02.12.2014 Views

Clay Mineral Laboratory of INGPAN in Kraków: research area ...

Clay Mineral Laboratory of INGPAN in Kraków: research area ...

Clay Mineral Laboratory of INGPAN in Kraków: research area ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Clay</strong> <strong>M<strong>in</strong>eral</strong> <strong>Laboratory</strong> <strong>of</strong> <strong>INGPAN</strong><br />

<strong>in</strong> Kraków:<br />

<strong>research</strong> <strong>area</strong>, analytical procedures,<br />

and applications <strong>in</strong> oil <strong>in</strong>dustry<br />

Jan Środoń<br />

Institute <strong>of</strong> Geological Sciences PAN, Senacka 1,<br />

31002 Kraków, Poland, ndsrodon@cyf-kr-edu.pl<br />

Science for Industry, <strong>INGPAN</strong>, Warszawa,<br />

20-22.06.2012<br />

Research Centre ING PAN <strong>in</strong> Kraków<br />

head: Jan Środoń; secretariat: Aleksandra Mizerska<br />

ndmizers@cyf-kr.edu.pl<br />

<strong>Clay</strong> Lab<br />

1


<strong>Clay</strong> <strong>M<strong>in</strong>eral</strong>ogy Lab - staff<br />

• Jan Środoń (head) ndsrodon@cyf-kr.edu.pl (clays <strong>in</strong> oil <strong>in</strong>dustry, thermal<br />

history <strong>of</strong> sedimentary bas<strong>in</strong>s, K-Ar dat<strong>in</strong>g <strong>of</strong> clays, m<strong>in</strong>eralogy <strong>of</strong> illite,<br />

XRD quantitative m<strong>in</strong>eral analysis <strong>of</strong> sedimetary rocks, budget <strong>of</strong> N and B <strong>in</strong><br />

litosphere)<br />

• Arkadiusz Derkowski ndderkow@cyf-kr.edu.pl (clays <strong>in</strong> oil <strong>in</strong>dustry <strong>in</strong>cl.<br />

clays and shale gas, clay dehydroxylation and rehydroxylatioon, K-Ar<br />

dat<strong>in</strong>g, Ediacaran environment, quantitative m<strong>in</strong>eralogy <strong>of</strong> sedimetary rocks)<br />

• Marek Szczerba ndszczer@cyf-kr.edu.pl (molecular model<strong>in</strong>g <strong>of</strong> clay<br />

surface <strong>in</strong>teractions, computer model<strong>in</strong>g <strong>of</strong> experimental data, K-Ar dat<strong>in</strong>g<br />

<strong>of</strong> clays)<br />

• Artur Kuglisiewicz (PhD student: gas shales <strong>in</strong> Poland)<br />

• Tomasz Topór (PhD student: gas shales <strong>in</strong> Poland)<br />

• Tadeusz Kawiak (XRD measurements and quantitative analysis)<br />

• Michał Banaś (K-Ar measurements)<br />

• Małgorzata Zielińska (clay separation)<br />

• Dorota Bakowska (chemical analysis)<br />

<strong>Clay</strong> <strong>M<strong>in</strong>eral</strong>ogy Lab - equipment<br />

• XRD (Thermo X’TRA and old Philips powder diffractometers, Bruker<br />

<strong>in</strong>strument with high-temperature camera to be <strong>in</strong>stalled <strong>in</strong> 2012):<br />

quantitative analysis <strong>of</strong> rock m<strong>in</strong>eral composition, identification <strong>of</strong><br />

mixed-layer clay m<strong>in</strong>erals<br />

• K-Ar (glass extraction l<strong>in</strong>e + MS20 spectrometer, new equipment <strong>in</strong><br />

2012): K-Ar dat<strong>in</strong>g <strong>of</strong> clays older than Pliocene (extension to Ar-Ar and<br />

noble gases and He isotopes expected <strong>in</strong> 2013)<br />

• Thermogravimetry+mass spectrometry+FTIR (under construction,<br />

f<strong>in</strong>anced by ATLAB EU FP7): studies <strong>of</strong> dehydroxylation and<br />

rehydroxylation <strong>of</strong> clays and adsorption <strong>of</strong> other molecules on clay<br />

surfaces, very precise measurements <strong>of</strong> rock porosity<br />

• <strong>Clay</strong> separation (centrifuges, ultrasonic equipment, freeze-dry<strong>in</strong>g etc.):<br />

separation <strong>of</strong> clay fractions from rocks down to


<strong>Clay</strong> <strong>M<strong>in</strong>eral</strong>ogy Lab – standard<br />

procedures for the bulk rock<br />

• Pulveriz<strong>in</strong>g and splitt<strong>in</strong>g rock powders<br />

• Mill<strong>in</strong>g <strong>in</strong> McCrone Mill with ZnO <strong>in</strong>ternal standard<br />

• XRD patterns <strong>of</strong> random preparations <strong>in</strong> 2-65 o 2θ range<br />

• <strong>M<strong>in</strong>eral</strong> identification and quantification <strong>in</strong> the bulk rock<br />

• CEC (Co-hexam<strong>in</strong>e) and TSSA (EGME) <strong>of</strong> the bulk rock<br />

• Porosity <strong>of</strong> gas shales (under development)<br />

• Calculation <strong>of</strong> petrophysical and logg<strong>in</strong>g parameters from above data<br />

comb<strong>in</strong>ed with chemical analyses<br />

<strong>Clay</strong> <strong>M<strong>in</strong>eral</strong>ogy Lab – standard<br />

procedures for clay fractions<br />

• Jackson chemical treatment and centrifuge separation <strong>of</strong> 2-0.2 and


<strong>Clay</strong> <strong>M<strong>in</strong>eral</strong>ogy Lab – examples <strong>of</strong> cooperation<br />

with oil <strong>in</strong>dustry (Chevron)<br />

• QUANTA: computer program for quantitative m<strong>in</strong>eral analysis <strong>of</strong><br />

rocks conta<strong>in</strong><strong>in</strong>g clays<br />

• BESTMIN and BESTROCK: computer programs for calculat<strong>in</strong>g<br />

petrophysical and logg<strong>in</strong>g parameters <strong>of</strong> rocks from m<strong>in</strong>eral and<br />

chemical data<br />

• Precise thermogravimetric method for measur<strong>in</strong>g gas shale porosity<br />

from water saturation<br />

<strong>Clay</strong> <strong>M<strong>in</strong>eral</strong>ogy Lab – examples <strong>of</strong> applications<br />

<strong>in</strong> borehole geophysics<br />

MINERAL COMPOSITIONAL TRENDS AND THEIR CORRELATIONS WITH<br />

PETROPHYSICAL AND WELL-LOGGING PARAMETERS REVEALED BY QUANTA +<br />

BESTMIN ANALYSIS: MIOCENE OF THE CARPATHIAN FOREDEEP, POLAND<br />

JAN ŚRODOŃ AND TADEUSZ KAWIAK<br />

Institute <strong>of</strong> Geological Sciences PAN, Senacka 1, 31002 Krakow, Poland<br />

<strong>Clay</strong>s and <strong>Clay</strong> <strong>M<strong>in</strong>eral</strong>s, 60, 63–75, 2012.<br />

Sieć naukowa<br />

„Metody Jądrowe<br />

dla Ge<strong>of</strong>izyki”<br />

<strong>Clay</strong> <strong>M<strong>in</strong>eral</strong>ogy Lab – examples <strong>of</strong> applications<br />

<strong>in</strong> borehole geophysics<br />

8<br />

9<br />

gra<strong>in</strong> density Bestm<strong>in</strong><br />

2.780<br />

2.760<br />

2.740<br />

2.720<br />

2.700<br />

2.680<br />

2.660<br />

2.640<br />

0.0 10.0 20.0 30.0 40.0 50.0<br />

%2:1 + 0.31*%Calcite<br />

% 2:1<br />

50.00<br />

y = 1.6076x - 12.546<br />

40.00<br />

R 2 = 0.9327<br />

30.00<br />

20.00<br />

10.00<br />

0.00<br />

5.00 10.00 15.00 20.00 25.00 30.00 35.00<br />

neutron absorption cross section Σa<br />

10<br />

6<br />

% Calcite<br />

100.00<br />

80.00<br />

60.00<br />

40.00<br />

20.00<br />

y = 0.0149x 2 + 1.1754x + 0.0893<br />

R 2 = 0.9931<br />

Porosity measured<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

y = 1.0608x - 1.4669<br />

R 2 = 0.9817<br />

0.00<br />

0 10 20 30 40 50<br />

CaO<br />

5<br />

5.00 10.00 15.00 20.00 25.00 30.00 35.00<br />

Porosity Bestm<strong>in</strong><br />

4


<strong>Clay</strong> <strong>M<strong>in</strong>eral</strong>ogy Lab – examples <strong>of</strong> applications<br />

<strong>in</strong> borehole geophysics<br />

CEC<br />

15<br />

30.00<br />

y = 0.0221x 2 + 0.1753x - 2.7982<br />

25.00<br />

R 2 = 0.9618<br />

20.00<br />

15.00<br />

10.00<br />

5.00<br />

0.00<br />

5.00 10.00 15.00 20.00 25.00 30.00 35.00<br />

neutron absorption cross section Σa<br />

CEC calculated from Σa<br />

30.00<br />

y = 0.962x + 0.4307<br />

25.00<br />

R 2 = 0.9618<br />

20.00<br />

15.00<br />

10.00<br />

5.00<br />

0.00<br />

0.00 5.00 10.00 15.00 20.00 25.00 30.00<br />

CEC measured<br />

CEC + ρ ma Q v<br />

<strong>in</strong> Waxman-Smits equation<br />

ppM NaCl <strong>in</strong> pore water<br />

18<br />

50000.00<br />

40000.00<br />

sea water<br />

30000.00<br />

20000.00<br />

10000.00<br />

fresh water<br />

0.00<br />

0.00 10.00 20.00 30.00 40.00 50.00<br />

% 2:1<br />

sandstone<br />

shale<br />

<strong>Clay</strong> <strong>M<strong>in</strong>eral</strong>ogy Lab – examples <strong>of</strong> applications<br />

<strong>in</strong> shale gas bas<strong>in</strong> studies<br />

East<br />

European<br />

Craton<br />

Baltic Bas<strong>in</strong><br />

Dniester Slope<br />

from Sliaupa et al. (2006)<br />

<strong>Clay</strong> <strong>M<strong>in</strong>eral</strong>ogy Lab – examples <strong>of</strong> applications<br />

<strong>in</strong> shale gas bas<strong>in</strong> studies (Baltic Bas<strong>in</strong>)<br />

K-Ar dat<strong>in</strong>g <strong>of</strong> the Lower Palaeozoic K-bentonites from the Baltic Bas<strong>in</strong> and the<br />

Baltic Shield: implications for the role <strong>of</strong> temperature and time <strong>in</strong> the illitization <strong>of</strong> smectite<br />

J . ŚRODOŃ 1, N. CLAUER, W. HUFF, T. DUDEK and M. BANAŚ<br />

<strong>Clay</strong> <strong>M<strong>in</strong>eral</strong>s 44, 361–387, 2009<br />

5


<strong>Clay</strong> <strong>M<strong>in</strong>eral</strong>ogy Lab – examples <strong>of</strong> applications<br />

<strong>in</strong> shale gas bas<strong>in</strong> studies (Baltic Bas<strong>in</strong>)<br />

Caledonian thrustn<strong>in</strong>g &<br />

metamorphism: 430-360 Ma<br />

from Środoń et al., 2009<br />

<strong>Clay</strong> <strong>M<strong>in</strong>eral</strong>ogy Lab – examples <strong>of</strong> applications <strong>in</strong><br />

shale gas bas<strong>in</strong> studies (Dniester Slope)<br />

113-124 o C<br />

Kowalska, 2008<br />

160 o C, 285-364 Ma<br />

200-300 o C<br />

200 o C, 300-390 Ma<br />

from Środoń et al., <strong>in</strong> prep.<br />

6


<strong>Clay</strong> <strong>M<strong>in</strong>eral</strong>ogy Lab – summary <strong>of</strong>fer<br />

for oil and gas <strong>in</strong>dustry<br />

• Development <strong>of</strong> measurement methods and programs for<br />

data analysis<br />

• Set <strong>of</strong> high quality measurements needed for the<br />

calibration <strong>of</strong> borehole geophysics and understand<strong>in</strong>g the<br />

petrophysical properties <strong>of</strong> rocks<br />

• Design<strong>in</strong>g strategies for the use <strong>of</strong> borehole geophysics <strong>in</strong><br />

a given sedimentary bas<strong>in</strong><br />

• Verify<strong>in</strong>g models <strong>of</strong> thermal evolution <strong>of</strong> sedimentary<br />

bas<strong>in</strong>s by measur<strong>in</strong>g age (K-Ar) and values (XRD) <strong>of</strong> the<br />

maximum paleotemperatures<br />

• Bas<strong>in</strong> provenance studies (K-Ar for detrital muscovite)<br />

Thank you for your attention.<br />

Jan Środoń<br />

Institute <strong>of</strong> Geological Sciences PAN, Senacka 1,<br />

31002 Kraków, Poland, ndsrodon@cyf-kr-edu.pl<br />

7

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!