02.02.2015 Views

Complex analysis of waste and industrial materials in the Laboratory ...

Complex analysis of waste and industrial materials in the Laboratory ...

Complex analysis of waste and industrial materials in the Laboratory ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Complex</strong> <strong>analysis</strong> <strong>of</strong> <strong>waste</strong><br />

<strong>and</strong> <strong><strong>in</strong>dustrial</strong> <strong>materials</strong> <strong>in</strong> <strong>the</strong><br />

<strong>Laboratory</strong> <strong>of</strong> X-Ray<br />

Diffraction <strong>of</strong> ING PAN<br />

dr Łukasz Kruszewski<br />

Bruker axs D8 ADVANCE<br />

VÅNTEC-1 LPS detector<br />

• L<strong>in</strong>ear Position Sensitive (superfast) detector<br />

• VÅNTEC vs sc<strong>in</strong>tillation det.: ca. 100x better resolution<br />

• very good peak-to-background <strong>in</strong>tensity ratio<br />

• 1s/step „st<strong>and</strong>ard” count<strong>in</strong>g time 418s/step for VÅNTEC


Bruker axs D8 ADVANCE<br />

• st<strong>and</strong>ard qualitative <strong>analysis</strong> <strong>of</strong> complex mixtures (ca. 3 m<strong>in</strong>.<br />

<strong>analysis</strong>)<br />

• quantitative <strong>analysis</strong> <strong>of</strong> simple <strong>and</strong> complex mixtures <strong>in</strong>cl. fly ash,<br />

magnetic separates, cl<strong>in</strong>kers, bricks, pyrometallurgic slags etc. (ma<strong>in</strong>ly<br />

Rietveld method <strong>in</strong> TOPAS)<br />

• determ<strong>in</strong>ation <strong>of</strong> crystall<strong>in</strong>ity degree <strong>and</strong> amorphous (glass) phase<br />

content; unit cell parameters<br />

• transmission geometry <strong>analysis</strong> <strong>of</strong> polytypes<br />

• graz<strong>in</strong>g <strong>in</strong>cidence surface facture characteristics<br />

• <strong>the</strong>rmal chamber real-time phase transition <strong>analysis</strong><br />

Holders etc.<br />

Calibration st<strong>and</strong>ards<br />

LaB6


Additional equipment<br />

Additional equipment<br />

TOPAS – a complex tool for PXRD data <strong>analysis</strong><br />

• TOtal Powder Pattern decomposition (math. deconvolution)<br />

• peak shape <strong>and</strong> whole pr<strong>of</strong>ile fitt<strong>in</strong>g („repair<strong>in</strong>g”)<br />

• background corrections (Chebychev polynomials, 1/x function)<br />

• sample preparation <strong>and</strong> sample-derived errors (sample<br />

displacement, absorption, preferred orientation)<br />

• <strong>in</strong>strument-derived errors (zero error, tangential correction,<br />

untypical geometry)<br />

LaB6 <strong>and</strong> Si – based calibration:


TOPAS – precise phase <strong>in</strong>put data<br />

• hkl phase Pawley or LeBail method (unit cell parameters, general fitt<strong>in</strong>g)<br />

• structure phase full structure data (Rietveld quantitative <strong>analysis</strong>,<br />

precise unit cell parameters calculation)<br />

• peaks phase amorphous phase content determ<strong>in</strong>ation<br />

TOPAS – quantitative <strong>analysis</strong> –<br />

iron-oxide-rich paralava <strong>of</strong> burn<strong>in</strong>g post coal-m<strong>in</strong><strong>in</strong>g dump<br />

low error<br />

calculated unit cell<br />

<strong>and</strong> o<strong>the</strong>r parameters<br />

Very good fitt<strong>in</strong>g result<br />

Good background statistics<br />

full quantitative result<br />

for 11 crystall<strong>in</strong>e species<br />

TOPAS – quantitative <strong>analysis</strong> –<br />

crystall<strong>in</strong>ity degree amorphous phase content<br />

Precise calculation statistics <strong>in</strong>formation<br />

Goodness <strong>of</strong> Fit (χ 2 )<br />

Residual – weighted pattern<br />

Durb<strong>in</strong>-Watson statistics


TOPAS – quantitative <strong>analysis</strong> – full text report<br />

Quantitative Analysis - Rietveld<br />

Phase 1 : "Fayalite magnesian" 30(410) %<br />

Phase 2 : Diopside 7(86) %<br />

Phase 3 : Hercynite 20(210) %<br />

Phase 4 : Hematite 4(51) %<br />

Phase 5 : "Bytownite An85" 6(250) %<br />

Phase 6 : Magnesi<strong>of</strong>errite 1(1200) %<br />

Phase 7 : Quartz 4(56) %<br />

Phase 8 : "Mullite 3:2" 3(33) %<br />

Phase 9 : "Tridymite low" 2(22) %<br />

Phase 10 : Maghemite 20(230) %<br />

Phase 11 : Indialite_KCa 6(85) %<br />

Background<br />

One on X 1(140000)<br />

Chebychev polynomial, Coefficient 0 2400(3600)<br />

1 -200(1800)<br />

2 50(440)<br />

3 20(100)<br />

4 -13(23)<br />

Corrections<br />

Specimen displacement -0.117(11)<br />

LP Factor 0<br />

Absorption (1/cm) 24.5(40)<br />

Structure 1<br />

Phase name<br />

Fayalite magnesian<br />

R-Bragg 0.661<br />

Spacegroup 62<br />

Scale 0.000568(16)<br />

Cell Mass 741.5(57)<br />

Cell Volume (Å^3) 305.587(76)<br />

Wt% - Rietveld 30(410)<br />

Crystallite Size<br />

Cry Size Lorentzian (nm) 176(20)<br />

Crystal L<strong>in</strong>ear Absorption Coeff. (1/cm) 216.1(17)<br />

Crystal Density (g/cm^3) 4.029(31)<br />

Preferred Orientation (Dir 1 : 3 0 -1) 0.918(14)<br />

Lattice parameters<br />

a (Å) 10.4423(15)<br />

b (Å) 6.07677(92)<br />

c (Å) 4.81578(65)<br />

Site Np x y z Atom Occ Beq<br />

s1 4 0.00000 0.00000 0.00000 FE+2 0.605(37) 0.41<br />

MG+2 0.395(37) 0.41<br />

s2 4 0.28000 0.25000 0.98610 FE+2 0.812(26) 0.36<br />

MG+2 0.188(26) 0.36<br />

s3 4 0.09720 0.25000 0.43070 SI+4 1 0.27<br />

s4 4 0.09200 0.25000 0.76680 O-2 1 0.43<br />

s5 4 0.45310 0.25000 0.21030 O-2 1 0.48<br />

s6 8 0.16530 0.03630 0.28810 O-2 1 0.52<br />

TOPAS – quantitative <strong>analysis</strong> –<br />

white cl<strong>in</strong>ker (porcellanite) from post coal-m<strong>in</strong><strong>in</strong>g burn<strong>in</strong>g dump<br />

TOPAS – quantitative <strong>analysis</strong> –<br />

syn<strong>the</strong>tic mixture: Muscovite70Kaol<strong>in</strong>ite10Quartz20<br />

special peak type function used<br />

for kaol<strong>in</strong>ite <strong>and</strong> muscovite: PV_MOD


mri Thermal Chamber add<br />

mri Thermal Chamber add – RESEARCH<br />

(Bruker axs example)<br />

mri Thermal Chamber add – RESEARCH<br />

Bouna, L. <strong>and</strong> Rhouta, B. <strong>and</strong> Amjoud, M. <strong>and</strong> Maury, Francis <strong>and</strong> Lafont, Marie-Christ<strong>in</strong>e <strong>and</strong> Jada, A. <strong>and</strong><br />

Senocq, François <strong>and</strong> Daoudi, L. Syn<strong>the</strong>sis, characterization <strong>and</strong> photocatalytic activity <strong>of</strong> TiO2 supported<br />

natural palygorskite micr<strong>of</strong>ibers. (2011) Applied Clay Science, vol. 52 (n°3). pp. 301-311. ISSN 0169-1317


mri Thermal Chamber add – RESEARCH<br />

Bouna, L. <strong>and</strong> Rhouta, B. <strong>and</strong> Amjoud, M. <strong>and</strong> Maury, Francis <strong>and</strong> Lafont, Marie-Christ<strong>in</strong>e <strong>and</strong> Jada, A. <strong>and</strong><br />

Senocq, François <strong>and</strong> Daoudi, L. Syn<strong>the</strong>sis, characterization <strong>and</strong> photocatalytic activity <strong>of</strong> TiO2 supported<br />

natural palygorskite micr<strong>of</strong>ibers. (2011) Applied Clay Science, vol. 52 (n°3). pp. 301-311. ISSN 0169-1317<br />

mri Thermal Chamber add – RESEARCH<br />

Bouna, L. <strong>and</strong> Rhouta, B. <strong>and</strong> Amjoud, M. <strong>and</strong> Maury, Francis <strong>and</strong> Lafont, Marie-Christ<strong>in</strong>e <strong>and</strong> Jada, A. <strong>and</strong><br />

Senocq, François <strong>and</strong> Daoudi, L. Syn<strong>the</strong>sis, characterization <strong>and</strong> photocatalytic activity <strong>of</strong> TiO2 supported<br />

natural palygorskite micr<strong>of</strong>ibers. (2011) Applied Clay Science, vol. 52 (n°3). pp. 301-311. ISSN 0169-1317<br />

mri Thermal Chamber add – RESEARCH<br />

FATIGUE BEHAVIOR OF PIEZOELECTRIC CERAMICS MATERIAL - Riffat Asim Pasha<br />

03-UET/PhD-ME-03


mri Thermal Chamber add – RESEARCH<br />

RONALD C. PETERSON AND ALAN H. GRANT 2005: DEHYDRATION AND CRYSTALLIZATION REACTIONS OF<br />

SECONDARY SULFATE MINERALS FOUND IN MINE WASTE: IN SITU POWDER-DIFFRACTION EXPERIMENTS.<br />

The Canadian M<strong>in</strong>eralogist, Vol. 43, pp. 1171-1181<br />

mri Thermal Chamber add – RESEARCH<br />

RONALD C. PETERSON AND ALAN H. GRANT 2005: DEHYDRATION AND CRYSTALLIZATION REACTIONS OF<br />

SECONDARY SULFATE MINERALS FOUND IN MINE WASTE: IN SITU POWDER-DIFFRACTION EXPERIMENTS.<br />

The Canadian M<strong>in</strong>eralogist, Vol. 43, pp. 1171-1181

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!