21.01.2015 Views

Chapter 11 Chemical Bonds: The Formation of Compounds from ...

Chapter 11 Chemical Bonds: The Formation of Compounds from ...

Chapter 11 Chemical Bonds: The Formation of Compounds from ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Chapter</strong> <strong>11</strong><br />

<strong>Chemical</strong> <strong>Bonds</strong>:<br />

<strong>The</strong> <strong>Formation</strong> <strong>of</strong><br />

<strong>Compounds</strong> <strong>from</strong> Atoms<br />

1


<strong>11</strong>.1 Periodic Trends in atomic properties<br />

<strong>11</strong>.1 Periodic Trends in atomic properties<br />

design <strong>of</strong> periodic table is based on observing<br />

properties <strong>of</strong> the elements<br />

periodic trends allow us to use the periodic table to<br />

predict properties and reactions <strong>of</strong> a wide variety <strong>of</strong><br />

substances<br />

1. metals and nonmetals<br />

• metals are usually lustrous, malleable and good<br />

conductors <strong>of</strong> heat and electricity<br />

• nonmetals are nonlustrous, brittle and poor<br />

conductors<br />

• metals tend to lose electrons and form cations<br />

• nonmetals tend to gain electrons and form<br />

anions<br />

a metal reacts with a nonmetal, electrons are<br />

<strong>of</strong>ten transferred <strong>from</strong> the metal to the nonmetal<br />

• hydrogen is a unique element<br />

2


2. atomic radius<br />

• the increase in radius down a group<br />

for each step down a group, an additional<br />

energy level is added to the atom<br />

• decrease in atomic radius across a period<br />

electrons are added the same energy level<br />

each time an electron is added, a proton is<br />

added to the nucleus and increase in positive<br />

charge that pulls the electrons closer to the<br />

nucleus<br />

3


3. ionization energy – the energy required to<br />

remove an electron <strong>from</strong> the (gaseous) atom<br />

Na + ionization energy Na + + e -<br />

first ionization energy for the elements in the<br />

first four periods<br />

• ionization energy in Group A elements decreases<br />

<strong>from</strong> top to bottom<br />

• ionization energy gradually increases <strong>from</strong> left 4<br />

to right across a period


<strong>11</strong>.2 Lewis structures <strong>of</strong> atoms<br />

metals tend to form cations and nonmetals tend to<br />

form anions in order to attain a stable valence<br />

electron structure which contains 8 electrons<br />

this rearrangements are accomplished by losing,<br />

gaining or sharing electrons with other atoms<br />

Lewis structure – using the symbol for element<br />

and dots for valence electrons<br />

paired dots represent paired electrons<br />

unpaired dots represent unpaired electrons<br />

ex. · unpaired electron<br />

:B<br />

paired electron symbol for element<br />

Lewis structures for the first 20 elements<br />

5


<strong>11</strong>.3 <strong>The</strong> ionic bond: transfer <strong>of</strong> electrons<br />

<strong>from</strong> one atom to another<br />

the chemistry <strong>of</strong> many elements is to attain an<br />

outer electron structure like that <strong>of</strong> noble gases<br />

ex. Na atom loses 3s electron to form Na +<br />

this process requires energy<br />

Cl atom gains an electron to form Cl -<br />

this process releases energy<br />

6


consider Na and Cl atoms react with each other<br />

Na + and Cl - strongly are attracted to each other<br />

by their opposite electrostatic charges<br />

Lewis representation:<br />

. . . .<br />

Na· + ·Cl: [Na] + [:Cl:] -<br />

·· ··<br />

NaCl is made up <strong>of</strong> cubic crystals<br />

each Na + is surrounded by 6 Cl - , each Cl - is<br />

surrounded by 6 Na +<br />

7


elative sizes <strong>of</strong> Na and Cl atoms with those <strong>of</strong><br />

their ions<br />

Na + is smaller than Na atom<br />

Cl - is larger than Cl atom<br />

ionic bond – the attraction between oppositely<br />

charged ions<br />

8


ex. <strong>11</strong>.2 how Mg and Cl combine to form MgCl 2<br />

ex. <strong>11</strong>.3 formation <strong>of</strong> NaF <strong>from</strong> its elements<br />

ex. <strong>11</strong>.5 formation <strong>of</strong> MgO <strong>from</strong> its elements<br />

9


<strong>11</strong>.4 Predicting formulas <strong>of</strong> ionic<br />

compounds<br />

the concept forms the basis for our understanding<br />

<strong>of</strong> chemical bonding:<br />

in almost all stable chemical compounds <strong>of</strong><br />

representative elements, each atom attains a noble<br />

gas electron configuration<br />

predicting the formulas <strong>of</strong> ionic compounds<br />

ex. Compound formed between Ba and S<br />

Ba [Xe]6s 2<br />

S [Ne]3s 2 3p 4<br />

loses 2 electrons to achieve<br />

Xe configuration Ba 2+<br />

gains 2 electrons to achieve<br />

Ar configuration S 2-<br />

BaS<br />

ex. <strong>11</strong>.8 predict formulas for<br />

(a) magnesium sulfide Mg 2+ S 2- MgS<br />

(b) potassium phosphide K + P 3- K10<br />

3 P<br />

(c) magnesium selenide Mg 2+ Se 2- MgSe


<strong>11</strong>.5 <strong>The</strong> covalent bond: sharing<br />

electrons<br />

electron transfer between atoms does not occur in<br />

molecular compounds in which a chemical bond<br />

formed by sharing pairs <strong>of</strong> electrons between<br />

atoms<br />

1916 G. N. Lewis introduced<br />

covalent bond consists <strong>of</strong> a pair <strong>of</strong> electrons<br />

shared between two atoms<br />

examples <strong>of</strong> molecular compounds:<br />

H 2 , Cl 2 , H 2 O, HCl, CO 2 , sugar<br />

ionic<br />

compound<br />

formation <strong>of</strong> hydrogen molecule (H 2 ) involves<br />

overlapping and pairing <strong>of</strong> 1s electron orbitals<br />

<strong>from</strong> two H atoms<br />

<strong>11</strong>


formation <strong>of</strong> chlorine molecule (Cl 2 ) involves<br />

overlapping <strong>of</strong> unpaired 3p electron orbitals<br />

<strong>from</strong> two Cl atoms<br />

other examples<br />

. . . . . . . . . . . .<br />

:F : F: : I : I : :O :: O: :N ::: N:<br />

·· ·· ·· ··<br />

fluorine iodine oxygen nitrogen<br />

using a dash — replace the pair <strong>of</strong> dots<br />

. . . . . . . . . . . .<br />

:F—F: : I—I : :O = O: :N≣N:<br />

·· ·· ·· ··<br />

ionic bond and covalent bond represent two<br />

extremes<br />

between two extremes<br />

polar covalent bond – unequal sharing <strong>of</strong><br />

electrons between two atoms<br />

. .<br />

ex. H:Cl: :C:::O:<br />

12<br />

··


<strong>11</strong>.6 Electronegativity<br />

the bond formed between two different kinds <strong>of</strong><br />

atoms which exert unequal attraction for the pair<br />

<strong>of</strong> electron<br />

one atom assume a partial positive charge, the<br />

other a partial negative charge<br />

the attractive force that an element has for<br />

shared electrons in a molecule or polyatomic ion<br />

is known as its electronegativity<br />

ex. hydrogen chloride HCl<br />

Pauling scale assign electronegativity <strong>of</strong> F 4.0<br />

increase<br />

decrease<br />

13


• the highest electronegativity is 4.0 for F<br />

the lowest electronegativity is 0.7 for Cs and Fr<br />

• the higher the electronegativity, the stronger an<br />

atom attracts electrons<br />

the polarity <strong>of</strong> a bond is determined by the<br />

difference in electronegativity values <strong>of</strong> the atoms<br />

forming the bond<br />

nonpolar covalent bond<br />

polar covalent bond dipole + -<br />

H Cl H Br I Cl O<br />

H H<br />

if the electronegativity difference between two<br />

bonded atoms is greater than 1.7~1.9, the bond<br />

will be more ionic than covalent<br />

0 0.9 2.1<br />

14


carbon dioxide CO 2 is nonpolar<br />

O = C = O<br />

CCl 4 is nonpolar<br />

H 2 O is a polar molecule<br />

O<br />

H H<br />

15


<strong>11</strong>.7 Lewis structures <strong>of</strong> compounds<br />

the procedure helps to write the Lewis structure<br />

ex. <strong>11</strong>.9 how man valence electrons in each <strong>of</strong><br />

the following atoms:<br />

Cl H C O N S P I<br />

7 1 4 6 5 6 5 7<br />

16


ex. <strong>11</strong>.10 write the Lewis structure for H 2 O<br />

step 1 total valence electrons = 2 × 1 + 6 = 8<br />

step 2 the skeleton structure<br />

H O H : O· ·<br />

H<br />

H<br />

step 3 subtract 4 electrons <strong>from</strong> 8<br />

8 – 4 = 4<br />

step 4 distribute 4 electrons around O atom<br />

·· ··<br />

H : O : H—O :<br />

·· |<br />

H<br />

H<br />

ex.<strong>11</strong>.<strong>11</strong> write the Lewis structure for CH 4<br />

step 1 total valence electrons = 4 × 1 + 4 = 8<br />

step 2 H H· ·<br />

H C H H : C : H<br />

··<br />

H<br />

H<br />

step 3 8 – 8 = 0<br />

H<br />

|<br />

H—C—H<br />

|<br />

H<br />

17


ex.<strong>11</strong>.<strong>11</strong> write the Lewis structure for CO 2<br />

step 1 total valence electrons = 4 + 2 × 6 = 16<br />

step 2<br />

O C O O : C : O<br />

step 3 16 – 4 = 12<br />

step 4 . . . . . . . . . . . . . . . .<br />

: O : C : O : : O : C : O : : O : C : O :<br />

·· ·· ·· ··<br />

I II III<br />

step 5 : O :: C :: O : : O = C = O:<br />

18


<strong>11</strong>.8 Complex Lewis structures<br />

for some molecules or polyatomic ions, no single<br />

Lewis structure consistent with all characteristics<br />

and bonding information can be written<br />

ex. nitrate ion NO<br />

-<br />

3<br />

step 1 total valence electrons<br />

= 5 + 3 × 6 + 1 = 24<br />

step 2 O O· ·<br />

O N O O : N : O<br />

step 3 24 - 6 = 18<br />

step 4 · ·<br />

: O electron deficient<br />

·· ·· ··<br />

: O : N : O :<br />

·· ·· ··<br />

step 5 · · - · · - · · -<br />

: O : O : : O :<br />

·· || ·· ·· ·· ·· ·· ·· ··<br />

: O : N : O : : O =N : O : : O : N= O :<br />

·· ·· ·· ··<br />

there are three possible Lewis structures<br />

a molecule or ion that has multiple correct<br />

Lewis structures shows resonance<br />

each <strong>of</strong> these Lewis structures is called a<br />

resonance structure<br />

19


ex. <strong>11</strong>.14 write the Lewis structure for<br />

CO 3<br />

2-<br />

step 1 total valence electrons<br />

= 4 + 3 × 6 + 2 = 24<br />

step 2 O O· ·<br />

O C O O : C : O<br />

step 3 24 - 6 = 18<br />

step 4 · ·<br />

: O :<br />

·· ·· ··<br />

: O : C : O :<br />

·· ··<br />

C atom is electron deficient<br />

step 5<br />

·· 2- ·· 2- ·· 2-<br />

: O : O : : O :<br />

·· || ·· ·· ·· ·· ·· ·· ··<br />

: O : C : O : : O =C : O : : O : C= O :<br />

·· ·· ·· ··<br />

20


<strong>11</strong>.9 <strong>Compounds</strong> containing polyatomic<br />

ions<br />

sodium carbonate Na 2 CO 3 has both ionic and<br />

covalent bonds<br />

ionic bonds exist between Na + and CO 3<br />

2-<br />

covalent bonds present between C and O atoms<br />

an important difference between ionic and<br />

covalent bonds can be demonstrated by<br />

dissolving Na 2 CO 3 in water:<br />

Na 2 CO 3 (s)<br />

water<br />

2 Na + (aq) + CO 3<br />

2-<br />

(aq)<br />

21


<strong>11</strong>.10 Molecular shape<br />

Lewis structures do not indicate anything regarding<br />

the geometric shape <strong>of</strong> a molecule<br />

geometric shapes for several common examples<br />

how do we predict the geometric shape <strong>of</strong> a<br />

molecule <br />

22


<strong>11</strong>.<strong>11</strong> <strong>The</strong> valence shell electron pair<br />

repulsion (VSEPR) model<br />

VSEPR model is based on the idea that electron<br />

pairs will repel each other electrically and will seek<br />

to minimize this repulsion<br />

to accomplish this minimization, the electron pairs<br />

will arrange around the central atom as far apart as<br />

possible<br />

1. linear structure 180 o<br />

ex. BeCl 2 Cl—Be—Cl<br />

2. trigonal planar 120 o<br />

ex. BF 3 F F<br />

B<br />

|F<br />

3. tetrahedral 109.5 o<br />

ex. CH 4 H H<br />

C<br />

H H<br />

23


one or more electron pairs may be nonbonding<br />

or lone pairs<br />

ex. NH 3 . .<br />

H : N : H<br />

. .<br />

H<br />

ex. H 2 O . .<br />

H : O :<br />

. .<br />

H<br />

24


ex. <strong>11</strong>.15 predict the molecular shape for<br />

(1) H 2 S ..<br />

H : S : H tetrahedral bent<br />

..<br />

(2) CCl 4 .. tetrahedral<br />

: Cl :<br />

.. .. ..<br />

: Cl : C : Cl :<br />

.. .. ..<br />

: Cl :<br />

..<br />

(3) AlF 3 .. trigonal planar<br />

: F :<br />

.. .. ..<br />

: F : Al : F :<br />

.. ..<br />

25

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!