02.01.2015 Views

VECOM Low Temperature Combustion

VECOM Low Temperature Combustion

VECOM Low Temperature Combustion

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Low</strong> <strong>Temperature</strong> <strong>Combustion</strong><br />

Stanislav V. Bohac<br />

Associate Research Scientist, University of Michigan<br />

Visiting Scientist, Czech Technical University in Prague<br />

<strong>VECOM</strong> Workshop, Prague, March 14-15, 2012


My background:<br />

Degrees<br />

B.S. & M.S. in Mechanical Engineering, University of Illinois, USA, 1993 &1995<br />

Ph.D. in Mechanical Engineering, University of Michigan, USA, 2002<br />

Positions in Industry<br />

AVL LIST, Graz, Austria, 1995-1997<br />

AVL Powertrain, Plymouth, MI, USA, 1998-2002<br />

Current Positions<br />

Associate Research Scientist, University of Michigan, USA<br />

Visiting Scientist, <strong>VECOM</strong>, Czech Technical University in Prague, Czech Republic<br />

<strong>VECOM</strong> Workshop, Prague, March 14-15, 2012


My research interests:<br />

Using thermodynamics, combustion analysis, and emissions characterization to<br />

study and develop advanced combustion and emissions reduction systems for<br />

the transportation industry.<br />

<strong>VECOM</strong> Workshop, Prague, March 14-15, 2012


Part 1: Gasoline<br />

<strong>Low</strong> <strong>Temperature</strong> <strong>Combustion</strong><br />

<strong>VECOM</strong> Workshop, Prague, March 14-15, 2012


Outline<br />

• Why consider low temperature combustion (LTC) for gasoline engines<br />

• Tools used to study LTC<br />

• Improving efficiency with LTC<br />

– Naturally aspirated LTC<br />

– Boosted LTC<br />

• Ignition and combustion constraints of LTC and the need for three<br />

combustion modes: HCCI, SACI, SI<br />

• <strong>Combustion</strong> phasing<br />

• Ringing and misfire limits<br />

• Emissions<br />

• Summary<br />

• Future challenges<br />

<strong>VECOM</strong> Workshop 5<br />

Prague, March 14-15 2012


Why consider low temperature combustion (LTC)<br />

for gasoline engines<br />

<strong>VECOM</strong> Workshop 6<br />

Prague, March 14-15 2012


Normal (High) <strong>Temperature</strong> <strong>Combustion</strong><br />

Good control of combustion<br />

<strong>Combustion</strong> phasing is set with spark timing<br />

Good emissions characteristics with TWC:<br />

U.S., 2012, EPA Tier 2, Bin 5 U.S., 1960, unregulated<br />

NMOG = 0.075 g/mi THC = 10.6 g/mi 99% ↓<br />

CO = 3.4 g/mi CO = 84.0 g/mi 96% ↓<br />

NO x = 0.05 g/mi NO x = 0.41 g/mi 88% ↓<br />

PM = 0.01 g/mi<br />

↓<br />

Poor efficiency as compared to diesel engines<br />

2010 GM 2.0L LNF Gasoline: 323 g/kWh @ 2000 rpm, 3 bar BMEP 18% ↑<br />

2009 VW 2.0L TDI Diesel: 265 g/kWh @ 2000 rpm, 3 bar BMEP<br />

<strong>VECOM</strong> Workshop 7<br />

Prague, March 14-15 2012


Why consider low temperature combustion (LTC)<br />

for gasoline engines<br />

To improve engine efficiency while maintaining<br />

good emissions characteristics.<br />

<strong>VECOM</strong> Workshop 8<br />

Prague, March 14-15 2012


Tools for studying LTC<br />

<strong>VECOM</strong> Workshop 9<br />

Prague, March 14-15 2012


Tools for Studying LTC<br />

1. 1-D Cycle Simulation: GT Power<br />

2. Single-cylinder LTC research engine<br />

3. Multi-cylinder LTC research engine<br />

1-D Cycle Simulation<br />

Single-Cylinder LTC Research Engine<br />

Multi-Cylinder LTC Research Engine<br />

<strong>VECOM</strong> Workshop 10 Prague, March 14-15 2012


Improving efficiency with LTC<br />

<strong>VECOM</strong> Workshop 11 Prague, March 14-15 2012


Carnot Cycle Efficiency<br />

Carnot Cycle<br />

• The theoretically most efficient cycle for converting thermal energy into work.<br />

• Heat taken from hot reservoir (T h ) and rejected to cold reservoir (T c )<br />

• 1-2: isothermal heat addition<br />

• 2-3: isentropic expansion<br />

• 3-4: isothermal heat rejection<br />

• 4-1: isentropic compression<br />

T<br />

1<br />

T<br />

c<br />

h<br />

• Efficiency improves with higher T h and lower T c<br />

<strong>VECOM</strong> Workshop 12 Prague, March 14-15 2012


Carnot Cycle Efficiency<br />

For a gasoline engine, one might be tempted to use:<br />

T h = 2400 K (typical peak cylinder temperature)<br />

T c = 363 K (engine coolant temperature of 90°C)<br />

and then claim that maximum attainable efficiency is:<br />

Tc<br />

363<br />

1<br />

1<br />

85%<br />

T 2400<br />

h<br />

It appears that LTC (lower T h ) would reduce efficiency.<br />

This logic is a mistake!<br />

‣ IC engines do not follow the Carnot Cycle.<br />

‣ The theoretically most efficient cycle for IC engines is the Otto Cycle.<br />

<strong>VECOM</strong> Workshop 13 Prague, March 14-15 2012


Otto Cycle Efficiency<br />

Otto Cycle: The theoretically most efficient cycle for an IC engine.<br />

• 1-2: isentropic compression<br />

• 2-3: constant volume heat addition<br />

• 3-4: isentropic expansion<br />

• 4-1: constant volume heat removal<br />

1<br />

1<br />

CR<br />

<br />

( 1)<br />

CR = compression ratio = V BDC /V TDC<br />

γ = C p /C v = ratio of specific heats<br />

Otto Cycle efficiency is a function of CR and γ.<br />

<strong>VECOM</strong> Workshop 14 Prague, March 14-15 2012


Otto Cycle Efficiency<br />

1<br />

1<br />

CR<br />

<br />

( 1)<br />

To increase efficiency we have two options:<br />

1) Increase compression ratio, CR<br />

2) Increase ratio of specific heats, γ<br />

<strong>VECOM</strong> Workshop 15 Prague, March 14-15 2012


Otto Efficiency (%)<br />

Increasing Compression Ratio<br />

<br />

1<br />

1<br />

CR<br />

<br />

( 1)<br />

V<br />

CR <br />

V<br />

BDC<br />

TDC<br />

65<br />

60<br />

γ=1.29<br />

55<br />

50<br />

45<br />

40<br />

35<br />

6 8 10 12 14 16 18 20 22 24<br />

Compression Ratio (-)<br />

<strong>VECOM</strong> Workshop 16 Prague, March 14-15 2012


Increasing Compression Ratio – Real Behaviour<br />

<br />

calc<br />

<br />

1<br />

<br />

CR<br />

1<br />

1<br />

<br />

ideal Otto cycle,<br />

• γ=1.29<br />

Wi<br />

i<br />

<br />

m Q<br />

Wb<br />

b<br />

<br />

m Q<br />

f<br />

f<br />

LHV<br />

LHV<br />

work on piston<br />

• heat loss<br />

• comb. duration<br />

• comb. efficiency<br />

• pumping<br />

work at flywheel<br />

• friction<br />

*<br />

Caris, D. F., Nelson, E. E., “A New Look at High Compression Engines,” SAE Technical Paper 590015.<br />

<strong>VECOM</strong> Workshop 17 Prague, March 14-15 2012


Increasing Compression Ratio<br />

Increasing CR beyond 12-14 provides little efficiency gain:<br />

• Increased heat losses (higher surface area to volume ratio)<br />

• Decreased combustion efficiency (fuel trapped in crevices, quenching)<br />

Furthermore, increased CR:<br />

• Requires higher octane fuel (expensive)<br />

• Requires stronger engine structure (high peak cylinder pressure)<br />

Conclusion: Increasing CR beyond current range for naturally aspirated engines<br />

(10.5-11.5) does not have the potential for large improvements in efficiency.<br />

<strong>VECOM</strong> Workshop 18 Prague, March 14-15 2012


Otto Efficiency (%)<br />

<br />

1<br />

1<br />

CR<br />

<br />

Increasing Ratio of Specific Heats<br />

( 1)<br />

<br />

C<br />

C<br />

p<br />

v<br />

65<br />

60<br />

CR=11<br />

55<br />

50<br />

45<br />

40<br />

35<br />

1.20 1.22 1.24 1.26 1.28 1.30 1.32 1.34 1.36 1.38 1.40<br />

C p /C v (-)<br />

<strong>VECOM</strong> Workshop 19 Prague, March 14-15 2012


1<br />

1<br />

CR<br />

<br />

Increasing Ratio of Specific Heats<br />

( 1)<br />

<br />

C<br />

C<br />

p<br />

v<br />

equilibrium products<br />

<br />

( F / A)<br />

( F / A)<br />

s<br />

<br />

1<br />

<br />

Gamma and engine efficiency increase with:<br />

• <strong>Low</strong>er temperature<br />

• Leaner (lower phi)<br />

<strong>VECOM</strong> Workshop 20 Prague, March 14-15 2012


Increasing Ratio of Specific Heats<br />

Otto Efficiency (%)<br />

equilibrium products<br />

65<br />

60<br />

CR=11<br />

55<br />

50<br />

45<br />

40<br />

35<br />

1.20 1.22 1.24 1.26 1.28 1.30 1.32 1.34 1.36 1.38 1.40<br />

C p /C v (-)<br />

EGR dilution increases gamma by decreasing temperature<br />

Air dilution increases gamma by decreasing temperature and changing composition.<br />

Raising gamma from 1.22 to 1.28 increases ideal Otto efficiency by 19%, and this does not even include<br />

pumping benefits at low load.<br />

Conclusion: Significant efficiency benefits can be attained by increasing gamma.<br />

<strong>VECOM</strong> Workshop 21 Prague, March 14-15 2012


Motivation for <strong>Low</strong> <strong>Temperature</strong> <strong>Combustion</strong><br />

Objective: Increase engine efficiency<br />

↓<br />

Increase efficiency by increasing gamma<br />

↓<br />

Increase gamma using low temperature, lean combustion<br />

<strong>VECOM</strong> Workshop 22 Prague, March 14-15 2012


Real Engine Effects<br />

Real engines do not have constant gamma.<br />

Real engine efficiency is reduced by:<br />

• Heat Loss<br />

• Burn duration loss<br />

• <strong>Combustion</strong> efficiency<br />

• Pumping loss<br />

• Friction loss<br />

A GT-Power 1-D cycle simulation was set up to account for these effects.<br />

Simulation results adapted from:<br />

• Lavoie, G. A., Ortiz-Soto, E., Babajimopoulos, A., Martz, J. B., Assanis, D. N., “Thermodynamic Sweet Spot Under Highly Dilute and<br />

Boosted Gasoline Engine Conditions”, submitted to International Journal of Engine Research, March 2012.<br />

• Martz, J., “Towards Efficient IC Engines”, presented at ACCESS <strong>Combustion</strong> Meeting, Ann Arbor MI, March 2012.<br />

• Assanis, D., Lavoie, G., Ortiz-Soto, E., “Thermodynamic Sweet Spot Under Highly Dilute and Boosted Gasoline Engine Conditions”,<br />

SAE 2011 High Efficiency Engines Symposium, Detroit MI, April 10-11, 2011.<br />

<strong>VECOM</strong> Workshop 23 Prague, March 14-15 2012


Engine Model<br />

GT Power used to simulate a 4 cylinder, 2.5L, current design engine:<br />

Bore/Stroke<br />

CR 12<br />

Intake Valves (2)<br />

IVO (0.1 mm lift)<br />

IVC (0.1 mm lift)<br />

Exhaust Valves (2)<br />

EVO (0.1 mm lift)<br />

EVC (0.1 mm lift)<br />

<strong>Combustion</strong><br />

90mm / 100 mm (4 cylinders, 2.5L)<br />

32.4 mm diameter / 10.8 mm lift<br />

12°BTDC gas exchange<br />

224°ATDC gas exchange<br />

26.1 mm diameter / 10.8 mm lift<br />

135°ATDC firing<br />

371°ATDC firing<br />

Wiebe profile<br />

Heat transfer Woschni 1<br />

Friction Chen-Flynn 2<br />

1) Woschni, G., 1967, “Equation for the Instantaneous Heat Transfer Coefficient in the Internal <strong>Combustion</strong> Engine”, SAE Paper 670931.<br />

2) Chen, S. K., Flynn, P. F., 1965, “Development of a Single Cylinder Compression Ignition Research Engine.” SAE Paper 650733.<br />

<strong>VECOM</strong> Workshop 24 Prague, March 14-15 2012


Engine Model – Operating Conditions<br />

GT Power model of 4 cylinder, 2.5L, current design engine:<br />

Engine speed<br />

Phi 0.2 - 1.2<br />

EGR 0-80%<br />

T in 60°C<br />

S P<br />

8 m/<br />

s<br />

(2400 rpm)<br />

P in<br />

1 - 3 bar<br />

Turbocharger Eff. (overall) 40, 50, 60%<br />

10-90% burn 25°CA, fixed for all cases<br />

CA50<br />

10°ATDC, fixed for all cases<br />

<strong>VECOM</strong> Workshop 25 Prague, March 14-15 2012


Effect of Phi on Naturally Aspirated Engine Efficiency<br />

70<br />

eta_all_v_phi_effect of h-b-pump-fric<br />

(%)<br />

60<br />

50<br />

40<br />

30<br />

Gr.<br />

Gr.<br />

Gr.<br />

Net<br />

Brake<br />

TIMING LOSS<br />

PUMPING<br />

HEAT LOSS<br />

FRICTION<br />

BURN<br />

DUR.<br />

2°<br />

25°<br />

25°<br />

25°<br />

20<br />

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4<br />

<br />

For Otto cycle, leaner is always better.<br />

For brake efficiency, best efficiency is = 0.5 - 1.0<br />

• Heat loss and friction reduce efficiency at lower phi.<br />

• <strong>Low</strong>er gamma and incomplete combustion reduce efficiency at higher phi.<br />

<strong>VECOM</strong> Workshop 26 Prague, March 14-15 2012


Effect of Phi on Naturally Aspirated Engine Efficiency<br />

<br />

( F / A)<br />

( F / A)<br />

s<br />

<br />

'<br />

<br />

F /( A R)<br />

( F / A)<br />

s<br />

For all cases, heat transfer and friction decrease efficiency at low BMEP.<br />

EIVC reduces pumping losses.<br />

EGR dilution reduces pumping and increases gamma.<br />

Air dilution further increases gamma.<br />

<strong>VECOM</strong> Workshop 27 Prague, March 14-15 2012


Effect of Phi on Boosted Engine Efficiency<br />

60<br />

etag etab_v_phi_PIN eq PEX_var Pin<br />

50<br />

GROSS<br />

P IN<br />

= P EX<br />

3 bar<br />

2 bar<br />

1 bar<br />

(%)<br />

40<br />

30<br />

BRAKE<br />

BOOST<br />

20<br />

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4<br />

Boosting slightly improves gross efficiency as heat loss becomes proportionally smaller<br />

(Nu=Re m ).<br />

Boosting greatly improves brake efficiency as friction becomes proportionally smaller<br />

(friction is mainly a function a speed, not engine load).<br />

<br />

Boosting moves peak brake efficiency to leaner phi (best = 0.3 - 0.6 for P in =P exh =3 bar).<br />

AIR<br />

<strong>VECOM</strong> Workshop 28 Prague, March 14-15 2012


Effect of Phi on Boosted Engine Efficiency with TC Eff.=50%<br />

_brake (%)<br />

50<br />

40<br />

30<br />

etab_v_bmep_AIR_TC50<br />

AIR DILUTION T/C EFF = 50%<br />

0.3<br />

0.4<br />

’<br />

0.5<br />

0.6<br />

1.2 1.5 2.0 2.5 3.0<br />

P_in (bar)<br />

1.0<br />

Throttled SI<br />

( = 1)<br />

20<br />

0 10 20 30 40<br />

BMEP (bar)<br />

Boosted SI<br />

( = 1)<br />

For all cases, heat transfer and friction decrease efficiency at low BMEP.<br />

Boosting helps at =1 (friction and heat loss are less significant).<br />

For a given boost, leaner is better (higher gamma) until friction and heat loss dominate.<br />

For best efficiency, boost and phi should increase together.<br />

1.0<br />

<strong>VECOM</strong> Workshop 29 Prague, March 14-15 2012


Optimum Phi and Boost with TC Eff.=50%<br />

BMEP (bar) Phi (-) P in (bar)<br />

5 0.35 1.2<br />

10 0.45 2.0<br />

15 0.50 2.5<br />

20 0.55 3.0<br />

25 0.60 3.0<br />

30 0.65 3.0<br />

35 0.95 3.0<br />

At low loads, phi and boost should increase together with BMEP.<br />

After maximum possible boost is reached, phi should increase alone.<br />

<strong>VECOM</strong> Workshop 30 Prague, March 14-15 2012


Ignition and combustion constraints of LTC, and the<br />

need for three combustion modes: HCCI, SACI, SI<br />

<strong>VECOM</strong> Workshop 31 Prague, March 14-15 2012


Ignition and <strong>Combustion</strong> with LTC<br />

The analysis so far has assumed that:<br />

• Homogeneous charge<br />

• The charge is ignitable<br />

• <strong>Combustion</strong> is sustainable<br />

• <strong>Combustion</strong> proceeds at a reasonable pace<br />

But ignition and combustion are not guaranteed…<br />

<strong>VECOM</strong> Workshop 32 Prague, March 14-15 2012


Ignition and <strong>Combustion</strong> with LTC<br />

Consider three ranges of Phi:<br />

1) = 0.65 – 1.0 → SI (spark ignition)<br />

• As becomes leaner approaches 0.65, ignition occurs but<br />

combustion becomes unstable through expansion.<br />

2) = 0.20 – 0.45 → HCCI (homogeneous charge compression ignition) or CAI<br />

• Preheat charge using intake heating or negative valve overlap (NVO)<br />

‣ NVO closes exhaust valve early and opens intake valve late (recompression)<br />

• Compression initiates combustion<br />

• < 0.2 is not practical with typical CR<br />

• > 0.45 causes excessive combustion rate (noise, engine damage)<br />

3) = 0.45 – 0.65 → SACI (spark assisted compression ignition)<br />

• Ignite charge with spark; this consumes part of charge at a moderate<br />

rate<br />

• Initial combustion compresses remaining charge (like a 2 nd piston),<br />

and compression ignition consumes the rest.<br />

• Attain complete combustion with a tolerable combustion rate.<br />

<strong>VECOM</strong> Workshop 33 Prague, March 14-15 2012


<strong>Combustion</strong> Phasing<br />

<strong>Combustion</strong> phasing is set by charge temperature at IVC.<br />

Two methods:<br />

1) Intake heating<br />

• Useful in a research engine because have independent<br />

control over temperature and composition<br />

2) Negative valve overlap (NVO)<br />

• Useful in a production engine because it is fast acting and<br />

does not require a powerful intake heater.<br />

<strong>VECOM</strong> Workshop 34 Prague, March 14-15 2012


Ignition and <strong>Combustion</strong> with Naturally Aspirated LTC<br />

BRAKE<br />

(%)<br />

50<br />

40<br />

30<br />

20<br />

HCCI<br />

0.3<br />

Load control_etab_v_bmep_NA<br />

0.4<br />

ADV.<br />

COMB<br />

’<br />

SI<br />

0.6 1.0<br />

AIR DILUTION<br />

EGR DIL. ( = 1)<br />

EIVC (SI; = 1)<br />

THROTTLED (SI; = 1)<br />

10<br />

0 2 4 6 8 10 12<br />

BMEP (bar)<br />

<strong>VECOM</strong> Workshop 35 Prague, March 14-15 2012


<strong>Combustion</strong> phasing<br />

<strong>VECOM</strong> Workshop 36 Prague, March 14-15 2012


<strong>Combustion</strong> Phasing<br />

The simulations assumed that CA 50 is maintained at 10°ATDC.<br />

Is this optimum<br />

Is this possible<br />

<strong>VECOM</strong> Workshop 37 Prague, March 14-15 2012


<strong>Combustion</strong> Phasing – SI <strong>Combustion</strong><br />

What is optimum combustion phasing<br />

gross (%)<br />

60<br />

55<br />

50<br />

45<br />

40<br />

etag_timing sweeps 2-10-20-30-40<br />

10-90 BURN =<br />

2 °<br />

10 °<br />

CR = 12; = 0.6<br />

20 °<br />

30 ° 40 °<br />

ADIABATIC<br />

WITH H.T.<br />

35<br />

-10 TDC 10 20<br />

With no heat transfer, optimum CA 50 = TDC.<br />

With heat transfer, optimum CA 50 = 10°ATDC.<br />

Burn duration has minimal effect on optimum CA 50 .<br />

Burn duration reduces efficiency for burn durations greater than 20°.<br />

<strong>VECOM</strong> Workshop 38 Prague, March 14-15 2012


Ringing and misfire limits<br />

<strong>VECOM</strong> Workshop 39 Prague, March 14-15 2012


Ringing and Misfire Limits of HCCI<br />

HCCI combustion phasing is not as flexible as for SI combustion.<br />

• Advanced combustion causes excessive rate of heat release.<br />

• Undesirable combustion noise<br />

• Increased thermal and mechanical loading of engine.<br />

• Retarded combustion causes unreliable combustion.<br />

• Cycle-to-cycle changes in IMEP.<br />

• Misfires<br />

<strong>VECOM</strong> Workshop 40 Prague, March 14-15 2012


HCCI Ringing Limit<br />

HCCI and SACI can cause excessive rate of heat release (ringing).<br />

*<br />

Vavra, J., Bohac, S. V., Manofsky, L., Lavoie, G., Assanis, D., 2011, “Knock in Various <strong>Combustion</strong> Modes in a Gasoline-Fueled Automotive<br />

Engine,” Proceedings of the ASME 2011 Internal <strong>Combustion</strong> Engine Division Fall Technical Conference, ICEF2011-60124.<br />

<strong>VECOM</strong> Workshop 41 Prague, March 14-15 2012


HCCI Ringing Limit<br />

<strong>VECOM</strong> Workshop 42 Prague, March 14-15 2012


HCCI Ringing Limit<br />

Three commonly used parameters to quantify the ringing limit:<br />

1) Ringing intensity 1<br />

Based on the assumption that that engine structure excitation is<br />

proportional to the acoustic intensity of the cylinder pressure<br />

waves.<br />

Apply a 5 kHz high pass filter to each cylinder pressure trace:<br />

RI<br />

<br />

P<br />

P<br />

<br />

2<br />

1<br />

max RT<br />

, 2<br />

2<br />

max<br />

W<br />

m<br />

<br />

<br />

P max<br />

Keep RI < 5 MW/m 2<br />

time<br />

1<br />

Andrea M. M., Cheng W. K., Kenney T, Yang J., On HCCI Engine Knock, SAE Paper No. 2007-01-1858, 2007.<br />

<strong>VECOM</strong> Workshop 43 Prague, March 14-15 2012


HCCI Ringing Limit<br />

2) <strong>Low</strong> pass ringing index 1<br />

Based on the assumption that ringing is initiated by and is<br />

proportional to the maximum rate of low freq. pressure rise.<br />

Apply a 5 kHz low pass filter to each cylinder pressure trace<br />

RI LP<br />

<br />

<br />

<br />

1 <br />

2<br />

For typical passenger car engine geometry,<br />

β=0.05<br />

dP<br />

dt<br />

<br />

<br />

<br />

This approach is useful for engine simulations<br />

that do not capture high frequency oscillations.<br />

Keep RI < 5 MW/m 2<br />

<br />

<br />

<br />

W<br />

<br />

m<br />

max<br />

RT<br />

,<br />

2<br />

Pmax<br />

2<br />

-20 -10 0 10 20 30 40<br />

1<br />

Eng J. A., “Characterization of Pressure Wave Oscillation in HCCI <strong>Combustion</strong>,” SAE Paper No. 2002-01-2859, 2002.<br />

<strong>VECOM</strong> Workshop 44 Prague, March 14-15 2012<br />

<br />

<br />

<br />

60<br />

55<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

P<br />

t<br />

<br />

<br />

<br />

dP<br />

dt<br />

<br />

<br />

<br />

max<br />

P max


HCCI Ringing Limit<br />

3) <strong>Combustion</strong> Noise 1<br />

<strong>Combustion</strong> Noise Meter (e.g., AVL 450S) is commonly used.<br />

Perform Fourier transform of cylinder pressure trace.<br />

Apply “U filter” to account for engine structure attenuation.<br />

Apply “A filter” to account for reception of human ear.<br />

U filter characteristics<br />

A filter characteristics<br />

0<br />

5<br />

Magnitude [dB]<br />

-10<br />

-20<br />

-30<br />

Magnitude [dB]<br />

0<br />

-5<br />

-10<br />

-15<br />

-40<br />

0.1 1 10<br />

freq [kHz]<br />

-20<br />

0.1 1 10<br />

freq [kHz]<br />

<strong>Combustion</strong> noise (dB) = RMS of resulting signal<br />

Keep <strong>Combustion</strong> Noise < 90 dB<br />

1<br />

Russell M.F., Haworth R., <strong>Combustion</strong> Noise from High Speed Direct Injection Diesel Engines, SAE Paper No. 850973, 1985.<br />

<strong>VECOM</strong> Workshop 45 Prague, March 14-15 2012


Comparison of HCCI Ringing Parameters<br />

Experimental setup to compare HCCI ringing metrics:<br />

• Single cylinder research engine<br />

• Hydraulic valve actuation for NVOcontrolled<br />

HCCI<br />

• Bore / stroke = 86.0 mm / 94.6 mm<br />

• CR = 12.5<br />

• Direct injection, side-mounted injector<br />

• 91 RON gasoline<br />

<strong>VECOM</strong> Workshop 46 Prague, March 14-15 2012


HCCI Ringing Limits<br />

Comparison of three commonly used ringing metrics using an HCCI<br />

single cylinder research engine 1 .<br />

HCCI<br />

SACI<br />

SI<br />

Different methods do not always show the same trends for different<br />

combustion modes.<br />

1<br />

Vavra, J., Bohac, S. V., Manofsky, L., Lavoie, G., Assanis, D., 2011, “Knock in Various <strong>Combustion</strong> Modes in a Gasoline-Fueled Automotive<br />

Engine,” Proceedings of the ASME 2011 Internal <strong>Combustion</strong> Engine Division Fall Technical Conference, ICEF2011-60124.<br />

<strong>VECOM</strong> Workshop 47 Prague, March 14-15 2012


HCCI Misfire Limit<br />

COV of IMEP increases as CA 50 is retarded 1 .<br />

COV limit at later phasing with lower ON fuels<br />

3<br />

NH40<br />

2.5<br />

RD387<br />

COV of IMEP g<br />

2<br />

1.5<br />

1<br />

Iso-Octane<br />

0.5<br />

0<br />

0 2 4 6 8 10 12 14<br />

CA50 [deg ATDC]<br />

1<br />

Hagen, L., Bohac, S., Lavoie, G., Assanis, D., “Fuel Effects on Heat Release and Maximum Load with HCCI in the UM FFVA Engine,”<br />

presented at Sandia National Lab, Livermore CA, February 2011.<br />

<strong>VECOM</strong> Workshop 48 Prague, March 14-15 2012


IMEP g [kPa]<br />

Combining HCCI Ringing and Misfire Limits<br />

Both ringing and misfire limits must be considered to operate in HCCI mode 1 .<br />

• Ringing limit = 5 MW/m 2<br />

• COV of IMEP (misfire) limit = RD387 5% Gasoline<br />

470<br />

450<br />

430<br />

410<br />

390<br />

370<br />

350<br />

330<br />

310<br />

290<br />

270<br />

7.0 bar EMEP<br />

7.4 bar EMEP<br />

7.8 bar EMEP<br />

8.2 bar EMEP<br />

8.6 bar EMEP<br />

9.0 bar EMEP<br />

9.4 bar EMEP<br />

9.8 bar EMEP<br />

fuel energy ( J / cycle )<br />

EMEP ( bar)<br />

<br />

displaced volume(<br />

L)*100<br />

-2 0 2 4 6 8 10 12 14<br />

CA50 [deg ATDC]<br />

1<br />

Hagen, L., Bohac, S., Lavoie, G., Assanis, D., “Fuel Effects on Heat Release and Maximum Load with HCCI in the UM FFVA Engine,” presented<br />

at Sandia National Lab, Livermore CA, February 2011.<br />

<strong>VECOM</strong> Workshop 49 Prague, March 14-15 2012


Combining HCCI Ringing and Misfire Limits<br />

IMEP g [kPa]<br />

470<br />

450<br />

430<br />

410<br />

390<br />

370<br />

350<br />

330<br />

310<br />

290<br />

270<br />

7.0 bar EMEP<br />

7.4 bar EMEP<br />

7.8 bar EMEP<br />

8.2 bar EMEP<br />

8.6 bar EMEP<br />

9.0 bar EMEP<br />

9.4 bar EMEP<br />

9.8 bar EMEP<br />

RD387 Gasoline<br />

Ringing<br />

Limit<br />

-2 0 2 4 6 8 10 12 14<br />

CA50 [deg ATDC]<br />

Stability<br />

Limit<br />

*<br />

Hagen, L., Bohac, S., Lavoie, G., Assanis, D., “Fuel Effects on Heat Release and Maximum Load with HCCI in the UM FFVA Engine,” presented<br />

at Sandia National Lab, Livermore CA, February 2011.<br />

<strong>VECOM</strong> Workshop 50 Prague, March 14-15 2012


Emissions from HCCI<br />

<strong>VECOM</strong> Workshop 51 Prague, March 14-15 2012


Emissions from HCCI<br />

PM<br />

HC<br />

NO x<br />

CO 2<br />

CO<br />

<strong>VECOM</strong> Workshop 52 Prague, March 14-15 2012


Emissions from HCCI<br />

We’ll consider three groups of pollutants:<br />

• NO x emissions<br />

• Mono-nitrogen oxides (NO + NO 2 )<br />

• NO x contributes to smog, acid rain, and respiratory ailments<br />

• THC emissions<br />

• Total hydrocarbons<br />

• Reactive hydrocarbons contribute to the formation of ground-level<br />

ozone, which is the main component of photochemical smog.<br />

• Some HC are carcinogenic (e.g., benzene, 1,3-butadiene)<br />

• Methane contributes to climate change<br />

• PM emissions<br />

• Particulate matter<br />

• Solid or liquid particles suspended in a gas<br />

• Main components are elemental carbon (EC) and organic carbon (OC)<br />

• PM causes inhalation health effects (lung irritant and desorption of OC)<br />

<strong>VECOM</strong> Workshop 53 Prague, March 14-15 2012


Emissions from HCCI<br />

NO x emissions<br />

• Measured using Fourier Transform<br />

InfraRed detector (FTIR)<br />

• MKS 2030HS<br />

FTIR<br />

FID<br />

THC emissions<br />

• Measured using Flame Ionization<br />

Detector (FID)<br />

• Horiba FIA 236<br />

<strong>VECOM</strong> Workshop 54 Prague, March 14-15 2012


Emissions from HCCI<br />

Smoke Meter<br />

PM emissions<br />

• EC measured using Smoke Meter and EC correlation 1<br />

• AVL 415S<br />

• Total PM measured with Partial Flow Dilution Tunnel<br />

and Gravimetric Filter Analysis<br />

• In-house designed dilution tunnel, Pall Emfab<br />

TX40 filters, Sartorius microbalance<br />

Mini Dilution Tunnel (MDT)<br />

Loaded PM Filter<br />

Filter Conditioning Glove Box<br />

1<br />

Christian, V. R., Knopf, F., Jaschek, A., Schneider, W., 1993, “Eine Neue Messmethodik der<br />

Bosch-Zahl mit Erhoehter Emphfindlichkeit”, MTZ, 54(1), 16-22.<br />

<strong>VECOM</strong> Workshop 55 Prague, March 14-15 2012


Emissions from HCCI<br />

2.0L HCCI Engine<br />

Multi-Cylinder HCCI Test Engine<br />

MY2010 GM Ecotec LNF 2.0L DISI turbocharged I4<br />

Side-mounted DI injector<br />

HCCI modifications:<br />

• CR increased from 9.25 to 11.25<br />

• <strong>Low</strong>-lift HCCI camshafts with NVO<br />

• Small Borg Warner Turbocharger<br />

• Small Eaton supercharger<br />

Multi-Cylinder Diesel Test Engine<br />

MY2008 Ford Powerstroke 6.4L V8 diesel<br />

Common rail fuel injection<br />

6.4L Diesel Engine<br />

<strong>VECOM</strong> Workshop 56 Prague, March 14-15 2012


Emissions from HCCI<br />

NO x Emissions from HCCI<br />

With lean HCCI combustion where < 0.6 (Lambda > 1.6), NO x<br />

emissions can be maintained below 10 ppm and NO x<br />

aftertreatment is not needed.<br />

The challenge comes with moderately lean SACI or SI (0.60 < <<br />

1.00)<br />

<strong>VECOM</strong> Workshop 57 Prague, March 14-15 2012


Emissions from HCCI<br />

HC Emissions from HCCI<br />

Hydrocarbons can be relatively high, especially when high<br />

amounts of residual gas are used to initiate combustion at low<br />

load.<br />

At 2000 rpm, 3 bar BMEP, HCCI increases THC from 1500 to 2500<br />

ppmC 1 .<br />

<strong>VECOM</strong> Workshop 58 Prague, March 14-15 2012


PM (mg/m3)<br />

PM Emissions from HCCI<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Emissions from HCCI<br />

OC Mass<br />

EC Mass<br />

>40 >40<br />

>40<br />

diesel 6 bar diesel 9 bar HCCI 60°BTDC HCCI 52°BTDC HCCI 50°BTDC<br />

Diesel<br />

1500 rpm, 6 bar / 2500 rpm, 9 bar<br />

SOI=3.5ºATDC<br />

14% EGR<br />

HCCI<br />

Wall-guided spray<br />

Split injection, 50/50 mass ratio:<br />

SOI of 1 st injection = 345ºBTDC<br />

EOI of 2 nd injection = 60º, 52º, 50ºBTDC<br />

1500 rpm, 1.9 bar BMEP<br />

• Injection at 50°BTDC produces diesel-like EC…particulate filter needed.<br />

• All injection timings displayed excessive OC in PM…TWC may oxidize this.<br />

<strong>VECOM</strong> Workshop 59 Prague, March 14-15 2012


Summary<br />

<strong>VECOM</strong> Workshop 60 Prague, March 14-15 2012


Summary<br />

• Significant efficiency benefits can be attained by increasing gamma<br />

(γ=C p /C v ).<br />

• LTC increases gamma by reducing temperature and operating lean.<br />

• Boosting moves efficiency peak to leaner mixtures.<br />

• Different requires different combustion modes:<br />

‣SI: = 0.65 - 1.0<br />

‣HCCI: = 0.20 – 0.45<br />

‣SACI: = 0.45 – 0.65<br />

• As HCCI load increases, ringing and misfire limits converge.<br />

• Lean HCCI has low NO x , high THC, and can have high PM<br />

• In moving from stoichiometric SI to lean HCCI, we improve<br />

efficiency but make combustion control and emissions control<br />

more challenging.<br />

<strong>VECOM</strong> Workshop 61 Prague, March 14-15 2012


Future challenges<br />

<strong>VECOM</strong> Workshop 62 Prague, March 14-15 2012


Future challenges<br />

1. Optimization of direct injection for HCCI<br />

– Multiple injections to avoid spray-wall impingement, pool files and PM<br />

– Charge stratification to reduce ringing and increase load limit<br />

– Injection during NVO to generate HC radicals and promote combustion<br />

2. Developing effective after-treatment for HCCI<br />

– <strong>Low</strong> temperature, high THC, different HC composition<br />

– Improved THC storage of NO x and HC for mode switches<br />

– PM control with TWC or DPF<br />

3. Control of HCCI combustion and mode switching<br />

– <strong>Combustion</strong> feedback (Pcyl, ion probe, crankshaft acceleration, exhaust<br />

lambda and NO x sensors)<br />

– Transients and mode switches<br />

4. Engine design for HCCI<br />

– High cylinder pressure, knocking/ringing, audible noise<br />

<strong>VECOM</strong> Workshop 63 Prague, March 14-15 2012


Part 2: Diesel<br />

<strong>Low</strong> <strong>Temperature</strong> <strong>Combustion</strong><br />

<strong>VECOM</strong> Workshop, Prague, March 14-15, 2012


Outline<br />

• Why consider low temperature combustion (LTC) for diesel engines<br />

• Reducing emissions with diesel LTC<br />

• Experimental setup for studying diesel LTC<br />

• Implementation of LTC on a diesel engine<br />

• A closer look at diesel LTC hydrocarbon emissions<br />

• Summary<br />

• Future challenges<br />

<strong>VECOM</strong> Workshop 65 Prague, March 14-15 2012


Why consider low temperature combustion (LTC)<br />

for diesel engines<br />

<strong>VECOM</strong> Workshop 66 Prague, March 14-15 2012


Conventional Diesel <strong>Combustion</strong><br />

Good efficiency as compared to gasoline engines (high γ, high CR, no<br />

throttle, boosted)<br />

2009 VW 2.0L TDI Diesel: 265 g/kWh @ 2000 rpm, 3 bar BMEP 18% ↓<br />

2010 GM 2.0L LNF Gasoline: 323 g/kWh @ 2000 rpm, 3 bar BMEP<br />

Good control of combustion<br />

<strong>Combustion</strong> phasing is set with injection timing<br />

Poor emissions characteristics<br />

High NO x and PM (heterogeneous mixture) requires expensive and complex aftertreatment<br />

US EPA Tier 2, Bin5<br />

Euro 5<br />

DOC + cDPF + SCR with used by VW, Mercedes, GM<br />

DOC + cDPF on small cars<br />

DOC + cDPF + SCR or LNT on heavy cars<br />

<strong>VECOM</strong> Workshop 67 Prague, March 14-15 2012


Why consider low temperature combustion (LTC)<br />

for diesel engines<br />

To improve emissions while maintaining efficiency.<br />

<strong>VECOM</strong> Workshop 68 Prague, March 14-15 2012


Reducing emissions with diesel LTC<br />

<strong>VECOM</strong> Workshop 69 Prague, March 14-15 2012


Phi – T Diagram<br />

Conventional diesel combustion straddles the soot and NO formation zones.<br />

<strong>VECOM</strong> Workshop 70 Prague, March 14-15 2012


Phi – T Diagram<br />

Soot<br />

1600-2400K<br />

Ideal temperature range for pyrolysis of fuel into soot nucleation sites<br />

2400K<br />

Fuel decomposes into gaseous HC fragments rather than pyrolyzing into soot<br />

NO x<br />

>2100K<br />

NO formation occurs<br />

highly temperature dependent<br />

1<br />

Kamimoto, T., Bae, M., “High <strong>Combustion</strong> <strong>Temperature</strong> for the Reduction of Particulate in Diesel Engines,” SAE 880423, 1988.<br />

<strong>VECOM</strong> Workshop 71 Prague, March 14-15 2012


Phi – T Diagram<br />

By increasing mixing (to reduce local phi) and reducing temperature, LTC can greatly<br />

reduce both soot and NO.<br />

LTC can be achieved by using heavy<br />

EGR (40-50%), earlier injection timing,<br />

and lower CR.<br />

NO x ↓ by lower temperatures.<br />

PM ↓ by lower temperature and more<br />

premixed combustion (lower local phi).<br />

But CO and HC ↑ and must be<br />

addressed.<br />

<strong>VECOM</strong> Workshop 72 Prague, March 14-15 2012


Diesel LTC Concept<br />

Reduce PM and NO x emissions with LTC 1,2 .<br />

Use DOC to oxidize the increased CO and HC 2 .<br />

LTC<br />

DOC (oxidize CO and HC)<br />

+<br />

1<br />

Jacobs, T. J., Bohac, S. V., Assanis, D. N., Szymkowicz, P. G., 2005, “Lean and Rich Premixed Compression Ignition <strong>Combustion</strong> in a Light-Duty<br />

Diesel Engine,” SAE Paper 2005-01-0166, SAE Transactions – Journal of Engines, 114.<br />

2<br />

Bohac, S. V., Han, M., Jacobs, T. J., López, A. J., Assanis, D. N., Szymkowicz, P., 2006, “Speciated Hydrocarbon Emissions from an Automotive<br />

Diesel Engine and DOC Utilizing Conventional and PCI <strong>Combustion</strong>,” SAE Paper 2006-01-0201, SAE Transactions – Journal of Fuels and<br />

Lubricants, 115.<br />

<strong>VECOM</strong> Workshop 73 Prague, March 14-15 2012


Experimental setup for studying diesel LTC<br />

<strong>VECOM</strong> Workshop 74 Prague, March 14-15 2012


Experimental Setup<br />

Engine<br />

Manufactured by General Motors / Isuzu<br />

1.7L 4-cylinder automotive diesel engine<br />

B/S = 79/86mm<br />

4 valves per cylinder with swirl control valves<br />

Common rail fuel injection<br />

Turbocharger with VGT, intercooler<br />

Intake throttle<br />

EGR cooler<br />

16:1 compression ratio (lowered from 19:1)<br />

Multi-Cylinder LTC Research Engine<br />

Platinum-based production DOC<br />

0.50 L<br />

400 cells/in 2<br />

Cordierite ceramic monolith<br />

Alumina and silica washcoat<br />

Pt:Pd:Rh = 1:0:0<br />

150 g/ft 3 platinum<br />

Platinum-Based DOC<br />

<strong>VECOM</strong> Workshop 75 Prague, March 14-15 2012


Emissions instrumentation<br />

Emissions bench (AVL CEB II)<br />

NO x , CO, CO 2 , O 2 , THC<br />

Experimental Setup<br />

Emissions Bench<br />

Smoke Meter<br />

Filter smoke meter (AVL 415S)<br />

FSN and calculated soot 1<br />

Gas Chromatography for volatile HC (C 1 -C 8 )<br />

Dilution and Tedlar bag used for sampling<br />

Shimadzu GC-17A with FID for analysis<br />

HC Speciation Laboratory<br />

Gas Chromatography for semi-volatile HC (C 6 -C 20 )<br />

Tenax trap and MFC used for sampling<br />

Tekmar Aerotrap 6000 used for desorption<br />

Shimadzu GC-17A with FID for analysis<br />

1<br />

Christian, V. R., Knopf, F., Jaschek, A., Schneider, W., 1993, “Eine Neue<br />

Messmethodik der Bosch-Zahl mit Erhoehter Emphfindlichkeit”, MTZ, 54(1), 16-22.<br />

<strong>VECOM</strong> Workshop 76 Prague, March 14-15 2012


Implementation of LTC on a diesel engine<br />

<strong>VECOM</strong> Workshop 77 Prague, March 14-15 2012


Implementation of LTC on a Diesel Engine<br />

Operating condition and development targets:<br />

Lean<br />

Conventional<br />

Lean<br />

LTC<br />

Speed (RPM) 1500 1500<br />

BMEP (bar) 3.5 to 4 3.5 to 4<br />

Rail Pressure (bar) 300 1000<br />

EGR Rate (%) 32 41-45<br />

Inj Timing (°BTDC) 3-15 9-18<br />

EI-NO x (g/kg-fuel)


Implementation of LTC on a Diesel Engine<br />

32% EGR 32% EGR<br />

• NO x decreases as injection timing is retarded and combustion temperature is<br />

reduced.<br />

• PM first increases then decreases with injection timing.<br />

– Initial increase in PM is due to shorter ignition delay and increased diffusion burn.<br />

– Subsequent decrease in PM results from more mixing and lower temperature.<br />

<strong>VECOM</strong> Workshop 79 Prague, March 14-15 2012


Implementation of LTC on a Diesel Engine<br />

32% EGR 32% EGR<br />

• NO x decreases as injection timing is retarded and combustion temperature is<br />

reduced.<br />

• PM first increases then decreases with injection timing.<br />

– Initial increase in PM is due to shorter ignition delay and increased diffusion burn.<br />

– Subsequent decrease in PM results from more mixing and lower temperature.<br />

<strong>VECOM</strong> Workshop 80 Prague, March 14-15 2012


Implementation of LTC on a Diesel Engine<br />

32% EGR 32% EGR<br />

Advanced injection:<br />

• Increases NO x<br />

• Increases noise<br />

• Decreases BSFC<br />

<strong>VECOM</strong> Workshop 81 Prague, March 14-15 2012


Lean Conventional <strong>Combustion</strong> that Meets Targets<br />

Lean<br />

Conventional<br />

Speed (RPM) 1500<br />

BMEP (bar) 3.96<br />

Rail Pressure (bar) 300<br />

EGR Rate (%) 32<br />

Inj Timing (°BTDC) 5<br />

EI-NO x (g/kg-fuel) 4.28<br />

EI-PM (g/kg-fuel) 0.34<br />

Noise (dB) 88.2<br />

BSFC (g/kW-hr) 235<br />

<strong>VECOM</strong> Workshop 82 Prague, March 14-15 2012


Implementation of LTC on a Diesel Engine<br />

• Retarded injection reduces NO x .<br />

• Increased EGR greatly reduces NO x .<br />

<strong>VECOM</strong> Workshop 83 Prague, March 14-15 2012


Implementation of LTC on a Diesel Engine<br />

EI-PM<br />

LTC<br />

• Higher EGR increases PM at advanced injection timing.<br />

• Higher EGR with retarded injection timing reduces PM. Here both NO x and PM<br />

decrease with retarded injection timing.<br />

<strong>VECOM</strong> Workshop 84 Prague, March 14-15 2012


Implementation of LTC on a Diesel Engine<br />

• Increasing EGR from 42% to 45% significantly retards combustion.<br />

• Retarding injection from 15 to 9°BTDC also significantly retards combustion.<br />

<strong>VECOM</strong> Workshop 85 Prague, March 14-15 2012


Implementation of LTC on a Diesel Engine<br />

• Noise target < 90 dB<br />

• BSFC target < 5% efficiency loss relative to conventional combustion.<br />

<strong>VECOM</strong> Workshop 86 Prague, March 14-15 2012


Implementation of LTC on a Diesel Engine<br />

Lean<br />

Conventional<br />

Lean PCI<br />

Speed (RPM) 1500 1500<br />

BMEP (bar) 3.96 3.75<br />

Rail Pressure (bar) 300 1000<br />

EGR Rate (%) 32 45<br />

Inj Timing (°BTDC) 5 15<br />

EI-NO x (g/kg-fuel) 4.28 0.31<br />

EI-PM (g/kg-fuel) 0.34 0.07<br />

Noise (dB) 88.2 88.7<br />

BSFC (g/kW-hr) 235 246<br />

Jacobs, T. J., Bohac, S. V., Assanis, D. N., Szymkowicz, P. G., 2005, “Lean and Rich Premixed Compression Ignition <strong>Combustion</strong> in a Light-Duty<br />

Diesel Engine,” SAE Paper 2005-01-0166, SAE Transactions – Journal of Engines, 114.<br />

<strong>VECOM</strong> Workshop 87 Prague, March 14-15 2012


A closer look at diesel LTC Hydrocarbon emissions<br />

<strong>VECOM</strong> Workshop 88 Prague, March 14-15 2012


Operating Conditions<br />

Lean Conv. Lean LTC Rich LTC<br />

Speed (rpm) 1500 1500 1500<br />

BMEP (bar) 3.9 3.9 3.6<br />

Inj.Timing(°BTDC) 5° 15° 25°<br />

Rail P (bar) 300 1000 1000<br />

Comb. A/F (-) 28.7 16.2 12.5<br />

EGR (%) 33 45 49<br />

Exhaust T (°C) 290 283 254<br />

Comb. Noise (dB) 88 89 89<br />

BSFC (g/kWh) 242 249 313<br />

• low PM and NO x<br />

• DOC oxidizes CO and HC<br />

• low PM and NO x<br />

• generate CO and H 2<br />

for LNT regeneration<br />

<strong>VECOM</strong> Workshop 89 Prague, March 14-15 2012


Engine-Out Emissions<br />

*<br />

Bohac, S. V., Han, M., Jacobs, T. J., López, A. J., Assanis, D. N., Szymkowicz, P., 2006, “Speciated Hydrocarbon Emissions from an Automotive<br />

Diesel Engine and DOC Utilizing Conventional and PCI <strong>Combustion</strong>,” SAE Paper 2006-01-0201, SAE Transactions – Journal of Fuels and<br />

Lubricants, 115.<br />

<strong>VECOM</strong> Workshop 90 Prague, March 14-15 2012


Engine-Out HC Composition by Carbon Number<br />

<strong>VECOM</strong> Workshop 91 Prague, March 14-15 2012


Engine-Out HC Composition by Carbon Number<br />

<strong>VECOM</strong> Workshop 92 Prague, March 14-15 2012


Late-Forming Species (Engine-Out)<br />

Rich PCI<br />

Lean Conv.<br />

Lean PCI<br />

<strong>VECOM</strong> Workshop 93 Prague, March 14-15 2012


DOC Conversion Efficiency<br />

<strong>VECOM</strong> Workshop 94 Prague, March 14-15 2012


DOC Conversion Efficiency<br />

<strong>VECOM</strong> Workshop 95 Prague, March 14-15 2012


Why Does the DOC Perform Poorly with Rich LTC<br />

• Rich LTC has low O 2 concentration<br />

• There is insufficient O 2 to oxidize all of the CO and HC.<br />

• But the DOC does not even use the O 2 that is available<br />

(pre-DOC and post-DOC O 2 concentrations are both 0.9%).<br />

• Injecting O 2 ([O 2 ]=2%) does not improve CO and HC conversion<br />

efficiencies.<br />

<strong>VECOM</strong> Workshop 96 Prague, March 14-15 2012


Why Does the DOC Perform Poorly with Rich LTC<br />

• Rich PCI has low O 2 concentration – No.<br />

• Rich LTC has low exhaust temperature<br />

• Rich LTC exhaust is colder (254ºC) than lean LTC exhaust.<br />

• But the DOC is active if lean LTC exhaust temperature is reduced to<br />

220ºC.<br />

• And the DOC is inactive if rich LTC exhaust temperature is increased to<br />

320ºC.<br />

<strong>VECOM</strong> Workshop 97 Prague, March 14-15 2012


Why Does the DOC Perform Poorly with Rich LTC<br />

• Rich PCI has low O 2 concentration – No.<br />

• Rich PCI has low exhaust temperature – No.<br />

• Rich LTC has different hydrocarbon properties (i.e., less reactive HC)<br />

• Rich LTC has a higher fraction of C 1 -C 2 hydrocarbons.<br />

• But even conversion of reactive species like CO, acetylene and olefins<br />

is severely reduced.<br />

<strong>VECOM</strong> Workshop 98 Prague, March 14-15 2012


Why Does the DOC Perform Poorly with Rich LTC<br />

• Rich PCI has low O 2 concentration – No.<br />

• Rich PCI has low exhaust temperature – No.<br />

• Rich PCI has different hydrocarbon properties (i.e., less reactive HC) – No.<br />

• Rich LTC has a high CO/O 2 ratio<br />

• Platinum preferentially adsorbs CO over O 2 at temp. typical of diesel<br />

exhaust.<br />

• If p CO ≥ p O2 then the DOC’s active sites become saturated with CO,<br />

leaving no room for O 2 chemisorption. This would cause CO and HC<br />

oxidation to stop.<br />

• Lean LTC CO/O 2 = 0.29<br />

• Rich LTC CO/O 2 = 6.0<br />

<strong>VECOM</strong> Workshop 99 Prague, March 14-15 2012


Why Does the DOC Perform Poorly with Rich LTC<br />

• Rich PCI has low O 2 concentration – No.<br />

• Rich PCI has low exhaust temperature – No.<br />

• Rich PCI has different hydrocarbon properties (i.e., less reactive HC) – No.<br />

• Rich PCI has a high CO/O 2 ratio – Yes.<br />

• To make DOC operational with rich LTC:<br />

• Higher exhaust temperature to increase CO/O 2 threshold, as in SI<br />

engines.<br />

• Different precious metal or DOC formulation.<br />

*<br />

Bohac, S. V., Han, M., Jacobs, T. J., López, A. J., Assanis, D. N., Szymkowicz, P., 2006, “Speciated Hydrocarbon Emissions from an Automotive<br />

Diesel Engine and DOC Utilizing Conventional and PCI <strong>Combustion</strong>,” SAE Paper 2006-01-0201, SAE Transactions – Journal of Fuels and<br />

Lubricants, 115.<br />

<strong>VECOM</strong> Workshop 100 Prague, March 14-15 2012


Summary<br />

<strong>VECOM</strong> Workshop 101 Prague, March 14-15 2012


Summary<br />

• Diesel LTC simultaneously reduces PM and NO x emissions to very<br />

low levels. It does this by increasing mixing and reducing<br />

combustion temperature.<br />

• Greater mixing and lower temperature increases HC and CO<br />

emissions, necessitating the use of a DOC.<br />

• Rich LTC used with a DOC can be used to generate CO and H 2 to<br />

regenerate an LNT, but high CO/O 2 exhaust ratios can easily<br />

deactivate a platinum DOC.<br />

<strong>VECOM</strong> Workshop 102 Prague, March 14-15 2012


Future challenges<br />

<strong>VECOM</strong> Workshop 103 Prague, March 14-15 2012


Future Challenges<br />

• <strong>Combustion</strong> feedback sensors and controls. This is especially<br />

important in the marketplace where different fuel properties and<br />

ambient temperatures are common.<br />

• DOC that are active at low temperatures and with high levels of CO<br />

and HC.<br />

<strong>VECOM</strong> Workshop 104 Prague, March 14-15 2012


Thank you for your attention!<br />

E-mail: sbohac@umich.edu<br />

<strong>VECOM</strong> Workshop, Prague, March 14-15, 2012


Acknowledgements<br />

• Professor Jan Macek and the Josef Bozek Research Centre at<br />

the Czech Technical University in Prague<br />

• Dr. George Lavoie, Dr. Jason Martz, Dr. Aris Babajimopoulos,<br />

Elliot Ortiz-Soto, Prof. Dennis Assanis – Gasoline LTC<br />

simulations<br />

• Jiri Vavra, Luke Hagen, Weiyang Lin, Jianye Su – Gasoline LTC<br />

experiments<br />

• Prof. Tim Jacobs, Prof. Manbae Han, Alberto Lopez – Diesel LTC<br />

experiments<br />

<strong>VECOM</strong> Workshop 106 Prague, March 14-15 2012


Acknowledgements - Projects<br />

• Marie Curie <strong>VECOM</strong> Project<br />

• A University Consortium on Efficient and Clean High Pressure<br />

Lean Burn (HPLB) Engines; U.S. Department of Energy<br />

• Advanced Controllable <strong>Combustion</strong> Enabling Systems and<br />

Solutions (ACCESS) for High Efficiency Light Duty Vehicles;<br />

Bosch and U.S. Department of Energy<br />

• General Motors – University of Michigan Collaborative<br />

Research Laboratory (GM-CRL); General Motors<br />

<strong>VECOM</strong> Workshop 107 Prague, March 14-15 2012


Thank you for your attention!<br />

E-mail: sbohac@umich.edu<br />

<strong>VECOM</strong> Workshop, Prague, March 14-15, 2012


Selected Diesel LTC References<br />

Northrop, W. F., Assanis, D., Bohac, S., 2011, “Evaluation of Diesel Oxidation Catalyst Conversion of Hydrocarbons and Particulate Matter from Premixed <strong>Low</strong> <strong>Temperature</strong> <strong>Combustion</strong> of Biodiesel,” SAE Paper<br />

2011-01-1186, SAE Int. J. Engines 4(1):1431-1444.<br />

Northrop, W. F., Bohac, S. V., Chin, Jo-Yu, Assanis, D. N., 2011, “Comparison of Filter Smoke Number and Elemental Carbon Mass from Partially Premixed <strong>Low</strong> <strong>Temperature</strong> <strong>Combustion</strong> in a Direct Injection Diesel<br />

Engine,” Journal of Engineering for Gas Turbines and Power, 133(10), pp. 102804-1 to 102804-6.<br />

Han, D., Ickes, A., Bohac, S. V., Zhen, H., Assanis, D. N., 2011, “Premixed <strong>Low</strong>-<strong>Temperature</strong> <strong>Combustion</strong> of Blends of Diesel and Gasoline in a High Speed Compression Ignition Engine,” Proceedings of the<br />

<strong>Combustion</strong> Institute, 33: 2, 3039-3046.<br />

Northrop, W. F., Madathil, P. V., Bohac, S. V., Assanis, D. N., 2011, “Condensational Growth of Particulate Matter from Partially Premixed <strong>Low</strong> <strong>Temperature</strong> <strong>Combustion</strong> of Biodiesel in a Compression Ignition<br />

Engine,” Aerosol Science and Technology, 45: 1, 26-36.<br />

Han, D., Ickes, A., Assanis, D. N., Zhen, H., Bohac, S. V., 2010, “The Attainment and Load Extension of High-Efficiency Premixed <strong>Low</strong>-<strong>Temperature</strong> <strong>Combustion</strong> with Dieseline in a Compression Ignition Engine,”<br />

Energy & Fuels, 24, pp. 3517-3525.<br />

Northrop, W. F., Vanderpool, L., Madathil, P., Assanis, D. N., Bohac, S. V., 2010, “Investigation of Hydrogen Emissions in Partially Premixed Diesel <strong>Combustion</strong>,” Journal of Engineering for Gas Turbines and Power,<br />

132(11), pp. 112803-1 to 112803-6.<br />

Ickes, A. M., Bohac, S. V., Assanis, D. N., 2009, “Effect of 2-Ethylhexyl Nitrate Cetane-Improver on NO x Emissions from Premixed <strong>Low</strong>-<strong>Temperature</strong> Diesel <strong>Combustion</strong>,” Energy & Fuels, 23, pp. 4943-4948.<br />

Ickes, A. M., Bohac, S. V., Assanis, D. N., 2009, “Effect of Fuel Cetane Number on a Premixed Diesel <strong>Combustion</strong> Mode,” Int. J. Engine Res., 10(4), pp. 251-263.<br />

Northrop, W. F., Bohac, S. V., Assanis, D. N., 2009, “Premixed <strong>Low</strong> <strong>Temperature</strong> <strong>Combustion</strong> of Biodiesel and Blends in a High Speed Compression Ignition Engine,” SAE Paper 2009-01-0133, SAE Int. J. Fuels Lubr.<br />

2(1):28-40.<br />

Han, M., Assanis, D. N., Bohac, S. V., 2009, “Sources of Hydrocarbon Emissions from <strong>Low</strong>-<strong>Temperature</strong> Premixed Compression Ignition <strong>Combustion</strong> from a Common Rail Direct Injection Diesel Engine,” <strong>Combustion</strong><br />

Science and Technology, 181, pp. 496-517.<br />

Han, M., Assanis, D. N., Bohac, S. V., 2008, “Characterization of Heat-up Diesel Oxidation Catalysts through Gas Flow Reactor and In-situ Engine Testing,” Proc. IMechE Part D – Journal of Automobile Engineering,<br />

222(9), pp. 1705-1716.<br />

Han, M., Assanis, D. N., Bohac, S. V., 2008, “Comparison of HC Species from Diesel <strong>Combustion</strong> Modes and Characterization of a Heat-up DOC Formulation,” International Journal of Automotive Technology, 9(4),<br />

pp. 405-413.<br />

Han, M., Assanis, D. N., Jacobs, T. J., Bohac, S. V., 2008, “Method and Detailed Analysis of Individual Hydrocarbon Species from Diesel <strong>Combustion</strong> Modes and Diesel Oxidation Catalyst,” Journal of Engineering for<br />

Gas Turbines and Power, 130(4), pp. 042803-1 to 042803-10.<br />

Northrop, W., Jacobs, T., Assanis, D., Bohac, S., 2007, “Deactivation of a Diesel Oxidation Catalyst due to Exhaust Species from Rich Premixed Compression Ignition <strong>Combustion</strong> in a Light-Duty Diesel Engine,” Int. J.<br />

Engine Res., 8(6), pp. 487-498.<br />

Knafl, A., Busch, S. B., Han, M., Bohac, S. V., Assanis, D. N., Szymkowicz, P. G., Blint, R. D., 2006, “Characterizing Light-Off Behavior and Species-Resolved Conversion Efficiencies during In-Situ Diesel Oxidation<br />

Catalyst Degreening,” SAE Paper 2006-01-0209, SAE Transactions – Journal of Fuels and Lubricants, 115.<br />

<strong>VECOM</strong> Workshop 109 Prague, March 14-15 2012

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!