uncerta<strong>in</strong>ty <strong>in</strong> stra<strong>in</strong> <strong>and</strong> re<strong>in</strong>forcement stiffness<br />

measurements. Note that triaxial or direct shear peak soil friction angles <strong>and</strong> unit weights estimated from<br />

measured data were used to calculate loads. Plane stra<strong>in</strong> conditions likely prevail <strong>in</strong> <strong>the</strong>se types of re<strong>in</strong>forced<br />

structures (Rowe <strong>and</strong> Ho 1993; Zornberg et al. 1998) but it is recognised that <strong>in</strong> practice triaxial or direct shear<br />

backfill friction angles would be used with this design method (AASHTO 2002). No safety factors were<br />

applied to calculate <strong>the</strong> predicted loads.<br />

14


30<br />

GW 5<br />

GW 7 (Section J)<br />

GW 7 (Section N)<br />

GW 8<br />

GW 9 (no surcharge)<br />

GW 9 (with surcharge)<br />

GW 10<br />

GW 16 (no surcharge)<br />

GW 16 (with surcharge)<br />

GW 18<br />

GW 19<br />

GW 20 (PP geogrid)<br />

GW 20 (HDPE geogrid)<br />

25<br />

1<br />

Predicted load (kN/m)<br />

20<br />

15<br />

10<br />

1<br />

5<br />

0<br />

0 5 10 15 20 25 30<br />

Load estimated from measured stra<strong>in</strong> (kN/m)<br />

Figure 9. Predicted versus re<strong>in</strong>forcement load estimated from stra<strong>in</strong> measurements for full-scale field<br />

geosyn<strong>the</strong>tic walls, us<strong>in</strong>g <strong>the</strong> AASHTO Simplified Method <strong>and</strong> triaxial or direct shear peak strength values<br />

(Allen <strong>and</strong> Bathurst 2002)<br />

The data <strong>in</strong> Figure 9 show that <strong>the</strong>re is a tremendous amount of scatter <strong>in</strong> <strong>the</strong> predicted loads. Fur<strong>the</strong>rmore,<br />

with <strong>the</strong> exception of two walls (GW 19 <strong>and</strong> GW 7) <strong>the</strong> general trend is that <strong>the</strong> predicted loads are greater<br />

than <strong>the</strong> estimated loads. Interest<strong>in</strong>gly, <strong>Walls</strong> GW 19 <strong>and</strong> GW 7 are a sloped-face wall (27° fac<strong>in</strong>g batter) <strong>and</strong><br />

a polymer strip re<strong>in</strong>forced soil wall, respectively, <strong>and</strong> are excluded as geosyn<strong>the</strong>tic re<strong>in</strong>forced soil walls <strong>in</strong><br />

current practice (Elias et al. 2001; AASHTO 2002).<br />

Allen <strong>and</strong> Bathurst (2002) also compared <strong>the</strong> distribution of estimated re<strong>in</strong>forcement load <strong>and</strong> predicted<br />

loads under work<strong>in</strong>g load levels for <strong>the</strong> case study walls <strong>in</strong> this <strong>in</strong>vestigation. An example comparison is<br />

shown <strong>in</strong> Figure 10. The modified AASHTO curves refer to <strong>the</strong> use of <strong>the</strong> horizontal component of earth<br />

pressure <strong>in</strong> Equation 5 which reduces <strong>the</strong> magnitude of earth force calculated for each re<strong>in</strong>forcement layer. The<br />

data <strong>in</strong> <strong>the</strong> figure show that re<strong>in</strong>forcement loads were excessively conservative for this structure <strong>and</strong> that <strong>the</strong><br />

distribution of maximum re<strong>in</strong>forcement load with depth below <strong>the</strong> top of <strong>the</strong> wall was not captured us<strong>in</strong>g <strong>the</strong><br />

Simplified Method. The magnitudes of predicted load were also reduced by us<strong>in</strong>g plane stra<strong>in</strong> friction angle<br />

values for <strong>the</strong> soil backfill. This result suggests that a significant source of conservatism <strong>in</strong> current design<br />

practice is <strong>the</strong> use of laboratory shear strength values that are not corrected for <strong>the</strong> plane stra<strong>in</strong> conditions that<br />

prevail <strong>in</strong> most geosyn<strong>the</strong>tic re<strong>in</strong>forced soil wall structures.<br />

Figure 11 shows <strong>the</strong> distribution of re<strong>in</strong>forcement loads (T max ) estimated from measured stra<strong>in</strong>s <strong>in</strong> <strong>the</strong> fullscale<br />

field walls, normalised to <strong>the</strong> maximum re<strong>in</strong>forcement load with<strong>in</strong> <strong>the</strong> wall (T mxmx ). The normalised<br />

loads are plotted aga<strong>in</strong>st <strong>the</strong> relative depth below <strong>the</strong> elevation of <strong>the</strong> average soil surcharge height to account<br />

for <strong>the</strong> effect of surcharge on re<strong>in</strong>forcement load near <strong>the</strong> top of <strong>the</strong> wall. The load distribution envelope is not<br />

triangular as is currently assumed for design, but ra<strong>the</strong>r is trapezoidal <strong>in</strong> shape. An approximate trend l<strong>in</strong>e is<br />

superimposed on <strong>the</strong> data <strong>in</strong> <strong>the</strong> figure to help emphasise <strong>the</strong> shape of <strong>the</strong> load distribution envelope <strong>in</strong> <strong>the</strong><br />

figure.<br />

The explanation for <strong>the</strong> reduction <strong>in</strong> re<strong>in</strong>forcement loads at <strong>the</strong> base of <strong>the</strong> walls <strong>in</strong> Figures 10 <strong>and</strong> 11 is<br />

proximity to <strong>the</strong> stiff foundation base <strong>and</strong> toe restra<strong>in</strong>t at <strong>the</strong> wall foot<strong>in</strong>g. Analysis of a series of RMC walls<br />

has shown that <strong>the</strong> comb<strong>in</strong>ation of <strong>the</strong> wall face <strong>and</strong> wall toe restra<strong>in</strong>t carries a significant portion of <strong>the</strong><br />

<strong>in</strong>ternal load for geosyn<strong>the</strong>tic walls, <strong>the</strong>reby reduc<strong>in</strong>g <strong>the</strong> load <strong>the</strong> re<strong>in</strong>forcement must carry. The stiffer <strong>the</strong><br />

15


z/H<br />

0.0<br />

0.1<br />

0.2<br />

0.3<br />

0.4<br />

0.5<br />

0.6<br />

GW8<br />

Estimated load from<br />

measured stra<strong>in</strong>s<br />

Triaxial/Direct shear<br />

AASHTO<br />

Modified<br />

AASHTO<br />

Plane stra<strong>in</strong> shear<br />

Modified<br />

AASHTO<br />

0.7<br />

0.8<br />

0.9<br />

1.0<br />

0 5 10 15 20<br />

T max (kN/m)<br />

Figure 10. Predicted peak re<strong>in</strong>forcement loads, <strong>and</strong> peak loads estimated from measured stra<strong>in</strong>s (Wall GW8<br />

– Allen <strong>and</strong> Bathurst 2002). Note: Error bars represent best estimate of measured load ± 1 st<strong>and</strong>ard deviation<br />

wall face/wall toe restra<strong>in</strong>t, <strong>the</strong> less load <strong>the</strong> re<strong>in</strong>forcement must carry (Bathurst et al. 2000, 2001). The<br />

contribution of fac<strong>in</strong>g stiffness <strong>and</strong> toe restra<strong>in</strong>t is not explicitly considered <strong>in</strong> <strong>the</strong> AASHTO Simplified<br />

Method <strong>and</strong> is an important source of conservatism <strong>in</strong> current design practice.<br />

5.3 Soil Failure as a Limit State <strong>in</strong> Wall Design<br />

Included <strong>in</strong> <strong>the</strong> database of walls was one full-scale wrapped-face field wall (Allen et al. 2002) <strong>and</strong> a series<br />

of full-scale laboratory walls constructed at RMC (Bathurst et al. 2000, 2001) that were taken to load levels <strong>in</strong><br />

excess of “work<strong>in</strong>g load” levels. This state was achieved through <strong>the</strong> application of a uniform surcharge<br />

pressure applied at <strong>the</strong> surface of <strong>the</strong> wall backfill start<strong>in</strong>g at <strong>the</strong> crest of <strong>the</strong> wall. Bathurst <strong>and</strong> co-workers<br />

noted that <strong>in</strong> <strong>the</strong>ir full-scale laboratory tests, soil failure occurred before re<strong>in</strong>forcement rupture. Evidence of<br />

soil failure, def<strong>in</strong>ed as <strong>the</strong> <strong>in</strong>ternal development of a contiguous soil failure zone <strong>in</strong> <strong>the</strong> re<strong>in</strong>forced soil mass,<br />

<strong>in</strong>cluded a sudden <strong>and</strong> large outward movement of <strong>the</strong> wall face, soil settlement directly beh<strong>in</strong>d <strong>the</strong> wall face<br />

<strong>and</strong> a concurrent <strong>in</strong>crease <strong>in</strong> re<strong>in</strong>forcement stra<strong>in</strong>s. In some cases, fur<strong>the</strong>r <strong>in</strong>creases <strong>in</strong> surcharge load<strong>in</strong>g lead<br />

to re<strong>in</strong>forcement rupture <strong>and</strong> collapse of <strong>the</strong> wall.<br />

The performance of <strong>the</strong>se walls prior to collapse was used to del<strong>in</strong>eate walls that can be expected to have<br />

good long-term performance (see Section 3) from walls with poor performance. Direct measurement of soil<br />

shear stra<strong>in</strong>s consistent with <strong>the</strong> notion of soil plasticity (failure) was not possible. However, as a general rule,<br />

re<strong>in</strong>forcement stra<strong>in</strong>s <strong>in</strong> excess of 3% stra<strong>in</strong> were shown to be a quantitative <strong>in</strong>dicator of soil failure.<br />

<strong>Re<strong>in</strong>forcement</strong> stra<strong>in</strong>s <strong>in</strong> excess of this value are believed to lead to soil soften<strong>in</strong>g <strong>and</strong> <strong>the</strong> shedd<strong>in</strong>g of soil load<br />

capacity to <strong>the</strong> re<strong>in</strong>forcement layers. From a practical po<strong>in</strong>t of view, restrict<strong>in</strong>g re<strong>in</strong>forcement stra<strong>in</strong>s from<br />

achiev<strong>in</strong>g tensile stra<strong>in</strong>s <strong>in</strong> excess of 3% stra<strong>in</strong> can be used to prevent soil failure <strong>and</strong> represents an important<br />

limit state that should be considered <strong>in</strong> <strong>the</strong> development of work<strong>in</strong>g stress wall design methodologies.<br />

6 A NEW WORKING STRESS METHOD FOR PREDICTION OF REINFORCEMENT LOADS IN<br />

GEOSYNTHETIC WALLS<br />

The previous section has highlighted deficiencies <strong>in</strong> <strong>the</strong> current Simplified Method with respect to <strong>the</strong><br />

calculation of re<strong>in</strong>forcement loads for <strong>in</strong>ternal stability design of geosyn<strong>the</strong>tic re<strong>in</strong>forced soil walls. A subset<br />

of <strong>the</strong> database of case studies collected by <strong>the</strong> writers (16 fully <strong>in</strong>strumented walls <strong>and</strong> 14 walls with limited<br />

16


measurements) was used to develop a new design methodology based on work<strong>in</strong>g stress pr<strong>in</strong>ciples. “Best<br />

estimate” re<strong>in</strong>forcement loads under work<strong>in</strong>g load levels were used to calibrate this empirical-based design<br />

method. The methodology is called <strong>the</strong> “K-Stiffness Method” (Allen et al. 2003; Allen <strong>and</strong> Bathurst 2003)<br />

<strong>and</strong> is briefly described <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g sections.<br />

6.1 Background<br />

The follow<strong>in</strong>g key factors will <strong>in</strong>fluence <strong>the</strong> magnitude of maximum re<strong>in</strong>forcement load, T max :<br />

1. Height of <strong>the</strong> wall <strong>and</strong> any surcharge loads.<br />

2. Global <strong>and</strong> local stiffness of <strong>the</strong> soil re<strong>in</strong>forcement.<br />

3. Resistance to lateral movement caused by <strong>the</strong> stiffness of <strong>the</strong> fac<strong>in</strong>g <strong>and</strong> restra<strong>in</strong>t at <strong>the</strong> wall toe.<br />

4. Face batter.<br />

5. Shear strength <strong>and</strong> stress-stra<strong>in</strong> behaviour (e.g., modulus) of <strong>the</strong> soil.<br />

6. Unit weight of <strong>the</strong> soil.<br />

7. Vertical spac<strong>in</strong>g of <strong>the</strong> re<strong>in</strong>forcement.<br />

It is useful to note that items 2, 3 <strong>and</strong> 4 are not considered <strong>in</strong> <strong>the</strong> Simplified Method. Of particular<br />

importance is <strong>the</strong> possible effect of magnitude of re<strong>in</strong>forcement stiffness on <strong>the</strong> magnitude <strong>and</strong> distribution of<br />

re<strong>in</strong>forcement loads as demonstrated <strong>in</strong> physical tests <strong>and</strong> numerical models (Christopher 1993; Bathurst <strong>and</strong><br />

Hatami 1998).<br />

In <strong>the</strong> K-Stiffness Method, <strong>the</strong> contribution of <strong>the</strong>se key factors to <strong>the</strong> calculation of <strong>the</strong> maximum load <strong>in</strong> a<br />

re<strong>in</strong>forcement layer i is expressed as:<br />

i 1<br />

i<br />

T<br />

max<br />

= Kγ (H + S) S<br />

v<br />

D<br />

tmax<br />

Φ<br />

g<br />

Φ<br />

local<br />

Φ<br />

fs<br />

Φ<br />

(6)<br />

fb<br />

2<br />

where: K = lateral earth pressure coefficient; γ = unit weight of <strong>the</strong> soil; H = height of <strong>the</strong> wall; S = equivalent<br />

height of uniform surcharge pressure q (i.e., S = q/γ); S = tributary area (equivalent to <strong>the</strong> vertical spac<strong>in</strong>g of<br />

<strong>the</strong> re<strong>in</strong>forcement <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity of each layer when analyses are carried out per unit length of wall); D tmax =<br />

load distribution factor that modifies <strong>the</strong> re<strong>in</strong>forcement load based on layer location. The rema<strong>in</strong><strong>in</strong>g terms, Φ g ,<br />

Φ local , Φ fs <strong>and</strong> Φ fb are <strong>in</strong>fluence factors that account for <strong>the</strong> effects of global <strong>and</strong> local re<strong>in</strong>forcement stiffness,<br />

fac<strong>in</strong>g stiffness <strong>and</strong> face batter, respectively. The coefficient of lateral earth pressure K is calculated us<strong>in</strong>g <strong>the</strong><br />

Jaky equation (e.g., see Holtz <strong>and</strong> Kovacs 1981) toge<strong>the</strong>r with φ ps = peak plane stra<strong>in</strong> friction angle of <strong>the</strong> soil.<br />

The use of K = K o <strong>in</strong> this proposed method does not imply that at-rest conditions exist with<strong>in</strong> <strong>the</strong> re<strong>in</strong>forced<br />

backfill. K o is simply used as a familiar <strong>in</strong>dex parameter to characterise soil behaviour.<br />

The empirical re<strong>in</strong>forcement load distribution parameter D tmax is used to distribute <strong>the</strong> load as a function of<br />

depth, account<strong>in</strong>g for <strong>the</strong> re<strong>in</strong>forcement properties, load redistribution among layers, <strong>and</strong> foundation<br />

conditions. It is expressed here as a function of normalized depth below <strong>the</strong> top of <strong>the</strong> wall (z+S)/(H+S),<br />

<strong>in</strong>clud<strong>in</strong>g <strong>the</strong> effect of <strong>the</strong> soil surcharge S, <strong>and</strong> varies over <strong>the</strong> range 0 ≤ D tmax ≤ 1. The distribution is<br />

illustrated by <strong>the</strong> dashed l<strong>in</strong>es <strong>in</strong> Figure 11.<br />

Parameter Φ g is a global stiffness factor that accounts for <strong>the</strong> <strong>in</strong>fluence of <strong>the</strong> stiffness <strong>and</strong> spac<strong>in</strong>g of <strong>the</strong><br />

re<strong>in</strong>forcement layers over <strong>the</strong> entire wall height <strong>and</strong> has <strong>the</strong> general form:<br />

i<br />

v<br />

Φ<br />

⎛S<br />

α ⎜<br />

⎝<br />

β<br />

⎞<br />

⎟<br />

⎠<br />

global<br />

g<br />

=<br />

⎜ p ⎟<br />

(7)<br />

a<br />

Here, S global is <strong>the</strong> global re<strong>in</strong>forcement stiffness <strong>and</strong> α <strong>and</strong> β are constant coefficients. The non-dimensionality<br />

of <strong>the</strong> expression is preserved by divid<strong>in</strong>g <strong>the</strong> global re<strong>in</strong>forcement stiffness by p a = 101 kPa (atmospheric<br />

pressure). The global re<strong>in</strong>forcement stiffness value for a wall is calculated as (Christopher et al. 1990):<br />

17


S<br />

global<br />

n<br />

∑<br />

Ji<br />

Jave<br />

i=<br />

1<br />

= =<br />

(8)<br />

( H/n) H<br />

Here, J ave is <strong>the</strong> average tensile stiffness of all “n” re<strong>in</strong>forcement layers over <strong>the</strong> wall height <strong>and</strong>, J i is <strong>the</strong><br />

tensile stiffness of an <strong>in</strong>dividual re<strong>in</strong>forcement layer expressed <strong>in</strong> units of force per unit length of wall.<br />

Parameter Φ local is a local stiffness factor that accounts for <strong>the</strong> relative stiffness of <strong>the</strong> re<strong>in</strong>forcement layer<br />

with respect to <strong>the</strong> average stiffness of all re<strong>in</strong>forcement layers <strong>and</strong> is expressed as:<br />

Φ<br />

local<br />

⎛<br />

⎜<br />

S<br />

⎝ S<br />

global<br />

⎞<br />

⎟<br />

⎠<br />

a<br />

local<br />

= (9)<br />

S local is <strong>the</strong> local re<strong>in</strong>forcement stiffness for re<strong>in</strong>forcement layer i calculated as:<br />

S<br />

local<br />

⎛ J<br />

S ⎟ ⎞<br />

= ⎜<br />

(10)<br />

⎝ v ⎠<br />

i<br />

Local deviations from overall trends <strong>in</strong> re<strong>in</strong>forcement loads can be expected when <strong>the</strong> re<strong>in</strong>forcement stiffness<br />

<strong>and</strong>/or spac<strong>in</strong>g of <strong>the</strong> re<strong>in</strong>forcement change from average values over <strong>the</strong> height of <strong>the</strong> wall (i.e., S local /S global ≠<br />

1; Hatami et al. 2001). This effect is captured by <strong>the</strong> local stiffness factor Φ local expressed by Equation 9.<br />

Parameters Φ fs (fac<strong>in</strong>g stiffness factor) <strong>and</strong> Φ fb (fac<strong>in</strong>g batter factor) <strong>in</strong> Equation 6 are factors that account<br />

for <strong>the</strong> <strong>in</strong>fluence of <strong>the</strong> fac<strong>in</strong>g stiffness <strong>and</strong> fac<strong>in</strong>g batter, respectively, <strong>and</strong> are constant values for a given wall.<br />

6.2 Results of Back-analyses<br />

The values for <strong>the</strong> <strong>in</strong>fluence factors <strong>in</strong>troduced above are assumed to be uncorrelated to facilitate backanalysis.<br />

Individual values were back-calculated by rewrit<strong>in</strong>g Equation 6 to isolate each factor <strong>and</strong> us<strong>in</strong>g<br />

basel<strong>in</strong>e values for <strong>the</strong> rema<strong>in</strong><strong>in</strong>g <strong>in</strong>fluence factors <strong>and</strong> best estimates of re<strong>in</strong>forcement loads <strong>and</strong> stiffness<br />

values. For example, <strong>the</strong> results of regression analysis gave values of α = 0.25 <strong>and</strong> β = 0.25 for <strong>the</strong> power<br />

function described by Equation 7.<br />

Regression analyses us<strong>in</strong>g Equation 9 gave a = 1 for geosyn<strong>the</strong>tic re<strong>in</strong>forced soil walls. To accommodate a<br />

seamless transition to steel re<strong>in</strong>forced soil walls, a similar back-analysis by Allen <strong>and</strong> Bathurst (2003) gave a =<br />

0 for steel soil re<strong>in</strong>forcement systems.<br />

For prelim<strong>in</strong>ary design purposes, <strong>the</strong> follow<strong>in</strong>g fac<strong>in</strong>g stiffness factor values are recommended:<br />

Φ fs<br />

Φ fs<br />

Φ fs<br />

= 0.35 for modular block <strong>and</strong> propped concrete panel faced walls (stiff fac<strong>in</strong>gs).<br />

= 0.5 for <strong>in</strong>cremental precast concrete fac<strong>in</strong>gs.<br />

= 1.0 for all o<strong>the</strong>r types of wall fac<strong>in</strong>gs (flexible fac<strong>in</strong>gs - e.g., wrapped-face, welded wire or gabion<br />

faced).<br />

A detailed description of <strong>the</strong> calculation of parameter Φ fs is provided by Allen et al. (2003).<br />

The <strong>in</strong>fluence of wall fac<strong>in</strong>g batter on maximum re<strong>in</strong>forcement loads is adjusted <strong>in</strong> <strong>the</strong> proposed work<strong>in</strong>g<br />

stress method us<strong>in</strong>g an empirical fac<strong>in</strong>g batter factor expressed as:<br />

Φ<br />

fb<br />

d<br />

⎛ Kabh<br />

K ⎟ ⎞<br />

= ⎜<br />

(11)<br />

⎝ avh ⎠<br />

18


GW 5<br />

GW 7 (Section J)<br />

GW 7 (Section N)<br />

GW 8<br />

GW 9 (no surcharge)<br />

GW 9 (with surcharge)<br />

GW 10<br />

GW 16 (no surcharge)<br />

GW 18<br />

GW 19<br />

GW 20 (PP geogrid)<br />

GW 20 (HDPE geogrid)<br />

Normalized depth below top of wall (z+S) / (H+S)<br />

0.0<br />

0.1<br />

0.2<br />

0.3<br />

0.4<br />

0.5<br />

0.6<br />

0.7<br />

0.8<br />

0.9<br />

1.0<br />

0.0 0.2 0.4 0.6 0.8 1.0 1.2<br />

Normalized load (T max / T mxmx )<br />

Figure 11. Normalized re<strong>in</strong>forcement loads estimated from stra<strong>in</strong> measurements as a function of normalized<br />

depth below wall top (Allen et al. 2003)<br />

where: K abh = horizontal component of active earth pressure coefficient account<strong>in</strong>g for wall face batter; K avh =<br />

horizontal component of active earth pressure coefficient (assum<strong>in</strong>g <strong>the</strong> wall is vertical) <strong>and</strong>; d = constant<br />

coefficient. The form of <strong>the</strong> equation shows that as <strong>the</strong> wall face batter angle ω → 0 (i.e., wall fac<strong>in</strong>g batter<br />

approaches <strong>the</strong> vertical) <strong>the</strong> fac<strong>in</strong>g batter factor Φ fb → 1. A value of d = 0.25 gives <strong>the</strong> best fit based on <strong>the</strong><br />

available T max data <strong>and</strong> is recommended as <strong>the</strong> default value <strong>in</strong> <strong>the</strong> proposed K-Stiffness Method.<br />

6.3 Overall Performance of <strong>the</strong> K-Stiffness Method<br />

The accuracy of <strong>the</strong> proposed K-Stiffness Method (Equation 6) for geosyn<strong>the</strong>tic walls is illustrated <strong>in</strong><br />

Figure 12. The improvement over <strong>the</strong> Simplified Method is apparent when this figure is compared to Figure 9.<br />

Similarly, <strong>the</strong> improved performance of <strong>the</strong> K-Stiffness Method over <strong>the</strong> Simplified Method with respect to <strong>the</strong><br />

distribution of loads <strong>in</strong> re<strong>in</strong>forced soil walls is apparent <strong>in</strong> Figure 13. The relative improvement of <strong>the</strong> K-<br />

Stiffness Method over <strong>the</strong> Simplified Method can also be quantified by exam<strong>in</strong><strong>in</strong>g <strong>the</strong> ratio of <strong>the</strong> measured to<br />

predicted re<strong>in</strong>forcement loads (bias) <strong>and</strong> <strong>the</strong> spread <strong>in</strong> <strong>the</strong> bias values (Table 3). A bias value of one is<br />

desirable. The lower <strong>the</strong> COV of <strong>the</strong> bias values <strong>the</strong> better <strong>the</strong> accuracy of <strong>the</strong> model. In both cases <strong>the</strong> K-<br />

Stiffness Method is superior to <strong>the</strong> Simplified Method.<br />

The stra<strong>in</strong> level <strong>in</strong> <strong>the</strong> re<strong>in</strong>forcement also appears to have a significant effect on <strong>the</strong> prediction accuracy of<br />

<strong>the</strong> K-Stiffness Method. Figure 14 shows predicted re<strong>in</strong>forcement stra<strong>in</strong>s us<strong>in</strong>g <strong>the</strong> K-Stiffness Method <strong>and</strong><br />

T mxmx , plotted aga<strong>in</strong>st <strong>the</strong> measured re<strong>in</strong>forcement stra<strong>in</strong>s for geosyn<strong>the</strong>tic walls. The predicted stra<strong>in</strong>s were<br />

calculated by divid<strong>in</strong>g T mxmx by <strong>the</strong> re<strong>in</strong>forcement layer secant stiffness, J (see Equation 3). It appears that<br />

once re<strong>in</strong>forcement stra<strong>in</strong>s exceed approximately 3 to 4% for <strong>the</strong> available case histories, <strong>the</strong> K-Stiffness<br />

Method consistently under-predicts <strong>the</strong> measured stra<strong>in</strong>. It should be noted that all of <strong>the</strong> stra<strong>in</strong>s greater than<br />

about 3% were measured <strong>in</strong> full-scale test walls which were surcharged to loads well <strong>in</strong> excess of work<strong>in</strong>g<br />

stress conditions (see Bathurst (1993); Bathurst et al. (1993, 2000, 2001) for details regard<strong>in</strong>g <strong>the</strong>se full-scale<br />

test walls).<br />

19


20<br />

GW5<br />

GW7, Section J<br />

GW7, Section N<br />

GW8<br />

GW9, no surcharge<br />

GW9, with surcharge<br />

GW10, with water<br />

restra<strong>in</strong>t removed<br />

GW16, no surcharge<br />

GW16, with surcharge<br />

GW18<br />

GW19<br />

GW20, HDPE Section<br />

GW20, PP Section<br />

K-Stiffness Method predicted load (kN/m)<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0 2 4 6 8 10 12 14 16 18 20<br />

Measured load (kN/m)<br />

Figure 12. Predicted versus measured values of T max <strong>in</strong> re<strong>in</strong>forcement layers for geosyn<strong>the</strong>tic walls, us<strong>in</strong>g <strong>the</strong><br />

K-Stiffness Method (Allen et al. 2003)<br />

Table 3. Ratio of measured to pedicted re<strong>in</strong>forcement loads (Bias) (Allen et al. 2003)<br />

Simplified<br />

K-Stiffness Method<br />

Method<br />

Mean T max 0.65 0.99<br />

COV T max 95% 36%<br />

Mean T mxmx 0.58 0.99<br />

COV T mxmx 99% 17%<br />

T max = maximum load <strong>in</strong> a re<strong>in</strong>forcement layer; T mxmx = maximum load <strong>in</strong> wall from all layers;<br />

COV = st<strong>and</strong>ard deviation of bias/mean of bias x 100%<br />

It should also be noted <strong>in</strong> Figure 14 that at high re<strong>in</strong>forcement stra<strong>in</strong>s <strong>the</strong> walls with stiff fac<strong>in</strong>gs plot<br />

consistently below <strong>the</strong> walls with flexible fac<strong>in</strong>gs. This may be an <strong>in</strong>dicator that <strong>the</strong> fac<strong>in</strong>g stiffness correction<br />

factor used <strong>in</strong> <strong>the</strong> K-Stiffness method is not a constant as proposed, but <strong>in</strong>creases toward 1.0 (i.e., less effect of<br />

fac<strong>in</strong>g stiffness) as stra<strong>in</strong> <strong>in</strong>creases. At higher stra<strong>in</strong>s, <strong>the</strong> fac<strong>in</strong>g appears to have reduced reserve capacity to<br />

carry additional load (Bathurst et al. 2000). While <strong>the</strong> fac<strong>in</strong>g has not failed at re<strong>in</strong>forcement stra<strong>in</strong>s greater<br />

than 1.5 to 2%, <strong>the</strong> re<strong>in</strong>forcement takes on additional load to ma<strong>in</strong>ta<strong>in</strong> fac<strong>in</strong>g column equilibrium.<br />

6.4 Soil Failure as a Limit State for Re<strong>in</strong>forced Soil <strong>Walls</strong><br />

<strong>Geosyn<strong>the</strong>tic</strong> re<strong>in</strong>forcement can reach much higher stra<strong>in</strong>s without failure than can <strong>the</strong> soil. Therefore,<br />

prevention of re<strong>in</strong>forcement failure, an objective of current <strong>in</strong>ternal stability design methods, does not ensure<br />

aga<strong>in</strong>st failure of a geosyn<strong>the</strong>tic wall due to failure of <strong>the</strong> backfill soil. Prevention of re<strong>in</strong>forcement stra<strong>in</strong>s<br />

20


z/H<br />

0.0<br />

0.1<br />

0.2<br />

0.3<br />

0.4<br />

0.5<br />

0.6<br />

0.7<br />

0.8<br />

0.9<br />

Load estimated from<br />

measured stra<strong>in</strong><br />

K-Stiffness Method<br />

AASHTO Simplified Method<br />

1.0<br />

0 2 4 6 8 10 12 14<br />

T max<br />

(kN/m)<br />

a) GW16 (wrapped-face wall) with soil surcharge<br />

0.0<br />

0.1<br />

0.2<br />

0.3<br />

0.4<br />

z/H<br />

0.5<br />

0.6<br />

0.7<br />

0.8<br />

0.9<br />

1.0<br />

0 2 4 6 8 10 12 14<br />

T max<br />

(kN/m)<br />

b) GW9 (modular block wall) with soil surcharge<br />

0.0<br />

0.1<br />

0.2<br />

0.3<br />

0.4<br />

z/H<br />

0.5<br />

0.6<br />

0.7<br />

0.8<br />

0.9<br />

1.0<br />

0.0 0.5 1.0 1.5 2.0 2.5 3.0<br />

T max<br />

(kN/m)<br />

c) GW5 (<strong>in</strong>cremental precast concrete panel wall)<br />

Figure 13. Predicted load <strong>and</strong> distribution versus measured values of T max <strong>in</strong> re<strong>in</strong>forcement layers for<br />

geosyn<strong>the</strong>tic walls, us<strong>in</strong>g <strong>the</strong> K-Stiffness Method (Allen <strong>and</strong> Bathurst 2003)<br />

(over <strong>the</strong> design life of <strong>the</strong> structure) that are great enough to allow failure of <strong>the</strong> soil should be an objective of<br />

any work<strong>in</strong>g stress design method. Soil failure is def<strong>in</strong>ed as contiguous or near-contiguous zones of soil with<br />

shear stra<strong>in</strong>s <strong>in</strong> excess of <strong>the</strong> stra<strong>in</strong> at peak strength. Contiguous shear zones have been observed <strong>in</strong> test walls<br />

taken to collapse under uniform surcharge load<strong>in</strong>g (Bathurst 1990; Bathurst et al. 1993). Once <strong>the</strong> soil has<br />

failed, for all practical purposes <strong>the</strong> wall has failed <strong>and</strong> an <strong>in</strong>ternal strength limit state achieved.<br />

Plane stra<strong>in</strong> shear strength data for <strong>the</strong> backfill used <strong>in</strong> one case study wall (GW16) <strong>in</strong>dicated that <strong>the</strong> soil<br />

had peak stra<strong>in</strong>s <strong>in</strong> <strong>the</strong> range of 2 to 3% (Boyle 1995). S<strong>in</strong>ce <strong>the</strong> backfill used for this wall was at <strong>the</strong> upper<br />

end with respect to shear strength for <strong>the</strong> case histories considered here<strong>in</strong>, <strong>the</strong>se plane stra<strong>in</strong> peak stra<strong>in</strong>s are<br />

21


K-Stiffness Method predicted re<strong>in</strong>forcement stra<strong>in</strong> (%)<br />

30<br />

28<br />

26<br />

24<br />

22<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

K-Stiffness Method<br />

predicted re<strong>in</strong>forcement stra<strong>in</strong> (%)<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Work<strong>in</strong>g<br />

stress<br />

conditions<br />

for design<br />

Work<strong>in</strong>g stress<br />

conditions for design<br />

0 1 2 3 4 5<br />

Measured re<strong>in</strong>forcement stra<strong>in</strong> (%)<br />

Signs of soil failure<br />

(crack<strong>in</strong>g, slump<strong>in</strong>g, etc.)<br />

<strong>Geosyn<strong>the</strong>tic</strong> production walls<br />

Test walls with stiff fac<strong>in</strong>g<br />

Test walls with flexible fac<strong>in</strong>g<br />

Flexible<br />

fac<strong>in</strong>g<br />

Rigid<br />

fac<strong>in</strong>g<br />

4<br />

2<br />

0<br />

0 2<br />

3<br />

4 6 8 10 12 14 16 18 20 22 24 26 28 30<br />

Measured re<strong>in</strong>forcement stra<strong>in</strong> (%)<br />

Figure 14. Predicted versus measured re<strong>in</strong>forcement stra<strong>in</strong> (based on T mxmx ) us<strong>in</strong>g <strong>the</strong> K-Stiffness Method for<br />

full-scale production (field) <strong>and</strong> full-scale laboratory geosyn<strong>the</strong>tic walls. Inset show<strong>in</strong>g 0 to 5% re<strong>in</strong>forcement<br />

stra<strong>in</strong> range (Allen et al. 2003)<br />

likely at <strong>the</strong> lower end of <strong>the</strong> typical range for granular soils. Plane stra<strong>in</strong> shear strength data reported by Lee<br />

(2000) for RMC soil specimens at conf<strong>in</strong><strong>in</strong>g pressures comparable to surcharge pressures required to <strong>in</strong>itiate<br />

large wall deformations <strong>in</strong>dicate that peak soil stra<strong>in</strong>s <strong>in</strong> <strong>the</strong> walls were about 2 to 3%. In both cases (Boyle<br />

1995; Lee 2000), <strong>the</strong> plane stra<strong>in</strong> test results <strong>in</strong>dicated that <strong>the</strong> peak soil stra<strong>in</strong> <strong>in</strong>creases with <strong>in</strong>creas<strong>in</strong>g<br />

conf<strong>in</strong><strong>in</strong>g stress.<br />

Based on data from <strong>the</strong> RMC full-scale walls, geosyn<strong>the</strong>tic re<strong>in</strong>forcement tensile stra<strong>in</strong>s large enough to<br />

cause signs of soil failure are typically numerically greater than <strong>the</strong> 2 to 3% peak soil shear stra<strong>in</strong> values<br />

required to generate a contiguous failure zone <strong>in</strong> <strong>the</strong>se walls, as shown <strong>in</strong> Figure 14. Fur<strong>the</strong>rmore, Figure 14<br />

shows that for <strong>the</strong> available data, <strong>the</strong> K-Stiffness Method provides an accurate prediction of re<strong>in</strong>forcement<br />

stra<strong>in</strong>s up to re<strong>in</strong>forcement stra<strong>in</strong> levels that are numerically at or slightly greater than <strong>the</strong> soil peak shear stra<strong>in</strong><br />

(i.e., re<strong>in</strong>forcement stra<strong>in</strong> levels of approximately 3% or more that appear to correspond to soil peak shear<br />

stra<strong>in</strong>s of 2 to 3% based on laboratory plane stra<strong>in</strong> test<strong>in</strong>g of granular soils used <strong>in</strong> full-scale walls). A direct<br />

<strong>the</strong>oretical relationship between re<strong>in</strong>forcement tensile stra<strong>in</strong>, soil shear stra<strong>in</strong>, <strong>and</strong> <strong>the</strong> onset of soil failure is<br />

difficult to accomplish at present. However, based on <strong>the</strong> empirical evidence available, it appears that<br />

prevent<strong>in</strong>g <strong>the</strong> re<strong>in</strong>forcement stra<strong>in</strong> from exceed<strong>in</strong>g a 3% design value will be adequate for <strong>the</strong> high shear<br />

22


strength granular backfill soils <strong>in</strong> this study <strong>and</strong> likely a lower bound (conservative) estimate for design us<strong>in</strong>g<br />

weaker backfill soils. Never<strong>the</strong>less, <strong>the</strong> relationship between re<strong>in</strong>forcement stra<strong>in</strong> <strong>and</strong> <strong>the</strong> soil shear stra<strong>in</strong> at<br />

peak strength needs to be <strong>in</strong>vestigated for a wider range of soils.<br />

7 CONCLUSIONS<br />

This paper traces a body of work by <strong>the</strong> writers that has identified significant deficiencies <strong>in</strong> <strong>the</strong> current<br />

AASHTO Simplified Method for <strong>the</strong> design of re<strong>in</strong>forcement layers aga<strong>in</strong>st over-stress<strong>in</strong>g <strong>in</strong> <strong>in</strong>ternal stability<br />

calculations. Excessive conservatism us<strong>in</strong>g <strong>the</strong> AASHTO method has been demonstrated to lead to<br />

re<strong>in</strong>forcement volumes that may be twice that required to achieve <strong>the</strong> good wall performance observed <strong>in</strong> a<br />

database of walls that have performed well for up to 18 years. These structures can be reasonably expected to<br />

cont<strong>in</strong>ue to perform well through <strong>the</strong> rema<strong>in</strong>der of <strong>the</strong>ir design life (e.g., re<strong>in</strong>forcement stra<strong>in</strong> rates <strong>and</strong> wall<br />

deformations have stopped).<br />

A database of wall case studies comprised of structures with a typical range of geometry <strong>and</strong> geosyn<strong>the</strong>tic<br />

re<strong>in</strong>forcement products has been used to calculate actual re<strong>in</strong>forcement loads. These values have been used to<br />

calibrate a new work<strong>in</strong>g stress method which provides a framework to capture <strong>the</strong> <strong>in</strong>fluence of re<strong>in</strong>forcement<br />

stiffness, layer arrangement, fac<strong>in</strong>g type, soil properties <strong>and</strong> duration of load<strong>in</strong>g on <strong>the</strong> magnitude <strong>and</strong><br />

distribution of re<strong>in</strong>forcement loads. A novel feature of this new method is to design <strong>the</strong> wall re<strong>in</strong>forcement so<br />

that <strong>the</strong> soil with<strong>in</strong> <strong>the</strong> wall backfill is prevented from reach<strong>in</strong>g a state of failure, consistent with <strong>the</strong> notion of<br />

work<strong>in</strong>g stress conditions. This concept represents a new approach for <strong>in</strong>ternal stability design of geosyn<strong>the</strong>tic<br />

re<strong>in</strong>forced soil walls because prevention of soil failure as a limit state is considered <strong>in</strong> addition to <strong>the</strong> current<br />

practice of prevent<strong>in</strong>g re<strong>in</strong>forcement rupture.<br />

ACKNOWLEDGEMENTS<br />

The writers would like to acknowledge <strong>the</strong> f<strong>in</strong>ancial support of <strong>the</strong> follow<strong>in</strong>g USA State Departments of<br />

Transportation: Wash<strong>in</strong>gton, Alaska, Arizona, California, Colorado, Idaho, M<strong>in</strong>nesota, New York, North<br />

Dakota, Oregon, Utah, <strong>and</strong> Wyom<strong>in</strong>g. The writers are also grateful for <strong>the</strong> f<strong>in</strong>ancial support from <strong>the</strong> Natural<br />

Sciences <strong>and</strong> Eng<strong>in</strong>eer<strong>in</strong>g Research Council of Canada, <strong>the</strong> Academic Research Program at RMC <strong>and</strong> grants<br />

from <strong>the</strong> Department of National Defence, Canada. F<strong>in</strong>ally, <strong>the</strong> writers are <strong>in</strong>debted to R.R. Berg, W.F. Lee,<br />

<strong>and</strong> R.D. Holtz through collaboration on some of <strong>the</strong> papers cited here<strong>in</strong>, <strong>and</strong> B.B. Christopher <strong>and</strong> J.R. Bell<br />

for many fruitful discussions over many years.<br />

REFERENCES<br />

AASHTO, St<strong>and</strong>ard Specifications for Highway Bridges, American Association of State Highway <strong>and</strong><br />

Transportation Officials, Sixteenth Edition, Wash<strong>in</strong>gton, D.C. (1996).<br />

AASHTO, St<strong>and</strong>ard Specifications for Highway Bridges, American Association of State Highway <strong>and</strong><br />

Transportation Officials, Seventeenth Edition, Wash<strong>in</strong>gton, D.C. (2002).<br />

Allen, T.M. <strong>and</strong> Bathurst, R.J., “Characterization of <strong>Geosyn<strong>the</strong>tic</strong> Load-Stra<strong>in</strong> Behavior after Installation<br />

Damage”, <strong>Geosyn<strong>the</strong>tic</strong>s International, Vol. 1, No. 2, pp. 181-199 (1994).<br />

Allen, T.M. <strong>and</strong> Bathurst, R.J., “Comb<strong>in</strong>ed Allowable Strength Reduction Factor for <strong>Geosyn<strong>the</strong>tic</strong> Creep <strong>and</strong><br />

Installation Damage”, <strong>Geosyn<strong>the</strong>tic</strong>s International, Vol. 3, No. 3, pp. 407-439 (1996).<br />

Allen, T.M. <strong>and</strong> Bathurst, R.J., “Soil <strong>Re<strong>in</strong>forcement</strong> <strong>Loads</strong> <strong>in</strong> <strong>Geosyn<strong>the</strong>tic</strong> Re<strong>in</strong>forced <strong>Walls</strong> at Work<strong>in</strong>g<br />

Stress Condtions”, <strong>Geosyn<strong>the</strong>tic</strong>s International, Vol. 9, Nos. 5-6, pp. 525-566 (2002).<br />

Allen, T.M. <strong>and</strong> Bathurst, R.J., “Prediction of <strong>Re<strong>in</strong>forcement</strong> <strong>Loads</strong> <strong>in</strong> Re<strong>in</strong>forced Soil <strong>Walls</strong>”, Wash<strong>in</strong>gton<br />

State Department of Transportation, Report WA-RD 522.2 (2003).<br />

Allen, T.M., Bathurst, R.J. <strong>and</strong> Berg, R.R., “Global Level of Safety <strong>and</strong> Performance of <strong>Geosyn<strong>the</strong>tic</strong> <strong>Walls</strong>:<br />

An Historical Perspective”, <strong>Geosyn<strong>the</strong>tic</strong>s International, Vol. 9, Nos. 5-6, pp. 395-450 (2002).<br />

Allen, T.M., Christopher, B.R. <strong>and</strong> Holtz, R.D., “Performance of a 12.6 m High Geotextile Wall <strong>in</strong> Seattle,<br />

Wash<strong>in</strong>gton”, Proceed<strong>in</strong>gs of <strong>the</strong> International Symposium on <strong>Geosyn<strong>the</strong>tic</strong>-Re<strong>in</strong>forced Soil Reta<strong>in</strong><strong>in</strong>g<br />

<strong>Walls</strong>, Denver, Colorado, Edited by J.T.H. Wu, Balkema, Rotterdam, pp. 81-100 (1992).<br />

23


Allen, T.M., Bathurst, R.J., Lee, W.F., Holtz, R.D. <strong>and</strong> Walters, D.L., “A New Work<strong>in</strong>g Stress Method for<br />

Prediction of <strong>Re<strong>in</strong>forcement</strong> <strong>Loads</strong> <strong>in</strong> <strong>Geosyn<strong>the</strong>tic</strong> <strong>Walls</strong>”, Canadian Geotechnical Journal, Vol. 40, No. 5,<br />

pp. 976-994 (2003).<br />

Ang, A.H-S. <strong>and</strong> Tang, W.H., Probability Concepts <strong>in</strong> Eng<strong>in</strong>eer<strong>in</strong>g Plann<strong>in</strong>g <strong>and</strong> Design: Volume 1 – Basic<br />

Pr<strong>in</strong>ciples, John Wiley <strong>and</strong> Sons, New York, NY, USA (1975).<br />

ASTM D 4595, “St<strong>and</strong>ard Test Method for Tensile Properties of Geotextiles by <strong>the</strong> Wide-width Strip Method”,<br />

ASTM St<strong>and</strong>ards, ASTM, West Conshohocken, Pennsylvania.<br />

Bathurst, R.J., “Instrumentation of Geogrid-Re<strong>in</strong>forced Soil <strong>Walls</strong>”, Transportation Research Record No.<br />

1277, Wash<strong>in</strong>gton, DC, pp. 102-111 (1990).<br />

Bathurst, R.J., “Case Study of a Monitored Propped Panel Wall”, Proceed<strong>in</strong>gs of <strong>the</strong> International Symposium<br />

on <strong>Geosyn<strong>the</strong>tic</strong>-Re<strong>in</strong>forced Soil Reta<strong>in</strong><strong>in</strong>g <strong>Walls</strong>, Denver, Colorado, Edited by J.T.H. Wu, Balkema,<br />

Rotterdam, pp. 159-166 (1992).<br />

Bathurst, R.J., “Investigation of Foot<strong>in</strong>g Restra<strong>in</strong>t on Stability of Large-Scale Re<strong>in</strong>forced Soil Wall Tests”,<br />

Proceed<strong>in</strong>gs of <strong>the</strong> 46th Annual Canadian Geotechnical Conference, Saskatoon, Saskatchewan, pp. 389-<br />

398 (1993).<br />

Bathurst, R.J. <strong>and</strong> Benjam<strong>in</strong>, D.J., “Failure of a Geogrid-Re<strong>in</strong>forced Soil Wall”, Transportation Research<br />

Board 1288, pp. 109-116 (1990).<br />

Bathurst, R.J. <strong>and</strong> Hatami, K., “Seismic Response Analysis of a <strong>Geosyn<strong>the</strong>tic</strong> Re<strong>in</strong>forced Soil Reta<strong>in</strong><strong>in</strong>g Wall”,<br />

<strong>Geosyn<strong>the</strong>tic</strong>s International, Vol. 5, Nos. 1-2, pp. 127-166 (1998).<br />

Bathurst, R.J., Allen, T.M. <strong>and</strong> Walters, D.L., “Short-Term Stra<strong>in</strong> <strong>and</strong> Deformation Behavior of <strong>Geosyn<strong>the</strong>tic</strong><br />

<strong>Walls</strong> at Work<strong>in</strong>g Stress Conditions”, <strong>Geosyn<strong>the</strong>tic</strong>s International, Vol. 9, Nos. 5-6, pp. 451-482 (2002).<br />

Bathurst, R.J., Jarrett, P.M. <strong>and</strong> Benjam<strong>in</strong>, D.J., “A Database of Results from an Incrementally Constructed<br />

Geogrid-Re<strong>in</strong>forced Soil Wall Test”, Renforcement Des Sols: Experimentations en Vraie Gr<strong>and</strong>eur des<br />

Annees 80, Paris, pp. 401-430 (1993).<br />

Bathurst, R.J., Walters, D.L., Hatami. K. <strong>and</strong> Allen, T.M., “Full-scale Performance Test<strong>in</strong>g <strong>and</strong> Numerical<br />

Modell<strong>in</strong>g of Re<strong>in</strong>forced Soil Reta<strong>in</strong><strong>in</strong>g <strong>Walls</strong>”, Special Invited Lecture, Proceed<strong>in</strong>gs of <strong>the</strong> International<br />

Symposium on Earth <strong>Re<strong>in</strong>forcement</strong>, IS Kyushu 2001, Fukuoka, Japan, Vol. 2, pp. 777-799 (2001).<br />

Bathurst, R.J., Walters, D., Vlachopoulos, N., Burgess, P. <strong>and</strong> Allen, T.M., “Full Scale Test<strong>in</strong>g of<br />

<strong>Geosyn<strong>the</strong>tic</strong> Re<strong>in</strong>forced <strong>Walls</strong>”, Invited keynote paper, Proceed<strong>in</strong>gs of Geo-Denver 2000, American<br />

Society of Civil Eng<strong>in</strong>eers, Edited by J.G. Zornberg <strong>and</strong> B.R. Christopher, ASCE Special Publication No.<br />

103, Advances <strong>in</strong> Transportation <strong>and</strong> Geoenvironmental Systems us<strong>in</strong>g <strong>Geosyn<strong>the</strong>tic</strong>s, pp. 201-217 (2000).<br />

Bolton, M.D., “The strength <strong>and</strong> dilatancy of s<strong>and</strong>s”, Geotechnique, Vol. 36, No. 1: 65-78 (1986).<br />

Boyle, S.R., “Deformation Prediction of <strong>Geosyn<strong>the</strong>tic</strong> Re<strong>in</strong>forced Soil Reta<strong>in</strong><strong>in</strong>g <strong>Walls</strong>”, Ph.D. <strong>the</strong>sis,<br />

University of Wash<strong>in</strong>gton, Wash<strong>in</strong>gton (1995).<br />

Boyle, S.R., Gallager, M. <strong>and</strong> Holtz, R.D., “Influence of Stra<strong>in</strong> Rate, Specimen, Length <strong>and</strong> Conf<strong>in</strong>ement on<br />

Measured Geotextile Properties”, <strong>Geosyn<strong>the</strong>tic</strong>s International, Vol. 3, No. 2, pp 205-225 (1996).<br />

Bush, D.I., “Variation of Long-Term Design Strength of <strong>Geosyn<strong>the</strong>tic</strong>s <strong>in</strong> Temperatures up to 40 ο C”,<br />

Proceed<strong>in</strong>gs of <strong>the</strong> Fourth International Conference on Geotextiles, Geomembranes, <strong>and</strong> Related Products,<br />

The Hague, Ne<strong>the</strong>rl<strong>and</strong>s, pp. 673-676 (1990).<br />

Christopher, B.R., “Deformation Response <strong>and</strong> Wall Stiffness <strong>in</strong> Relation to Re<strong>in</strong>forced Soil Wall Design”,<br />

Ph.D. <strong>the</strong>sis, Purdue University, Indiana (1993).<br />

Christopher, B.R., Gill, S.A., Giroud, J.-P., Juran, I., Mitchell, J.K., Schlosser, F. <strong>and</strong> Dunnicliff, J.,<br />

Re<strong>in</strong>forced Soil Structures Vol. 1: Design <strong>and</strong> Construction Guidel<strong>in</strong>es, FHWA Report FHWA-RD-89-043<br />

(1990).<br />

Elias, V., Christopher, B.R. <strong>and</strong> Berg, R.R., Mechanically Stabilized Earth <strong>Walls</strong> <strong>and</strong> Re<strong>in</strong>forced Soil Slopes -<br />

Design <strong>and</strong> Construction Guidel<strong>in</strong>es, FHWA-NHI-00-043, Federal Highway Adm<strong>in</strong>istration, Wash<strong>in</strong>gton,<br />

DC. (2001).<br />

Fann<strong>in</strong>, R.J., “Soil <strong>Re<strong>in</strong>forcement</strong> for Norwegian Conditions - An Instrumented Field Study of <strong>the</strong> Analysis<br />

<strong>and</strong> Design of Geogrid Re<strong>in</strong>forced Slopes”, Norwegian Geotechnical Institute, Report 52757-10 (1988).<br />

Fann<strong>in</strong>, R.J. <strong>and</strong> Hermann, S., “Performance Data for a Sloped Re<strong>in</strong>forced Soil Wall”, Canadian Geotechnical<br />

Journal, Vol. 27, pp. 676-686 (1990).<br />

Gnanendran, C.T. <strong>and</strong> Selvadurai, A.P.S., “Stra<strong>in</strong> Measurement <strong>and</strong> Interpretation of Stabiliz<strong>in</strong>g Force <strong>in</strong><br />

Geogrid <strong>Re<strong>in</strong>forcement</strong>”, Geotextiles <strong>and</strong> Geomembranes, Vol. 19, pp. 177-194 (2001).<br />

Hatami, K., Bathurst, R.J. <strong>and</strong> Di Pietro, P., “Static Response of Re<strong>in</strong>forced Soil Reta<strong>in</strong><strong>in</strong>g <strong>Walls</strong> with Non-<br />

Uniform <strong>Re<strong>in</strong>forcement</strong>”, International Journal of Geomechanics, Vol. 1, No. 4, pp. 477-506 (2001).<br />

24


Holtz, R.D. <strong>and</strong> Kovacs, W. D., An Introduction to Geotechnical Eng<strong>in</strong>eer<strong>in</strong>g, Prentice-Hall, Inc., New Jersey.<br />

Jewell, R.A. <strong>and</strong> Wroth, C.P., “Direct Shear Tests on Re<strong>in</strong>forced S<strong>and</strong>”, Geotechnique, Vol. 37, No. 1, pp. 53-<br />

68 (1987).<br />

Lade, P.V. <strong>and</strong> Lee, K.L., Eng<strong>in</strong>eer<strong>in</strong>g Properties of Soils, Report UCLA-ENG-7652, University of California,<br />

Los Angeles (1976).<br />

Lee, W.F., “Internal Stability Analysis of <strong>Geosyn<strong>the</strong>tic</strong> Re<strong>in</strong>forced Reta<strong>in</strong><strong>in</strong>g <strong>Walls</strong>”, Ph.D. <strong>the</strong>sis, University<br />

of Wash<strong>in</strong>gton, Wash<strong>in</strong>gton (2000).<br />

Perk<strong>in</strong>s, S.W. <strong>and</strong> Lapeyre, J.A., “In-isolation Stra<strong>in</strong> Measurement of <strong>Geosyn<strong>the</strong>tic</strong>s <strong>in</strong> Wide-Width Strip<br />

Tension Test”, <strong>Geosyn<strong>the</strong>tic</strong>s International, Vol. 4, No. 1, pp. 11-32 (1997).<br />

Rimoldi, P. <strong>and</strong> Montanelli, F., “Creep <strong>and</strong> Accelerated Creep Test<strong>in</strong>g for Geogrids”, Proceed<strong>in</strong>gs of<br />

<strong>Geosyn<strong>the</strong>tic</strong>s '93, Vancouver, British Columbia, Canada, April 1993, Vol. 2, pp. 773-787 (1993).<br />

Rowe, R.K. <strong>and</strong> Ho, S.K., Keynote Lecture: “A Review of <strong>the</strong> Behavior of Re<strong>in</strong>forced Soil <strong>Walls</strong>”,<br />

Proceed<strong>in</strong>gs of <strong>the</strong> International Symposium on Earth <strong>Re<strong>in</strong>forcement</strong> Practice, Vol. 2, Edited by H.Ochiai,<br />

S. Hayashi, <strong>and</strong> J. Otani, Balkema, pp. 801-830 (1993).<br />

Walters, D., Allen, T.M. <strong>and</strong> Bathurst, R.J., “Conversion of <strong>Geosyn<strong>the</strong>tic</strong> Stra<strong>in</strong> to Load us<strong>in</strong>g <strong>Re<strong>in</strong>forcement</strong><br />

Stiffness”, <strong>Geosyn<strong>the</strong>tic</strong>s International, Vol. 9, Nos. 5-6, pp. 483-523 (2002).<br />

WSDOT, “Determ<strong>in</strong>ation of Long-term Strength of <strong>Geosyn<strong>the</strong>tic</strong>s”, WSDOT Test Method 925, Wash<strong>in</strong>gton<br />

State Department of Transportation, FOSSC Materials Laboratory, Tumwater, WA, USA (1998).<br />

Yuan, Z., Swan, R.H., Jr. <strong>and</strong> Bachus, R.C., “Soil Conf<strong>in</strong>ement Effect on Stress-Stra<strong>in</strong> Properties of<br />

<strong>Geosyn<strong>the</strong>tic</strong>s”, Proceed<strong>in</strong>gs of <strong>the</strong> Sixth International Conference on <strong>Geosyn<strong>the</strong>tic</strong>s, Vol. 2, Atlanta, GA,<br />

March 1998, pp. 523-528 (1998).<br />

Zornberg, J.G., Sitar, N. <strong>and</strong> Mitchell, J.K., “Limit Equilibrium as Basis for Design of <strong>Geosyn<strong>the</strong>tic</strong><br />

Re<strong>in</strong>forced Slopes”, Journal of Geotechnical <strong>and</strong> Geoenvironmental Eng<strong>in</strong>eer<strong>in</strong>g, Vol. 124, No. 8, pp. 684-<br />

698 (1998).<br />

25

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!