26.12.2014 Views

I R 1 2 3 4 5 6 7 8 9 10 11 12 13 T 14 15 A - SDP/SI

I R 1 2 3 4 5 6 7 8 9 10 11 12 13 T 14 15 A - SDP/SI

I R 1 2 3 4 5 6 7 8 9 10 11 12 13 T 14 15 A - SDP/SI

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

ELEMENTS OF METRIC GEAR TECHNOLOGY<br />

(b) Trochoid Interference<br />

PHONE: 516.328.3300 • FAX: 516.326.8827 • WWW.<strong>SDP</strong>-<strong>SI</strong>.COM<br />

This refers to an interference occurring at the addendum of the external gear and<br />

the dedendum of the internal gear during recess tooth action. It tends to happen when the<br />

difference between the numbers of teeth of the two gears is small. Equation (5-6) presents<br />

the condition for avoiding trochoidal interference.<br />

z<br />

θ 1<br />

1 ––– + inv α w<br />

z<br />

– inv α a2 ≥ θ 2 (5-6)<br />

2<br />

Here<br />

2 2<br />

r a2 – r a1 – a 2<br />

⎫<br />

θ 1 = cos –1 (––––––––––––) + inv α a1 – inv α w<br />

2ar a1<br />

⎪ ⎪⎬ (5-7)<br />

a 2 2 2<br />

+ r a2 – r a1 θ 2 = cos –1 (––––––––––)<br />

⎪<br />

2ar a2<br />

⎭<br />

where α a1 is the pressure angle of the spur gear tooth tip:<br />

d<br />

α b1<br />

a1 = cos –1 (–––) (5-8)<br />

d a1<br />

In the meshing of an external gear and a standard internal gear α = 20°, trochoid<br />

interference is avoided if the difference of the number of teeth, z 1 – z 2 , is larger than 9.<br />

(c) Trimming Interference<br />

This occurs in the radial direction in that it prevents pulling the gears apart. Thus, the<br />

mesh must be assembled by sliding the gears together with an axial motion. It tends to happen<br />

when the numbers of teeth of the two gears are very close. Equation (5-9) indicates how to<br />

prevent this type of interference.<br />

z<br />

q 2<br />

1 + inv α a1 – inv α w ≥ ––– (θ 2 + inv α a2 – inv α<br />

z w ) (5-9)<br />

1<br />

Here<br />

⎫ 1 – (cos α ⁄ θ a1 cos α a2 )2 1 = sin –1 ––––––––––––––––– 1 – (z 1 ⁄z 2 ) 2 ⎪ ⎪⎬ (5-<strong>10</strong>)<br />

(cos α a2 ⁄ cos α a1 ) 2 – 1<br />

θ 2<br />

= sin –1 ––––––––––––––––– ⎪<br />

(z 2 ⁄z 1 ) 2 – 1 ⎭<br />

This type of interference can occur in the process of cutting an internal gear with a<br />

pinion cutter. Should that happen, there is danger of breaking the tooling. Table 5-3a shows<br />

the limit for the pinion cutter to prevent trimming interference when cutting a standard internal<br />

gear, with pressure angle 20°, and no profile shift, i.e., x c = 0.<br />

z c<br />

Table 5-3a The Limit to Prevent an Internal Gear from Trimming Interference<br />

(α = 20°, x c = x 2 = 0)<br />

z 2<br />

z c<br />

z 2<br />

z c<br />

z 2<br />

<strong>15</strong><br />

34<br />

28<br />

46<br />

44<br />

62<br />

16<br />

34<br />

30<br />

48<br />

48<br />

66<br />

17<br />

35<br />

31<br />

49<br />

50<br />

68<br />

18<br />

36<br />

32<br />

50<br />

56<br />

74<br />

19<br />

37<br />

33<br />

51<br />

60<br />

78<br />

20<br />

38<br />

34<br />

52<br />

64<br />

82<br />

21<br />

39<br />

35<br />

53<br />

66<br />

84<br />

22<br />

40<br />

38<br />

56<br />

80<br />

98<br />

24<br />

42<br />

40<br />

58<br />

96<br />

<strong>11</strong>4<br />

25<br />

43<br />

42<br />

60<br />

<strong>10</strong>0<br />

<strong>11</strong>8<br />

27<br />

45<br />

Metric<br />

0 <strong>10</strong><br />

T-45<br />

I<br />

R<br />

T<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

<strong>10</strong><br />

<strong>11</strong><br />

<strong>12</strong><br />

<strong>13</strong><br />

<strong>14</strong><br />

<strong>15</strong><br />

A

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!