06.01.2015 Views

Neutron Transport Equation - Nuclear Engineering at McMaster ...

Neutron Transport Equation - Nuclear Engineering at McMaster ...

Neutron Transport Equation - Nuclear Engineering at McMaster ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Week 3 – <strong>Neutron</strong> <strong>Transport</strong> <strong>Equ<strong>at</strong>ion</strong> 3 - 9<br />

many well-formul<strong>at</strong>ed textbooks. In the remainder of this course we will assume th<strong>at</strong> in any<br />

reaction, we know the probability of interaction of a neutron with a nucleus for any given<br />

neutron energy and “collision angle”.<br />

NEUTRON BALANCE EQUATION<br />

The neutron density n = n (r, E, O, t) is, in general, a function of sp<strong>at</strong>ial position r, energy E,<br />

angle Ω and time t. It exists, in general, in a heterogeneous reactor environment where the<br />

m<strong>at</strong>erial properties also are a function of r, E, O, and t. We tre<strong>at</strong> the neutron popul<strong>at</strong>ion as a<br />

continuum, avoiding st<strong>at</strong>istical fluctu<strong>at</strong>ions. Typically, φ ≡ nv ~ 10 14 neutrons/cm 2 -sec.<br />

Therefore, the st<strong>at</strong>istical fluctu<strong>at</strong>ions are negligible. Also we ignore neutron-neutron interactions<br />

since the neutron density is small compared to the density of the medium (~ 10 22 <strong>at</strong>oms/cm 3 .).<br />

The continuity or conserv<strong>at</strong>ion equ<strong>at</strong>ion, based on our intuitive experience, st<strong>at</strong>es:<br />

d<br />

dt<br />

∫<br />

V<br />

∫<br />

V S V<br />

nd = ⎜ ⎟d<br />

V<br />

⎛<br />

⎜<br />

⎝<br />

∑<br />

i<br />

⎞<br />

i ⎟<br />

⎠<br />

EQ. 1<br />

where S i represents any neutron source or sink.<br />

the substantial deriv<strong>at</strong>ive of<br />

the neutron popul<strong>at</strong>ion<br />

in a volume, V<br />

} =<br />

sum of sinks and sources<br />

in th<strong>at</strong> volume<br />

The Reynold’s <strong>Transport</strong> Theorem st<strong>at</strong>es:<br />

d ∂Ψ<br />

dV<br />

dV<br />

v d<br />

dt ∫<br />

Ψ =<br />

∫<br />

+ Ψ<br />

∂t<br />

∫<br />

⋅<br />

V<br />

V<br />

S<br />

S<br />

EQ. 2<br />

(total) = (gener<strong>at</strong>ion) + (outflow)<br />

where<br />

Ψ is any field parameter,<br />

v = velocity of the parameter (v = v O)<br />

S = normal surface vector, and<br />

V = volume<br />

H;|Violeta 1 – Word \web\<strong>Neutron</strong> <strong>Transport</strong> <strong>Equ<strong>at</strong>ion</strong>.doc

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!