02.01.2015 Views

Perspective Collineation and Osculating Circle of Conic in PE-plane ...

Perspective Collineation and Osculating Circle of Conic in PE-plane ...

Perspective Collineation and Osculating Circle of Conic in PE-plane ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

KoG • 15–2011<br />

Pr<strong>of</strong>essional paper<br />

Accepted 29. 11. 2011.<br />

A. Sliepčević, I. Božić: <strong>Perspective</strong> <strong>Coll<strong>in</strong>eation</strong> <strong>and</strong> <strong>Osculat<strong>in</strong>g</strong> <strong>Circle</strong> <strong>of</strong> <strong>Conic</strong>...<br />

ANA SLIEPČEVIĆ<br />

IVANA BOŽIĆ<br />

<strong>Perspective</strong> <strong>Coll<strong>in</strong>eation</strong> <strong>and</strong> <strong>Osculat<strong>in</strong>g</strong><br />

<strong>Circle</strong> <strong>of</strong> <strong>Conic</strong> <strong>in</strong> <strong>PE</strong>-<strong>plane</strong> <strong>and</strong> I-<strong>plane</strong><br />

<strong>Perspective</strong> <strong>Coll<strong>in</strong>eation</strong> <strong>and</strong> <strong>Osculat<strong>in</strong>g</strong> <strong>Circle</strong> <strong>of</strong><br />

<strong>Conic</strong> <strong>in</strong> <strong>PE</strong>-<strong>plane</strong> <strong>and</strong> I-<strong>plane</strong><br />

ABSTRACT<br />

All perspective coll<strong>in</strong>eations <strong>in</strong> a real aff<strong>in</strong>e <strong>plane</strong> are classified<br />

accord<strong>in</strong>g to a constant cross-ratio <strong>and</strong> the position <strong>of</strong><br />

the center <strong>and</strong> axis. A special attention will be given to the<br />

conditions which basic elements <strong>of</strong> perspective coll<strong>in</strong>eation<br />

have to fulfill <strong>in</strong> order to obta<strong>in</strong> the touch or osculation<br />

or hyperosculation <strong>of</strong> two conics. On the aff<strong>in</strong>e models<br />

<strong>of</strong> an isotropic <strong>and</strong> pseudo - Euclidean <strong>plane</strong> the osculat<strong>in</strong>g<br />

circle <strong>of</strong> a conic is constructed by us<strong>in</strong>g perspective<br />

coll<strong>in</strong>eations.<br />

Key words: perspective coll<strong>in</strong>eation, homology, elation,<br />

constant cross - ratio, conic, osculat<strong>in</strong>g circle<br />

MSC 2010: 51M15<br />

Perspektivna kol<strong>in</strong>eacija i oskulacijska kružnica<br />

konike u <strong>PE</strong>-ravn<strong>in</strong>i i I-ravn<strong>in</strong>i<br />

SAŽETAK<br />

Sve perspektivne kol<strong>in</strong>eacije u realnoj af<strong>in</strong>oj ravn<strong>in</strong>i klasificiraju<br />

se s obzirom na karakterističnu konstantu te položaj<br />

središta i osi. Pokazuje se, kako odabrati temeljne elemente<br />

perspektivne kol<strong>in</strong>eacije kako bi se neka konika i<br />

njez<strong>in</strong>a slika dodirivale u jednoj ili dvije točke, oskulirale<br />

se ili hiperoskulirale. Na af<strong>in</strong>im se modelima izotropne i<br />

pseudoeuklidske ravn<strong>in</strong>e pomoću perspektivne kol<strong>in</strong>eacije<br />

konstruiraju oskulacijske kružnice konika.<br />

Ključne riječi: perspektivna kol<strong>in</strong>eacija, homologija,<br />

elacija, karakteristična konstanta, konika, oskulacijska<br />

kružnica<br />

1 Introduction<br />

The transformation <strong>of</strong> a real projective <strong>plane</strong> known<br />

as a coll<strong>in</strong>eation maps po<strong>in</strong>ts to po<strong>in</strong>ts, l<strong>in</strong>es to l<strong>in</strong>es<br />

<strong>and</strong> preserves the <strong>in</strong>cidence relation. Any coll<strong>in</strong>eation<br />

that has one range <strong>of</strong> <strong>in</strong>variant po<strong>in</strong>ts (o) <strong>and</strong> a pencil<br />

<strong>of</strong> <strong>in</strong>variant l<strong>in</strong>es (S) is called a perspective<br />

coll<strong>in</strong>eation. The fixed l<strong>in</strong>e o is called the axis <strong>and</strong><br />

the fixed po<strong>in</strong>t S is called the center <strong>of</strong> the perspective<br />

coll<strong>in</strong>eation. All l<strong>in</strong>es jo<strong>in</strong><strong>in</strong>g the pairs <strong>of</strong> correspond<strong>in</strong>g<br />

po<strong>in</strong>ts are called rays <strong>and</strong> pass through the<br />

center S. The <strong>in</strong>tersection po<strong>in</strong>t <strong>of</strong> two correspond<strong>in</strong>g<br />

l<strong>in</strong>es lies on the axis o. Every perspective coll<strong>in</strong>eation<br />

is a projective transformation s<strong>in</strong>ce the cross rations<br />

<strong>of</strong> four dist<strong>in</strong>ct po<strong>in</strong>ts <strong>of</strong> a range <strong>of</strong> po<strong>in</strong>ts <strong>and</strong> four<br />

dist<strong>in</strong>ct l<strong>in</strong>es <strong>of</strong> a pencil <strong>of</strong> l<strong>in</strong>es are <strong>in</strong>variant. Here<br />

are some basic properties <strong>of</strong> a perspective coll<strong>in</strong>eation<br />

([1], [2]).<br />

Teorem 1. A perspective coll<strong>in</strong>eation is uniquely determ<strong>in</strong>ed<br />

by its center S, axis o <strong>and</strong> one pair <strong>of</strong><br />

correspond<strong>in</strong>g po<strong>in</strong>ts A,A 1 . (Instead <strong>of</strong> correspond<strong>in</strong>g<br />

po<strong>in</strong>ts a pair <strong>of</strong> correspond<strong>in</strong>g l<strong>in</strong>es can be given.)<br />

Teorem 2. If A,A 1 denote a pair <strong>of</strong> correspond<strong>in</strong>g<br />

po<strong>in</strong>ts, S the center <strong>of</strong> perspective coll<strong>in</strong>eation <strong>and</strong> K<br />

the <strong>in</strong>tersection po<strong>in</strong>t <strong>of</strong> the ray SA <strong>and</strong> the axis o<br />

(K = SA ∩ o), then the cross ratio (AA 1 ,KS) is constant.<br />

This constant cross ratio is marked by k <strong>and</strong><br />

generally, is a real nonzero number.<br />

Teorem 3. All perspective coll<strong>in</strong>eations form a group<br />

under the operation <strong>of</strong> composition.<br />

2 Classification <strong>of</strong> <strong>plane</strong> perspective<br />

coll<strong>in</strong>eations<br />

Accord<strong>in</strong>g to the mutual position <strong>of</strong> the center <strong>and</strong><br />

axis all perspective coll<strong>in</strong>eations are divided <strong>in</strong>to two<br />

subsets: homologies <strong>and</strong> elations. A perspective<br />

coll<strong>in</strong>eation is called an elation if its axis o <strong>and</strong> center<br />

S are <strong>in</strong>cident, otherwise it is called a homology.<br />

In each <strong>of</strong> these subsets the aff<strong>in</strong>e elations <strong>and</strong> aff<strong>in</strong>e<br />

homologies known as a po<strong>in</strong>t reflection, l<strong>in</strong>e reflection<br />

<strong>and</strong> translation are extracted. (Table 1)<br />

63


KoG • 15–2011<br />

A. Sliepčević, I. Božić: <strong>Perspective</strong> <strong>Coll<strong>in</strong>eation</strong> <strong>and</strong> <strong>Osculat<strong>in</strong>g</strong> <strong>Circle</strong> <strong>of</strong> <strong>Conic</strong>...<br />

(AA ;KS) = k ∈ R \ {0}<br />

1<br />

A 1<br />

A<br />

K<br />

S<br />

o<br />

HOMOLOGIES<br />

S∉ o ; k ≠1<br />

ELATIONS<br />

S ∈ o ; k = 1<br />

A 1<br />

A<br />

S=K<br />

o<br />

<strong>Perspective</strong> coll<strong>in</strong>eations<br />

<strong>in</strong> narrow sense<br />

S <strong>and</strong> o at f<strong>in</strong>ity<br />

Harmonic perspective<br />

coll<strong>in</strong>eations<br />

k = -1<br />

<strong>Perspective</strong> aff<strong>in</strong>ities<br />

S at <strong>in</strong>f<strong>in</strong>ity, o at f<strong>in</strong>ity<br />

k = (AA ;K)<br />

1<br />

L<strong>in</strong>e reflections<br />

k = -1 ;<br />

⊥ o AA 1<br />

Dilations (homotheties)<br />

S at f<strong>in</strong>ity, o at <strong>in</strong>f<strong>in</strong>ity<br />

k = (AA ;K)<br />

1<br />

Po<strong>in</strong>t reflections<br />

k = -1<br />

Elations <strong>in</strong> narrow sense<br />

S <strong>and</strong> o at f<strong>in</strong>ity<br />

Shears<br />

S at <strong>in</strong>f<strong>in</strong>ity, o at f<strong>in</strong>ity<br />

Translations<br />

S <strong>and</strong> o at <strong>in</strong>f<strong>in</strong>ity<br />

Table 1<br />

All the cases may be summarized as follows:<br />

Homologies may be classified <strong>in</strong>to:<br />

2.1 <strong>Perspective</strong> coll<strong>in</strong>eations <strong>in</strong> narrow sense<br />

are homologies with the f<strong>in</strong>ite center S <strong>and</strong> f<strong>in</strong>ite<br />

axis o, the constant cross ratio <strong>of</strong> a perspective<br />

coll<strong>in</strong>eation is a real nonzero number. An <strong>in</strong>volutive<br />

perspective coll<strong>in</strong>eation <strong>in</strong> narrow sense<br />

is called a harmonic perspective coll<strong>in</strong>eation, its<br />

constant cross ratio equals −1.<br />

2.2 <strong>Perspective</strong> aff<strong>in</strong>ities are homologies with the<br />

center S at <strong>in</strong>f<strong>in</strong>ity <strong>and</strong> the f<strong>in</strong>ite axis o. The<br />

constant cross ratio <strong>of</strong> a perspective aff<strong>in</strong>ity is<br />

division ratio k = (AA 1 ;K) where A, A 1 is a<br />

pair <strong>of</strong> correspond<strong>in</strong>g po<strong>in</strong>ts <strong>and</strong> K is the <strong>in</strong>tersection<br />

po<strong>in</strong>t <strong>of</strong> the ray AA 1 <strong>and</strong> the axis o<br />

(K = AA 1 ∩o). A division ratio <strong>of</strong> three coll<strong>in</strong>ear<br />

po<strong>in</strong>ts is an <strong>in</strong>variant <strong>of</strong> a perspective aff<strong>in</strong>ity.<br />

An <strong>in</strong>volutive perspective aff<strong>in</strong>ity is called l<strong>in</strong>e<br />

reflection. Consequently, its constant cross ratio<br />

equals −1.<br />

2.3 <strong>Perspective</strong> similarities or dilations or homotheties<br />

are homologies with the f<strong>in</strong>ite center<br />

S <strong>and</strong> axis o at <strong>in</strong>f<strong>in</strong>ity. The constant cross<br />

ratio <strong>of</strong> a perspective similarity is the division<br />

ratio k = (AA 1 ;S) where A,A 1 is a pair <strong>of</strong> correspond<strong>in</strong>g<br />

po<strong>in</strong>ts. An <strong>in</strong>volutive perspective similarity<br />

is called a po<strong>in</strong>t reflection. Consequently,<br />

its constant cross ratio equals −1.<br />

Elations are perspective coll<strong>in</strong>eations for which the<br />

center <strong>and</strong> axis are <strong>in</strong>cident, that is S = K. The constant<br />

cross ratio <strong>of</strong> all elations is equal to 1.<br />

The elations may be classified as follows:<br />

2.4 Elations <strong>in</strong> narrow sense- with the f<strong>in</strong>ite center<br />

<strong>and</strong> f<strong>in</strong>ite axis<br />

2.5 Shears- with the center at <strong>in</strong>f<strong>in</strong>ity<br />

2.6 Translations - with the center <strong>and</strong> axis at <strong>in</strong>f<strong>in</strong>ity<br />

Shears <strong>and</strong> translations map the l<strong>in</strong>e at <strong>in</strong>f<strong>in</strong>ity to<br />

itself. Thus, they are aff<strong>in</strong>e transformations. An<br />

aff<strong>in</strong>e transformation preserves division ratio <strong>of</strong> three<br />

coll<strong>in</strong>ear po<strong>in</strong>ts.<br />

3 Construction <strong>of</strong> the osculat<strong>in</strong>g circle<br />

<strong>of</strong> a conic at an arbitrary po<strong>in</strong>t<br />

The order <strong>of</strong> a conic is an <strong>in</strong>variant <strong>of</strong> perspective<br />

coll<strong>in</strong>eation, i.e., a perspective coll<strong>in</strong>eation maps conics<br />

<strong>in</strong>to conics. Aff<strong>in</strong>e transformations preserve the<br />

l<strong>in</strong>e at <strong>in</strong>fnity, hence they map a conic <strong>in</strong>to a conic<br />

<strong>of</strong> the same type (i.e. ellipse is mapped <strong>in</strong>to ellipse,<br />

hyperbola is mapped <strong>in</strong>to hyperbola <strong>and</strong> parabola is<br />

mapped <strong>in</strong>to parabola). Two conics <strong>in</strong>tersect <strong>in</strong> four<br />

po<strong>in</strong>ts, some <strong>of</strong> which may co<strong>in</strong>cide or be real or imag<strong>in</strong>ary.<br />

If two real <strong>in</strong>tersection po<strong>in</strong>ts co<strong>in</strong>cide, the conics<br />

c <strong>and</strong> c 1 touch at this so-called touch<strong>in</strong>g po<strong>in</strong>t. If<br />

64


KoG • 15–2011<br />

A. Sliepčević, I. Božić: <strong>Perspective</strong> <strong>Coll<strong>in</strong>eation</strong> <strong>and</strong> <strong>Osculat<strong>in</strong>g</strong> <strong>Circle</strong> <strong>of</strong> <strong>Conic</strong>...<br />

three real <strong>in</strong>tersection po<strong>in</strong>ts co<strong>in</strong>cide, c <strong>and</strong> c 1 are<br />

osculat<strong>in</strong>g conics at this po<strong>in</strong>t. If four real <strong>in</strong>tersection<br />

po<strong>in</strong>ts co<strong>in</strong>cide, c <strong>and</strong> c 1 are hyperosculat<strong>in</strong>g conics<br />

at this po<strong>in</strong>t. A special attention will be given<br />

to the conditions which basic elements <strong>of</strong> perspective<br />

coll<strong>in</strong>eation have to fulfill <strong>in</strong> order to obta<strong>in</strong> the touch<br />

or osculation or hyperosculation <strong>of</strong> two conics.<br />

If a conic c touches the axis o at a po<strong>in</strong>t A or<br />

passes through the center S (S /∈ o) <strong>of</strong> a perspective<br />

coll<strong>in</strong>eation, then the conic c will be mapped <strong>in</strong>to a<br />

conic c 1 which touches the conic c at the po<strong>in</strong>t A or<br />

at the po<strong>in</strong>t S, respectively.<br />

If a conic c touches the axis o at a po<strong>in</strong>t A <strong>and</strong><br />

passes through the center S (S /∈ o) <strong>of</strong> a perspective<br />

coll<strong>in</strong>eation, the po<strong>in</strong>ts S <strong>and</strong> A are the touch<strong>in</strong>g<br />

po<strong>in</strong>ts <strong>of</strong> the conics c <strong>and</strong> c 1 . A conics with two common<br />

touch<strong>in</strong>g po<strong>in</strong>ts can also be obta<strong>in</strong>ed if the po<strong>in</strong>t<br />

S <strong>and</strong> the l<strong>in</strong>e o are a pole <strong>and</strong> a polar with respect<br />

to a conic c. In this case the <strong>in</strong>tersections <strong>of</strong> the axis<br />

<strong>and</strong> the conic c are common po<strong>in</strong>ts <strong>of</strong> tangency for c<br />

<strong>and</strong> c 1 . If the center <strong>of</strong> a perspective coll<strong>in</strong>eation is<br />

with<strong>in</strong> the conic c than the <strong>in</strong>tersection po<strong>in</strong>ts will be<br />

a pair <strong>of</strong> conjugate imag<strong>in</strong>ary po<strong>in</strong>ts.<br />

If the conics c <strong>and</strong> c 1 are osculat<strong>in</strong>g conics, they determ<strong>in</strong>e<br />

an elation with the common tangent at the<br />

po<strong>in</strong>t <strong>of</strong> tangency as its axis (the po<strong>in</strong>t <strong>of</strong> tangency is<br />

different from the center <strong>of</strong> the elation). Also if a conic<br />

c passes through the center <strong>of</strong> an elation <strong>and</strong> doesn’t<br />

touch the axis, then the conics c <strong>and</strong> c 1 are osculat<strong>in</strong>g<br />

conics.<br />

If a conic c touches axis o at the center S <strong>of</strong> elation<br />

then conic c will be mapped <strong>in</strong>to hyperosculat<strong>in</strong>g conic<br />

c 1 .<br />

All these aforementioned facts provide that by us<strong>in</strong>g<br />

the appropriate perspective coll<strong>in</strong>eation for given<br />

conic c it is possible to construct an osculat<strong>in</strong>g or hyperosculat<strong>in</strong>g<br />

conic or a conic c 1 which touches the<br />

conic c at one or two po<strong>in</strong>ts.<br />

By apply<strong>in</strong>g a perspective coll<strong>in</strong>eation an osculat<strong>in</strong>g<br />

circle <strong>of</strong> a conic <strong>in</strong> the Euclidean <strong>plane</strong> <strong>and</strong> on the<br />

projective models <strong>of</strong> some projective - metric <strong>plane</strong>s<br />

is constructed <strong>in</strong> [4] <strong>and</strong> [5]. By us<strong>in</strong>g an elation the<br />

same constructions can be made on the aff<strong>in</strong>e models<br />

<strong>of</strong> the pseudo - Euclidean <strong>and</strong> isotropic <strong>plane</strong>.<br />

3.1 Pseudo - Euclidean <strong>plane</strong><br />

The ordered triple {f,I,J} is called the absolute figure<br />

<strong>of</strong> the pseudo - Euclidean <strong>plane</strong> where I <strong>and</strong> J<br />

are two real absolute po<strong>in</strong>ts on the absolute l<strong>in</strong>e f.<br />

Accord<strong>in</strong>g to their position with respect to the absolute<br />

figure, the proper conics <strong>of</strong> the pseudo - Euclidean<br />

<strong>plane</strong> may be divided <strong>in</strong>to n<strong>in</strong>e types [4]. A circle is a<br />

conic <strong>in</strong>cidental with both absolute po<strong>in</strong>ts.<br />

Let the absolute figure <strong>of</strong> <strong>PE</strong> - <strong>plane</strong> be {f,I,J} where<br />

the l<strong>in</strong>e f is a l<strong>in</strong>e at <strong>in</strong>f<strong>in</strong>ity <strong>and</strong> the po<strong>in</strong>ts I <strong>and</strong> J<br />

are the po<strong>in</strong>ts at <strong>in</strong>f<strong>in</strong>ity on perpendicular l<strong>in</strong>es i <strong>and</strong><br />

j. Let the pseudo - Euclidean ellipse c be presented by<br />

a circle <strong>in</strong> the Euclidean sense. It needs to construct<br />

the osculat<strong>in</strong>g circle <strong>of</strong> c at its arbitrarily chosen po<strong>in</strong>t<br />

A. By us<strong>in</strong>g the appropriate elation the given ellipse c<br />

can be mapped <strong>in</strong>to its osculat<strong>in</strong>g circle c 1 at the given<br />

po<strong>in</strong>t A. The construction is carried out <strong>in</strong> steps:<br />

The po<strong>in</strong>t A is selected for the center <strong>of</strong> an elation.<br />

The <strong>in</strong>tersection po<strong>in</strong>ts <strong>of</strong> the rays AI <strong>and</strong> AJ with<br />

the ellipse c are marked by I ′ <strong>and</strong> J ′ . I ′ ,I <strong>and</strong> J ′ ,J are<br />

the pairs <strong>of</strong> correspond<strong>in</strong>g po<strong>in</strong>ts <strong>of</strong> that elation. The<br />

l<strong>in</strong>e f ′ = I ′ J ′ corresponds to the absolute l<strong>in</strong>e f. The<br />

l<strong>in</strong>es f <strong>and</strong> f ′ <strong>in</strong>tersect at the po<strong>in</strong>t at <strong>in</strong>f<strong>in</strong>ity, thus<br />

the axis o is parallel to the l<strong>in</strong>e f ′ <strong>and</strong> passes through<br />

the center S. The elation (A,o,I,I ′ ) maps the given<br />

conic c <strong>in</strong>to an osculat<strong>in</strong>g circle c 1 (Figure 1).<br />

3.2 Isotropic <strong>plane</strong><br />

i<br />

J’<br />

j<br />

c<br />

I’<br />

A<br />

Figure 1<br />

The ordered pair {f,F } is called the absolute figure <strong>of</strong><br />

the isotropic <strong>plane</strong> where the po<strong>in</strong>t F is called the absolute<br />

po<strong>in</strong>t on the absolute l<strong>in</strong>e f [3]. Let the aff<strong>in</strong>e<br />

model <strong>of</strong> an isotropic <strong>plane</strong> with the absolute figure<br />

at <strong>in</strong>f<strong>in</strong>ity be given. Let the absolute po<strong>in</strong>t F be on<br />

the l<strong>in</strong>e f F . A circle <strong>of</strong> the isotropic <strong>plane</strong> is a conic<br />

touch<strong>in</strong>g f at F. Let a conic c <strong>and</strong> the tangent at a<br />

po<strong>in</strong>t A on the conic are given.There are two ways to<br />

f<strong>in</strong>d an elation that will map the given conic c <strong>in</strong>to the<br />

osculat<strong>in</strong>g circle c 1 at the po<strong>in</strong>t A:<br />

The first way is to take the tangent a <strong>of</strong> the conic c <strong>in</strong><br />

the po<strong>in</strong>t A for the axis <strong>of</strong> an elation, <strong>and</strong> then f<strong>in</strong>d<br />

c 1<br />

f’<br />

X<br />

o<br />

65


KoG • 15–2011<br />

A. Sliepčević, I. Božić: <strong>Perspective</strong> <strong>Coll<strong>in</strong>eation</strong> <strong>and</strong> <strong>Osculat<strong>in</strong>g</strong> <strong>Circle</strong> <strong>of</strong> <strong>Conic</strong>...<br />

the center S <strong>of</strong> the elation on the axis. If the tangent<br />

a is taken for the axis <strong>of</strong> an elation then the tangent f ′<br />

to the conic c corresponds to the absolute tangent f<br />

<strong>of</strong> the osculat<strong>in</strong>g conic c 1 passes through the <strong>in</strong>tersection<br />

po<strong>in</strong>t <strong>of</strong> the l<strong>in</strong>es a <strong>and</strong> f. The po<strong>in</strong>t <strong>of</strong> tangency<br />

F ′ <strong>of</strong> f ′ <strong>and</strong> c <strong>and</strong> the absolute po<strong>in</strong>t F are a pair <strong>of</strong><br />

correspond<strong>in</strong>g po<strong>in</strong>ts, <strong>and</strong> the ray F F ′ <strong>in</strong>tersects the<br />

axis a at the center S <strong>of</strong> an elation (Figure 2).<br />

The second way is to take the po<strong>in</strong>t A for the center<br />

<strong>of</strong> elation <strong>and</strong> then f<strong>in</strong>d the axis <strong>of</strong> the elation. If the<br />

po<strong>in</strong>t A is taken for the center <strong>of</strong> an elation, then AF<br />

is the ray the elation. The po<strong>in</strong>t F ′ is the <strong>in</strong>tersection<br />

po<strong>in</strong>t <strong>of</strong> the ray AF <strong>and</strong> the conic c. The l<strong>in</strong>e<br />

pair f,f ′ is a pair <strong>of</strong> correspond<strong>in</strong>g l<strong>in</strong>es. The axis o<br />

passes through the po<strong>in</strong>t A <strong>and</strong> <strong>in</strong>tersection po<strong>in</strong>t <strong>of</strong><br />

the l<strong>in</strong>es f ′ <strong>and</strong> f, thus it is parallel to f ′ . (Figure 3).<br />

c 1<br />

f’<br />

f’<br />

F’<br />

Y’<br />

Y 1<br />

a<br />

o<br />

c 1<br />

c<br />

F’<br />

a<br />

c<br />

A<br />

A=S<br />

f F<br />

Figure 2<br />

f F<br />

S<br />

Figure 3<br />

References<br />

[1] Cederberg J.N., A course <strong>in</strong> modern geometries,<br />

Spr<strong>in</strong>ger-Verlag, New York, 2005.<br />

[2] Palman D., Projektivna geometrija, Školska<br />

knjiga, Zagreb, 1984.<br />

[3] Sliepčević A., Katić - Žlepalo M., <strong>Osculat<strong>in</strong>g</strong><br />

circles <strong>of</strong> conics <strong>in</strong> the isotropic <strong>plane</strong>, Slovenský<br />

časopis pre geometriu a grafiku, 5 (2008), No.<br />

10, 21-26<br />

[4] Sliepčević A., Kovačević N., Hyperosculat<strong>in</strong>g<br />

circles <strong>of</strong> conics <strong>in</strong> the pseudo - euclidean<br />

<strong>plane</strong>, manuscript<br />

[5] Weiss G., Sliepčević A., <strong>Osculat<strong>in</strong>g</strong> circles<br />

<strong>of</strong> conics <strong>in</strong> Cayley - Kle<strong>in</strong>e <strong>plane</strong>s, KoG, No.13<br />

(2009), 7-12<br />

Ana Sliepčević<br />

Faculty <strong>of</strong> Civil Eng<strong>in</strong>eer<strong>in</strong>g, University <strong>of</strong> Zagreb<br />

Kačićeva 26, 10000 Zagreb, Croatia<br />

e-mail: anas@grad.hr<br />

Ivana Božić<br />

Department <strong>of</strong> Civil Eng<strong>in</strong>eer<strong>in</strong>g<br />

Polytechnic <strong>of</strong> Zagreb<br />

V. Holjevca 15, 10010 Zagreb, Croatia<br />

e-mail: ivana.bozic@tvz.hr<br />

66

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!