04.01.2015 Views

FRACTIONAL BROWNIAN VECTOR FIELDS 1. Introduction. A one ...

FRACTIONAL BROWNIAN VECTOR FIELDS 1. Introduction. A one ...

FRACTIONAL BROWNIAN VECTOR FIELDS 1. Introduction. A one ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

can be shown as follows:<br />

〈B H,ξ (σ·), f (·)〉 = 〈ε H [(−<br />

<strong>FRACTIONAL</strong> <strong>BROWNIAN</strong> <strong>VECTOR</strong> <strong>FIELDS</strong> 15<br />

= 〈σ H+ d 2 εH (−<br />

2H+d<br />

− 4 ´∆) W ](σ·), f (·)〉 by (3.4),<br />

−ξ<br />

= 〈σ H+ d 2 εH W (σ·),(−<br />

= 〈σ H+ d 2 σ<br />

− d 2 εH W (·),(−<br />

= 〈σ H ε H (−<br />

2H+d<br />

− 4 ´∆) {W (σ·)}, f (·)〉 by (2.4),<br />

−ξ<br />

2H+d<br />

− 4 `∆)<br />

−ξ<br />

2H+d<br />

− 4 `∆)<br />

−ξ<br />

f (·)〉<br />

by duality,<br />

f (·)〉 by the homogeneity of W ,<br />

2H+d<br />

− 4 ´∆) {W (·)}, f (·)〉 by duality,<br />

−ξ<br />

= 〈σ H B H,ξ (·), f (·)〉 by (3.4).<br />

4.2. Rotation invariance. For any orthogonal transformation matrix Ω, the random<br />

fields B H,ξ and ΩB H,ξ (Ω T·) follow the same stochastic law. The demonstration is similar to<br />

the previous <strong>one</strong>.<br />

4.3. Non-stationarity. Vector fractional Brownian motion is non-stationary. Indeed,<br />

2H+d<br />

− 4<br />

the operator (− `∆) is not translation-invariant, and consequently the random variables<br />

−ξ<br />

and<br />

〈B H,ξ , f (·)〉 = 〈ε H W ,(−<br />

〈B H,ξ , f (· + h)〉 = 〈ε H W ,(−<br />

are not identically distributed in general.<br />

2H+d<br />

− 4 `∆) {f (·)}〉<br />

−ξ<br />

2H+d<br />

− 4 `∆) {f (· + h)}〉<br />

−ξ<br />

4.4. Stationary n-th order increments. We shall now show that the increments of<br />

order ⌊H⌋ + 1 of the field B H,ξ are stationary. In particular, for 0 < H < 1, B H,ξ has<br />

stationary first-order increments, as is the case for standard fractional Brownian motion [53].<br />

For this purpose, let us first define the n-th order symmetric difference operator D h1 ,...,h n<br />

recursively by the relations<br />

D h1<br />

: f (·) → f (· + h 1<br />

2 ) − f (· − h 1<br />

2 ),<br />

D h1 ,...,h n<br />

:= D hn<br />

D h1 ,...,h n−1<br />

,<br />

with h 1 ,...,h n ∈ d \{0}. The above operator is represented in the Fourier domain by the<br />

expression<br />

∏<br />

1≤i≤n<br />

2sin 〈h i ,ω〉<br />

2<br />

.<br />

We have<br />

THEOREM 4.<strong>1.</strong> The vector fBm field B H,ξ has stationary increments of order ⌊H⌋+1; that<br />

is, the random field<br />

D h1 ,...,h n<br />

B H,ξ

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!