31.12.2014 Views

Chapter 9 Calculations from Chemical Equations

Chapter 9 Calculations from Chemical Equations

Chapter 9 Calculations from Chemical Equations

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Chapter</strong> 9<br />

<strong>Calculations</strong> <strong>from</strong><br />

<strong>Chemical</strong> <strong>Equations</strong><br />

1


9.1 A short review<br />

molar mass – the mass of a mole of any formula<br />

unit<br />

relationship between molecule and mole<br />

1 mole = 6.022 × 10 23 molecules<br />

6.022 × 10 23 formula units<br />

6.022 × 10 23 atoms<br />

6.022 × 10 23 ions<br />

grams of a substance<br />

molar mass = ————————————<br />

number of moles of the substance<br />

number of molecules<br />

number of moles = ——————————<br />

6.022 × 10 23 molecules/mole<br />

in a balanced equations, the number in front of a<br />

formula represents the number of moles of that<br />

substance in the reaction<br />

2


9.2 Introduction to stoichiometry<br />

stoichiometry – the chemistry dealing with<br />

quantitative relationships among reactants<br />

and products<br />

mole ratio – a ratio between the number of moles<br />

of any two species involved in a chemical<br />

reaction<br />

ex. 2 H 2 + O 2 2 H 2 O<br />

2 mol H 2 1 mol O 2 2 mol H 2 O<br />

three steps in mole-ratio method:<br />

* write the balanced equation<br />

step 1. determine the number of moles of<br />

starting substance<br />

grams of starting substance<br />

moles = ——————————————<br />

molar mass of starting substance<br />

step 2. determine the mole ratio of the<br />

desired substance to the starting substance<br />

moles of desired substance<br />

in the equation<br />

mole ratio = ————————————<br />

moles of desired substance<br />

in the equation<br />

3


step 3. calculate the desired substance in the<br />

units specified in the problem<br />

moles of desired<br />

substance<br />

moles of starting<br />

substance<br />

moles of desired substance<br />

in the equation<br />

= ————————<br />

moles of starting substance<br />

in the equation<br />

4


9.3 Mole-mole calculations<br />

ex. 9.1 C 6 H 12 O 6 + 6O 2 6CO 2 + 6H 2 O<br />

complete reaction of 2.0 mol of glucose,<br />

how many moles of CO 2 produced<br />

mole ratio: 1 mol C 6 H 12 O 6 6 mol CO 2<br />

6 mol CO 2<br />

2 mol C 6 H 12 O 6 —————— = 12 mol CO 2<br />

1 mol C 6 H 12 O 6<br />

ex. 9.2 3H 2 + N 2 2NH 3<br />

how many moles of NH 3 produced <strong>from</strong><br />

8.00 mol of H 2 reacting with N 2 <br />

mole ratio: 3 mol H 2 2 mol NH 3<br />

2 mol NH 3<br />

8 mol H 2 ————— = 5.33 mol NH 3<br />

3 mol H 2<br />

ex. 9.3 K 2 Cr 2 O 7 + 6KI + 7H 2 SO 4<br />

Cr 2 (SO 4 ) 3 + 4K 2 SO 4 + 3I 2 + 7H 2 O<br />

how many moles of K 2 Cr 2 O 7 will react<br />

with 2.0 mol of KI<br />

mole ratio: 1 mol K 2 Cr 2 O 7 6 mol KI<br />

1 mol K 2 Cr 2 O 7<br />

2 mol KI ————— = 0.33 mol K 2 Cr 2 O 7<br />

6 mol KI<br />

5


9.4 Mole-mass calculations<br />

ex. 9.5 what mass of H 2 can be produced by<br />

reacting 6.0 mol of Al with HCl<br />

2Al + 6HCl 2AlCl 3 + 3H 2<br />

mole ratio: 2 mol Al 3 mol H 2<br />

3 mol H 2<br />

6 mol Al ————— = 9 mol H 2<br />

2 mol Al<br />

9 mol × 2.016 g/mol = 18 g H 2<br />

ex. 9.6 how many mole of water can be<br />

produced by burning 325 g of octane<br />

2C 8 H 18 + 25O 2 16CO 2 + 18H 2 O<br />

mole ratio: 2 mol C 8 H 18 18 mol H 2 O<br />

325 /114.2 = 2.85 mol C 8 H 18<br />

18 mol H 2 O<br />

2.85 mol C 8 H 18 ————— = 25.6 mol H 2 O<br />

2 mol C 8 H 18<br />

6


9.5 Mass-mass calculations<br />

ex. 9.7 what mass of CO 2 can be produced by<br />

combustion of 100 g of pentane<br />

C 5 H 12 + 8O 2 5CO 2 + 6H 2 O<br />

100 / 72.15 = 1.39 mol C 5 H 12<br />

mole ratio: 1 mol C 5 H 12 5 mol CO 2<br />

5 mol CO 2<br />

1.39 mol C 5 H 12 ————— = 6.95 mol CO 2<br />

1 mol C 5 H 12<br />

6.95 mol × 44.01 g/mol = 305 g H 2<br />

ex. 9.8 4Zn + 10HNO 3<br />

4Zn(NO 3 ) 2 + N 2 O + 5H 2 O<br />

how many grams of HNO 3 are required<br />

to produce 8.75 g of N 2 O<br />

8.75 / 44.02 = 0.199 mol N 2 O<br />

mole ratio: 10 mol HNO 3 1 mol N 2 O<br />

10 mol HNO 3<br />

0.199 mol N 2 O ————— =1.99 mol HNO 3<br />

1 mol N 2 O<br />

1.99 mol × 63.02 g/mol = 125 g HNO 3<br />

7


9.6 Limiting reactant and yield<br />

calculations<br />

limiting reactant – limits the amount of product<br />

that can be formed<br />

ex. H 2 + Cl 2<br />

2HCl<br />

limiting reactant: H 2<br />

8


identify the limiting reactant as following:<br />

1. calculate the amount of product formed <strong>from</strong><br />

each reactant<br />

2. determining which reactant is limiting (the<br />

one gives the least amount of product)<br />

3. calculate the amount of the other reactant<br />

required to react with the limiting reactant<br />

calculate the amount of that substance<br />

remains unreacted<br />

ex. 9.9 how many moles of HCl can be<br />

produced by reacting of 4 mol H 2 and<br />

3.5 mol Cl 2 <br />

Which compound is limiting reactant<br />

mole ratio: 1 mol H 2 1 mol Cl 2 2 mol HCl<br />

2 mol HCl<br />

4 mol H 2 ————— = 8 mol HCl<br />

1 mol H 2<br />

2 mol HCl<br />

3.5 mol Cl 2 ————— = 7 mol HCl<br />

1 mol Cl 2<br />

7 mol HCl produced<br />

Cl 2 is limiting reactant<br />

9


ex. 9.10 how many moles of Fe 3 O 4 can be<br />

obtained by reacting of 16.8 g Fe with<br />

10 g H 2 O <br />

Which compound is limiting reactant<br />

3Fe + 4H 2 O Fe 3 O 4 + 4H 2<br />

mole ratio:<br />

3 mol Fe 4 mol H 2 O 1 mol Fe 3 O 4<br />

1 mol Fe 3 O 4<br />

(16.8/55.85) mol Fe ———— = 0.1 mol Fe 3 O 4<br />

3 mol Fe<br />

1 mol Fe 3 O 4<br />

(10.0/18.02) mol H 2 O ————— = 0.139 mol<br />

4 mol H 2 O Fe 3 O 4<br />

0.1 mol Fe 3 O 4 obtained<br />

Fe is limiting reactant<br />

ex. 9.11 how many grams of AgBr can be formed<br />

when solutions containing 50 g MgBr 2<br />

and 100 g AgNO 3 are mixed together <br />

how many grams of the excess reactant<br />

remain unreacted<br />

MgBr 2 + 2AgNO 3 2AgBr + Mg(NO 3 ) 2<br />

mole ratio:<br />

1 mol MgBr 2 2 mol AgNO 3 2 mol AgBr<br />

2 mol AgBr<br />

(50/184.1) mol MgBr 2 ———— (187.8) = 102 g AgBr<br />

1 mol MgBr 2<br />

10


2 mol AgBr<br />

(100/169.9) mol AgNO 3 ———— (187.8) = 110.5 g<br />

2 mol AgNO 3 AgBr<br />

102 g AgBr is yielded<br />

MgBr 2 is limiting reactant<br />

2 mol AgNO 3<br />

(50/184.1) mol MgBr 2 ————— (169.9) = 92.3 g<br />

1 mol MgBr 2 AgNO 3<br />

100 -92.3 = 7.7 g AgNO 3 unreacted<br />

theoretical yield – calculated amount of product<br />

according to the chemical equation<br />

actual yield – amount of product experimentally<br />

obtained<br />

actual yield<br />

percent yield = ─────── × 100%<br />

theoretical yield<br />

ex. 9.12 CCl 4 was prepared by reacting 100 g<br />

CS 2 and 100 g Cl 2 , calculate the percent<br />

yield if 65 g CCl 4 obtained<br />

CS 2 + Cl 2 CCl 4 + S 2 Cl 2<br />

1 mol CCl 4<br />

(100/76.15) mol CS 2 ———— (153.8) = 202 g CCl 4<br />

1 mol CS 2<br />

1 mol CCl 4<br />

(100/70.9) mol Cl 2 ———— (153.8) = 72.3 g CCl 4<br />

1 mol Cl 2<br />

11


theoretical yield is 72.3 g CCl 4<br />

percent yield = (65 / 72.3) × 100% = 89.9%<br />

ex. 9.13 AgBr was prepared by reacting 200 g<br />

MgBr 2 and adequate amount of AgNO 3 ,<br />

calculate the percent yield if 375 g AgBr<br />

formed<br />

MgBr 2 + 2AgNO 3 2AgBr + Mg(NO 3 ) 2<br />

2 mol AgBr<br />

(200/184.1) mol MgBr 2 ————— (187.8) = 408 g AgBr<br />

1 mol MgBr 2<br />

percent yield = (375 / 408) × 100% = 91.91%<br />

12

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!