19.01.2015 Views

Supramolecular Nanoporous Materials and Their Applications

Supramolecular Nanoporous Materials and Their Applications

Supramolecular Nanoporous Materials and Their Applications

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Supramolecular</strong> <strong>Nanoporous</strong> <strong>Materials</strong> <strong>and</strong><br />

<strong>Their</strong> <strong>Applications</strong>


Ultrafiltration (separation) by Thin-Film <strong>Materials</strong><br />

Volatile Organic Compound (VOC) &<br />

Luminescence Sensing of <strong>Supramolecular</strong> Thin-<br />

Film <strong>Materials</strong> (Quartz Crystal Microbalance &<br />

Fluorometer)<br />

Adsorption-Modulated Micropatterned Diffraction<br />

Gratings (Diffractive Photonic Lattices)<br />

Toward Artificial Enzymes & Catalytic Reactors<br />

Cage Formation & <strong>Their</strong> <strong>Applications</strong>


<strong>Supramolecular</strong> chemistry may be defined as<br />

“chemistry beyond the molecule”, bearing on the<br />

organized entities of higher complexity that result<br />

from the association of two or more chemical<br />

species held together by intermolecular forces :<br />

metal-ion coordination, electrostatic forces,<br />

hydrogen bonding, van der Waals interacions,<br />

donor acceptor interactions, etc.<br />

- <strong>Supramolecular</strong> Chemistry – Concepts <strong>and</strong> Perspectives (J.-M. Lehn, VCH)


Fujita et al, Chem. Commun.1996, 38, 1535.


53 : 54 (square : triangle)<br />

66:34 20 mmol dm -3<br />

58:42 10 mmol dm -3<br />

47:53 5 mmol dm -3<br />

39:61 3 mmol dm -3<br />

28:72 1 mmol dm -3<br />

Fujita et al, Chem. Commun. 1996, 38, 1535.


4<br />

4<br />

5<br />

Fujita et al, Chem. Commun.<br />

1996, 38, 1535.


4:5 / Square : triangle


Cotton et al, J. Am. Chem. Soc. 1999, 121, 4538.


Hong et al, Tetrahedron Lett. 1998, 89, 873.


Stang et al, J. Am. Chem. Soc. 1998, 120, 9827.


Lehn et al, Angew. Chem. Int. Ed. 1996, 35, 1838;<br />

J. Am. Chem. Soc. 1997, 119, 10956.


Stang et al, J. Am. Chem. Soc., 1995, 117, 8793.


Cotton et al, J. Am. Chem. Soc. 1999, 121, 4538.


Lu et al, Inorg. Chem. 2000, 39, 2016.<br />

Lees et al, J. Am. Chem. Soc. 2000, 122, 8956


Hupp et al, Chem. Mater. 2001, 13, 3113-3125.


Mirkin et al, J. Am. Chem. Soc.<br />

1998, 120, 11834-11835.


Why Nanoscale Porosity<br />

• Separations : ultrafiltration<br />

• Affinity membranes<br />

• Selective VOC sensing<br />

• Aquatic sensing<br />

• Novel catalyst platforms<br />

• Reaction control : surface tailoring


Aluminosilicates (zeolites) :<br />

catalysis, separation, <strong>and</strong> ion-exchange processes<br />

===> large pores, thermally stable <strong>and</strong> facilitating<br />

the mobility for small cations<br />

Why nanoporous materails with large pores <br />

===> Giant pores may act as nanoreactors <strong>and</strong> also<br />

tailoring to get more functional surface<br />

Two obstacles encountered : Material stability<br />

<strong>and</strong> interpenetration (concatenation)


Molecular Squares<br />

M. Fujita, et.al., Chem. Commun. 1996, 1535.<br />

P.N.W. Baxter, et.al., Chem. Commun. 1997, 2231. P.J. Stang, et.al., Res. Chem. Intermed. 1996, 22, 659.<br />

P.J. Stang, et.al., Organomet. 1996, 15, 904. R.V. Slone, et.al., Inorg. Chem. 1997, 37, 5422.<br />

R.V. Slone, et.al., J. Am. Chem. Soc. 1994,116, 2494.


<strong>Applications</strong> of Thin Films Based<br />

on Molecular Squares<br />

• Membrane-based transportation (Separation)<br />

• Chemical sensing<br />

•Catalysis


Synthesis of Molecular Squares<br />

Re...Re<br />

OC<br />

Cl<br />

CO<br />

Re<br />

CO<br />

Cl<br />

CO<br />

Re<br />

CO<br />

OC<br />

N<br />

N<br />

7Å<br />

N<br />

N<br />

12 Å<br />

OC<br />

Cl<br />

Re<br />

CO<br />

CO<br />

Cl<br />

Re<br />

CO<br />

CO<br />

OC<br />

N<br />

Bu<br />

Bu<br />

N<br />

14 Å<br />

N<br />

N<br />

Zn<br />

N<br />

N<br />

N<br />

N<br />

20 Å<br />

Bu<br />

Bu<br />

OC<br />

OC<br />

CO<br />

Re<br />

Cl<br />

CO<br />

CO<br />

THF/toluene<br />

+ LL [Re(CO) 3 (Cl)(LL) ]<br />

reflux, N 4 R > 95%<br />

2<br />

Slone et al., Inorg. Chem. 1996, 35, 4096.


Characteristics of Rhenium Squares<br />

• High yield assembly<br />

• High degree of size tunability<br />

• Charge neutral<br />

• Hydrophobic interior<br />

• Formation of channels in the crystals<br />

• Stability in H 2 O in thin film <strong>and</strong> molecular forms<br />

• Zn-porphyrin squares can be easily modified by<br />

axial ligation


Crystal Structures of Molecular Squares<br />

Crystal structures of the pyrazine <strong>and</strong> the bipyridine squares show<br />

the presence of channels down the crystallographic c axes.<br />

I4, I4 1 /a,<br />

a = 22.717(16), c = 13.538(5) Å<br />

a = 20.931(5), c = 15.417(2) Å<br />

Slone et al, Coord. Chem. Rev. 1998, 171(1), 221.


Crystal Structures of “Corners”<br />

CO CO<br />

OC<br />

Cl<br />

CO CO<br />

Re N<br />

N<br />

OC<br />

Cl<br />

Re<br />

N<br />

N<br />

N<br />

N<br />

C2/c P2 1 /n<br />

a = 7.417(1), b = 4.326(2), a = 7.126(2), b = 14.658(3),<br />

c = 13.077(3)Å, β = 90.14(1)<br />

c = 21.517(6)Å, β = 98.63(2)<br />

Bélanger et al, Acta Cryst. 1998, C54, 1596.


Modification of Square Cavity<br />

Size/shape <strong>and</strong> chemical affinity of the square cavity can be<br />

selectively modified by axial binding to coordination sites in the<br />

dipyridylporphyrin lig<strong>and</strong>s forming the edges of the square.


Chemically Tailored Molecular Nanotubules<br />

CO<br />

Cl<br />

CO<br />

CO<br />

Re<br />

N<br />

OC<br />

Re Cl CO<br />

CO<br />

CO<br />

Cl<br />

CO<br />

CO<br />

Re<br />

N<br />

OC<br />

Re Cl CO<br />

CO<br />

N<br />

N<br />

N<br />

N<br />

CO<br />

CO<br />

Re<br />

CO<br />

Cl<br />

N<br />

Re CO CO<br />

Cl<br />

OC<br />

CO<br />

CO<br />

Cl<br />

Re<br />

CO<br />

N<br />

Re CO CO<br />

Cl<br />

OC<br />

N<br />

N<br />

= Tunable unit which alters<br />

binding pocket properties<br />

= Secondary guest within<br />

modified cavity<br />

=<br />

CH 3 (CH 2 ) 3<br />

CH 3 (CH 2 ) 3<br />

N<br />

N<br />

N<br />

Zn<br />

N<br />

N<br />

(CH 2 ) 3 CH 3<br />

(CH 2 ) 3 CH 3


N<br />

N N N N<br />

CN<br />

N<br />

NH 2<br />

N<br />

N<br />

N N N N<br />

O NH 2<br />

O<br />

OH<br />

N N N N N<br />

N<br />

N N<br />

N<br />

Br<br />

N<br />

N<br />

CN<br />

CN<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

H<br />

N<br />

N<br />

H<br />

N<br />

N<br />

H<br />

N<br />

O<br />

NH<br />

N<br />

O<br />

O<br />

N<br />

N<br />

O<br />

N<br />

H<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

N<br />

N<br />

N<br />

N<br />

N<br />

O<br />

O<br />

O<br />

O<br />

O<br />

N<br />

N<br />

CH 3 (CH 2 ) 3<br />

NH N<br />

CH 3 (CH 2 ) 3<br />

N HN<br />

O<br />

O<br />

N<br />

(CH 2 ) 3 CH 3<br />

(CH 2 ) 3 CH 3<br />

O<br />

O<br />

N<br />

O<br />

OH N<br />

O<br />

N<br />

N<br />

N N<br />

Zn<br />

N N<br />

N<br />

N<br />

O<br />

O<br />

O<br />

O<br />

N<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

N<br />

N<br />

N<br />

N<br />

N<br />

O<br />

O<br />

N<br />

O<br />

O<br />

N<br />

O<br />

O<br />

O N<br />

N<br />

O<br />

O<br />

O<br />

N<br />

N<br />

O<br />

O<br />

N<br />

N<br />

N


Chemically Tailored Molecular Nanotubules<br />

OC<br />

OC<br />

CO<br />

Cl<br />

Re<br />

Zn N<br />

O<br />

O<br />

Zn<br />

O<br />

O<br />

Cl<br />

O<br />

O<br />

O<br />

CO<br />

CO<br />

Re CO<br />

Zn<br />

•Alkali metal<br />

ion sensing by<br />

luminescence<br />

OC<br />

OC<br />

CO<br />

Cl<br />

Re<br />

Zn<br />

Zn<br />

Cl<br />

CO<br />

CO<br />

Re CO<br />

Zn<br />

OC<br />

OC<br />

Cl<br />

Re<br />

CO<br />

Zn<br />

Cl<br />

CO<br />

Re CO<br />

CO<br />

OC<br />

OC<br />

Cl<br />

Re<br />

CO<br />

Zn<br />

Cl<br />

CO<br />

Re CO<br />

CO<br />

OC<br />

OC<br />

CO<br />

Cl<br />

Re<br />

Zn<br />

N<br />

NH 2<br />

Zn<br />

NH 2<br />

NH 2<br />

Cl<br />

CO<br />

CO<br />

Re CO<br />

Zn<br />

•Zn 2+ recognition<br />

by diffractive<br />

photonic lattices<br />

H 3 C(H 2 C) 3 (CH 2 ) 3 CH 3<br />

N N<br />

Zn = N<br />

Zn<br />

N<br />

N N<br />

OC<br />

OC<br />

Cl<br />

Re<br />

CO<br />

Zn<br />

Cl<br />

CO<br />

Re CO<br />

CO<br />

H 3 C(H 2 C) 3 (CH 2 ) 3 CH 3


[Re(CO) 3 (Cl)(µ-pyrazine)] 4


[Re(CO) 3 (Cl)(µ-porphZn)] 4


<strong>Applications</strong> of Thin Films Based<br />

on Molecular Squares<br />

• Transportation (Separation)


Permeation Through a Thin Film of the<br />

Porphyrin-based Squares<br />

electrode<br />

Thin films are spin-cast from CHCl 3 solution <strong>and</strong> are typically<br />

between 100-200 nm thick


Molecular Sieving by Thin Films Based on<br />

[Re(CO) 3 (Cl)(µ-(PorphZn)] 4<br />

SO 3<br />

~ 20 Å<br />

O 3<br />

S<br />

d = 24 Å<br />

N<br />

N<br />

N<br />

Fe<br />

N<br />

N<br />

N<br />

4 -<br />

Re<br />

N<br />

Re<br />

N<br />

N<br />

N<br />

Zn<br />

N<br />

N<br />

Re<br />

Re<br />

10 µA<br />

CH<br />

2<br />

OH<br />

5 µA<br />

Fe<br />

1.2 1.0 0.8<br />

0.6<br />

0.4 0.2 0.0<br />

E vs SSCE (V)<br />

d = 4.5 Å<br />

Bélanger et al, Angew. Chem. Int. Ed. 1999, 38, 2222.


PorphZn Square Modification before Film Casting<br />

Square/TPP K b<br />

= 4 x 10 7 M -1 in CH 2<br />

Cl 2<br />

(Slone et al Inorg. Chem. 1997, 36, 5422.)<br />

Zn<br />

N<br />

Zn<br />

G<br />

Zn<br />

G<br />

=<br />

N<br />

N N<br />

Zn<br />

N N<br />

N<br />

bare electrode<br />

Zn<br />

N<br />

film-covered electrode<br />

d ~ 2.4 Å<br />

I -<br />

200 µ A<br />

d~2.4 A<br />

N<br />

H 3 N<br />

Ru<br />

H 3 N<br />

H 3 N<br />

NH 3<br />

NH 3<br />

d ~ 6.7 Å<br />

1.00<br />

0.75<br />

0.50<br />

0.25<br />

0.00<br />

-0.25<br />

-0.50<br />

E vs SSCE (V)


Snurr et al, Adv. Mater. 2001, 13, 1895-1897.


<strong>Applications</strong> of Thin Films Based on<br />

Molecular Squares <strong>and</strong> Rectangles<br />

• Chemical sensing (QCM)


Molecular Recognition <strong>and</strong> Sensors<br />

+<br />

substrate<br />

receptor<br />

signaling unit receptor substrate<br />

The basic principle of molecular<br />

recognition : for any given substrate,<br />

a receptor possessing geometrical<br />

(structural) <strong>and</strong> bonding (chemical)<br />

features for specific interactions can<br />

be designed.<br />

Assembling a receptor, a spacer, <strong>and</strong><br />

a signaling unit makes a sensor.


VOC Detection Via Quartz Crystal<br />

Microbalance<br />

Sauerbrey Relation<br />

∆Frequency = -C f (∆ Mass)<br />

C f α density <strong>and</strong> sheer modulus of quartz<br />

Gas tight chamber<br />

VOC (analyte)<br />

AC<br />

QCM crystal modified with a thin film of<br />

mesoporous host material


QCM Study of Benzene Inclusion in<br />

[Re(CO) 3 (Cl)(µ−pyrazine)] 4 Films<br />

0<br />

Blank Substrate<br />

∆ Frequency (Hz)<br />

-20<br />

-40<br />

-60<br />

Square Film<br />

Corner Film<br />

0 150 300 450 600<br />

Time (seconds)<br />

Keefe et al, Langmuir, 2000, 16, 3964.


Aromatic vs. Aliphatic Vapor Inclusion in<br />

Films of [Re(CO) 3 (Cl)(µ-pyrazine)] 4<br />

0.18<br />

Fractional Occupancy<br />

0.12<br />

0.06<br />

benzene<br />

cyclohexane<br />

0.00<br />

0.0 0.2 0.4 0.6 0.8 1.0 1.2<br />

Concentration (mM)<br />

Henry's law : Θ = K b *[guest], at low concentration region


Substituent Effect on VOC Inclusion in Films<br />

of [Re(CO) 3 (Cl)(µ-pyrazine)] 4


2<br />

Synthetic Route to Bisbenzimidazolate-Based<br />

Rectangles<br />

(Third Generation)<br />

OC<br />

OC<br />

O<br />

C<br />

M<br />

Br<br />

C O<br />

CO<br />

+<br />

N<br />

N<br />

K<br />

K<br />

N<br />

N<br />

RT<br />

CH 2 Cl 2 , N 2<br />

O<br />

C<br />

O<br />

C<br />

OC M CO<br />

N N<br />

N N<br />

OC M C O<br />

C<br />

O<br />

C<br />

O<br />

+ 2KBr<br />

O O O O<br />

C C<br />

C C<br />

OC M N<br />

N M− CO<br />

N N<br />

N N<br />

N N<br />

N N<br />

OC M N<br />

N M C O<br />

C C<br />

C C<br />

O O<br />

O O<br />

THF, N 2<br />

M=Re, Mn<br />

N<br />

N<br />

-<br />

Benkstein et al, Angew. Chem. Int. Ed. 2000, 39, 2891.


ORTEP of the Re-BiBzIm/bpy Rectangle<br />

Cavity size: 5.7 x 11.6 Å (defined by the Re atoms)


Space Filling Representation of the Packing<br />

Alignment of the Mn-BiBzIm/bpy Rectangle


Affinity Constants of Thin Films of the Mn-<br />

BiBzIm/bpy Rectangle <strong>and</strong> a Representative<br />

Square For Selected Volatile Organic<br />

Compounds<br />

VOC<br />

Mn-BiBzIm/bpy<br />

Rectangle<br />

[Cl(CO) 3 Re(µ-pyrazine)] 4<br />

Square<br />

Toluene 3200±1900 332<br />

4-Fluorotoluene 1400±360 200<br />

Benzene 740±250 157<br />

Fluorobenzene 420±80 87<br />

Hexafluorobenzene 460±110 47


<strong>Applications</strong> of Thin Films Based on<br />

Molecular Squares<br />

• Chemical sensing (Fluorometer)


Sun <strong>and</strong> Lees, J. Am. Chem. Soc. 2000, 122, 8956.


<strong>Applications</strong> of Thin Films Based<br />

on Molecular Squares<br />

• Chemical sensing (Diffractive Photonic Lattices)


Diffraction!<br />

I 0<br />

n film I 1<br />

I 0<br />

n surr<br />

I 1<br />

Any periodic pattern featuring<br />

alternating regions of high <strong>and</strong><br />

low refractive index is capable<br />

of diffracting electromagnetic<br />

radiation of the wavelength<br />

comparable to the pattern<br />

element spacing.<br />

Diffraction efficiency (DE)<br />

DE depends on the degree of refractive index contrast between<br />

the patterned material <strong>and</strong> the surrounding medium.


Diffractive Photonic Lattices : The approach is based<br />

on the diffraction efficiency concept<br />

n>1<br />

2<br />

n1 = 1<br />

n 2’ > n 2<br />

’<br />

n2<br />

analyte=<br />

n1 = 1


Direct Patterning of Sensor Elements<br />

Micromolding in Capillaries (MIMIC)<br />

Creation of PDMS<br />

stamp<br />

PDMS<br />

Master<br />

Solution casting<br />

of sensor material<br />

PDMS<br />

Sensing Material<br />

Mold filling by<br />

capillary action<br />

PDMS<br />

Removal of PDMS<br />

stamp leaving behind<br />

micromolded film<br />

Hupp et al, Angew. Chem. Int. Ed. 2001, 41, 154.<br />

75 µm<br />

AFM image


AFM image<br />

Fraunhofer Diffraction Efficiency<br />

He:Ne laser<br />

micropatterned film<br />

(porphyrin grating)<br />

diffraction<br />

pattern<br />

I 0<br />

I 1<br />

10 µm<br />

DE ~<br />

I 1<br />

I 0<br />

x constant


Control Box


Refractive Index<br />

n(x,λ) = n(x,λ) + ik (x,λ)<br />

n(x,λ) --- the complex index of refraction<br />

n(x,λ) --- the real component of refractive index<br />

~ molecular adsorption<br />

k(x,λ) --- the imaginary component of refractive index<br />

(absorptivity of the film material)<br />

~ absorptivity modulation<br />

Correlation between n(x,λ) <strong>and</strong> k(x,λ) : Kramers-<br />

Kronig relation - “ off-resonance & resonance ”


EtOH uptake by porpZn square functionalized with<br />

pyridyl-ethyleneglycol detected by grating technique<br />

<br />

<br />

<br />

<br />

<br />

I1 X 100<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Io X 6<br />

<br />

<br />

<br />

<br />

<br />


∆ <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

θ <br />

Plot of ∆DE v.s. concentration of various VOCs for empty porpZn<br />

squares (left) <strong>and</strong> the comparison of θ <strong>and</strong> QCM results from benzene,<br />

pyridine <strong>and</strong> dioxane uptake (right)<br />

<br />

<br />

<br />

<br />

<br />

<br />

pyridine ∆DE (%) values/2.3859<br />

pyridine θ values (QCM)<br />

benzene θ values (QCM)<br />

benzene ∆DE (%) values/2.3859<br />

dioxane ∆DE (%) values/2.3859<br />

dioxane θ values (QCM)<br />

Concentration of VOCs (mM)<br />

Concentration of VOCs (mM)


SIZE EXCLUSION : 1,3,5-tripyridyl-2,4,6-triazine uptake by porpZn square (pink)<br />

<strong>and</strong> functionalized with TPP (green) detected by grating in water (L) or hexanes (R)<br />

3<br />

10<br />

∆DE (%)<br />

0<br />

N<br />

∆DE (%)<br />

5<br />

0<br />

N N<br />

N<br />

N<br />

N<br />

-3<br />

0 2500 5000 7500 10000 12500<br />

Time (sec)<br />

-5<br />

0 2500 5000 7500 10000<br />

Time (sec)


Direct Patterning of Sensor Elements<br />

Micromolding in Capillaries (MIMIC)<br />

Poly(4-vinylphenol) =<br />

CH 2 CH<br />

n<br />

Creation of PDMS<br />

stamp<br />

PDMS<br />

Master<br />

OH<br />

Solution casting<br />

of sensor material<br />

PDMS<br />

Mold filling by<br />

capillary action<br />

PDMS<br />

Removal of PDMS<br />

stamp leaving behind<br />

micromolded film<br />

Hupp et al, Proc. Electrochem. Soc. 2001, 18, 511-520.<br />

75 µm


VOC uptake poly(4-vinylphenol) films detected by grating technique<br />

<br />

* Poly(4-vinylphenol) : ( -CH-CH 2 - ) n<br />

<br />

<br />

<br />

∆ <br />

<br />

<br />

OH<br />

<br />

<br />

<br />

<br />


Concentration-dependent uptake study of 2,4,5-Trichlorophenol<br />

(TCP) by poly(4-vinylphenol) in H 2<br />

O detected by grating technique<br />

∆ <br />

<br />

<br />

<br />

∆ <br />

<br />

<br />

<br />

<br />

Cl<br />

Cl<br />

OH<br />

Cl<br />

<br />

( -CH-CH 2 - ) n<br />

OH


Incident Wavelength Effects<br />

η(<br />

λ)<br />

2.3OD(<br />

λ)<br />

πd<br />

= exp[ − ]( ){ ∆k(<br />

λ)<br />

cosθ<br />

λ cosθ<br />

2<br />

+ ∆n(<br />

λ)<br />

2<br />

}<br />

Kramers-Kronig expression<br />

∆n(<br />

ω'<br />

)<br />

=<br />

c<br />

π<br />

∞<br />

∫<br />

0<br />

∆α(<br />

ω)<br />

2<br />

ω − ω'<br />

2<br />

dω<br />

OD: optical density<br />

k: absorptivity<br />

n: real component of the refractive index<br />

d: grating thickness<br />

θ: Bragg angle<br />

α: absorption coefficient (α = 4πk/λ)<br />

ω: optical frequency (ω = 2πc/λ)<br />

ω’: the optical frequency of interest for ∆n evaluation<br />

Schanze et al, Langmuir, 2000, 16, 795.


Direct Patterning of Sensor Elements<br />

Micromolding in Capillaries (MIMIC)<br />

OC 10 H 21<br />

Creation of PDMS<br />

stamp<br />

PDMS<br />

Master<br />

N<br />

N<br />

C 10 H 21 O<br />

Solution casting<br />

of sensor material<br />

PDMS<br />

Mold filling by<br />

capillary action<br />

PDMS<br />

Removal of PDMS<br />

stamp leaving behind<br />

micromolded film<br />

75 µm<br />

Tzeng et al, Proc. Electrochem. Soc. 2001, submitted.


Sensor <strong>Materials</strong> Based on Functional Polymers<br />

OC 10 H 21<br />

N<br />

N<br />

C 10 H 21 O<br />

Free functional polymers (bpy, phen...)---Partially conjugated<br />

ML n<br />

ML n<br />

[ML n ]<br />

N<br />

ML n<br />

Wasielewski et al, J. Am. Chem. Soc. 1997, 119, 11.<br />

N<br />

[ML n ]<br />

Monodentate coordination<br />

Deconjugated (minor)<br />

NEt 3 or CN -<br />

N<br />

N<br />

[ML n ]<br />

Didentate coordination<br />

Fully conjugated (major)<br />

Free polymers


M 2+ (20:80 H2O/EtOH) binding by poly-bpy polymer film <strong>and</strong> its de-bound study<br />

while addition of NEt 3 detected by grating<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />


M n+ (20:80 H 2<br />

O/EtOH) binding of poly-bpy film detected by grating technique<br />

∆ <br />

<br />

<br />

<br />

<br />

<br />

<br />

Zn 2+ :<br />

<br />

<br />

Pd 2+ K +<br />

<br />

∆ <br />

<br />

∆<br />

<br />

<br />

<br />

<br />

Zn 2+<br />

<br />

<br />

543 nm (green)<br />

633 nm (red)<br />

<br />

<br />


<strong>Applications</strong> of Thin Films Based<br />

on Molecular Squares<br />

• Catalysis (Epoxidation)


Toward Artificial Enzymes <strong>and</strong> Membrane<br />

Catalytic Reactors<br />

Cytochrome P-450<br />

J.R. Cupp-Vickery <strong>and</strong> T.L. Poulos, 1995<br />

Nguyen et al, Angew. Chem. Int. Ed. 2001, 40, 4239-4242.


A Target Reaction: Olefin Epoxidation<br />

R 2<br />

R 1 + [O]<br />

"enzyme"<br />

Progress:<br />

• catalyst stabilization - > “quasi-immortality”<br />

• induction of size selectivity<br />

• tuning of size selectivity<br />

x y<br />

• induction of modest enantioselectivity L<br />

• discovery of catalytic co-factors<br />

Mn<br />

O<br />

R 1 R 2<br />

x y<br />

L Mn<br />

x y<br />

L<br />

Mn<br />

=<br />

N<br />

O<br />

,<br />

O<br />

N ,<br />

O<br />

O<br />

N<br />

O<br />

O<br />

x y<br />

L<br />

Mn<br />

x y<br />

L<br />

Mn<br />

x y<br />

L<br />

Mn


Enzyme are exquisite catalysts for chemical/biochemical<br />

reactions : excellent stability & high selectivity<br />

===> A potent catalytic center & a surrounding protein<br />

superstructure<br />

===> “superstructure”


<strong>Supramolecular</strong> coordination chemistry approach :<br />

a simple epoxidation catalyst (manganese porphyrin).<br />

Tailorability : rapid & systematic optimization of<br />

catalytic selectivity “encapsulation concept”


R 2<br />

R 3<br />

R 1 R 4<br />

+ Oxidant<br />

R 2<br />

O<br />

R 3<br />

R 1 R 4


n porphyrin “iron heme moiety” / cytochrome P450<br />

a naturally occurring enzyme used in the oxidative<br />

etabolism)<br />

==> degradation (MnP-O-MnP/50 catalytic cycles)


Lifetime :<br />

(a) Catalyst lifetime : 10 mins → 3hrs<br />

==> bound + unbound in a dynamic equilibrium<br />

(b) 1+2 : TON ↑ 10-fold (500) – K~10 6 M -1<br />

(c) 3+2 : TON ↑ 30-fold (1500) – K~10 7 M -1<br />

(d) Dilution for catalyst concentration (1/1000) :<br />

TON ↑ 7000 for 1+2<br />

21000 for 3+2


Encapsulation of epoxidation catalyst 1 with 2 by<br />

directed assembly.


The enhanced stability <strong>and</strong> enhanced TONs of the<br />

catalyst assemblies [1+2] <strong>and</strong> [3+2] compared to<br />

the free catalyst 1.


Selectivity (size):<br />

(a) 4-5 : 5 is 3.5-fold less reactive with 1+2 than<br />

with the naked catalyst (st<strong>and</strong>ard).<br />

(b) 4-5 : 5 is 7-fold less reactive with 7 than with<br />

the naked catalyst.<br />

(c) 4-6 : 6 is 4-fold less reactive with 7 than with<br />

the naked catalyst.<br />

* Re-N (free rotate to be more flexible than in film)<br />

===> “no enantioselectivity”


<strong>Supramolecular</strong> complex with a functionalized cavity for<br />

enhanced selectivity in catalytic epoxidation.


The conceptual topological similarity of cytochrome P450 <strong>and</strong><br />

a supramolecular encapsulated catalyst assembly ([1+2]).


Conclusion<br />

Demonstrated Electrochemical sieving for a Molecular-<br />

Square Based Thin-Film Material<br />

Demonstrated Affinity to VOCs for a Thin-Film Material<br />

Based on Molecular Squares Detected by QCM<br />

Demonstrated Potential Chemosensing <strong>Applications</strong> to<br />

VOCs, Halocarbons or Heavy Metal Ions Detected by<br />

Diffractive Photonic Lattices<br />

Toward Artificial Enzymes & Membrane Catalytic Reactors


Cage Formation & <strong>Their</strong> <strong>Applications</strong>


Molecular Cages


Nanoreactor


The key step of the exclusive formation of cross-dimer<br />

stems from the selective formation of ternary complex<br />

before irradiation, which is governed by the size<br />

compatibility of the guests with the restricted space of<br />

the cavity.


(285 nm)


There are two possible pathways to the excited<br />

state of the substrate: (i) direct absorption of UV<br />

light by the substrate around its λ max , & (ii) the<br />

absorption of UV light by the cage followed by<br />

energy transfer into the substrate.


To clarify the reaction pathway, the 1•(2) 2 complex<br />

was irradiated by UV light at 290 nm where the<br />

absorption b<strong>and</strong> of 2 is completely covered by that<br />

of the cage. The adduct was formed much less<br />

efficiently. From these results, we suggest that<br />

substrate 2 is directly excited by irradiation, not via<br />

the excitation of the cage followed by energy<br />

transfer.


Fujita et al, Science 2006, 312, 251


Once the reaction is complete, the product<br />

framework is bent at the 9,10-position, cutting off<br />

the host-guest aromatic stacking interaction (step<br />

b). Accordingly, the encapsulated product is<br />

considerably destabilized & smoothly replaced by<br />

incoming reagents (step c → a). In this sense, the<br />

affinity of the host for reactive substrates & the<br />

disaffinity for product is markedly similar to<br />

enzymatic behavior.


Fujita et al, J. Am. Chem. Soc. 2005, 127, 11950.


Fujita et al, Science 2006, 313, 1273.


How might such assemblies be exploited in future<br />

work (1) One major impetus for the industrial<br />

development of fluorous chemistry that fluorous media<br />

might be used in the selective oxidation of methane to<br />

methanol. Small gaseous molecules such as methane<br />

& oxygen are usually highly soluble in fluorous<br />

phases. Methanol, because of its much greater polarity,<br />

might be rapidly scavenged by a nonfluorous phase<br />

before further oxidation could occur. Reactions of such<br />

guest molecules with the fluorous cages are therefore<br />

of particular interest.


(2) The next logical step would be to immobilize a<br />

fluorous oxidation catalyst in the cage interior & treat<br />

the system with a mixture of methane & oxygen.<br />

(3) The highly positively charged cages might also be<br />

attractive for anionic fluorous guests. Because of<br />

toxicity concerns & environmental persistence, several<br />

commercial fluorous carboxylates & sulfonates have<br />

been removed from the market in recent years. It is<br />

possible that they could be scavenged by the fluorous<br />

cages or by second-generation derivatives.


~ 740 nm due to TTF (e-rich) → triazine (e-deficient)<br />

⇒ TTF +. (radical cationic nature)


[(TTF)2] +.<br />

[(TTF +. ) 2<br />

[(TTF) 2 ] +. : 152 mv<br />

[(TTF +. ) 2 : 304 mv


Fujita et al, Angew. Chem. Int. Ed. 2005, 44, 1810.


A-D-A (450 nm)<br />

A-D-D-A (475 nm)<br />

A-D-A (450 nm)


Fujita et al, J. Am. Chem. Soc. 2005, 127, 4546.


Fujita et al, J. Am. Chem. Soc. 2004, 126, 16292.


[(ZnI 2 ) 3 (1) 2 ]⋅5.5(nitrobenzene)}n (2)<br />

triphenylene / cyclohexane<br />

[(ZnI 2 ) 3 (1) 2 ]⋅1.5(triphenylene)⋅2.5(cyclohex)} n (4a)<br />

[(ZnI 2 ) 3 (1) 2 ]⋅1.4(anthracene)⋅2.2(cyclohex)}n (4b)<br />

[(ZnI 2 ) 3 (1) 2 ]⋅(perylene)⋅(cyclohex)⋅1.5(nitrobenzene)} n (4c)<br />

Anthracene (3b)<br />

Perylene (3c)<br />

Triphenylene (3a)


Triphenylene (3a)<br />

Anthracene (3b)<br />

Perylene (3c)<br />

OPPh 3 (3d)<br />

2 & 3b : colorless<br />

4b : deep yellow<br />

4c : deep red<br />

4d : colorless


Single-crystal-to-single-crystal-guest exchange<br />

[(ZnI2)3(1)2]⋅3.3(nitrobenzene)}n (2’)<br />

Contraction Expansion<br />

[(ZnI2)3(1)2]⋅1.5(triphenylene)⋅2.5(cyclohex)}n (4a


In summary, we demonstrate the efficient inclusion<br />

of large guest molecules in the large channel of 2<br />

via single-crystal-to-single-crystal guest exchange.<br />

Our findings demonstrate that interaction strongly<br />

controls the inclusion geometry of the guest<br />

molecules. Such inter-molecular interactions as<br />

characterized by X-ray analysis will be helpful for<br />

design of not only simple inclusion phenomena but<br />

also new physical properties & chemical reactions<br />

within the coordination network.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!