07.01.2015 Views

Proposed Title 1: - Queen's University

Proposed Title 1: - Queen's University

Proposed Title 1: - Queen's University

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

FLUID EVOLUTION AND STRUCTURAL CONTROL ON URANIUM<br />

DEPOSITS IN SUCCESSOR BASINS IN NORTHERN CANADA AND<br />

NORTHERN AUSTRALIA<br />

by<br />

Serigne Dieng<br />

A thesis submitted to the Department of Geological Sciences and Geological<br />

Engineering in conformity with the requirements for<br />

the degree of Doctor of Philosophy<br />

QUEEN’S UNIVERSITY<br />

Kingston, Ontario, Canada<br />

(August, 2012)<br />

Copyright © Serigne Dieng, 2012<br />

i


Bolger open pit, Beaverlodge area, Northern Saskatchewan, Canada.<br />

ii


Abstract<br />

Uranium deposits associated with Paleoproterozoic successor basins were<br />

investigated using structural, petrographic, geochronological and geochemical relationships<br />

to understand the character and timing of ore-forming fluids and the structural control on<br />

uranium mineralization. The work focused on two successor basins that share similar<br />

geological characteristics: the Martin Lake Basin in the Beaverlodge area in Canada, and<br />

the El Sherana Basin in the South Alligator River area in Australia.<br />

The Beaverlodge area records six temporally distinct stages of U mineralization<br />

spatially associated with the Martin Lake successor basin. Early minor stages are hosted in<br />

cataclasite and veins at ca. 2.29 Ga and in albitized granite in the Gunnar deposit between<br />

ca. 2.3 Ga and 1.9 Ga, which predates the main stage of U mineralization of hydrothermal<br />

breccias that formed at ca. 1.85 Ga. Later stages of mineralization are related to minor veins<br />

at ca. 1.82 Ga linked to alkaline mafic dikes associated with the Martin Lake Basin and to<br />

minor veins at ca. 1.62 Ga corresponding to the timing of unconformity-type U<br />

mineralization in the overlying Athabasca Basin. The main breccia-type U mineralizing<br />

event that affected all deposits in the Beaverlodge area formed at ca. 1.85 Ma from<br />

metamorphic fluids at ca. 330 o C linked to metasomatism during regional metamorphism of<br />

the Trans-Hudson Orogen. The ore-forming fluids were likely derived from metamorphic<br />

remobilization of pre-existing U-rich basement rocks, and ascended upward along deep<br />

fracture systems that resulted from brittle reactivation of early ductile shear zones.<br />

The main event of U mineralization in the South Alligator River area formed at ca.<br />

1.82 Ma, subsequent to deposition of the El Sherana Group at 1.84-1.83 Ma. The formation<br />

iii


of these deposits is related to fluids derived from diagenetic processes in sandstone of the<br />

El Sherana Group. Mineralization formed when a 250 o C, low latitude, oxidizing, U-bearing<br />

basinal brine from diagenetic aquifers in the Coronation sandstone descended downward<br />

into the unconformity along fracture systems created by brittle reactivation of the El<br />

Sherana-Palette fault system.<br />

Uranium deposits associated with successor basins in the Beaverlodge and South<br />

Alligator River area are older than those in the U-rich Athabasca and Kombolgie basins.<br />

Rocks that host these deposits have been folded, and then exhumed during subsequent<br />

tectonic events. These older U deposits can be considered as a potential source for detrital<br />

uraninite that fed sediments of the Athabasca and Kombolgie basins and therefore<br />

contributed to the inventory of uranium that formed unconformity-related U mineralization<br />

in the younger basins. Therefore, the occurrence of older U mineralization associated with<br />

successor basins can be considered as positive criterion for exploration of unconformityrelated<br />

U mineralization in younger Paleoproterozoic basins.<br />

iv


Co-Authorship<br />

This thesis and the manuscripts contained herein are the work of Serigne Dieng.<br />

All chapters are co-authored by Kurt Kyser and Laurent Godin (thesis supervisors) who<br />

provided scientific guidance, discussion, and editorial assistance.<br />

v


Acknowledgements<br />

I would like to express my sincere and profound gratitude to my thesis supervisors<br />

Kurt Kyser and Laurent Godin for giving me this unexpected opportunity to be part of this<br />

excellent Ph.D. research project and to attend this world’s leading university. Your<br />

guidance, assistance, patience, and constant support will be always acknowledged. Merci.<br />

This project was made possible through the generous financial support by the Natural<br />

Sciences and Engineering Research Council of Canada (NSERC) and Cameco Corporation.<br />

The Geological Sciences Department at the <strong>University</strong> of Saskatchewan and the<br />

Northern Territory Geological Survey in Australia generously provided samples necessary<br />

for this research.<br />

Red Rock Energy and Paul Stewart are thanked for their generous field support.<br />

Special thanks to my Queen’s Facility for Isotope Research lab family, specifically<br />

April Vuletich, Don Chipley, Kerry Klassen, Allison Laidlow, Bill McFarlane, Kristin<br />

Feige, Evelyne Leduc, and Sandeep Banerjee who provided great assistance and guidance<br />

for isotopic analytical methods. Peter Jones at Carleton <strong>University</strong>, and Alan Grant and<br />

Brian Joy at Queen’s provided valuable assistance with electron microprobe and XRD<br />

analyses.<br />

Particular thanks are due to Steve Beyer, Dan Jiricka, Laurent Scanlan, and Don<br />

Chipley for their constructive editorial comments that greatly improved this thesis.<br />

I would like to extend my gratitude to the enthusiastic U research group specially, Ronald<br />

Ng, Yulia Uvarova, Steve Beyer, Paul Alexandre, Valeria and Alexy Li, Paul Stewart,<br />

vi


Sarah Rice and Jonathan Cloutier, and the tectonic research team, Carl Nagy and Borja<br />

Antolin Tomas. You are so willing to support one another and happy to share your<br />

acknowledge and experience and I have taken fully advantage of it.<br />

I gratefully acknowledge the administrative staffs, Kelly Smith, Linda Brown, Joan<br />

Charbonneau and Dianne Hyde. Thanks for your love, your support and your constant<br />

encouragement during the time I spent at Queen’s <strong>University</strong>.<br />

To my thesis committee members, Mostafa Fayek, John Peacey, Ron Peterson, and<br />

Herb Helmstaedt, thanks so much for the time you spent evaluating and improving this<br />

work.<br />

I would like to express my profound gratitude to Dennis Jones, former Vice-President<br />

Exploration of Iamgold and IAMGOLD Corporation for first giving me the great<br />

opportunity to complete the M.Sc. Mineral exploration program at Queen’s <strong>University</strong>.<br />

To my family, my wonderful wife Die Aissatou and my lovely children Seydina,<br />

Diarra, Cheikh and Rassoul, I hope you have spent great time in Canada, loving the winter<br />

and supporting dad through his research. Thanks so much for your patience while dad spent<br />

so much time at office. I love you so much and am very proud of you.<br />

I would like to honor through this thesis the memory of my Mom and my Dad.<br />

Thanks for your love and affection. You taught me to do the right things; I will always be<br />

grateful.<br />

vii


Statement of Originality<br />

I hereby certify that all of the work described within this thesis is the original work of the<br />

author. This research does not support previous degree requirements. Any published (or<br />

unpublished) ideas and/or techniques from the work of others are fully acknowledged in<br />

accordance with the standard referencing practices.<br />

(Serigne Dieng)<br />

(August, 2012)<br />

viii


TABLE OF CONTENTS<br />

Abstract………………………………………………………..……………………………iii<br />

Co-Authorship……………………………………………………………………………….v<br />

Acknowledgements………………………………..………………………….…………….vi<br />

Statement of Originality……………………………………..………..………...…………viii<br />

Table of Contents……………………………………………………..…………………….ix<br />

List of Figures……………………………………………………...…………………...….xv<br />

List of Tables………………………………………………………...…………..………xviii<br />

CHAPTER 1……………………………………………………………………..…………1<br />

INTRODUCTION……………………………………………………………………….....1<br />

1.1 Geological setting of the Beaverlodge area………………………..……..……...……2<br />

1.1.1. Regional geological and structural setting……………………..….……….….2<br />

1.1.2. Uranium mineralization…………………………………...…………….…….5<br />

1.2 Geological setting of the South Alligator Mineral Field area………………………...7<br />

1.2.1 Regional geological and structural setting………………………...………..…7<br />

1.2.2. Uranium mineralization……………………………...…………………..……9<br />

1.3 Uranium mineralized systems in the Athabasca and Kombolgie basins………………11<br />

1.4 Uranium mineralized systems in the successor basins…………………...……………14<br />

1.5 Purpose of this Thesis…………………...…………………………………………….15<br />

1.6 Thesis Structure………………………………………………..………………………17<br />

CHAPTER 2………………………………………………..……………………………..19<br />

TECTONIC HISTORY OF THE NORTH AMERICAN SHIELD RECORDED IN<br />

URANIUM DEPOSITS IN THE BEAVERLODGE AREA, NORTHERN<br />

SASKATCHEWAN, CANADA<br />

Abstract…………………………...…………………………………………………….….19<br />

2.1. Introduction……………………………………………………………………………20<br />

2.2. Geologic Setting…….…………………………………………………………………21<br />

2.2.1. General geology……………………………………………………….………21<br />

2.2.2. Previous models age for U mineralization in the Beaverlodge area……….…26<br />

2.3. Methodology…….……………………………………………………………….……28<br />

ix


2.3.1. U-Pb dating of uranium-rich minerals by LA-HR-ICP-MS…………….…….28<br />

2.3.2. Electron-microprobe procedure and calculations of chemical Pb age……..…29<br />

2.4. Results…………………………...……………………………………………….……30<br />

2.4.1. The Main Ore shear zone.……………………………………………….….…30<br />

2.4.1.1. Geology of the Cinch Lake deposit……………………………..……30<br />

2.4.1.2. Structural and metamorphic relationships in the Main Ore shear<br />

zone…………………………………………………………………..34<br />

2.4.2. The Saint Louis fault.…………………………………………………….……39<br />

2.4.2.1. Geology of the Ace-Fay-Verna deposits……………………….….…39<br />

2.4.2.2. Structural and metamorphic relationships in the Saint Louis fault….39<br />

2.4.3. Paragenesis of the alteration and ore minerals and type of U mineralization....45<br />

2.4.3.1. Stage 1. Mylonitization……………………………………...…….…45<br />

2.4.3.2. Stage 2. Cataclasite deformation…………………………...……...…47<br />

2.4.3.3. Stage 3. Early tensional ±U 2 veins formation…………….....…….…47<br />

2.4.3.4. Stage 4. Granite-related metasomatic alteration………………….….47<br />

2.4.3.5. Stage 5. Brecciation……………………………………...………..…48<br />

2.4.3.6. Stage 6. Mafic volcanism………………………………...………..…48<br />

2.4.3.7. Stage 7. Late U 6 uraninite veins………………………...……..…..…49<br />

2.4.4. Geochronology of uraninite and isotopic systematics…………...….…………51<br />

2.4.4.1. Geochronology of U-rich minerals by LA-HR-ICPMS...……..……..51<br />

2.4.4.1.1. Geochronology of the cataclasite-type ±U 1 ………………….…55<br />

2.4.4.1.2. Geochronology of the early tensional vein-type ±U 2 ……….…..56<br />

2.4.4.1.3. Geochronology of the granite-related metasomatic-type U 3 ……56<br />

2.4.4.1.4. Geochronology of the breccia-type U 4 …………...……..………56<br />

2.4.4.1.5. Geochronology of the volcanic-type ±U 5 ………...………….…56<br />

2.4.4.1.6. Geochronology of the Athabasca-related ±U 6 …...…………...…57<br />

2.4.4.1.7. Post-mineralization alteration events............................................57<br />

2.4.4.2. Chemical Pb age of the uranium mineralization…...…….………..…60<br />

2.5. Discussion……………………………………………………………………………..65<br />

2.5.1. Interpretation of the Main Ore shear zone and Saint Louis fault……………..65<br />

x


2.5.2. Temporal relationships of fault activities and U mineralization to regional<br />

tectonic events…………………………...…………...………..………………69<br />

2.6. Conclusions……………………………………………………………………..…..…78<br />

CHAPTER 3…………………………….……………………………………………..…80<br />

GENESIS OF MULTIFARIOUS URANIUM MINERALIZATION IN THE<br />

BEAVERLODGE AREA, NORTHERN SASKATCHEWAN, CANADA<br />

Abstract………………………………………………………………………….……...…80<br />

3.1. Introduction……………………………………….………………………..…..……82<br />

3.2. Geologic Setting………………………………….………….…………..….….……83<br />

3.2.1. General geology………………………….……………….…….……….….…83<br />

3.2.2. Uranium mineralization………………….………………..………………..…86<br />

3.3. Methodology………………….……………………………………………….…..…87<br />

3.4. Results………………….……………………………………………….……….…...90<br />

3.4.1. Paragenesis of the alteration minerals and types of U mineralization……...…90<br />

3.4.2. Crystal Chemistry………………………….……………….……………….…96<br />

3.4.2.1. Mineral chemistry of uraninite and brannerite…….……………...…96<br />

3.4.2.2. Chlorite Crystal Chemistry……….……………….……………..…100<br />

3.4.3. Isotopic compositions of minerals and fluids involved in the U<br />

mineralization…….………..…………………………………………….…...105<br />

3.4.3.1. Oxygen and carbon isotopes of calcite……………………….….…105<br />

3.4.3.2. Oxygen and hydrogen isotopic compositions of chlorite….……….109<br />

3.4.4. Rare earth elements geochemical characteristics of the U mineralization…..112<br />

3.5. Discussion………………….……………………….……………………………....117<br />

3.5.1. Early U mineralization…………………….……………….………...………118<br />

3.5.2. Formation of breccia-type U deposits, the major U mineralization…………124<br />

3.5.3. Later basin-related U mineralization…….……………….……………...…..127<br />

3.5.4. Late alteration events…….……………….……………………………….....129<br />

3.6. Conclusions…….……………….…………………………………………………..130<br />

xi


CHAPTER 4……………………………………………………………………….…….132<br />

FLUID EVOLUTION AND GENESIS OF URANIUM MINERALIZATION IN THE<br />

SOUTH ALLIGATOR VALLEY AREA, NORTHERN TERRITORIES,<br />

AUSTRALIA<br />

Abstract……………………………………………………………………………..….…132<br />

4.1. Introduction………………………………………………………………………..…133<br />

4.2. Geologic Setting…………………………………………………………………...…136<br />

4.2.1. General geology…………………………………………………………..…136<br />

4.2.2. Uranium mineralization………………………………………………………138<br />

4.3. Characteristics of selected uranium deposits…………………………………..….…140<br />

4.3.1. Coronation Hill uranium deposit……………………………………….….…140<br />

4.3.2. El-Sherana uranium deposit……………………………………………….…142<br />

4.4. Methodology…………………………………………………………………………144<br />

4.5. Results……………………………………………………………………………..…146<br />

4.5.1. Mineral Paragenesis…………………………………………………….……146<br />

4.5.1.1. Coronation Hill uranium deposit……………………………………146<br />

4.5.1.1.1. Pre-ore alteration……………………………………………….146<br />

4.5.1.1.2. Uranium and gold mineralization……………………………...150<br />

4.5.1.1.3. Post-ore alteration…………………………………..……….…152<br />

4.5.1.2. El-Sherana uranium deposit……………………………………..….153<br />

4.5.1.2.1. Pre-ore basement hydrothermal alteration…………………..…155<br />

4.5.1.2.2. Pre-ore diagenetic alteration of the Coronation sandstone….…155<br />

4.5.1.2.3. Uranium mineralization……………………………………..…157<br />

4.5.1.2.4. Post-Ore alteration………………………………………..……159<br />

4.5.2. Crystal chemistry of the alteration minerals…………………………………159<br />

4.5.2.1. Coronation Hill uranium deposit……………………………………159<br />

4.5.2.1.1. Uraninite Crystal Chemistry…………………………...………159<br />

4.5.2.1.2. Chlorite crystal chemistry………………………………...……162<br />

4.5.2.2. El-Sherana Uranium deposit…………………………………..……163<br />

xii


4.5.3. Isotopic compositions of minerals and fluids involved in the U<br />

mineralization……………………………………...…………..……………..164<br />

4.5.4. Geochronology of uraninite and isotopic systematics………………..………166<br />

4.5.4.1. U-Pb geochronology of U-rich minerals by LA-HR-ICP-MS…...…167<br />

4.5.4.2. Pb-Pb geochronology of galena and uraninite by LA-HR-ICP-MS..171<br />

4.5.4.3. Chemical Pb age of the uranium mineralization……………………173<br />

4.6. Discussion……………………………………………………………….…..……...174<br />

4.6.1. Basement metamorphism and basin diagenesis……………..……….………175<br />

4.6.2. Hydrothermal alteration and uranium mineralization….……………….……179<br />

4.6.3. Late stage alteration and resetting events……………………………….……182<br />

4.7. Conclusions…………………………………………………………………………185<br />

CHAPTER 5………………………………………………………………......…………188<br />

GENERAL DISCUSSION<br />

5.1. Introduction…………………………………………….………………………...…188<br />

5.2. U mineralizing system in Paleoproterozoic successor basins…………..…………189<br />

5.2.1. Early U mineralization………………………………………………….....…191<br />

5.2.1.1. Granite-related uranium mineralization…………...……………..…192<br />

5.2.1.2. Metamorphic-related uranium mineralization………………………194<br />

5.2.1.2.1. Early-vein and cataclasite-type uranium mineralization….194<br />

5.2.1.2.2. Breccia-type uranium mineralization………….……….…194<br />

5.2.2. Successor basin-related U mineralization……………………………………196<br />

5.2.2.1. Volcanic-related U mineralization……………………………….…196<br />

5.2.2.2. Unconformity-related U mineralization…………………..………...197<br />

5.2.3. Late alteration events……………………………………………………..….198<br />

5.3. Implication for uranium metallogeny in others Paleoproterozoic successor basins: the<br />

case of Finland and Guyana………………..…………………………………….…201<br />

5.3.1. Uranium metallogenic in Paleoproterozoic successor basins in Finland….…201<br />

5.3.2. Uranium metallogeny in Paleoproterozoic basins in Guyana………….…….205<br />

xiii


CHAPTER 6……………………………………………………………………………..209<br />

GENERAL CONCLUSION<br />

References……………………………...…………………………………………………212<br />

Appendix A. Isotopic data and apparent ages for various generations of uraninite in the<br />

Beaverlodge area……………….……………………………………..……………239<br />

Appendix B. REE contents of various generation of uraninite from deposits of the<br />

Beaverlodge area…………………………………………………...………………246<br />

Appendix C. REE characteristic parameters of various generation of uraninite from deposits<br />

of the Beaverlodge area……………………………………………...……………..248<br />

Appendix D. Electron microprobe analyses of various chlorite phases in deposits of the<br />

Beaverlodge area…………………….………………………………..……………250<br />

Appendix E. Electron microprobe data and temperatures of various chlorite phases from<br />

deposits of the Beaverlodge area...............................................................................255<br />

Appendix F. Results of the electron microprobe analyses for different uraninite occurrences<br />

in the Beaverlodge area…….……………………………………………..………..259<br />

Appendix G. Isotopic data and apparent ages for various generations of uraninite from the<br />

South Alligator River area…….………………………...………………………….263<br />

Appendix H. Electron microprobe data and temperatures of various chlorite phases from<br />

deposits of the South Alligator River area…………………………..………….…..267<br />

Appendix I. Structural measurements (strike and dip) and stereoplot of different structures<br />

from the Cinch Lake deposit………………………………………………………..271<br />

xiv


List of Figures<br />

Figure 1.1. Generalized geological map of the Western Churchill province, Canada………3<br />

Figure 1.2. Regional geology of the Pine Creek Inlier……………………………..……….8<br />

Figure 1.3. Genetic model for unconformity-type U deposit………………………………12<br />

Figure 1.4. Schematic representation of the location of various types of U deposits……...13<br />

Figure 1.5. Geological disciplines used in this study to evaluate the character and formation<br />

of uranium deposits in successor basins……………………………………….…….15<br />

Figure 2.1. Simplified geological map of the southwestern Churchill province, Canada…23<br />

Figure 2.2. Simplified geological map of the Beaverlodge area………………...…………25<br />

Figure 2.3. Detailed geologic map of the Cinch Lake area.………………...…………...…31<br />

Figure 2.4. Photographs of the three main lithostructural units at the Cinch Lake area…...33<br />

Figure 2.5. Various structural and textural relationships along the Main Ore shear zone at<br />

the Cinch Lake deposit.………………...………………….…………………………...…..37<br />

Figure 2.6. A. Detailed geologic map of the Ace-Fay-Verna deposits…………………….40<br />

Figure 2.7. Microphotograph of various structural and textural relationships along the Saint<br />

Louis fault at the Ace-Fay-Verna deposit. .…………………………………………....…..43<br />

Figure 2.8. Generalized paragenesis of the uranium mineralization, metamorphic<br />

relationships and deformation sequences in the Beaverlodge area……….…….46<br />

Figure 2.9. Microphotograph of typical mineral assemblages and crosscutting relationships<br />

from the Ace-Fay-Verna, Cinch Lake and Gunnar uranium deposits……….…50<br />

Figure 2.10. Backscattered Electron Microscope (BSEM) of U-rich minerals……………54<br />

Figure 2.11. U-Pb concordia diagrams from in situ isotopic analysis by LA-HR-ICP-MS of<br />

U from various deposits in the Beaverlodge area………………………………59<br />

Figure 2.12. Plot of element contents in uraninite as a function of chemical Pb<br />

ages…………………………………………………………………………...…64<br />

Figure 2.13. Schematic cross-sections illustrating the general tectonic evolution and timing<br />

of the uranium mineralization in the Beaverlodge area…………………………68<br />

Figure 2.14. Regional geological map of the North American shield……………………..71<br />

Figure 2.15. Distribution of 207 Pb/ 206 Pb ages for 260 uraninite grains along with the timing<br />

of various uranium mineralization and tectonic events…………………………77<br />

xv


Figure 3.1. Generalized geological map of the Western Churchill Province, Canada….….83<br />

Figure 3.2. Simplified geological map of the Beaverlodge area……….………………..…85<br />

Figure 3.3. Mineral paragenesis of the Beaverlodge U deposits……….…………….….…91<br />

Figure 3.4. Photomicrographs of typical mineral assemblages ……………………….…...94<br />

Figure 3.5. Content of substituting elements in U as function of the chemical Pb age……97<br />

Figure 3.6. Diagrams showing the compositional variation of chlorite phases.......….…..102<br />

Figure 3.7. Calculated δ 18 O and δ 13 C values of mineralizing fluids in equilibrium with<br />

carbonate minerals……….……………………………………………....…………106<br />

Figure 3.8. Calculated δ 18 O and δ 2 H values of mineralizing fluids in equilibrium with<br />

chlorite minerals……...…………………………………………………………….110<br />

Figure 3.9. Diagrams showing chondrite normalized REE compositions of uraninite…..113<br />

Figure 3.10. Chondrite-normalized REE patterns in uraninite ……….……………….…115<br />

Figure 3.11. Conceptual genetic model for U mineralization in the Beaverlodge area…..121<br />

Figure 4.1. Geological map of the South Alligator River area……………………….…..135<br />

Figure 4.2. Geological plan of the Coronation Hill deposit……………………….……..141<br />

Figure 4.3. Geological cross-section of El Sherana U deposits…………………………..143<br />

Figure 4.4. General mineral paragenesis of the Coronation Hill deposit……..……….…147<br />

Figure 4.5. Photomicrographs of typical mineral alteration phases of the pre-ore stage...149<br />

Figure 4.6. Photomicrographs of typical mineral alteration phases of the syn-ore stage...151<br />

Figure 4.7. Photomicrographs of typical mineral alteration phases of the post-ore stage..153<br />

Figure 4.8. General mineral paragenesis of the El Sherana deposit………………………154<br />

Figure 4.9. Microphotograph of typical mineral assemblages and crosscutting relationships<br />

of the pre-, syn, and post-ore stage in the El Sherana deposit…………………...…156<br />

Figure 4.10. Photomicrographs of mineral assemblages of the Coronation sandstones….158<br />

Figure 4.11. Calculated δ 2 H and δ 18 O values of fluids in equilibrium with clay minerals.165<br />

Figure 4.12. U-Pb concordia diagrams from in situ isotopic analysis by LA-HR-ICP-MS of<br />

U-rich minerals from the Coronation Hill and El Sherana deposits …………..…..170<br />

Figure 4.13. Pb-Pb isochron diagrams of galena and uraninite from Coronation Hill...…172<br />

Figure 4.14. Plot of element contents in uraninite as a function of chemical Pb ages……174<br />

Figure 4.15. Conceptual genetic model for U mineralization in the SAVMF……………178<br />

xvi


Figure 4.16. Distribution of 207 Pb/ 206 Pb ages and timing of various U mineralization and<br />

tectonic events that affected the South Alligator Valley area………………………184<br />

Figure 5.1. Generalized model for uranium mineralizing system in Paleoproterozoic<br />

successor basins.……………………………………………………………...…….189<br />

Figure 5.2. Geologic cross-section through the Gunnar deposit …………………………193<br />

Figure 5.3. Schematic illustration of the tectonic evolution of the Main Ore Shear Zone and<br />

the Saint Louis Fault.……………...…………………….……………..…………...195<br />

Figure 5.4. Bedrock of Finland……………………………………………………….…..202<br />

Figure 5.5. Schematic Karelian stratigraphy, lithology, and U occurrences in the Koli area,<br />

eastern Finland………..………………………………..……...…………..………..203<br />

Figure 5.6. Distribution of the Roraima Supergroup in northern South America………...206<br />

Figure 5.7. Geologic setting of the Aricheng U deposit ……………………....................208<br />

xvii


List of Tables<br />

Table 1.1. Uranium production of the Beaverlodge area………..………………..…………6<br />

Table 1.2. Production for U deposits in the Northern Territory……..…………..…………10<br />

Table 1.3. Amount of U resources and average grades………………………………….…13<br />

Table 1.4. Global U production and resources by deposit type……………………………14<br />

Table 2.1. Analytical data from the U/Pb LA-HR-ICP-MS analysis of various uraninite<br />

occurrences in the Beaverlodge area…………………………..…...………...…….53<br />

Table 2.2. Summary of the U-Pb concordia results of U-rich minerals for various events..55<br />

Table 2.3. Average chemical composition and calculated chemical Pb ages of different U<br />

occurrences in the Beaverlodge area……………………………………..………...63<br />

Table 3.1. Electron microprobe analysis and chemical composition of U and brannerite..100<br />

Table 3.2. Temperatures of formation, and average structural formulas…………………100<br />

Table 3.3. Representative electron microprobe analysis of syn-ore chlorite phases…..….104<br />

Table 3.4. Representative electron microprobe analysis of various chlorites affected by late<br />

low-temperature alteration phases…………………………………....………..….105<br />

Table 3.5. Measured δ 18 O and δ 13 C for calcite and calculated δ 18 O fluid and δ 13 C fluid values<br />

for fluids in equilibrium with carbonate minerals…………………..………….…108<br />

Table 3.6. Measured δ 18 O and δ 2 H for chlorite and calculated δ 18 O and δ 2 H values for<br />

fluids in equilibrium with chlorite minerals…………………………..…………..111<br />

Table 3.7. Characteristic of REE compositions uraninite………………………………...114<br />

Table 3.8. REE contents of uraninite from different generations of U deposits……….…117<br />

Table 3.9. Summary of the paragenetic mineral assemblages and timing of the U<br />

mineralization……….………………………………………...…………..…..…..118<br />

Table 4.1. Results of the electron microprobe analyses for uraninite occurrences in the<br />

Coronation Hill deposit…………………………………………………..……….162<br />

Table 4.2. Representative electron microprobe analyses of various chlorite phases from the<br />

Coronation Hill and El Sherana deposits………………………………….……...163<br />

Table 4.3. Measured δ 18 O and δ 2 H for muscovite and calculated δ 18 O and δ 2 H values for<br />

fluids in equilibrium with minerals……………………………………….………166<br />

xviii


Table 4.4. Isotopic data of the U-Pb LA-HR-ICP-MS analysis and apparent-ages for<br />

uraninite from the Coronation Hill and El Sherana deposits…………………….…168<br />

Table 4.5. Summary of the U-Pb concordia results of U-rich minerals for various events in<br />

the Coronation Hill and El Sherana deposits. ………………………………….…..170<br />

Table 4.6. Isotopic analyses data of the Pb-Pb LA-HR-ICP-MS analysis of galena from the<br />

Coronation Hill deposit………………………………………………………….….173<br />

Table 4.7. Summary of the major results presented in this Chapter..…………….…..…..175<br />

xix


CHAPTER 1<br />

INTRODUCTION<br />

The Athabasca Basin in Canada and the Kombolgie Basin in Australia are late<br />

Paleoproterozoic basins that host world-class unconformity-type uranium deposits that<br />

contribute to up to 35% of the global uranium market (e.g. Dahlkamp, 1993; Ghandi,<br />

2007). These deposits are spatially associated with an older uranium mineralizing system<br />

that occurs in Paleoproterozoic successor basins; the Martin Lake Basin in the Beaverlodge<br />

area, Northern Saskatchewan, Canada, and the El Sherana Basin in the South Alligator<br />

River area, Northern Territories, Australia. These successor basins formed synchronous or<br />

after major orogenic events (examples of such orogens are the Trans-Hudson Orogen in<br />

Canada and the Top-End Orogen in Australia; Needham, 1985; Hoffman, 1989) and<br />

therefore may be associated with local rifting and volcanism (Needham, 1985; Hartlaub et<br />

al., 1999; Moreilli et al., 2001).<br />

Unconformity-type uranium deposits associated with the younger Athabasca and<br />

Kombolgie basins have been intensively studied (e.g. Hoeve and Sibbald, 1978; Wilson and<br />

Kyser 1987; Kotzer and Kyser, 1995; Sweet et al., 1999; Kyser et al., 2000; Polito et al.,<br />

2004; Alexandre et al. 2007; Cuney and Kyser, 2008). Although deposits associated with<br />

successor basins in the Beaverlodge and South Alligator River areas were extensively<br />

explored in the 1950s, only limited research on their genesis has been published (e.g.<br />

Robinson, 1955; Koeppel, 1968; Beck, 1969; Sassano et al., 1972; Tremblay, 1972; Hoeve,<br />

1981; Johnston, 1984; Needham, 1985; Sibbalt, 1985; Rees, 1992). Therefore, the key<br />

1


processes by which these deposits formed remain a contentious issue. Their timing and<br />

genetic relationships with the unconformity-type deposits in the younger U-rich Athabasca<br />

and Kombolgie basins, and the successor basins themselves, are inconclusive. An<br />

understanding of the structural and geological setting, timing, origin, and nature of the<br />

fluids that formed them and altered them and their relationship with the younger<br />

unconformity-type uranium deposits are necessary to establish a more definitive genetic<br />

model for the formation of these deposits and to contribute to more effective exploration<br />

strategy in successor and associated basins in general.<br />

This thesis reflects results of a study on the fluid evolution and structural control on<br />

uranium deposits in the Martin Lake Basin in the Beaverlodge area, Northern<br />

Saskatchewan, Canada, and the El Sherana Basin in the South Alligator River area,<br />

Northern Territories, Australia, using modern geochemical techniques integrated with<br />

detailed structural analysis. Results are compared to existing models for uranium deposits<br />

in the younger Athabasca and Kombolgie basins.<br />

1.1 Geological setting of the Beaverlodge area<br />

1.1.1. Regional geological and structural setting<br />

The Beaverlodge area lies in the southwestern Rae province of the Churchill<br />

province, which is located in the northwest section of the North American shield (Fig. 1.1).<br />

The Churchill province is subdivided into the Rae and Hearne domains separated by the ca.<br />

1.91-1.90 Ga Snowbird Tectonic Zone (Hoffman, 1990; Hanmer et al., 1995) and bordered<br />

to the northwest by the ca. 1.99-1.92 Ga Taltson-Thelon Orogen (Thériault, 1992; McNicoll<br />

et al., 2000) and to the southeast by the ca. 1.9-1.8 Ga Trans-Hudson Orogen (Ansdell and<br />

2


Yang, 1995). The Beaverlodge area comprises Archean to late Paleoproterozoic rocks that<br />

can be broadly divided into four packages:<br />

3


Figure 1.1. Generalized geological map of the Western Churchill province, Canada showing<br />

the location of the Beaverlodge area (modified from Davidson and Gandhi, 1989).<br />

(1) Archean (ca. 3 Ga) basement granitoid and gneiss (Hartlaub et al., 2006);<br />

(2) Variably deformed and metamorphosed Neoarchean to Paleoproterozoic (ca. 2.33 Ga<br />

to 2.1 Ga) Murmac Bay Group rocks (Hartlaub and Ashton, 1998; Hartlaub et al.,<br />

2004a; Knox et al., 2007, 2008) that unconformably overlie the basement rocks. This<br />

Group contains quartzite, dolostone, psammite, iron formations, mafic rocks, and pelite<br />

(Hartlaub and Ashton, 1998; Ashton et al., 2000). Deposition of the Murmac Bay<br />

Group was synchronous with intrusion of the ca. 2.33 Ga to 2.29 Ga North Shore<br />

Pluton suite (Ashton and Hunter, 2003) including the 2321±3 Ma Gunnar granite<br />

(Hartlaub et al., 2004a), which hosts a major U deposit (Ahston et al., 2010; Dieng et<br />

al., 2011).<br />

(3) Paleoproterozoic ca. 1820 Ma siliciclastic red-bed sedimentary rocks and associated<br />

alkaline volcanic rocks of the Martin Lake Basin (Langford, 1981; Mazimhaka and<br />

Hendry, 1983; Hendry, 1985; Morelli et al., 2009), which unconformably overly the<br />

granitic basement and Murmac Bay Group rocks;<br />

(4) late Paleoproterozoic ca. 1750-1720 Ma sedimentary rocks of the Athabasca Group<br />

(Sibbald, 1983; Kyser et al., 2000; Rainbird et al., 2007) that unconformably overly<br />

Martin Lake Basin rocks.<br />

The basement granite and rocks of the Murmac Bay Group record the effects of<br />

at least four major Paleoproterozoic thermotectonic events:<br />

4


(1) the ca. 2.4-2.3 Ga Arrowsmith Orogen (Berman et al., 2005; Hartlaub et al., 2007;<br />

Ashton and Hartlaub, 2008), interpreted as an extensional orogen associated with the<br />

deposition of the Murmac Bay Group and the intrusion of the North Shore Plutons.<br />

(2) the ca. 1.99-1.93 Ga Thelon-Taltson Orogen (McDonough et al., 2000; McNicoll et al.,<br />

2000) produced NNE-directed recumbent folds (D 1/2 ) accompanied by ductile<br />

transposition and superseded by upright NNW-trending folds (D 3 /F 3 ) (Bethune et al.,<br />

2010). The deformation attained granulite-facies metamorphic conditions by ca. 1.93<br />

Ga (Ashton et al., 2006, 2007). The Thluicho Lake Group (Hunter, 2007), a<br />

greenschist-facies conglomerate-arkose-argillite succession basin located west of the<br />

Beaverlodge area, was deposited between ca. 1.92 Ga and 1.82 Ga (Ashton et al.,<br />

2009a) during the post-peak Taltson-Thelon Orogen.<br />

(3) the ca. 1.91-1.90 Ga Snowbird Tectonic Zone (Baldwin et al., 2003; Bethune et al.,<br />

2008; Ashton et al., 2009a) refolded D 1 to D 3 structures forming NE-trending,<br />

predominantly SW-plunging F 4 folds (Ashton et al., 2007).<br />

(4) the ca. 1.9-1.8 Ga east-west compressional regime of the Trans-Hudson Orogen formed<br />

gentle, open north-trending folds (F 5 ) that are transected by a set northeast-trending<br />

brittle fractures (Ashton et al., 2006, 2009b).<br />

1.1.2. Uranium mineralization<br />

The Beaverlodge area hosts numerous U deposits that are spatially associated with<br />

the Martin Lake Basin (Fig. 1.1). These deposits were actively mined between 1953 and<br />

1963. Ore grades were in the range of 0.15% U to 0.25% U but in places, up to 0.4% U<br />

(Robinson, 1955). About 28,500 t U 3 O 8 was mined (Table 1.1; Sibbald and Quirt, 1987),<br />

5


which is the equivalent of the Millennium deposit (Roy et al., 2005) in the Athabasca<br />

Basin. The Ace-Fay and Gunnar deposits produced up to 80% of the total U ore (Table<br />

1.1).<br />

Deposits<br />

Production (t U3O8)<br />

Eldorado-Ace-Fay 19,232<br />

Gunnar 6,892<br />

Eldorado Verna- Bolger 7 63<br />

Eldorado-Hab 436<br />

Rix Smitty 295<br />

Eldorado - Dubyna 251<br />

Cinch Lake 197<br />

Cayzor Athabasca 163<br />

Lorado 89<br />

Eldorado Eagle 77<br />

Rix Leonard 41<br />

Nicholson 41<br />

National Exploration 3 0<br />

Nesbitt Labine 23<br />

Eldorado Fishhook 15<br />

Eldorado Martin Lake 11<br />

Uranium Ridge 10<br />

Total Production 28,546<br />

Table 1.1. Uranium production of the Beaverlodge area (after Sibbald and Quirt, 1987)<br />

The uranium deposits were generally subdivided into pegmatite-type and vein-type<br />

deposits (Beck, 1969; Robinson, 1955; Tremblay, 1972). The latter are further divided into<br />

a small group of complex mineralogy and a larger group of simple mineralogy (Tremblay,<br />

1972; Hoeve, 1978; Kotzer et al., 1995). Deposits of simple mineralogy consist of<br />

pitchblende with lesser amount of pyrite, chalcopyrite, galena, ±nolanite and minor amount<br />

of bornite, covellite, chalcocite, digenite, and native copper (Robinson, 1955). Deposits of<br />

complex mineralogy consist of pitchblende with cobalt-nickel arsenides and sulfides,<br />

cobalt-nickel lead selenides, and native platinum, gold, silver and copper in addition to<br />

6


minerals found in deposits of simple mineralogy (Robinson, 1955). The ore is associated<br />

with high Si, Al, Fe, Ca, Na, Cu, Pb and V (Beck, 1969) and the ore mineralogy is similar<br />

to the complex-type unconformity-related U deposits in the Athabasca Basin (Hoeve et al.,<br />

1978; Fayek et al., 1997). The common gangue minerals in order of abundance are<br />

hematite, calcite, chlorite, quartz, feldspar and fluorite (Robinson, 1955).<br />

Hoeve et al. (1978) proposed two different periods of metallogenesis based on a<br />

correlation between deposit types and their timing. They argue that deposits of simple<br />

mineralogy formed at 1780 Ma (Koeppel, 1968) and are associated with Na-metasomatism<br />

during the peak Trans-Hudson Orogen, whereas those of complex mineralogy formed at ca.<br />

1500-1400 Ma and may be equated to the unconformity-type deposit of diagenetic origin in<br />

the Athabasca Basin (Peiris et al., 1988; Kotzer et al., 1990, 1993, 1995; Rees, 1992).<br />

1.2. Geological setting of the South Alligator Mineral Field area<br />

1.2.1. Regional geological and structural setting<br />

The South Alligator River area is located in the South Alligator Valley, in Northern<br />

Territories, Australia (Fig. 2.1). It comprises rocks aged from Neoarchean to late<br />

Paleoproterozoic, which are divided into four main sequences:<br />

(1) Neoarchean ca. 2.5 Ga basement granitic rocks (Needham and Stuart-Smith, 1985);<br />

(2) Paleoproterozoic (ca. 2.2 Ga to 1.87 Ga) metasedimentary and metavolcanic rocks of<br />

the Pine Creek Orogen sequence unconformably overlying basement rocks (Page et al.,<br />

1980; Needham et al., 1987). In the South Alligator River area, the upper part of the<br />

South Alligator Group, the Koolpin Formation is a succession of interbedded siltstone,<br />

7


dolostone and carbonaceous shale (Lally et al., 2006) that host most of the uranium<br />

mineralization (Valenta, 1989, 1991; Wyborn et al., 1991; Mernagh et al., 1994; Lally<br />

and Bajwah, 2006);<br />

8


Figure 1.2. Generalized regional geology of the Pine Creek Inlier, showing uranium fields,<br />

deposits, and prospects (modified from Needham et al., 1988).<br />

(3) Paleoproterozoic (ca. 1829 Ma to 1822 Ma) silisiclastic red beds and associated felsic<br />

and mafic volcanic rocks of the El Sherana-Edith River Group unconformably overlie<br />

Pine Creek Orogen sedimentary rocks (Jagodzinski, 1992; Kruse et al., 1994); and<br />

(4) Late Paleoproterozoic (ca. 1822 Ma to 1720 Ma) volcanic and sedimentary rocks of the<br />

Kombolgie Basin (Sweet et al., 1999) unconformably overlying older rocks and are<br />

intruded by the 1723±6 Ma Oenpelli dolerite (Kyser et al., 2000).<br />

Johnston (1984) and Valenta (1990) described three deformation phases in the South<br />

Alligator River area, which are related to the ca. 1.87-1.78 Ga Top End Orogen (Needham<br />

and DeRoss, 1990). D 1 deformation occurred during the ca. 1.87-1.96 Ga Barramundi<br />

Orogen (Page and Williams, 1988) and produced isoclinal folding and bedding-parallel<br />

cleavage, related to major low-angle reverse faulting, particularly at the base of the Koolpin<br />

Formation (Johnston, 1984). D 2 occurred during the 1.86-1.84 Ga Nimbuwah event<br />

(Ferguson and Needham, 1978; Lally and Worden, 2004) and formed regional-scale,<br />

northwest trending, upright, tight to isoclinal folds and a penetrative axial-plane cleavage.<br />

This event is associated with greenschist grade metamorphism in the South Alligator River<br />

area. Post-Nimbuwah D 3 deformation is characterized by open, upright northeast-trending<br />

folds and affected the El Sherana Basin rocks (Valenta, 1991).<br />

1.2.2. Uranium mineralization<br />

U mineralization occurs in three main areas of the Pine Creek Orogen: the Alligator<br />

Rivers Uranium Field, the South Alligator Rivers Uranium Field, and the Rum Jungle<br />

9


Mineral Field (Figure 1.2). Many deposits in these areas are classified as unconformity-type<br />

(Lally et al., 2006). In the South Alligator Rivers area, U deposits lie within a northwesttrending<br />

structural belt of Paleoproterozoic metasedimentary and metavolcanic rocks<br />

(Walpole et al. 1968; Crick et al. 1980; Needham et al. 1988; Valenta, 1991; Wyborn et al.<br />

1990a). Thirteen deposits (Table 1.2) and fifteen prospects were discovered by 1953<br />

(McKay and Miezitis, 2001). Between 1956 and 1964, a total of 875 t of U 3 O 8 from 146<br />

500 t of ore was produced (Table 1.2, Fisher, 1968). The bulk of the production was from<br />

underground operations, with a few small open-cut pits (Lally et al., 2006).<br />

Deposits Ore tonnage Grade t U 3 O 8 Au and PGE<br />

Coronation Hill (production and reserve) 0.363 Mt 0.52 1869 19.6t Au, 0.8t Pt, 2.1t Pd<br />

El Sherana (production) 41100t 0.55 226 Minor Au<br />

El Sherana West (production) 21658t 0.82 185 Minor Au<br />

Rockhole (production) 13155t 1.11 152 Minor Au<br />

Palette (production) 4850t 2.46 124<br />

Saddle Ridge (production) 30341t 0.24 78<br />

Scinto 5 (production) 5800t 0.37 22<br />

Scinto 6 (production) 1760t 0.16 3<br />

Koolpin Creek (production) 530t 0.13 3<br />

Skull (production) 630t 0.55 3<br />

Sleisbeck (production) 0.34 3<br />

Table 1.2. Production for U deposits in the Northern Territory, after Fisher, 1968.<br />

Most of the deposits lie on or near the El Sherana–Palette fault (Fig. 1.2), a<br />

northwest-striking dextral strike-slip fault system (Valenta, 1990), and were formed in<br />

dilatational zones at fault bends or intersections (Valenta, 1991). The deposits occur in<br />

greenschist facies host rocks and are surrounded by alteration zones that may extend for<br />

over 1 km (Mernagh et al., 1994). The mineralization is essentially uraninite associated<br />

with precious metals occurring as vein-type lodes in faults or shears, and occurs at the<br />

unconformity between sediments of the El Sherana Group and the underlying cherty<br />

10


ferruginous siltstone of the Koolpin Formation (Ayres et al., 1975). The U mineralization is<br />

accompanied by minor amount of galena, chalcopyrite, pyrite, native gold, and clausthatite<br />

(Ayres et al., 1975). The syn-ore alteration is characterized by muscovite-chlorite<br />

±hematite±kaolinite±biotite (Wyborn, 1992; Mernagh and Wyborn, 1994).<br />

1.3. Uranium mineralized systems in the Athabasca and Kombolgie basins<br />

Uranium deposits in the Athabasca and Kombolgie basins are major sources of high<br />

grade U ore (McGill et al., 1993; Bruneton, 1987). These deposits consist of massive pods,<br />

veins and disseminations of uraninite spatially associated with unconformities between<br />

basement Paleoproterozoic metasedimentary and Archean to Paleoproterozoic granitoid<br />

rocks and overlying relatively flat-lying, late Paleoproterozoic siliciclastic fluvial red-bed<br />

strata (Hoeve and Sibbald, 1978; Hoeve and Quirt, 1984; Wallis et al., 1986; Sibbald and<br />

Quirt, 1987).<br />

The uranium deposits can be hosted in structures in the basement (ingress type, Fig.<br />

1.3) or in the overlying siliciclastic strata and paleo-weathered basement rocks (egress type,<br />

Fig. 1.3) at the unconformity (Hoeve et al., 1984; Sibbald, 1985; Fayek and Kyser, 1997).<br />

The ore-forming fluids originate either from the overlying sandstone (e.g. Kotzer et al.,<br />

1995; Polito et al., 2005; Cuney and Kyser, 2008) or the underlying basement (e.g. Cuney<br />

et al., 2005). These deposits are associated with alteration zones around the mineralization<br />

(Hoeve et al., 1984; Quirt, 2003). In basement-hosted deposits, illitization is predominant in<br />

the distal alteration zone from the U mineralization, and chloritization is the typical<br />

alteration in the proximal zone (e.g. Wilde, 1989; 1992; Kotzer et al., 1995; Polito et al.,<br />

11


2005). U mineralization is controlled by structures that have been reactivated, which are<br />

favorable sites for fluid circulation (Schultz, 1991; Tourigny, 2002).<br />

Fracture-Controlled<br />

Mobilized U Mineralization<br />

(Perched)<br />

Lake<br />

U Mineralization<br />

at unconformity<br />

(Basin-hosted)<br />

Unconformity<br />

Pelitic<br />

Gneiss<br />

Vein & Breccia<br />

U mineralization<br />

basement-hosted<br />

Pelitic<br />

Gneiss<br />

Granitic<br />

Gneiss<br />

Graphitic<br />

Pelitic Gneiss<br />

Arkosic<br />

Gneiss<br />

Quartzite<br />

Figure 1.3. Genetic model for unconformity-type U deposit (modified from Cuney and<br />

Kyser, 2008).<br />

Unconformity-type U deposits in the Athabasca and Kombolgie basins formed at ca.<br />

1600 Ma and 1675 Ma, respectively, (Alexandre et al., 2006; Polito et al., 2012).<br />

Temperatures were 200 o C and involved the interaction of oxidizing, saline basinal fluids<br />

carrying U 6+ with either reducing basement rock types (basement-hosted, Fig. 1.3) or<br />

reducing fluids from the basement (sediment-hosted, Fig. 1.3), thereby precipitating U 4+ at<br />

the unconformity (e.g. Hoeve and Quirt, 1984; Kotzer and Kyser, 1995; Cuney et al.,<br />

2005). Unconformity-type U deposits in the Athabasca and Kombolgie basins have<br />

produced up to 35% of the world U production (e.g. Ruzicka, 1996; Ghandi, 2007),<br />

12


compared to the small percentage produced in successor basins (Table 1.3) (Sibbald and<br />

Quirt, 1987).<br />

ore (Kt) % U Tonnes U<br />

Olympic Dam (Australia) 2877610 0.03 863283<br />

Athabasca Basin (Canada) 28810 1.922 553778<br />

Kombolgie Basin (Australia) 87815 0.323 283304<br />

Thelon Basin (Canada) 11989 0.405 48510<br />

Beaverlodge District (Canada) 15717 0.165 25539<br />

Hornby Bay Basin (Canada) 900 0.3 2700<br />

South Alligator Valley U Field - 0.66 2668<br />

Paterson Terrane (Australia) 122200 0.25 30<br />

Table 1.3. Amount of U resources and average grades (modified from Jefferson et al., 2007).<br />

Uranium also occurs in other deposit types (Fig. 1.4) including: breccia complex,<br />

sandstone hosted, surficial, conglomeratic, volcanic, metasomatic, metamorphic, granitehosted,<br />

and vein-type deposits (Cuney and Kyser, 2008). So far, unconformity-related<br />

deposits have produced the majority of U (Table 1.4).<br />

13


Figure 1.4. Schematic representation of the location of various types of U deposits (modified<br />

from Cuney and Kyser, 2008)<br />

U deposit type Global U production (%) Global U resource (%)<br />

Unconformity-related 42 4<br />

Sandstone-hosted 30 10<br />

Metasomatic 9 4<br />

Volcanic 9 1<br />

Breccia Complex 8 6<br />

Quartz-pebble conglomerate 2 2<br />

Table 1.4. Global U production and resources by deposit type (after Cuney and Kyser 2008).<br />

1.4. Uranium mineralized systems in the successor basins<br />

In successor basin areas, there is no consensus regarding the origin of the fluids that<br />

carried the uranium, the timing of the deposits or their relationship with the younger U-rich<br />

Athabasca and Kombolgie basins primarily because they are wholly understudied. Previous<br />

results on deposits in successor basins are discussed in chapters 2 to 4. Diagenetic<br />

processes and fluid evolution in the Martin Lake and El Sherana basins have never been<br />

fully addressed, nor has basin versus basement sources for U and other metals in the<br />

deposits. More recent studies on U in successor basins focussed only on aspects of a few<br />

deposits and the older studies dating back to the 1950’s often lacked the necessary details<br />

and technologies needed to construct meaningful exploration models (e.g. Condon and<br />

Walpole, 1955; Tremblay, 1972). Indeed, there is a lack of basic knowledge on whether the<br />

successor basins could form or host an exploitable deposit and what their significance is to<br />

the overlying U-rich Athabasca and Kombolgie basins.<br />

14


1.5. Purpose of this Thesis<br />

The main objectives of this thesis are:<br />

(a) to re-evaluate the character and formation of uranium deposits in successor basins in<br />

Canada and Australia and compare them to those in the younger U-rich basins with<br />

which they are spatially associated, and<br />

(b) to identify key factors controlling U mineralization in successor basins by integrating<br />

aspects of structural geology, geochronology, petrography and geochemistry (Fig. 1.5)<br />

to detail the structural and fluid evolution of uranium deposits in successor basins and<br />

how they are related to unconformity-related U deposits in the younger basins.<br />

Figure 1.5. Geological disciplines used in this study to evaluate the character and formation of<br />

uranium deposits in successor basins including deformation that created fluid conduits,<br />

timing of the fluids events, the nature of the ore-forming fluid and the uranium source. All are<br />

necessary to construct a conceptual genetic model for uranium deposit.<br />

15


In particular, the key issues to be addressed include:<br />

(1) The geological and structural settings of these deposits. The goals are to define the<br />

deformation history and to analyze the geometry and kinematics of uranium-bearing<br />

structures that are necessary to understand key structural features that are favorable for<br />

fluid mobility and uranium mineralization (Fig. 1.5).<br />

(2) The paragenesis and crystal chemistry of the alteration assemblages and uranium<br />

mineralization in successor basins (Fig. 1.5), including ore and alteration mineral<br />

assemblages and their relative timing.<br />

(3) Determination of the age, origin, composition and timing of the fluids that produced<br />

the uranium mineralization in successor basins (Fig. 1.5). Results are compared with<br />

fluids that formed the younger unconformity-type U deposits.<br />

(4) Establish a conceptual genetic model for uranium mineralization in successor basins by<br />

integrating results from structural, geochronological, petrographic and geochemical<br />

data (Fig. 1.5) and predict sites of mineral deposition in analogous successor basins by<br />

identifying key fluid and deformation events in their evolutions that are linked to<br />

economic uranium mineralization.<br />

This study focuses on uranium deposits in the Beaverlodge (Fig.1.1) and South<br />

Alligator River areas (Fig. 1.2). These two areas share similar geological and structural<br />

setting. They host older U deposits in Paleoproterozoic successor basins that are spatially<br />

associated with unconformity-type U deposits in younger late Paleoproterozoic basins. In<br />

the Beaverlodge area (Fig. 1.1), the Gunnar, Ace-Fay, and Cinch Lake deposits are studied.<br />

These deposits represent the spectrum of deposit types and are the largest in the area (Table<br />

16


1.1). In the South Alligator Valley area, research is focused on the Coronation Hill and El<br />

Sherana deposits, the largest deposits of their type in the area (Fig. 1.2, Table 1.2).<br />

1.6. Thesis Structure<br />

The results of this research are presented in three manuscripts (Chapters 2 to 4).<br />

Chapter 2 (accepted pending moderate revisions in Precambrian Research) details<br />

the timing of deformation, fluid flow and uranium mineralization in the Beaverlodge area.<br />

U-Pb geochronology of uraninite from various uranium deposits, together with<br />

petrographic and structural analysis along the Main Ore shear zone at the Cinch Lake<br />

deposit and the Saint Louis fault at the Ace Fay deposit, are used to constrain the timing of<br />

deformation and fluid events and to clarify the relationship between fault activity and<br />

uranium mineralization. Ages of the uranium mineralization and late alteration events that<br />

affected them are used to correlate the chronology of fault activity and uranium<br />

mineralization to major thermotectonic events associated with the evolution of the North<br />

American shield.<br />

Chapter 3 (accepted pending moderate revisions to Economic Geology) evaluates the<br />

character and formation of the fluids that formed uranium deposits in the Beaverlodge area<br />

and determines key geochemical factors that control uranium mineralization. A mineral<br />

paragenesis that details the relative timing of alteration minerals is presented. Stable isotope<br />

geochemistry, rare earth element contents in uraninite and mineral crystal chemistry are<br />

used to constrain the nature and origin of fluids. These results are used to identify key<br />

factors controlling uranium mineralization in deposits of the Beaverlodge area, present a<br />

17


genetic model for the U mineralization, and compare the Beaverlodge U deposits to those<br />

in the younger, U-rich Athabasca Basin.<br />

Chapter 4 (submitted to Mineralium Deposita) focuses on U deposits in the South<br />

Alligator Valley area. In this chapter, we evaluate the character and formation of U<br />

mineralization of the El Sherana and Coronation Hill deposits using a mineral paragenesis<br />

that details the relative timing of alteration minerals. We also constrain the timing, nature<br />

and origin of the fluids in equilibrium with these minerals using stable isotope<br />

geochemistry, U-Pb geochronology of paragenetically well-characterized U-rich minerals,<br />

and mineral crystal chemistry. These results are used to identify key processes controlling<br />

U mineralization in the South Alligator Valley area, present a genetic model for the U<br />

mineralization, and compare the South Alligator River U deposits to those in the younger<br />

and U-rich Kombolgie Basin.<br />

18


CHAPTER 2<br />

TECTONIC HISTORY OF THE NORTH AMERICAN SHIELD<br />

RECORDED IN URANIUM DEPOSITS IN THE BEAVERLODGE<br />

AREA, NORTHERN SASKATCHEWAN, CANADA<br />

Abstract<br />

Paragenetic and structural relationships and geochronology of minerals in uranium<br />

deposits in the Beaverlodge area, Northwestern Saskatchewan, Canada, reveal six periods<br />

of uranium mineralization associated with multi-stage deformation during the Proterozoic.<br />

The Saint Louis fault and the Main Ore shear zone are northeast striking, southeast-dipping,<br />

oblique-normal and dextral fault systems that have mylonite-dominated footwalls. These<br />

faults display evidence of exhumation and episodic structural reactivation at progressively<br />

shallower crustal levels, accompanied by fluid flow, hydrothermal alteration, and uranium<br />

mineralization.<br />

New geochronologic data on uranium mineralization and alteration events record<br />

over 2.3 Gyrs of protracted tectonic evolution of the North American shield. 207 Pb/ 206 Pb<br />

ages of 2293±17 Ma and 2289±20 Ma date two minor uranium mineralization stages<br />

associated with cataclasite rocks and early tensional veins, respectively, coincident with<br />

late Arrowsmith orogenic exhumation. Following emplacement of the Gunnar granite at<br />

2321±3 Ma, albite metasomatic alteration of the granite is associated with a third moderate<br />

uranium mineralizing event. During the late Paleoproterozoic, exhumation along major<br />

faults caused the deformation style to change from dominantly brittle-ductile to brittle at<br />

shallower structural levels. Massive brecciation of pre-existing rocks is associated with the<br />

19


fourth and most significant uranium-mineralizing event at 1848±5 Ma, coincident with fault<br />

reactivation during tectonic shortening and regional metamorphism related to the Trans-<br />

Hudson Orogen or more likely post-peak compressional uplift during terminal collision of<br />

the Taltson-Thelon Orogen. Subsequently, formation of the Martin Lake Basin and<br />

intrusion of mafic dikes are related to the fifth minor uranium mineralizing event at<br />

1812±15 Ma reflecting rifting related to late stage Trans-Hudson Orogen. Late mineralized<br />

veins during the Mesoproterozoic crustal growth of the Nuna supercontinent are associated<br />

with the sixth mineralizing event at 1620±4 Ma, coincident with the Mazatzal Orogen and<br />

the formation of the unconformity-related uranium mineralization in the proximal<br />

Athabasca Basin.<br />

Post-mineralization alteration and resetting events of uraninite further record various<br />

major orogenic events that have affected the North American shield.<br />

2.1. Introduction<br />

Deeply exhumed fault zones can serve as vehicles to understand the complex timing<br />

relationships between deformational, hydrothermal and ore-forming processes. An<br />

important step in understanding the structural setting of uranium deposits associated with<br />

highly and multiply deformed and metamorphosed Paleoproterozoic terranes is establishing<br />

the timing relationships of fault activity and uranium mineralization to regional<br />

thermotectonic events.<br />

The Beaverlodge area in the central-southern Archean Rae province, Northwestern<br />

Saskatchewan, Canada (Fig. 2.1), hosts numerous fault-controlled uranium deposits. The<br />

Main Ore shear zone at the Cinch Lake deposit and the Saint Louis fault at the Ace-Fay-<br />

20


Verna deposits are two northeast-striking, southeast-dipping, oblique-normal and dextral<br />

fault systems that offer an excellent setting to understand the temporal relationship of fault<br />

activity and uranium mineralization to regional thermotectonic events (Fig. 2.2).<br />

The timing and tectonic setting of uranium mineralization in the Beaverlodge area has<br />

been a contentious issue. Although the spatial relationship between uranium mineralization<br />

and major structures has been well documented (e.g. Robinson, 1955; Tremblay, 1968;<br />

Beck, 1969; Beecham, 1969; Morton and Sassano, 1972; Sassano, 1972; Sibbald, 1982,<br />

Ashton et al., 2000, 2010), the timing of tectonic and fluid events in these deposits and their<br />

relationships with fault activity and regional thermotectonic events have never been fully<br />

elucidated.<br />

In this chaper, U-Pb dating by laser ablation-high resolution inductively-coupled<br />

plasma mass spectrometry (LA-HR-ICP-MS) on uraninite from uranium deposits, together<br />

with petrographic and structural analysis along the Main Ore shear zone and the Saint Louis<br />

fault, are used to constrain the timing of deformation and fluid events and to clarify the<br />

relationship between fault activity and uranium mineralization. Ultimately, ages of primary<br />

uranium mineralization and late alteration events that affected them are used to correlate<br />

the chronology of fault activity and uranium mineralization to major orogenic events<br />

associated with the evolution of the North American shield.<br />

2.2. Geologic Setting<br />

2.2.1. General geology<br />

21


The Beaverlodge area is part of the Churchill province, which is located in the<br />

northwest section of the North American shield (Fig. 2.1). The Churchill province is<br />

subdivided into the Rae and Hearne domains separated by the ca. 1.91-1.90 Ga Snowbird<br />

Tectonic Zone (Hoffman, 1990; Hanmer et al., 1995) and bordered to the northwest by the<br />

ca. 1.99-1.92 Ga Taltson-Thelon Orogen (Thériault, 1992; McNicoll et al., 2000) and to the<br />

southeast by the ca. 1.9-1.8 Ga Trans-Hudson Orogen (Ansdell and Yang, 1995). The<br />

Beaverlodge area lies within the southwestern Rae province (Fig. 2.1) and comprises<br />

Neoarchean to Mesoproterozoic rocks that can be broadly divided into four packages (Fig.<br />

2.2): (1) Neoarchean basement granitoid and gneiss (Hartlaub et al., 2006); (2) variably<br />

deformed and metamorphosed Neoarchean to Paleoproterozoic Murmac Bay Group rocks<br />

(Hartlaub and Ashton, 1998; Hartlaub et al., 2004a) that uncomformably overlie the<br />

basement rocks; (3) Paleoproterozoic siliciclastic red-bed sedimentary rocks and associated<br />

alkaline to sub-alkaline volcanic rocks known as the Martin Lake Basin (Hendry, 1983;<br />

Morelli et al., 2001, 2009). Martin Lake Group basal conglomerates directly overlie<br />

quartzites of the Murmac Bay Group and argillaceous rocks of the Thluicho Lake Group<br />

(Scott, 1978, Hunter et al., 2003, 2004; Yeo, 2005) at angular unconformities in the western<br />

Beaverlodge Domain and along the northern shore of Lake Athabasca, respectively (Ashton<br />

et al., 2009), and (4) Mesoproterozoic sedimentary rocks of the Athabasca Group (Rainbird<br />

et al., 2007) that uncomformably overlie Martin Lake Basin rocks.<br />

The basement complex comprises a number of granitoids including the Elliot Bay<br />

(3014±10 Ma; Persons, 1983), Lodge Bay (3060±40 Ma; O’Hanley, et al., 1991), and<br />

Cornwall Bay (2999±7 Ma; Hartlaub et al., 2004a) granites. The unconformity between the<br />

22


asement and the Murmac Bay Group is generally sheared but the basal polymictic<br />

conglomerate is locally preserved (MacDonald and Slimmon, 1985).<br />

Location Map<br />

Study area<br />

<br />

Uranium deposits<br />

Figure 2.1. Simplified geological map of the southwestern Churchill province, Canada,<br />

showing lithotectonic units, uranium deposits and the Beaverlodge location. (modified from<br />

Hoffman, 1988).<br />

The Murmac Bay Group is composed of metamorphosed and moderately to highly<br />

deformed basal quartzite, basalt, ultramafic to intermediate igneous rocks, psammite and<br />

pelite, with minor amounts of conglomerate, banded iron formation, and carbonates<br />

(Hartlaub and Ashton, 1998; Ashton et al., 2000). The Group is metamorphosed from<br />

lowermost amphibolite to granulite facies to lower greenschist facies (Ashton and Card,<br />

23


1998; Hartlaub and Ashton, 1998). Recent work indicates that the basal quartzo-feldspathic<br />

units have a maximum depositional age of 2330±3 Ma (Card et al., 2007). The Murmac<br />

Bay Group is intruded by a suite of ca. 2.33–2.30 Ga granites named ‘North Shore Plutons’<br />

(Macdonald et al., 1985) including the 2321±3 Ma Gunnar granite (Hartlaub et al., 2007),<br />

which hosts the Gunnar uranium deposit (Fig. 2.2). The timing of deposition of the<br />

Murmac Bay Group with respect to emplacement of the ‘North Shore Plutons’, thought to<br />

be related to the Arrowsmith Orogen (Hartlaub et al., 2007), remains contentious.<br />

The Paleoproterozoic Martin Lake Basin (Fig. 2.2) is estimated to be a ca. 5000 m-<br />

thick, molasse, red-bed succession (Langford, 1981; Mazimhaka and Hendry, 1984) of<br />

essentially unmetamorphosed arkose, conglomerates, and siltstone with mafic flows and<br />

sills of alkaline affinity (Morelli et al., 2009). The fault-controlled basin is confined to a<br />

broad open syncline centered about the Martin Lake (Ramaekers, 1981; Ashton et al.,<br />

2001). Suites of east to southeast striking mafic dikes, dated at 1818±4 Ma, are interpreted<br />

as feeders to the Martin Lake mafic flows (Morelli et al., 2009). The Martin Lake Basin<br />

formed during a late phase of the Trans-Hudson Orogen and can therefore be classified as<br />

a successor basin (Clendenin et al., 1988).<br />

Outliers of the Athabasca Formation lie above the Martin Lake Basin south of the<br />

Beaverlodge area (Fig. 2.2), where they generally comprise flat-lying and undeformed<br />

sandstone with minor mudstone, conglomerate and greywacke (Sibbald, 1983).<br />

24


Strike slip normal fault<br />

Figure 2.2. Simplified geological map of the Beaverlodge area and location of uranium<br />

deposits, including those in this study. (modified from Macdonald and Slimmon, 1985).<br />

Rocks within the Beaverlodge area have been affected by at least four episodes of<br />

deformation (Bethune et al., 2008; Ashton et al., 2009a). The first deformation episode<br />

25


(D 1 ) produced a regional migmatitic foliation (S 1 ). The second deformation episode (D 2 )<br />

produced tight to isoclinal folds of early S 1 fabric and associated shear zones (Ashton and<br />

Hartlaub, 2008). These two deformational events resulted in an east-southeast striking<br />

structural fabric coinciding with the 1.94-1.92 Ga peak metamorphism of the Taltson<br />

Magmatic Suite (McDonough et al., 2000). An overprinting northeast-striking regional<br />

fabric associated with tight to isoclinal foldind (D 3 ) is interpreted to be synchronous with<br />

the 1.91-1.90 Ga metamorphic event of the Snowbird Tectonic Zone (Bethune et al.,<br />

2008). Gentle upright folds with north-trending hinges represent the last phase of regional<br />

deformation (D 4 ) that affected the Martin Lake Basin and Murmac Bay Group rocks; these<br />

are likely associated with late stage of the Trans-Hudson Orogen (Ashton et al., 2009a).<br />

2.2.2. Previous models age for uranium mineralization in the Beaverlodge area<br />

The Beaverlodge area hosts a multitude of uranium deposits (Fig. 2.2), which were<br />

actively mined between 1953 and 1963. About 284 deposits were known by 1969 and ca.<br />

25000 tU was mined (Sibbald and Quirt, 1987). Ore grades were in the range of 0.15 to<br />

0.25% U, but in places, up to 0.4% U (Robinson, 1955).<br />

The age and evolution of the uranium mineralization in the Beaverlodge area are<br />

debated and different age models have been proposed. Collins et al. (1954) suggested that<br />

the first period of uranium mineralization lasted from 1860 to 1630 Ma with alteration<br />

occurring at 1100-900 Ma, 650-600 Ma, and 400-300 Ma. They interpreted this range of<br />

ages as related to alteration and resetting stages during successive tectonic events.<br />

Robinson (1955a) indicates that the earliest vein-type uranium mineralization occurred<br />

between 1600 Ma and 1500 Ma and followed, possibly transitionally, earlier deposition of<br />

26


U and Th in syngenetic deposits. He suggested that the vein-type deposits were followed<br />

by periods of mineralization in the intervals of 1500-1400 Ma, 950-850 Ma, and 350-250<br />

Ma and indicates that these deposits were reopened and reworked over a long period of<br />

time. Wasserburg and Hayden (1955) obtained an age of ca. 1.87 Ma in uraninite from<br />

Viking Lake deposit located east of the Ace-Fay deposits and interpreted this age as the<br />

earliest uranium mineralization in the Beaverlodge area. Aldrich and Wetherill (1956) and<br />

Eckelman and Kulp (1957) proposed that the uranium mineralization was deposited at<br />

1900 Ma with subsequent alteration and Pb loss occurring at 1200 Ma and 200 Ma. Russel<br />

et al. (1957) reported an age of 1800 Ma for the west orebodies of the Ace deposit (Fig.<br />

2.2) and a second generation of mineralization at ca. 940 Ma. Results from Koeppel (1969)<br />

support the formation and evolution of the uranium mineralization during five discrete<br />

periods that span a time of more than 2200 Myr. Koeppel (1969) reported an U-Pb<br />

concordia upper intercept age of 1930 Ma and a lower intercept of 1780 Ma with episodic<br />

Pb loss at 1110 Ma, 270 Ma, and 200-0 Ma. He interpreted the age of 1930 Ma was related<br />

to pegmatite-type mineralization and the 1780 Ma date as the age of the vein-type uranium<br />

mineralization. Bell (1981) proposed an age of 1740 Ma for initial uranium deposition and<br />

Dudar (1982) found apparent 207 Pb/ 206 Pb ages ranging from 1100 Ma to 430 Ma for<br />

brannerite in the Fay deposit (Fig. 2.2). Interpretation of fluid inclusions, stable isotope,<br />

and radiogenic isotope data from the veins and mine granites (Fig. 2.2) in the Goldfield<br />

area, led Rees (1992) to identify up to six fluid events occurring from ca. 2.0 Ga to 1.0 Ga<br />

that he interpreted to be related to major thermotectonic events.<br />

27


These previous age models do not take into account the various styles of uranium<br />

mineralization and associated deformation, and their spatial and relative temporal<br />

relationships (Collins et al., 1954; Robinson, 1955a; Koeppel, 1969). Most of these models<br />

have been limited to a single deposit (Russel et al., 1957; Bell, 1981; Dudar, 1982; Rees,<br />

1992) that cannot provide a regional picture of the timing of uranium mineralization and<br />

fluid events and their relationship to deformational history.<br />

In this chapter, structural, petrographic and metamorphic relationships along the<br />

Main Ore shear zone at the Cinch Lake deposit and the Saint Louis fault at the Ace-Fay-<br />

Verna deposits (Fig. 2.2) are used to constrain the timing of deformation and fluid events.<br />

Paragenetically constrained uraninite grains collected from five uranium deposits (Fig. 2.2)<br />

are dated to determine the timing of the uranium mineralization and alteration events.<br />

2.3. Methodology<br />

2.3.1. U-Pb dating of uranium-rich minerals by LA-HR-ICP-MS<br />

U-Pb isotope ratios were determined by laser ablation-high resolution inductivelycoupled<br />

plasma mass spectrometry (LA-HR-ICP-MS) (Chipley et al., 2007) using a<br />

Finnigan MAT ELEMENT XR HR-ICP-MS and a NEPTUNE HR-MC-ICP-MS, both<br />

equipped with a high-performance Nd:YAG New Wave UP-213 laser ablation system at<br />

the Queen’s Facility for Isotope Research. Ablation of uraninites was achieved on polished<br />

thin sections using a 30 to 40μm spot size with 35% to 40% laser power at a frequency of<br />

2Hz. The argon gas flows were as follows: cooling gas, 1.5l/min; auxiliary gas, 1.0l/min;<br />

and sample carrier gas, 1.0 l/min. A low resolution of 350 (defined as the ratio of mass<br />

over peak width mass at 5% of the signal height) was used. For each sample, 204 Pb, 206 Pb,<br />

28


207 Pb, 235 U and 238 U were measured and corrections for common Pb were made scan-byscan<br />

to each spot. No corrections were made to the 238 U/ 235 U ratios as they were near the<br />

137.8 natural ratios. The ages were verified using an in-house 1000 Ma uraninite standard.<br />

2.3.2. Electron-microprobe procedure and calculations of chemical Pb age of the<br />

uranium mineralization<br />

Polished thin sections were examined with reflected light optical microscopy and<br />

Scanning Electron Microscopy. A Cameca SX-100 Electron Microprobe equipped with 4<br />

wavelength-dispersive spectrometers, an EDS system, and Back-Scattered Electron and<br />

Secondary-Electron Detectors at the <strong>University</strong> of Manitoba, Winnipeg, Canada, was used<br />

to measure UO 2 , SiO 2 , CaO, Fe 2 O 3 , TiO 2 , Cr 2 O 3 , V 2 O 5 , PbO, P 2 O 5 , K 2 O ThO 2 , MnO,<br />

Y 2 O 3 , Tb 2 O 3 , and CuO. Analytical results are accurate to 2% relative for major elements<br />

and 5% relative for minor elements (


the age when the concentrations of the secondary elements (e.g. Ca, Fe and Si) were<br />

negligible (e.g. Alexandre and Kyser, 2005).<br />

Mineral name abbreviations used in this chapter are those from Kretz (1983). The<br />

superscript numerical value on mineral name abbreviations reflects mineral growth stages.<br />

2.4. Results<br />

2.4.1. The Main Ore shear zone<br />

2.4.1.1. Geology of the Cinch Lake deposit<br />

The Cinch Lake deposit is located 2.5 km south of Uranium City (Fig. 2.2). The<br />

uranium mineralization is hosted in quartzo-feldspathic gneiss (Turek, 1962; Tortosa,<br />

1983) and associated with a northeast-striking band of mylonite named the Main Ore shear<br />

zone, which parallels the Black Bay fault (Bergeron, 2001). Three main lithological units<br />

outcrop in the Cinch Lake area that generally strike northeast and dip southeast: a<br />

leucocratic porphyroclastic metagranitoid, a hornblende-feldspar gneiss, and a<br />

melanocratic porphyroclastic metagranitoid (Fig. 2.3).<br />

The leucocratic porphyroclastic metagranitoid unit is exposed in the southeastern<br />

part and occupies the hanging wall of the shear zone (Figs. 2.3A and 2.3B). The rock is<br />

cataclasite-dominated (Fig. 2.4A) weakly foliated and comprises broken fragments of<br />

plagioclase, quartz and feldspar embedded in a matrix composed of hematite, quartz,<br />

chlorite, calcite, sericite, and pyrite (Fig. 2.4B).<br />

30


A<br />

A’<br />

B<br />

31


Figure 2.3. A: Detailed geologic map of the Cinch Lake area showing main lithological units<br />

and structural elements and B: Northwest-southeast geological cross-sections (line AA’)<br />

across the Main Ore shear zone illustrating the listric oblique-normal and dextral sense of the<br />

fault movement, location of the mylonitic and cataclasite portions of the fault zone and the<br />

uranium mineralization intercepted in drill hole (see Appendix I for detailed structural<br />

measurements and steroplots).<br />

The leucocratic metagranitoid unit has a coarse-grained cataclasite texture in the<br />

southeast part passing gradually into a fine-grained ultracataclasite texture toward the<br />

northwest (Fig. 2.3).<br />

The hornblende-feldspar gneiss outcrops within the fault zone (Fig. 2.3). The rock is<br />

foliated, generally boudinaged, parallel to the dominant foliation (N240 o ) (Fig. 2.4C) and<br />

composed of hornblende and feldspar porphyroclasts (Fig. 2.4D), which are locally<br />

associated with biotite, chlorite, sericite, epidote and titanite.<br />

The melanocratic porphyroclastic metagranitoid rocks are exposed northwest in the<br />

footwall (Fig. 2.3). The unit is mylonite-dominated and consists of a mélange of<br />

mylonitized metavolcano-sedimentary rocks (Figs. 2.4E and 2.4F), quartz-feldspar<br />

mylonite (Figs. 2.4G and 2.4H) and boudinaged and foliated hornblende-feldspar gneiss.<br />

32


Figure 2.4. Photographs of the three main lithostructural units: A: Field photo of the<br />

cataclasite-dominated leucocratic porphyroclastic metagranitoid in the hanging wall of the<br />

fault zone. B: Microphotograph of the cataclasite-dominated leucocratic metagranitoid<br />

showing mylonite fragments and broken Kfs 1 and Qtz 1 grains embedded in a matrix of<br />

crushed Kfs 1 , recrystallized Qtz 1 , and Src 2 and Py 2 . C: Field photo of the hornblende-feldspar<br />

gneiss boudinaged and parallel to the foliation (N240 o ). D: Microphotograph of the<br />

33


hornblende-feldspar gneiss showing Hbl 1 and Kfs 1 porphyroclasts. E: Field photo of the<br />

mylonitized metavolcano-sedimentary rocks of the melanocratic metagranitoid unit. F:<br />

Microphotograph of the mylonitized metavolcano-sedimentary rocks showing a mylonitic<br />

fabric that consists of flattened and preferentially oriented trails of Bt 1 , Chl 1 , Src 1 ,<br />

dynamically recrystallized Qtz 1 and rotated Kfs 1 porphyroclasts. G: Field photo of the<br />

mylonitized quartz-feldspar rocks showing rotated δ- and σ-type winged Kfs 1 porphyroclasts.<br />

H: Microphotograph of the mylonitized quartz-feldspar rocks showing σ-Kfs 1 , recrystallized<br />

Qtz 1 and Src 1 . Pen indicates north. Bt: biotite, Chl: chlorite, Kfs: potassium feldspar, Hbl:<br />

hornblende, Py: Pyrite, Qtz: quartz, Src: sericite.<br />

2.4.1.2. Structural and metamorphic relationships in the Main Ore shear zone<br />

The Main Ore shear zone records a complex history of ductile, brittle-ductile and<br />

brittle deformation. The shear zone strikes N240 o and is steeply southeast dipping at the<br />

surface (75 o to 85 o ) but becomes shallow at depth (30 o to 40 o ) (Fig. 2.3B). Southeast of the<br />

shear zone, cataclasite and ultracataclasite dominate the hanging wall. The intensity of the<br />

cataclasitic deformation increases from southeast to northwest toward the ductile shear<br />

zone where the footwall is mylonite-dominated and overprinted by a mélange of<br />

cataclasite, breccias and veins that host the uranium mineralization (Fig. 2.3B).<br />

The ductile component of the shear zone defines the oldest deformation observed.<br />

The shear zone displays a southeast dipping foliation and northeast trending elongation<br />

lineation (Fig. 2.3) defined by elongate Kfs 1 feldspars and recrystallized Qtz 1 quartz (Fig.<br />

2.4F). The mylonitic fabric is heterogeneously developed due to contrasting rheology of<br />

the melanocratic metagranitoid rocks. The strain is more localized into relatively weak<br />

rock types such as the metavolcano-sedimentary rocks (Fig. 2.4E), which have a mylonitic<br />

fabric and foliation consisting of preferentially oriented trails of Bt 1 biotite, Chl 1 chlorite,<br />

34


Ms 1 muscovite, Src 1 sericite, and dynamically recrystallized Qtz 1 quartz (Fig. 2.4F). The<br />

quartzo-feldspathic mylonite exhibits recrystallized Qtz 1<br />

quartz and Kfs 1 feldspars<br />

porphyroclasts (Fig. 2.4H). Shear sense indicators such as δ and σ-type winged Kfs 1<br />

feldspars porphyroclasts (Figs. 2.4G and 2.5A) and deflection foliation (Fig. 2.5B)<br />

consistently display a dextral lateral sense of displacement.<br />

The mylonitic foliation and lineation in the hornblende-feldspar gneiss contains the<br />

higher metamorphic assemblage Kfs 1 +Pl 1 +Hbl 1 (Fig. 2.4D), compatible with amphibolite<br />

facies metamorphism. Retrogression is indicated by partial replacement of Hbl 1 hornblende<br />

by Bt 1 biotite along shear surfaces (Fig. 2.5C) and by replacement of Kfs 1 feldspars by Src 1<br />

sericite (Fig. 2.5C). Bt 1 biotite is locally retrogressed into Chl 1 chlorite (Fig. 2.5D)<br />

resulting in the mineral assemblage Bt 1 +Chl 1 + Src 1 +Qtz 1 typical of the greenschist<br />

metamorphic facies. In places, Kfs 1 feldspars are completely sericitized and Chl 1 chlorite<br />

completely replaced Bt 1<br />

biotite, defining a lower greenschist metamorphic facies<br />

(Qtz 1 +Src 1 +Hem 1 + Chl 1 ) (Fig. 2.5E). Late Chl 2 chlorite, Qtz 2 quartz, Ab 1 albite, Cal 1<br />

calcite, and Ep 1 epidote veinlets cut the foliation. The mylonite is overprinted by a network<br />

of ductile-brittle and brittle features.<br />

Cataclasites occur in the hanging wall and in association with mylonites in the<br />

footwall and are sub-parallel to the mylonitic fabric (Fig. 2.3). The cataclasite contains<br />

variable-sized (0.2 to 0.5 mm) clasts of broken Qtz 1 quartz, Kfs 1 feldspars, and mylonite<br />

fragments. The matrix is weakly foliated and contains recrystallized and milled Qtz 1<br />

quartz, Cal 2 calcite, Chl 3 chlorite, Hem 3 hematite and Src 2 sericite (Fig. 2.5F). Sub-vertical<br />

35


east-west striking en-échelon quartz-filled tension gashes indicate dextral lateral sense of<br />

motion (Fig. 2.5G).<br />

36


Figure 2.5. Various structural and textural relationships along the Main Ore shear zone at the<br />

Cinch Lake deposit. A: Lateral dextrally rotated δ-type winged Kfs 1 porphyroclast in<br />

melanocratic metagranitoid mylonite. B: Foliation deflection showing a dextral lateral sense<br />

of shear. C: Hornblende-feldspar gneiss showing partial replacement of Hbl 1 by Bt 1 and Kfs 1<br />

by Src 1 . D: Hornblende-feldspar gneiss showing partial replacement of Bt 1 by Chl 1 and Kfs 1<br />

by Src 1 associated with Ttn 1 . E: Hornblende-feldspar gneiss in which Kfs 1 are completely<br />

replaced by Src 1 and Bt 1 by Chl 1 . F: Cataclasite rock showing crushed mylonite fragments<br />

37


and broken Kfs 1 and Qtz 1 embedded in a matrix of crushed and dynamically recrystallized<br />

Qtz 1 . G: Sub-vertical northeast trending en-échelon Qtz-filled tension gashes showing dextral<br />

lateral sense of displacement. H: Breccias with Cal 8 -filled matrix embedding angular<br />

fragments of mylonite. I: Northeast-striking pegmatite dikes in the footwall of the shear zone.<br />

J: Northeast-striking mafic dikes with chilled margin cross cutting the shear zone. K:<br />

Northwest-striking breccia dikes comprising fragments of the host rock embedded in a Chlrich<br />

matrix. L: Qtz veins Stockworks showing evidence of hydraulic fracturing. Pen indicates<br />

north. Bt: biotite, Chl: chlorite, Hbl: hornblende, Kfs: Potassium feldspar, Qtz: quartz, Src:<br />

sericite, U: uraninite.<br />

Calcite-filled breccias overprint the mylonite and cataclasite rocks in the footwall of<br />

the shear zone. Breccia fragments comprise angular mylonite and cataclasite clasts derived<br />

from the host rock (Fig. 2.5H). The fragments vary in size from 0.2 mm to more than 2 cm.<br />

The matrix is composed of Cal 8 calcite, Chl 7 chlorite and Hem 6 hematite (Fig. 2.5H).<br />

Late brittle deformation features that overprint the shear zone include veins, dikes, joints,<br />

and fractures. Field measurements indicate three set of steeply dipping joints striking<br />

N320 o , N020 o , and N280 o .<br />

Pegmatite dikes cut across the footwall of the shear zone. They strike northeast and<br />

form a series of sheared elongate lenses of varying size (1 to 2m in length) and are<br />

disrupted along the shear zone (Fig. 2.5I).<br />

Diabase dikes form a swarm crosscutting all previous rocks. They are sub-vertical, weakly<br />

deformed with chilled margins (Fig. 2.5J) and strike along two preferential directions:<br />

parallel to the foliation and along the northwest striking pre-existing joints and fractures.<br />

Breccia-dikes outcrop in the footwall of the shear zone (Fig. 2.5K) in three structural<br />

sets of direction: N020 o , N090 o , and N320 o . The breccia-dikes vary in width from less than<br />

38


1 cm to 10’s of cm. Fragments of the breccia are highly variable-sized (1 mm to 5 cm) and<br />

consist of angular country-rock clasts embedded in a chlorite-rich matrix (Fig. 2.5K). The<br />

contact between breccia-dikes and the host rock is sharp. A close spatial relationship is<br />

observed between mafic dikes and breccia-dikes.<br />

Late Chl 10 chlorite, Cal 11 calcite veins, and Qtz 5 quartz (Fig. 2.5L) crosscut all rock<br />

types and are parallel to the set of joints.<br />

2.4.2. The Saint Louis fault<br />

2.4.2.1. Geology of the Ace-Fay-Verna deposits<br />

The deposits are located along the Saint Louis fault (Fig. 2.2), which strikes<br />

northeast and dips 50 o southeast (Fig. 2.6). The Ace and Fay ore bodies are located in the<br />

footwall, whereas Verna is in the hanging wall. Sassano (1972) described four units that<br />

host the uranium mineralization named the Fay Mine Complex comprising from oldest to<br />

youngest: quartzite and conglomerates, phyllonite amphibolite, albite paragneiss and<br />

granitic gneiss. These rocks overlie the Donaldson Lake and Foot Bay gneisses and are<br />

uncomformably overlain by the Martin Lake basal conglomerates in the hanging wall of<br />

the Saint Louis fault (Fig. 2.6).<br />

2.4.2.2. Structural and metamorphic relationships in the Saint Louis fault<br />

The Foot Bay gneiss, which occurs in the footwall and hanging wall of the fault (Fig.<br />

2.6B) has a mylonitic texture characterized by rotated augen-shaped Kfs 1 feldspars<br />

porphyroclasts (Fig. 2.7A) surrounded by recrystallized Qtz 1 quartz and layers of Chl 1<br />

chlorite, Bt 1 biotite and Hbl 1 hornblende.<br />

39


A<br />

Meters<br />

LEGEND<br />

B<br />

Figure 2.6. A: Detailed geologic map of the Ace-Fay-Verna deposits showing main lithological<br />

units, structural elements and location of the uranium deposits (modified from Macdonald<br />

40


and Slimmon, 1985) and B: NW-SE geological cross-sections across the Saint Louis fault (line<br />

AA’) showing the geology, the trace of the Saint Louis Fault and the location of the uranium<br />

mineralization (modified from Sassano, 1972).<br />

The Donaldson Lake gneiss outcrops in the hanging wall and footwall of the fault<br />

(Fig. 2.6B) and Sassano (1972) suggested that the Donaldson Lake gneiss is the cataclasite<br />

equivalent of the underlying Foot Bay gneiss. The rock has a porphyroclastic texture<br />

composed of Kfs 1 feldspars, Pl 1 plagioclase and Qtz 1 quartz scattered in a matrix of<br />

recrystallized Qtz 1 quartz, crushed Kfs 1 feldspars and trails of Ms 1 muscovite and Chl 1<br />

chlorite.<br />

The quartzite occurs in the footwall (Fig. 2.6B) where it is mylonitized with strained<br />

and recrystallized Qtz 1 quartz (Fig. 2.7B). Qtz 1 quartz grains are elongated and locally<br />

wrapped by Src 1 sericite and Chl 1 chlorite. The mylonite is cut by Chl 2 chlorite and Src 1<br />

sericite veinlets and overprinted by cataclasite with angular fragments of the mylonitized<br />

quartzite occurring into the matrix (Fig. 2.7E).<br />

The phyllonite amphibolite outcrops in the footwall, north of the Ace-Fay deposits.<br />

In thin section, the rock shows symmetric crenulations that overprint the mylonitic fabric<br />

(Fig. 2.7C). It is composed of alternating dark and light bands of Hbl 1 hornblende, Bt 1<br />

biotite, Chl 1 chlorite, and Qtz 1 quartz, Kfs 1 feldspars and Src 1 sericite. In the amphibolite,<br />

three fold phases (F1, F2 and F3) have been identified (Fig. 2.7D). F1 and F2 are isoclinal<br />

recumbent folds having a dominant east-southeast axial plane foliation. Both F1 and F2 are<br />

refolded by a north-northwest-trending open upright fold F3 producing a type 2<br />

interference pattern (Ramsay, 1967). The amphibolite locally displays a breccia fabric with<br />

mylonite fragments embedded in the matrix (Fig. 2.7H).<br />

41


Figure 2.7. Microphotograph of various structural and textural relationships along the Saint<br />

Louis fault at the Ace-Fay-Verna deposit. A: Rotated δ-type winged Kfs 1 porphyroclast in the<br />

Foot Bay gneiss (sample is not oriented). The foliation is marked by train of Ms 1 , Src 1 , Chl 1 ,<br />

recrystallized Qtz 1 and Cal 1 . B: Quartzite mylonite containing dynamically recrystallized<br />

Qtz 1 with recrystallization at grain boundaries. C: Crenulations cleavage overprinting<br />

mylonitized amphibolite. D: Isoclinal recumbent F1 and F2 folds with a dominant ESE axial<br />

plane foliation, and overprinted by an NNW trending open upright F3 fold producing a type<br />

2 interference structure in amphibolite rock. E: Albite paragneiss containing lenticular mica<br />

fish, Chl 1 and Bt 1 alternating with recrystallized Qtz 1 . F: Cataclasite of the granite gneiss<br />

showing fragmented mylonite rock and broken Qtz 1 and Kfs 1 embedded in a matrix made of<br />

milled Qtz 1 , Src 2 , Hem 3 , Cal 2 and Chl 3 . G: Breccias of granite gneiss with Cal 8 -filled matrix<br />

embedding fragments of cataclasite. H: Breccias with matrix embedding amphibolite<br />

fragments. I: Field photo of the Martin Lake basal conglomerate composed of granite,<br />

quartzite and amphibolite fragments embedded in a hematized matrix. J: Late Cal 11 , Qtz 5<br />

43


and Hem 9 veins cutting the amphibolite. Pen indicates north. Chl: chlorite, Hem: hematite,<br />

Kfs: potassium feldspar, Ms: muscovite, Qtz: quartz, Src: sericite, U: uraninite.<br />

The albite paragneiss occurs in the footwall of the fault. It is mylonitized and<br />

composed of Bt 1 biotite, Chl 1 chlorite, Ms 1 muscovite, and Ab 1 albite. In thin section, the<br />

rocks display a mylonitic fabric with strained Ab 1 albite and Kfs 1 feldspars porphyroclasts<br />

and recrystallized Qtz 1 quartz (Fig. 2.7E). The Ab 1 albite porphyroclasts are wrapped by<br />

Chl 1 chlorite and Src 1 sericite.<br />

The granite gneiss occurs along zones of brecciation and mylonitization in the<br />

footwall (Fig. 2.6B). The rock is fractured and veined and displays a mylonitic fabric with<br />

foliation parallel to the Saint Louis fault. It is generally cataclastic or brecciated. The<br />

cataclasite is composed of broken Qtz 1 quartz and Kfs 1 feldspars clasts, and fragments of<br />

mylonite rocks embedded in a matrix of Qtz 1 quartz, Cal 2 calcite, Src 2 sericite, and Chl 3<br />

chlorite (Fig. 2.7F). The breccia consists of angular mylonite and cataclasite fragments<br />

embedded in a Cal 8 calcite and Chl 7 chlorite-dominated matrix (Fig. 2.7G).<br />

The Martin Lake basal conglomerates uncomformably overlie the granitic gneiss in<br />

the hanging wall of the fault (Fig. 2.6). The conglomerate contains angular fragments of<br />

granite, quartzite and amphibolite embedded in a sandy to silty, medium-grained matrix<br />

(Fig. 2.7H).<br />

The Foot Bay gneiss contains a mylonitic foliation and a NE-trending lineation<br />

defined by a mineral assemblage Hbl 1 +Kfs 1 +Pl 1 +Bt 1 +Qtz 1<br />

consistent with shear<br />

deformation at amphibolite grade metamorphism. Locally, Bt 1 biotite replaces Hbl 1<br />

hornblende. Chl 1 chlorite is common as a retrograde product of Bt 1 biotite. Src 1 sericite<br />

44


eplaces Kfs 1<br />

feldspars (Fig. 2.7A). The overlying Donaldson Lake gneiss has a<br />

metamorphic assemblage Bt 1 +Pl 1 +Src 1 +Chl 1 +Qtz 1 typical of greenschist grade<br />

metamorphism. The Fay Mine Complex is more deformed than the underlying Foot Bay<br />

and Donaldson Lake gneisses with a mineral assemblage Chl 1 +Src 1 +Ab 1 +Qtz 1 consistent<br />

with lower greenschist facies metamorphism. In the cataclasite and breccia rocks, calcite,<br />

chlorite, quartz, hematite and sericite are the dominant alteration minerals (Figs. 2.7F and<br />

2.7G).<br />

Late Chl 9 chlorite, Cal 11 calcite, Qtz 5 quartz, and Hem 9 hematite veins (Fig. 2.7J) and<br />

mafic dikes cut across the Saint Louis fault.<br />

2.4.3. Paragenesis of the alteration and ore minerals and type of U mineralization<br />

The sequence of deformation and alteration is divided into seven events including six<br />

stages of uranium mineralization, based on petrographic, structural, and age relationships<br />

(Figs. 2.8 and 2.9).<br />

2.4.3.1. Stage 1: Mylonitization<br />

Mylonitization is the earliest deformation observed. The quartzo-feldspathic<br />

mylonite at Cinch Lake and the Foot Bay gneiss at Ace-Fay exhibit recrystallized Qtz 1<br />

quartz around rotated Kfs 1 feldspars. The hornblende-feldspar gneiss at Cinch Lake and the<br />

Foot Bay gneiss at Ace-Fay define an amphibolite metamorphic assemblage<br />

Kfs 1 +Pl 1 +Hbl 1 (Fig. 2.4D). Retrogression to greenschist metamorphic grade is indicated by<br />

the assemblage Bt 1 +Chl 1 +Src 1 +Hem 1 +Qtz 1 . Early Py 1 pyrite, Cpy 1 chalcopyrite and Nl 1<br />

nolanite are stretched along the foliation (Fig. 2.8).<br />

45


Figure 2.8. Generalized paragenesis of the uranium mineralization, metamorphic<br />

relationships and deformation sequences in the Beaverlodge area. The paragenesis is based on<br />

petrographic, metamorphic and structural observations, style of uranium mineralization and<br />

associated deformation, and geochronology data of various paragenetically constrained<br />

uranium grains. Note: The thickness of the horizontal line is proportional to the abundance of<br />

the mineral. The main uranium mineralization event is associated with the brecciation stage.<br />

The mylonitic foliation is cut by Chl 2 chlorite, Qtz 2 quartz, Ab 1 albite, Cal 1 calcite,<br />

and Ep 1 epidote veinlets (Fig. 2.8).<br />

2.4.3.2. Stage 2: Cataclasite deformation:<br />

Cataclasite resulted from a ductile-brittle reactivation of the mylonite. The cataclasite<br />

rocks are composed of Qtz 1 quartz and Kfs 1 feldspars clasts, and crushed Cal 1 calcite and<br />

Qtz 2<br />

quartz veinlets embedded in a matrix composed of disseminated ±U 1 uraninite<br />

associated with Cal 2 calcite, Hem 3 hematite, Chl 3 chlorite, Src 2 sericite, Cpy 2 chalcopyrite,<br />

and Py 2 pyrite (Figs. 2.8 and 2.9A).<br />

2.4.3.3. Stage 3: Early tensional ±U 2 veins formation<br />

Cataclasite rocks are cut by early tensional Qtz 3 +Cal 3 -±U 2 veins. U 2 uraninite is<br />

associated with Cal 4 calcite, Chl 4 chlorite, Hem 4 hematite, and Py 3 pyrite (Fig. 2.9B). Qtz 3<br />

quartz and Cal 3 calcite veins display evidence of tensional fractures that contain syntaxial<br />

fibers growth perpendicular to the wall of the vein (Fig. 2.9B). Syntaxial Cal 3 calcite vein<br />

fill the core of the Qtz 3 quartz vein.<br />

2.4.3.4. Stage 4: Granite-related metasomatic alteration in the Gunnar deposit<br />

Ab 2 albite alteration of the Gunnar granite is pervasive and results in the<br />

“dequartzification” of the granite. Replacement of Kfs 1 feldspars is complete and precedes<br />

47


the Qtz 1 quartz dissolution resulting in a rock composed of Ab 2 albite (Fig. 2.9C), which is<br />

further Cal 5 carbonatized. Cal 5 calcite occupies voids left after Qtz 1 quartz dissolution. The<br />

U 3 mineralization is introduced during late stage albitization and occupies space between<br />

Ab 2 albite grains likely derived from Cal 5 calcite and Qtz 1 quartz dissolution. U 3 uraninite<br />

is associated with Chl 5 chlorite, Src 3 sericite, Hem 5 hematite, Cal 6 calcite, Mnz 1 monazite<br />

and Ttn 2 titanite (Figs. 2.8 and 2.9C). Late alteration associated with Cal 7 calcite, Qtz 4<br />

quartz and Chl 6 chlorite veins cut the albitized and U 3 -mineralized granite.<br />

2.4.3.5. Stage 5: Brecciation<br />

The breccia is composed of angular fragments of cataclasite and mylonite rocks<br />

embedded in a Cal 8 calcite-rich matrix. The matrix also contains broken Qtz 1 quartz and<br />

Kfs 1 feldspar fragments of variable size (0.1 to 2 mm). U 4 uraninite typically surrounds<br />

hematized fragments and occurs as grains disseminated into the matrix (Fig. 2.9D).<br />

Locally, massive U 4 uraninite associated with minor Cal 8 calcite makes up the bulk of the<br />

matrix. U 4 uraninite is commonly associated with brannerite Br 1 , Chl 7 chlorite, Src 3<br />

sericite, Hem 6 hematite, Py 5 pyrite, and Cpy 4 chalcopyrite and is the major uranium<br />

mineralizing event (Figs. 2.8 and 2.9D).<br />

2.4.3.6. Stage 6: Mafic volcanism<br />

U mineralization associated with mafic dikes is in the form of massive ±U 5 uraninite<br />

veins and as grains disseminated into breccia-dikes (Figs. 5K and 9E) that cut across the<br />

shear zone at the Cinch Lake deposit. U 5 uraninite is associated with Cal 9 calcite, Chl 8<br />

chlorite, Hem 7 hematite, Ap 1 apatite, Src 4 sericite, Ttn 3 titanite, Mnz 2 monazite, Py 6 pyrite,<br />

and Cpy 5 chalcopyrite (Fig. 2.8).<br />

48


2.4.3.7. Stage 7: Late U 6 uraninite veins<br />

U 6 uraninite veins (Fig. 2.9F) cut all previous rocks and are the youngest observed<br />

mineralized phase. These veins cut the Martin Lake basal conglomerates and the mafic<br />

dikes and contain ±U 6 uraninite, Cal 10 calcite, Chl 9 chlorite, Hem 8 hematite and Py 7 pyrite<br />

(Fig. 2.8).<br />

49


Figure 2.9. Microphotograph of typical mineral assemblages and crosscutting relationships<br />

from the Ace-Fay-Verna, Cinch Lake and Gunnar uranium deposits: A: Cataclasite with<br />

mylonitized fragments, Qtz 1 , Kfs 1 in a matrix composed of ±U 1 , Qtz 1 , Cal 2 , Hem 3 , Chl 3 , Src 2 ,<br />

Cpy 2 and Py 2 (Sample 6122-Cat, Ace deposit). B: U 2 -Hem 4 -Cl 4 -Cal 4 -Py 3 vein cutting<br />

cataclasite rock and filled by tensional vein of Qtz 3 and Cal 3 (Sample 6122BV-Cat, Ace<br />

deposit). C: Mineralized metasomatic granite in Gunnar: U 3 fills voids felt after Qtz 1<br />

dissolution and is associated with Chl 5 , Src 3 , Hem 5 , Mnz 1 , Cal 5 and Ttn 2 (Sample GN-05,<br />

Gunnar). D: Breccia with fragments of cataclasite rock in a Cal 8 -rich matrix. U 4 surrounds<br />

breccia fragments and is disseminated in matrix associated with Chl 7 , Src 3 , and Hem 6 (Sample<br />

B5812, Ace-Fay deposit). E: Mafic volcanic-type ±U 5 : hydro-breccia vein composed of crushed<br />

Qtz 1 and Kfs 1 fragments and Cal 9 embedded in a Chl 8 -rich matrix. U 5 is associated with Hem 7 ,<br />

Ap 1 , Src 4 , Ttn 3 , Mnz 2 , Py 6 , and Cpy 5 (Sample Cl-45, Cinch Lake deposit). F: Late mineralized<br />

veins containing U 6 , Cal 10 , Chl 9 , Hem 8 . G: Late Cal 11 , Chl 10 and Qtz 5 veins (Sample 2202,<br />

Martin Lake deposit). H: Late sulphide minerals composed of Gn 1 , Cpy 5 and Py 8 and Sp 1<br />

(Sample B5800, Ace-Fay deposit). Ap: apatite, Cal: calcite, Chl: chlorite, Cpy: chalcopyrite,<br />

50


Hem: hematite, Kfs: potassium feldspar, Ms: muscovite, Mnz: monazite, Py: pyrite, Qtz:<br />

quartz, Src: sericite, Ttn: titanite, U: uraninite.<br />

2.4.4. Geochronology of uraninite and isotopic systematics<br />

The various generations of uraninite that formed during different stages of<br />

deformation have been paragenetically constrained (see previous section), and analyzed.<br />

For example the cataclasite-type ±U 1 and early-vein type ±U 2 uraninites observed at the<br />

Ace-Fay deposits formed at depth different from the breccia-type U 4<br />

uraninite. The<br />

granite-related metasomatic-type U 3 uraninite is observed at Gunnar wherein moderate<br />

uranium mineralization is derived from Na-metasomatism of the Gunnar granite prior to<br />

brecciation. The volcanic-type ±U 5 uraninite cuts across the ductile-brittle shear zones at<br />

Cinch Lake and Ace-Fay deposits and is spatially related to the Martin Lake mafic dikes.<br />

Late ±U 6 uraninite veins interpreted as related to the Athabasca Basin, cross cut all types<br />

and have a distinct alteration assemblage.<br />

2.4.4.1. U-Pb and Pb-Pb geochronology of U-rich minerals by LA-HR-ICP-MS<br />

Paragenetically constrained uraninite grains from the six stages of uranium<br />

mineralization have been dated by LA-HR-ICP-MS (Table 2.1). Results of the U-Pb<br />

concordia are summarized in Table 2.2a. The oldest 207 Pb/ 206 Pb ages are likely to be closer<br />

to the initial formation age because Pb/Pb ratios in uraninite are less susceptible to<br />

resetting by younger fluid events than are the U/Pb ratios (Collins et al., 1954). The<br />

relatively high error margins for U/Pb isotopic ratios reflect uraninite heterogeneity<br />

(Kotzer and Kyser, 1993; Chipley et al., 2007), which is indicated by the mottled and<br />

pitted texture observed in Back-Scattered Electron Microscopy (BSEM) images of<br />

51


uraninite (Fig. 2.10). The errors observed in the U-Pb systems are in large part a function<br />

of the uraninite age; older uraninite is more likely to have been affected by multiple<br />

alteration events so that errors obtained in the U-Pb system are greater. The youngest<br />

uraninites, which are recrystallized forms of older uraninites, have the lowest error and are<br />

least altered.<br />

52


Sample I.D Mineralization-type Deposit n<br />

207 Pb/ 206 Pb ±2σ<br />

207 Pb/ 235 U ±2σ<br />

206 Pb/ 238 U ±2σ R‡<br />

207 Pb/ 206 Pb ±<br />

Oldest<br />

207 Pb/ 206 Pb<br />

±<br />

206 Pb/ 238 U ±<br />

207 Pb/ 235 U ± Disc‡<br />

a. Primary uranium mineralization<br />

Cat Cataclasite-type U 1 Ace Fay 15 0.1170 0.0024 3.7511 0.6756 0.2442 0.0655 0.54 1896 37 2272 27 1403 340 1572 147 25<br />

6122a Cataclasite-type U 1 Ace Fay 11 0.1241 0.0018 3.9547 0.3658 0.2477 0.0273 0.56 2002 26 2293 17 1425 373 1615 111 28<br />

6122b Early vein-type U 2 Ace Fay 16 0.1041 0.0020 3.3142 0.4428 0.2452 0.0529 0.50 1674 36 2289 20 1409 272 1470 103 14<br />

V-Cat Early vein-type U 2 Ace Fay 11 0.1189 0.0021 3.6762 0.5656 0.2563 0.0629 0.52 1915 34 2276 29 1469 323 1562 123 21<br />

B5812a Breccia-type U 4 Ace Fay 8 0.1098 0.0026 2.7659 0.1271 0.1710 0.0133 0.44 1796 43 1848 5 1016 74 1339 31 43<br />

6120 Volcanic-type U 5 Ace Fay 12 0.1076 0.0005 3.4210 0.1909 0.2314 0.0136 0.95 1760 9 1800 37 1340 71 1505 44 24<br />

6139 Volcanic-type U 5 Gunnar 22 0.1096 0.0003 4.1894 0.307 0.2795 0.0207 1.00 1793 4 1812 15 1587 104 1669 61 11<br />

2202 Athabasca-type U 6 Martin Lake 37 0.0897 0.0004 2.1196 0.138 0.1717 0.0111 1.00 1418 9 1620 4 1020 61 1147 44 28<br />

3705 Athabasca-type U 6 Ace Fay 22 0.0914 0.0090 2.2412 0.391 0.1924 0.0412 0.63 1453 188 1616 174 1125 220 1158 123 24<br />

b. Post-mineralization alteration events recorded in the U/Pb system<br />

VRC Breccia-type U 4 Gunnar 14 0.0857 0.0004 1.6237 0.0676 0.1374 0.0057 0.99 1331 10 1380 34 828 32 973 26 38<br />

6134 Metasomatic-type U 3 Gunnar 7 0.0832 0.0019 0.2582 0.0268 0.0224 0.0024 0.74 1268 48 1372 4 142 15 227 20 89<br />

GN-42 Metasomatic-type U 3 Gunnar 11 0.0806 0.0011 0.3779 0.0275 0.0340 0.0025 0.98 1210 26 1284 22 215 15 325 20 82<br />

C23-116 Breccia-type U 4 Cinch Lake 29 0.0705 0.0014 0.4164 0.0526 0.0427 0.0055 0.96 930 41 1164 24 268 34 340 38 69<br />

VR69190 Metasomatic-type U 3 Gunnar 10 0.0653 0.0006 0.6351 0.0451 0.0705 0.0050 0.99 786 19 796 15 439 30 499 28 44<br />

6037b Metasomatic-type U 3 Gunnar 10 0.0536 0.0014 0.2358 0.0473 0.0318 0.0059 0.977 352 61 497 26 201 36 213 37 43<br />

EA3010A Athabasca-type U 6 Eagle-Ace 10 0.0534 0.0003 0.2626 0.0198 0.0356 0.0027 1.00 347 14 396 13 225 17 237 16 35<br />

EA3011 Volcanic-type U 5 Eagle-Ace 15 0.0529 0.0006 0.2389 0.0170 0.0327 0.0023 0.98 325 28 419 21 207 14 217 14 36<br />

Table 2.1. Analytical data from the U/Pb LA-HR-ICP-MS analysis of various uraninite occurrences in the Beaverlodge area. The<br />

paragenesis of each type of uraninite analyzed is shown in Figures 2.8 and 2.9 and described in Section 4.3., R: error correlation<br />

coefficient, Disc‡: percentage discordance. n: number of grains. 206 Pb/ 238 U, 207 Pb/ 235 U, and 207 Pb/ 206 Pb ages are calculated using equations<br />

reported by Ludwig (2000) and expressed in Ma.<br />

53


Figure 2.10. Backscattered Electron Microscope (BSEM) of U-rich minerals. A: Mottled and<br />

speckled U 1 grain disseminated in cataclasite rock (Sample 6122, Ace). B: Speckled and pitted<br />

U 2 grain in early tensional vein showing ablation pits created by LA-HR-ICPMS (Sample<br />

6122, Ace). C: Fractured and altered U 3 (Sample 6134, Gunnar). D: Recrystallized U 3 coating<br />

vugs in altered metasomatic granite (Sample 6134, Gunnar). E: Speckled and pitted U 4<br />

54


(Sample 6137, Gunnar). F: Pitted, mottled and heterogeneous U 4 from breccia-type (Sample<br />

B5812, Fay).<br />

Uraninite -type<br />

Deposit<br />

a. Primary uranium mineralization.<br />

Upper<br />

intercept age<br />

(Ma)<br />

Lower<br />

intercept<br />

age (Ma)<br />

207 Pb/ 206 Pb<br />

age (Ma)<br />

MSWD<br />

Figure<br />

Cataclasite-type U 1 Fay 2306±360 907±330 2293±17 0.13 11A<br />

Early vein-type U 2 Fay 1594±95 89±670 2289±20 0.089 11B<br />

Breccia-type U 4 Ace-Fay 1857±170 42±350 1848±5 0.5 11C<br />

Volcanic-type U 5 Ace-Fay 1783±7 71±79 1812±15 6.2 11D<br />

Volcanic-type U 5 Gunnar 1774±25 109±110 1800±37 1.14 11E<br />

Athabasca-type U 6 Martin Lake 1601±64 441±92 1620±4 10 11F<br />

b. Post-mineralization alteration events recorded in altered uraninite<br />

Metasomatic-type U 3 Gunnar 1549±78 75±13 1210±25 1.02 11G<br />

Breccia-type U 4 Fay 1355±40 54±87 1330±10 0.59 11H<br />

Metasomatic-type U 3 Gunnar 1219±230 13±53 352±31 3.5 11I<br />

Breccia-type U 4 Cinch Lake 1094±66 28±31 1019±44 0.57 11J<br />

Metasomatic-type U 3 Gunnar 818±47 47±61 786±19 0.13 11K<br />

Athabasca-type U 6 Eagle 635±170 166±30 347±14 0.42 11L<br />

Volcanic-type U 5 Eagle-Ace 439±56 103±29 325±28 1.4 11M<br />

Metasomatic-type U 3 Gunnar 391±40 31±150 352±61 0.18 11N<br />

Table 2.2. Summary of the U-Pb concordia results of U-rich minerals for various events of: a)<br />

primary uranium mineralization and b) post-mineralization alteration and resetting events in<br />

the Beaverlodge area. Figure refers to figure in text that shows the mode of occurrence of the<br />

uraninite.<br />

2.4.4.1.1. Geochronology of the cataclasite-type ±U 1<br />

U 1 uraninite has U-Pb isotopic compositions that define a discordia line and groups<br />

of 207 Pb/ 206 Pb ages (Fig. 2.11A, Table 2.1). The discordia line has an upper intercept age of<br />

2306±360 Ma and a lower intercept of 907±330 Ma (2σ, MSWD: 0.13). The oldest<br />

207 Pb/ 206 Pb age is 2293±17 Ma, which overlaps the upper intercept age and is interpreted as<br />

the minimum formation age. The 207 Pb/ 206 Pb system displays five groups of age that reflect<br />

55


post-mineralization alteration during the intervals of 2.2-2.1 Ga, 2.1-2.0 Ga, 2.0-1.9 Ga,<br />

1.9-1.8 Ga, and 1.6 Ga (Table 2.1 and Appendix 1).<br />

2.4.4.1.2. Geochronology of the early tensional vein-type ±U 2<br />

U 2 uraninite gives a discordant U-Pb upper-intercept age of 1594±95 Ma and a lower<br />

intercept of 89±670 Ma (Fig. 2.11B). The oldest 207 Pb/ 206 Pb age of 2289±20 Ma is<br />

interpreted as a minimum crystallization age. The 207 Pb/ 206 Pb system shows alteration<br />

events at ca. 2.2-2.1 Ga, 2.1-2.0 Ga, 2.0-1.9 Ga, 1.9-1.8 Ga, and 1.6 Ga (Table 2.1, Fig.<br />

2.11, and Appendix 1).<br />

2.4.4.1.3. Geochronology of the granite-related metasomatic-type U 3 in Gunnar<br />

U/Pb isotopic ratios of U 3 are discordant with very low Pb/U ratios that indicate<br />

significant Pb loss. Ages obtained in the U/Pb system range between 1550 to 10 Ma<br />

(Tables 2.1b and 2.2b) and do not reflect the formation age of the granite-related<br />

metasomatic-type U mineralization because of substantial Pb loss. Rather they reflect<br />

periods of alteration that have significantly affected U 3 subsequent to its formation.<br />

2.4.4.1.4. Geochronology of the breccia-type U 4<br />

U/Pb isotopic ratios of U 4 , which reflect the major uranium mineralizing event, are<br />

discordant and yield a U-Pb upper-intercept age of 1857±170 Ma (2σ, MSWD: 0.5) and a<br />

lower intercept of 42±350 (Fig. 2.11C). The oldest 207 Pb/ 206 Pb age of 1848±5 Ma records<br />

the minimum crystallization age. Post-mineralization alteration recorded in the 207 Pb/ 206 Pb<br />

ratios occur at ca. 1.8 Ga, 1.4-1.3 Ga, 1.2-0.9 Ga, 0.8 Ga and 0.5 Ga (Table 2.1).<br />

2.4.4.1.5. Geochronology of the volcanic-type ±U 5<br />

56


U 5 uraninite yields two discordia lines. The concordia in Figure 2.11D has an upper<br />

intercept age of 1783±7 Ma and a lower intercept of 71±79 Ma, with an oldest 207 Pb/ 206 Pb<br />

age of 1812±15 Ma (2σ, MSWD: 6.2). The concordia in Figure 2.11E has an upper<br />

intercept age of 1774±25 Ma and a lower intercept of 109±110 Ma (2σ, MSWD: 1.14).<br />

The oldest 207 Pb/ 206 Pb age is 1800±37 Ma. The 207 Pb/ 206 Pb system records periods of<br />

alteration at ca. 0.8-0.7 Ga and 0.4-0.3 Ga (Table 2.1).<br />

2.4.4.1.6. Geochronology of the Athabasca-related ±U 6 :<br />

U 6 uraninite gives a U-Pb concordia upper-intercept age of 1601±64 Ma and a lower<br />

intercept of 441±92 Ma (2σ, MSWD: 10) (Fig. 2.11F). The oldest 207 Pb/ 206 Pb age of<br />

1620±4 Ma is interpreted as the formation age. Post-mineralization alterations recorded in<br />

the 207 Pb/ 206 Pb system occur at ca. 1.4-1.3 Ga and 0.4-0.3 Ga (Table 2.1).<br />

2.4.4.1.7. Post-mineralization alteration events recorded in the U/Pb system<br />

The U/Pb system records various episodes of post-mineralization alteration that have<br />

affected all stages of the uranium mineralization. Results are presented in Figures 2.11G to<br />

2.11N and summarized in Table 2.2b.<br />

U/Pb age of the primary uranium mineralization<br />

57


Post-mineralization alteration events recorded in the U/Pb system<br />

58


Figure 2.11. U-Pb concordia diagrams from in situ isotopic analysis by LA-HR-ICP-MS of U<br />

from various deposits in the Beaverlodge area. A: Cataclasite-type ±U 1 (Sample 6122-Cat, Ace<br />

deposit). B: Early tensional vein-type ±U 2 (Sample 6122BV-Cat, Ace deposit). C: Breccia-type<br />

U 4 (Sample B5812, Ace-Fay deposit). D: Volcanic-type ±U 5 (Sample 6120, Ace-Fay deposit). E:<br />

59


Volcanic-type ±U 5 (Sample 6139, Gunnar deposit). F: Athabasca-related ±U 6 (Sample 2202,<br />

Martin Lake deposit). G: Altered metasomatic-type U 3 (Sample GN-42, Gunnar deposit). H:<br />

Altered breccia-type U 4 at Gunnar (Sample VR, Gunnar deposit). I: Altered breccia-type U 4<br />

(Sample C23-116, Cinch Lake deposit). J: Altered metasomatic-type U 3 (Sample 6134,<br />

Gunnar deposit). K: Altered Athabasca-related ±U 6 (Sample EA3011, Eagle-Ace). L: Altered<br />

volcanic-type ±U 5 (Sample AE3010, Eagle-Ace deposit). M: Altered metasomatic-type U 3<br />

(Sample VR69190, Gunnar deposit). Note: Data-point error ellipses are 2σ. Plots were<br />

constructed using ISOPLOT ver. 3.2 (Ludwig 2000) from the isotope ratios and their<br />

respective errors are presented in Table 2.1. 207 Pb/ 206 Pb ages are reported along discordia line,<br />

the oldest 207 Pb/ 206 Pb age is shown in bold character for concordia of the primary U<br />

mineralization.<br />

2.4.4.2. Chemical Pb age of the uranium mineralization<br />

Regression of the sum SiO 2 , Fe 2 O 3 , CaO and MnO contents to zero in the early veintype<br />

±U 2<br />

uraninite corresponds to 2290 Ma (Fig. 2.12A), which is identical to the<br />

207 Pb/ 206 Pb formation age of 2293±17 Ma (Fig. 2.11B). Chemical Pb ages show alteration<br />

events at ca. 1800 Ma, 1600 Ma, 1200 Ma, and 170 Ma (Table 2.3).<br />

Chemical Pb ages derived from the composition of the breccia-type U 4 uraninite vary<br />

from 1315 Ma to 557 Ma. The intercept at zero content of elements other than uraninite<br />

gives an age of 1830 Ma (Fig. 2.12B), which is close to the 207 Pb/ 206 Pb formation age of<br />

1848±5 Ma (Fig. 2.11D).<br />

The zero intercept of the Chemical Pb age of the volcanic-type ±U 5<br />

uraninite<br />

corresponds to 1827 Ma (Fig. 2.12C), which overlaps the 207 Pb/ 206 Pb ages of 1812±15 Ma<br />

and 1800±37 Ma (Figs. 11D and 11E, respectively). The concordance of these ages is<br />

interpreted as the crystallization age of ±U 5 uraninite. Chemical Pb ages display alteration<br />

events at ca. 1800-1700 Ma, 1500-1400 Ma, and 1300-1200 Ma (Table 2.3).<br />

60


Sample I.D Deposit UO 2 SiO 2 CaO Fe 2O 3 TiO 2 Cr 2O 3 V 2O 5 PbO P 2O 5 K 2O ThO 2 SO 2 MnO Y 2O 3 Tb 2O 3 CuO Total<br />

Chemical<br />

Pb age<br />

(Ma)<br />

Early vein-type U 2 uraninite<br />

6122_Pt2 1 Ace Fay 71.83 2.02 3.61 0.39 0.40 0.03 0.11 17.88 0.02 0.03 0.02 0.05 0.12 0.00 0.14 0.03 96.50 1544<br />

6122_Pt3 1 Ace Fay 73.07 3.05 3.45 0.91 0.38 0.05 0.03 14.52 0.04 0.10 0.02 0.02 0.15 0.07 0.11 0.07 95.90 1233<br />

6122_Pt4_2 Ace Fay 72.61 0.59 3.33 0.31 0.65 0.02 0.04 17.42 0.03 0.02 0.02 0.03 0.18 0.04 0.02 0.00 95.29 1488<br />

6122_Pt5_1 Ace Fay 71.65 0.46 2.32 0.11 0.38 0.04 0.06 19.91 0.02 0.05 0.01 0.01 0.07 0.09 0.01 0.02 95.10 1724<br />

6122_Pt10 1 Ace Fay 73.64 9.89 2.48 1.14 1.36 0.28 0.23 1.90 0.36 0.06 0.01 0.03 0.36 0.08 0.20 0.05 91.80 160<br />

Metasomatic-type U 3 uraninite<br />

6134 pt2 1 Gunnar 77.59 3.01 5.35 0.15 0.06 0.01 0.04 0.07 0.12 0.14 0.01 0.01 0.03 0.02 0.07 0.04 86.61 5<br />

6134 pt2 2 Gunnar 80.25 3.04 5.60 0.23 0.03 0.01 0.09 0.12 0.00 0.08 0.03 0.00 0.08 0.04 0.06 0.04 89.46 9<br />

6134 pt2 3 Gunnar 78.63 3.65 5.19 1.65 0.33 0.01 0.06 0.00 0.06 0.07 0.02 0.02 0.06 0.00 0.07 0.12 89.78 0<br />

6134 pt2 4 Gunnar 78.36 3.72 5.28 1.82 0.44 0.05 0.02 0.03 0.06 0.06 0.05 0.02 0.06 0.01 0.05 0.02 89.85 2<br />

6134 pt3 Gunnar 77.88 4.95 5.57 0.19 0.37 0.01 0.01 0.12 0.05 0.07 0.03 0.01 0.09 0.01 0.08 0.01 89.33 9<br />

6134 pt3 1 Gunnar 79.27 3.95 5.52 0.15 0.01 0.03 0.04 0.11 0.08 0.08 0.04 0.01 0.03 0.00 0.04 0.02 89.22 9<br />

6134 pt3 2 Gunnar 81.64 3.39 4.56 0.16 0.00 0.12 0.07 0.03 0.05 0.06 0.04 0.00 0.07 0.03 0.08 0.05 90.13 2<br />

6134 pt3 3 Gunnar 79.50 3.78 5.54 0.11 0.06 0.04 0.02 0.06 0.09 0.06 0.02 0.00 0.04 0.00 0.06 0.01 89.23 4<br />

6134 pt4 1 Gunnar 80.77 3.52 5.67 0.23 0.01 0.01 0.00 0.13 0.01 0.07 0.03 0.01 0.09 0.04 0.01 0.04 90.58 10<br />

6134 pt4 2 Gunnar 79.52 3.13 5.90 0.26 0.13 0.01 0.03 0.09 0.07 0.05 0.00 0.03 0.07 0.01 0.03 0.01 89.31 7<br />

6134 pt4 3 Gunnar 81.29 2.79 5.67 0.20 0.03 0.00 0.02 0.16 0.01 0.05 0.02 0.00 0.07 0.03 0.04 0.02 90.29 12<br />

6134 pt5 1 Gunnar 81.39 2.70 5.41 0.13 0.00 0.04 0.00 0.11 0.04 0.06 0.07 0.00 0.05 0.06 0.02 0.07 89.88 8<br />

6134 pt5 2 Gunnar 74.27 3.20 4.97 0.22 0.08 0.04 0.02 0.04 0.11 0.23 0.02 0.01 0.10 0.02 0.05 0.04 83.27 3<br />

6134 pt5 3 Gunnar 80.12 4.95 4.54 0.22 0.41 0.01 0.01 0.10 0.12 0.12 0.05 0.01 0.02 0.16 0.01 0.01 90.75 8<br />

6134 pt6 1 Gunnar 81.12 3.04 5.23 0.01 0.01 0.04 0.01 0.03 0.00 0.04 0.02 0.01 0.01 0.01 0.02 0.01 89.49 2<br />

6134 pt6 2 Gunnar 81.92 3.06 5.25 0.04 0.04 0.00 0.00 0.10 0.01 0.04 0.02 0.00 0.08 0.04 0.04 0.04 90.45 7<br />

6134 pt6 3 Gunnar 80.49 3.09 5.36 0.02 0.02 0.01 0.09 0.08 0.04 0.06 0.01 0.01 0.01 0.04 0.09 0.01 89.37 6<br />

6134 pt6 4 Gunnar 81.96 3.12 4.98 0.05 0.04 0.01 0.02 0.10 0.02 0.06 0.04 0.00 0.07 0.02 0.01 0.01 90.44 8<br />

6134 pt8 1 Gunnar 79.17 2.87 4.43 0.01 0.02 0.01 0.57 1.40 0.09 0.07 0.02 0.10 0.03 0.16 0.07 0.01 88.96 110<br />

6134 pt8 2 Gunnar 79.67 2.90 4.69 0.02 0.07 0.03 0.35 1.44 0.06 0.00 0.03 0.07 0.02 0.08 0.10 0.05 89.42 112<br />

6134 pt8 3 Gunnar 80.29 3.14 3.87 0.03 0.78 0.01 0.05 0.11 0.08 0.03 0.04 0.00 0.04 0.12 0.00 0.00 88.53 9<br />

6134 pt8 4 Gunnar 77.08 2.76 5.44 0.05 0.02 0.02 0.53 0.61 0.09 0.01 0.01 0.04 0.06 0.21 0.02 0.04 86.86 49<br />

6134 pt8a 1 Gunnar 80.50 4.02 5.50 0.04 0.11 0.02 0.00 0.07 0.01 0.12 0.06 0.02 0.07 0.05 0.03 0.00 90.45 5<br />

61


6134 pt8a 2 Gunnar 82.92 2.92 5.30 0.07 0.04 0.02 0.09 0.11 0.01 0.07 0.01 0.04 0.10 0.01 0.07 0.02 91.62 8<br />

6134 pt8a 3 Gunnar 77.51 1.83 5.81 0.17 0.02 0.02 0.05 0.16 0.11 0.15 0.00 0.03 0.12 0.01 0.06 0.07 85.99 13<br />

6134 pt9 1 Gunnar 63.41 3.15 4.32 0.08 0.04 0.03 0.24 1.46 0.18 0.19 0.03 0.05 0.08 0.12 0.05 0.02 73.42 143<br />

6134 pt9 2 Gunnar 75.28 3.78 5.33 0.02 0.07 0.01 0.29 1.41 0.22 0.08 0.00 0.03 0.01 0.20 0.02 0.07 86.69 117<br />

6134 pt9 3 Gunnar 73.41 2.98 5.19 0.09 0.09 0.05 0.31 1.60 0.28 0.29 0.03 0.02 0.07 0.19 0.06 0.03 84.62 135<br />

6134 pt9a 1 Gunnar 81.55 3.36 4.26 0.18 0.69 0.00 0.08 0.08 0.15 0.10 0.01 0.01 0.06 0.07 0.02 0.00 90.57 6<br />

6134 pt9a 2 Gunnar 80.44 2.93 4.23 0.04 0.47 0.06 0.14 0.21 0.15 0.07 0.01 0.01 0.05 0.13 0.02 0.04 88.96 16<br />

6134 pt9a 3 Gunnar 78.82 3.02 4.69 0.03 0.60 0.03 0.15 0.05 0.14 0.05 0.01 0.00 0.03 0.15 0.04 0.05 87.79 4<br />

6134 pt9a 4 Gunnar 77.24 5.45 4.77 0.44 0.46 0.04 0.00 0.12 0.19 0.16 0.00 0.01 0.09 0.16 0.05 0.03 89.07 10<br />

6134 pt10 1 Gunnar 73.83 6.55 3.47 1.32 0.01 0.03 0.07 0.41 0.09 0.14 0.00 0.01 0.05 0.27 0.01 0.06 86.09 35<br />

6134 pt10 2 Gunnar 64.50 9.49 2.43 9.15 0.06 0.01 0.12 0.65 0.12 0.28 0.06 0.03 0.05 0.32 0.26 0.05 87.17 63<br />

6134 pt10 3 Gunnar 74.14 7.47 3.23 1.59 0.01 0.01 0.06 0.32 0.04 0.16 0.00 0.01 0.01 0.27 0.03 0.04 87.34 27<br />

6134 pt10 4 Gunnar 74.03 5.88 2.71 1.97 0.08 0.01 0.18 1.96 0.14 0.13 0.03 0.01 0.01 0.41 0.03 0.07 87.58 164<br />

6134 pt10 5 Gunnar 72.59 6.19 3.29 2.40 0.04 0.02 0.08 1.39 0.14 0.15 0.02 0.01 0.03 0.26 0.11 0.01 86.58 119<br />

Breccia-type U 4 uraninite<br />

5812 Pt1 1 Gunnar 75.59 0.50 4.51 0.62 0.46 0.03 0.18 12.07 0.02 0.04 0.03 0.01 0.42 0.45 0.08 0.05 94.92 991<br />

5812 Pt6 2 Ace Fay 34.12 48.31 1.48 1.21 0.18 0.02 0.01 3.86 0.65 0.08 0.03 0.59 0.24 0.14 0.09 0.05 90.96 702<br />

5812 Pt6 1 Ace Fay 74.88 0.54 4.43 0.44 0.44 0.01 0.16 15.88 0.02 0.03 0.02 0.01 0.22 0.15 0.04 0.00 97.16 1315<br />

5812 Pt1 2 Ace Fay 76.71 0.98 6.43 0.90 0.61 0.03 0.21 6.89 0.01 0.03 0.04 0.06 0.70 0.60 0.00 0.01 94.18 557<br />

5812 Pt8 1 Ace Fay 77.99 1.05 4.27 1.20 0.80 0.05 0.01 8.71 0.02 0.03 0.29 0.03 0.35 0.06 0.05 0.02 94.82 693<br />

5812 Pt2 2 Ace Fay 75.02 2.40 4.63 1.28 1.74 0.01 0.14 10.07 0.05 0.06 0.03 0.73 0.67 0.31 0.11 0.03 97.15 832<br />

Volcanic-type U 5 uraninite<br />

6120B_pt4 2 Ace Fay 74.34 1.13 4.30 0.95 0.43 0.02 0.26 14.17 0.05 0.03 0.01 0.01 0.23 0.04 0.02 0.00 95.92 1183<br />

6120B_pt3 1 Ace Fay 74.41 0.84 3.66 0.48 0.65 0.01 0.22 15.41 0.06 0.03 0.02 0.02 0.20 0.03 0.09 0.03 95.99 1285<br />

6120B_pt3 2 Ace Fay 74.38 1.68 2.57 0.54 0.58 0.03 0.13 15.68 0.03 0.03 0.00 0.02 0.10 0.09 0.00 0.03 95.82 1307<br />

6120B_pt2 2 Ace Fay 71.88 1.43 3.00 0.46 0.48 0.03 0.25 17.14 0.06 0.02 0.00 0.01 0.08 0.01 0.07 0.03 94.86 1479<br />

6120B_pt1 2 Ace Fay 73.42 1.05 2.73 0.45 0.52 0.01 0.48 17.56 0.06 0.03 0.07 0.04 0.12 0.01 0.04 0.07 96.46 1484<br />

6120B_pt3 3 Ace Fay 73.75 0.47 3.05 0.29 0.42 0.03 0.09 17.91 0.05 0.04 0.05 0.00 0.07 0.03 0.06 0.04 96.19 1506<br />

6120B_pt5 2 Ace Fay 73.23 0.46 2.58 0.43 0.37 0.03 0.04 19.04 0.03 0.03 0.01 0.01 0.07 0.06 0.03 0.03 96.37 1613<br />

6120B_pt6 1 Ace Fay 71.73 0.92 2.35 0.28 0.49 0.04 0.46 19.29 0.04 0.03 0.02 0.03 0.01 0.03 0.05 0.01 95.67 1668<br />

6120B_pt3 4 Ace Fay 74.04 0.50 2.50 0.32 0.30 0.03 0.13 20.15 0.04 0.04 0.02 0.03 0.01 0.02 0.03 0.04 98.05 1689<br />

6120B_pt5 1 Ace Fay 72.87 0.38 2.37 0.23 0.29 0.01 0.16 19.91 0.05 0.02 0.01 0.04 0.04 0.11 0.09 0.03 96.56 1695<br />

62


6120B_pt4 1 Ace Fay 70.14 0.67 2.65 0.15 0.37 0.01 0.33 19.62 0.04 0.02 0.05 0.02 0.08 0.04 0.08 0.01 94.13 1735<br />

6120B_pt4 1 Ace Fay 71.92 0.51 2.33 0.05 0.51 0.01 0.11 20.29 0.03 0.02 0.08 0.04 0.05 0.09 0.06 0.02 95.99 1750<br />

Athabasca-type U 6 uraninite<br />

3705 Pt4 5 Ace Fay 24.22 2.29 0.49 3.46 59.66 0.03 1.23 4.43 0.04 0.02 0.01 0.44 0.01 0.04 0.16 0.00 96.29 1135<br />

3705 Pt3 2 Ace Fay 38.66 4.78 1.74 3.34 36.72 0.06 0.86 5.48 0.01 0.02 0.10 0.40 0.04 0.01 0.22 0.02 92.19 880<br />

3705 Pt3 4 Ace Fay 39.64 6.95 1.09 4.31 36.08 0.04 0.62 3.14 0.30 0.04 0.07 0.00 0.02 0.02 0.07 0.06 92.29 492<br />

3705 Pt4 2 Ace Fay 29.41 9.42 1.69 4.03 36.11 0.08 0.38 1.68 2.70 0.11 0.05 0.01 0.03 0.20 0.11 0.04 85.79 354<br />

3705 Pt4 1 Ace Fay 48.08 10.87 2.67 3.29 16.60 0.00 0.33 5.69 0.84 0.13 0.15 0.86 0.04 0.44 0.20 0.07 89.96 735<br />

3705 Pt4 3 Ace Fay 28.39 8.87 2.09 6.23 44.41 0.02 0.62 2.17 0.18 0.10 0.02 0.01 0.04 0.03 0.26 0.00 93.18 473<br />

3705 Pt2 7 Ace Fay 36.89 10.39 1.29 6.22 33.91 0.01 0.45 0.58 0.74 0.10 0.14 0.01 0.00 0.09 0.18 0.00 90.80 98<br />

3705 Pt2 4 Ace Fay 34.12 11.57 1.16 5.91 33.49 0.01 0.32 0.71 0.77 0.11 0.10 0.01 0.01 0.06 0.10 0.04 88.37 130<br />

3705 Pt4 7 Ace Fay 34.71 11.31 1.27 6.26 34.74 0.01 0.53 0.84 0.64 0.14 0.08 0.02 0.02 0.01 0.13 0.08 90.57 149<br />

3705 Pt2 5 Ace Fay 35.07 11.45 1.29 6.67 36.99 0.01 0.57 0.76 0.61 0.08 0.04 0.00 0.06 0.04 0.15 0.02 93.68 135<br />

3705 Pt4 6 Ace Fay 29.87 12.08 1.98 6.51 36.63 0.22 0.46 1.09 0.58 0.09 0.21 0.00 0.04 0.02 0.20 0.03 89.80 227<br />

3705 Pt4 4 Ace Fay 41.88 16.19 0.63 3.07 28.28 0.01 0.97 0.78 0.30 0.01 0.14 0.00 0.02 0.08 0.12 0.05 92.38 116<br />

3705 Pt2 6 Ace Fay 33.11 13.43 1.46 5.84 36.83 0.02 0.21 1.19 0.62 0.10 0.12 0.02 0.05 0.01 0.20 0.02 93.00 223<br />

3705 Pt2 3 Ace Fay 39.04 16.30 0.64 3.39 28.73 0.07 1.15 0.74 0.30 0.02 0.04 0.01 0.02 0.06 0.10 0.03 90.50 117<br />

3705 Pt3 1 Ace Fay 45.91 17.68 2.01 2.59 16.32 0.01 0.23 0.74 0.95 0.01 0.15 0.00 0.03 0.20 0.09 0.01 86.83 100<br />

Table 2.3. Average chemical composition and calculated chemical Pb ages from electron microprobe analyses of different uraninite<br />

occurrences in the Beaverlodge area. The composition is reported in weight percent and the age in Ma. The paragenesis of each type of<br />

uraninite analyzed is shown in Figures 2.8 and 2.9 and described in Section 4.3.<br />

63


Regression to zero content of the sum SiO 2 and Fe 2 O 3 in the Athabasca-related U 6<br />

uraninite gives a Chemical Pb age of 1619 Ma (Fig. 2.12D). This age overlaps the upper<br />

intercept age of 1601±64 Ma and the 207 Pb/ 206 Pb age of 1620±4 Ma (Fig. 2.11F) and is<br />

interpreted as the formation age of ±U 6 uraninite.<br />

The higher degree of alteration of U 3 uraninite associated with the granite-related<br />

metasomatic-type mineralization in Gunnar, as indicated by the much lower Pb contents<br />

and the higher total silicate elements, is reflected by much lower Chemical Pb ages (Table<br />

2.3). These ages range from 164 Ma to 0 and reflect recent alteration of U 3 uraninite in<br />

Gunnar, which is also reflected by the low Pb/Pb and U-Pb ages (Tables 2.1 and 2.2).<br />

64


Figure 2.12. Plot of element contents in uraninite as a function of chemical Pb ages. A: Early<br />

tensional vein type ±U 2 uraninite (Sample 6122BV-Cat, Ace deposit) . B: Breccia-type U 4<br />

uraninite (Sample B5812, Ace-Fay deposit). C: Volcanic-type ±U 5 uraninite (Sample B6120,<br />

Ace-Fay deposit). D: Athabasca-related ±U 6 uraninite (Sample B3705, Ace-Fay deposit).<br />

2.5. DISCUSSION<br />

2.5.1. Interpretation of the Main Ore shear zone and Saint Louis fault<br />

Structural and textural relationships along the Main Ore shear zone and the Saint<br />

Louis fault indicate a sequential development of early ductile and ductile-brittle, to late<br />

brittle episodes of movement (Fig. 2.13). The Main Ore shear zone and the Saint Louis fault<br />

display a spatial distribution of deformed rocks that is consistent with a dominant<br />

extensional normal sense of movement (Sibson, 1977). Therefore, the Main Ore shear zone<br />

is interpreted as an oblique-normal and dextral listric fault. The sense of movement along<br />

the Saint Louis fault is contentious due to paucity of shear sense indicators. Allen (1963)<br />

described the Saint Louis fault as a dextral normal fault with multiple slip events. However,<br />

the footwall-dominated mylonite and the hanging wall-dominated cataclasite, which is<br />

capped by the Martin Lake basal conglomerate, suggest a significant normal sense of<br />

movement.<br />

Metamorphic relationships indicate that mylonitization was initiated in the ductile<br />

environment (Fig. 2.13B) at amphibolite metamorphic conditions and that retrogression to<br />

lower greenschist facies is concomitant with exhumation to shallower crustal depths. The<br />

host mylonites are overprinted by ductile-brittle and brittle faults, reflecting progressive<br />

unroofing of the shear zones to shallower crustal levels. The ductile shear zones<br />

experienced reactivated slip movement in the ductile-brittle zone associated with cataclasite<br />

65


faults (Fig. 2.13C). The breccias were generated later at a shallow level in the brittle<br />

environment (Fig. 2.13E). The shear zone is further cut by more brittle features associated<br />

with veins and dikes (Figs. 2.13F and 2.13G).<br />

The Main Ore shear zone and the Saint Louis fault display evidence for hydration<br />

and fluid flow. Retrograde metamorphism following mylonitization involved exothermic<br />

hydration reactions evidenced by the presence of en-échelon quartz-filled tension gashes<br />

(Fig. 2.5G), tensional veins (Fig. 2.9B), hydraulic breccia (Fig. 2.5L) and chlorite, calcite<br />

and albite veins (Fig. 2.7H) that occur within these shear zones. All the evidence suggests<br />

that hydration associated with fluid circulation prevailed during the development of the<br />

shear zones and played a key role in the alteration and ore-forming processes.<br />

Petrographic, paragenetic mineral and ore alteration relationships, together with<br />

geochronological data and the various deformation features within the Main Ore shear zone<br />

and Saint Louis fault indicate six events of uranium mineralization. These are related to<br />

episodic brittle reactivation of the fault zones (Fig. 2.8) that create dilatant areas, which are<br />

favorable structural sites for fluid flow, hydrothermal alteration, and uranium<br />

mineralization.<br />

Sediments of the Murmac Bay Group were deposited in a tectonically active<br />

extensional fault-bounded Paleoproterozoic Basin (Ashton et al., 2009b) (Fig. 2.13A). Slip<br />

activity along fault zones was likely initiated shortly after deposition of the Murmac Bay<br />

sediments at ca. 2.33 Ga (Hartlaub et al., 2004; Ashton and Hartlaub, 2008). The Group is<br />

intruded by the ca. 2.33–2.30 Ga ‘North Shore Plutons’ (Macdonald et al., 1985) likely<br />

related to tectonic extension during the Arrowsmith Orogen (Hartlaub et al., 2007). The<br />

66


plutons include the 2321±3 Ma Gunnar granite (Fig. 2.13B) (Hartlaub et al., 2007), which<br />

hosts the granite-related metasomatic-type U 3<br />

uranium mineralization. Crosscutting<br />

relationships suggest that the metasomatic-type mineralization pre-dates the breccia event.<br />

The timing of U 3 -mineralization is therefore constrained between the age of the Gunnar<br />

granite and the age of the breccia that has overprinted the U 3 -mineralized granite.<br />

Deposition of the Murmac Bay Group, Mylonitization and Granitization<br />

Various periods of tectonic reactivation, basin formation, volcanism and uranium mineralization<br />

67


Figure 2.13. Schematic cross-sections illustrating the general tectonic evolution and timing of<br />

the uranium mineralization in the Beaverlodge area. A: ≈2.33 Ga: Deposition of the Murmac<br />

Bay Group rocks in a tectonically active fault-bounded Paleoproterozoic basin. B: ≈2.33-2.3<br />

Ga: mylonitization with oblique-normal and dextral sense of shear along fault zones,<br />

concomitant with emplacement of the Gunnar granite. C: 2.29 Ga: Reactivation during late<br />

Arrowsmith orogenic exhumation. Cataclasite fault overprinted the mylonite. ±U1 is<br />

68


associated with cataclasite rocks. Hydraulic fracturing in response to fluid generation via<br />

decompression and hydration reactions was probably the mechanism of the early tensional<br />

±U2 veins formation. D: 2.0-1.9: 1.94-1.92 Ga peak metamorphism of the Taltson-Thelon<br />

Orogen produced a regional migmatitic foliation (S1) and tight to isoclinal folds of early S1<br />

fabric. 1.91-1.90 Ga metamorphic event of the Snowbird Tectonic Zone produced an<br />

overprinting northeast-striking regional fabric associated with tight to isoclinal folds. E: 1850<br />

Ma: U4-rich brecciation of pre-existing rocks along reactivated faults during regional<br />

metamorphism of the Trans-Hudson Orogen or most likely post-peak compressional uplift<br />

during terminal collision of the Taltson-Thelon Orogen. F: 1820 Ma: Formation of the<br />

successor Martin Lake Basin, which developed along lines of pre-existing tectonic weakness<br />

during late stage of the Trans-Hudson Orogen. The Martin Lake Basin is associated with<br />

extrusion of mantle-affinity alkaline to sub-alkaline mafic dikes around 1818±4 Ma. The<br />

volcanic-type ±U5 is spatially associated with the mafic dikes. G: 1620 Ma: Deposition of the<br />

Athabasca Basin at ca. 1750 Ma and formation of Athabasca-related ±U6 veins coincident<br />

with the age of the unconformity-related U-mineralizing event in the Athabasca Basin that<br />

records tectonic reactivation during the 1.65-1.60 Ga Mazatzal Orogen. H: Late alteration<br />

events: From the Mesoproterozoic to recent time, far field tectonic events of several orogenic<br />

episodes during the thermotectonic evolution of the Laurentian plate caused minor brittle<br />

fault reactivation in the Beaverlodge area.<br />

2.5.2. Temporal relationships of fault activities and uranium mineralization to<br />

regional tectonic events<br />

The oldest observed deformation event corresponds to mylonitization with obliquenormal<br />

and dextral sense of shearing in the ductile environment at amphibolite facies<br />

metamorphism (Fig. 2.13B). Mylonitization along these faults likely occurred during the<br />

Arrowsmith Orogen at ca. 2.33 Ga (Berman, 2005; Hartlaub et al., 2007), concomitant with<br />

initial deposition of the Murmac Bay Group sediments. Metamorphic retrogression took<br />

place during exhumation to shallower crustal depths, resulting in greenschist facies<br />

conditions, probably subsequent to a period of tectonic quiescence and regional erosion.<br />

69


Mylonites were then reactivated at shallower structural levels where brittle-ductile<br />

fracturing under hydrated conditions associated with cataclasite faulting became the<br />

dominant failure process (Fig. 2.13C).<br />

The formation age of the cataclasite ±U 1 and early tensional veins-type ±U 2<br />

mineralization, suggests that these two mineralizing events were coeval and their timing is<br />

consistent with fault reactivation during late stage Arrowsmith Orogen that affected the<br />

Beaverlodge area (Fig. 2.13C). Post-orogenic exhumation and erosion may have led to the<br />

development of fluid-related features (Miller et al., 2002) as deformation occurred under<br />

hydrated conditions in the ductile-brittle environment. Hydraulic tensile fracturing in<br />

response to fluid generation via decompression and hydration reactions (Miller and<br />

Cartwright, 2006) was probably the mechanism of the early tensional ±U 2 -veins formation.<br />

The vein-forming fluid was likely driven into these fractures by suction pump processes<br />

(Sibson, 1987). Interaction between the hydrothermal brine and the metamorphic host rocks<br />

likely promoted the deposition of the ±U 2 uranium mineralization and the Cal 2 -Hem 3 -Chl 3 -<br />

Src 2 -Cpy 2 -Py 2 mineral assemblage (Fig. 2.8).<br />

The 207 Pb/ 206 Pb system of U 1 and U 2 uraninites displays five groups of ages reflecting<br />

post-mineralization alteration by later fluid events that are related to fault reactivation (Fig.<br />

2.15). The intervals 2.2-2.1 Ga and 2.1-2.0 Ga correspond to a period of global extension<br />

and rifting related to the protracted breakup of the Kenorland supercontinent (Williams et<br />

al., 1991; LeCheminant et al., 1997) (Fig. 2.15). For example, the 2.2-2.1 Ga mafic swarms<br />

in the Slave, Churchill, Superior and Nain provinces (LeCheminant et al., 1996; Bleeker et<br />

al., 2007) and the 2.2-2.0 Ga intrusive complexes in the Slave province (Buchan and Ernst,<br />

70


2004) are all interpreted as related to Kenorland breakup. The 2.0-1.9 Ga period is<br />

consistent with the compressional Taltson-Thelon Orogen (Henderson et al., 1990; Chacko<br />

et al., 2000) and Snowbird Tectonic Zone (Baldwin et al., 2003, Berman et al., 2007a), in<br />

the west and east of the Beaverlodge area, respectively (Fig. 2.14).<br />

Figure 2.14. Regional geological map of the North American shield showing lithotectonic<br />

units, the major orogenic phases and the Beaverlodge location. The map also show the Trans-<br />

Hudson orogen surrounded by the Wyoming, Slave, Hearne, Rae and Superior cratons that<br />

constitute the central core of the North American craton (Laurentia) (modified from<br />

Hoffman, 1988).<br />

The Thluicho Lake Group, a fining-upwards, conglomerate–arkose–argillite<br />

succession located west of the Beaverlodge area, deposited in an intermontane setting<br />

towards the end of the Taltson Orogen (Ashton et al., 2009a). Bethune et al. (2010)<br />

interpreted the first stage of folding as associated with a north-northeast-directed folding<br />

71


and thrusting during the 1.94-1.92 Taltson-Thelon Orogen, producing tight to isoclinal<br />

folds, ductile transposition and development of east-southeast-trending foliation superseded<br />

by north-northwest-trending upright folds. This is consistent with F1, F2 and F3 type 2<br />

interference fold pattern observed at the Ace-fay deposits (Fig. 2.7D). Ashton et al. (2007)<br />

interpreted overprinting tight to isoclinal northeast-trending, predominantly southwestplunging<br />

folds that formed during the 1.91-1.90 Ga metamorphic event of the Snowbird<br />

Tectonic Zone (Fig. 2.15). These two major compressional orogens (Fig. 2.13D) likely<br />

overprinted and obscured early ductile and brittle-ductile fabric associated with the<br />

Arrowsmith Orogen.<br />

Subsequent to a period of erosion that exposed the fault zones at shallower crustal<br />

levels immediately after the Snowbird Tectonic Zone (Bethune et al., 2010), fault activity<br />

changed from dominantly ductile-brittle to brittle deformation causing widespread U 4<br />

uranium-rich brecciation along reactivated fault zones (Fig. 2.13E). The 1848±5 Ma U 4<br />

uranium-brecciation stage is consistent with fault reactivation during tectonic shortening<br />

and regional metamorphism of the Trans-Hudson Orogen or more likely post-peak<br />

compressional uplift during terminal collision of the Taltson-Thelon Orogen. Reactivated<br />

fault zones would have acted as high-permeability conduits that focus fluid flow into the<br />

breccia system leading to hydrothermal alteration and deposition of the U 4 uranium<br />

mineralization and Br 1 -Chl 7 -Src 3 -Hem 6 -Py 5 -Cpy 4<br />

mineral assemblage (Fig. 2.8). The<br />

Trans-Hudson Orogen, located east of the Beaverlodge area (Fig. 2.14), marks the<br />

amalgation involving Wyoming, Slave, Churchill, Superior and Sask provinces into the<br />

cratonic core of Laurentia (Hoffman, 1989; Ansdell, 2005). Ansdell et al. (1999) identified<br />

72


a ca. 1.85-1.83 Ga event associated with a northwest subduction that reactivated an earlier<br />

northwest-dipping suture beneath the La Ronge-Lynn Lake arc. The 1848±5 Ma main<br />

breccia-related U 4 uranium mineralization could be related to fault reactivation during the<br />

ca. 1.85-1.83 Ga event in the Trans-Hudson Orogen.<br />

Southeastward underthrusting of the Rae-Hearne foreland under the Superior<br />

hinterland during the ca. 1.83-1.81 Ma terminal collision of the Trans-Hudson Orogen<br />

(Ansdell and Yang 1995; Ansdell et al., 1999) is interpreted to have caused intracratonic<br />

deformation and significant extension in the Rae back-arc and formation of the 1820 Ma<br />

successor Martin Lake Basin (Mazimhaka and Hendry, 1985), which developed along lines<br />

of pre-existing tectonic weakness (Fig. 2.13F). The plate-scale tectonic setting of this basin<br />

is more compatible with an extensional rift regime, which is consistent with geodynamic<br />

models that suggest subduction initiation followed by rapid back-arc extension and basin<br />

formation (McKenzie, 1978; Clendenin et al., 1988). Ashton et al. (2009b) suggested that<br />

brittle–ductile to brittle trans-tensional faulting at the junction of the Black Bay (Bergeron,<br />

2001, 2002) and Saint Louis faults (Fig. 2.2) created a small pull-apart basin into which the<br />

Martin Lake Basin was deposited. The Martin Lake Basin is associated with extrusion of<br />

mantle-affinity alkaline to sub-alkaline mafic dikes at 1818±4 Ma (Morelli et al., 2009).<br />

Magma ascended during extensional reactivation of deep fault zones, which act as conduit<br />

for intrusion of the mafic dikes (Fig. 2.13F). Magmatic-hydrothermal degassing through<br />

preexisting fractures and joints is likely related to the volcanic-related U 5 uranium<br />

mineralization and associated mineral assemblage (Fig. 2.8). The 1812±15 Ma U 5 -<br />

mineralization coincides with the 1818±4 Ma Martin Lake mafic volcanism in the<br />

73


Beaverlodge area (Morelli et al., 2009) (Fig. 2.15). These ages are identical to an 1827±4<br />

Ma age (Bostock and Breemen, 1992) obtained for the southeast-east-southeast-striking<br />

Sparrow diabase dike swarms, which span the boundary between the Taltson Magmatic<br />

Zone and the western Churchill province (Fig. 2.14). These dates are also similar to the<br />

1800 Ma age that Russel and Ahren (1957) reported for the west orebody of the Ace<br />

deposit (Fig. 2.2). The U-Pb upper intercept ages of 1783±7 Ma and 1774±25 Ma (Figs.<br />

11D and 11E) are identical to the 1780±20 Ma date that Koeppel (1969) originally<br />

interpreted as the age of vein-type uranium deposits in the Beaverlodge area. However,<br />

these ages are likely related to a post-mineralization alteration and resetting event<br />

associated with fault reactivation during the emplacement of the 1788±3 Ma (Ashton et al.,<br />

2009b) northeast-striking, post-orogenic, lamprophyre and granitic dikes (Sassano et al.,<br />

1974; Ashton et al., 2006) that cut the Uranium City mafic dikes (Tremblay, 1972).<br />

Sassano et al. (1974) suggested that the lamprophyre dikes are associated with the latekinematic<br />

phase of the Trans-Hudson Orogen, at which time the uplift of the northwest<br />

Churchill province took place.<br />

Late east-west compressional regime associated with tectonic readjustments during<br />

terminal ca. 1.81-1.69 Ga post-collisional convergence in the Trans-Hudson Orogen (e.g.<br />

Hajnal et al., 1996; Chiarenzelli et al., 1998) caused folding of the Murmac Bay Group and<br />

Martin Lake Basin rocks (Ashton et al., 2009a), followed by uplift, erosion, thermal<br />

relaxation, subsidence, and deposition of the Athabasca Basin at ca. 1750 Ma (Kyser et al.,<br />

2000) (Fig. 2.13G). Late brittle reactivation along fault zones during the Mesoproterozoic<br />

caused minor fracturing and deposition of U 6 uranium mineralization related to fluids likely<br />

74


originating from the Athabasca Basin and descended downward along reactivated fracture<br />

systems in the basement rocks. Interaction between the hydrothermal brine and the<br />

metamorphic basement lithologies may have led to the deposition of the ±U 6 uranium<br />

mineralization and Cal 10 -Chl 9 -Hem 8 -Py 7 mineral assemblage (Fig. 2.8). The 1620±4 Ma<br />

Athabasca-related ±U 6 uranium mineralization is coincident with the age of the major<br />

unconformity-related uranium mineralizing event in the Athabasca Basin (Alexandre et al.,<br />

2007) and records tectonic reactivation during the 1.65-1.60 Ga Mazatzal Orogen in<br />

southern Laurentia (Fig. 2.14) (Labrenze and Karlstrom, 1991; Eisele and Isachsen, 2001).<br />

The Athabasca-related U 6 uranium mineralization age is also within the 1700-1500 Ma<br />

intervals that Robinson (1955) originally suggested as the earliest uranium mineralization<br />

in the Beaverlodge area.<br />

From the Mesoproterozoic to recent time (Fig. 2.13H), far field tectonic events of<br />

several orogenic episodes during the thermotectonic evolution of the Laurentian plate (e.g.<br />

Hoffman, 1989; Evans and Pisarevsky, 2008) caused minor brittle fault reactivation in the<br />

Beaverlodge area (Fig. 2.15). Post-mineralization alteration for all stages of uraninite<br />

record a Mesoproterozoic tectonic event at ca. 1.4 Ga (Fig. 2.15), which corresponds to the<br />

Granite Pluton event (1.55-1.35 Ga) along the southeastern margin of Laurentia (Fig. 2.14)<br />

(Barinek et al., 1999; Thompson and Barnes, 1999). This event is subsequent to the final<br />

breakup of the Nuna supercontinent (Hou et al., 2008; Evans et al., 2010) that culminated<br />

at ca. 1.3 to 1.2 Ga (Ernst et al., 2008). The metasomatic-type U 3 uraninite in Gunnar<br />

records this breakup event at ca. 1.27 Ga (Fig. 2.15), similar to the 1.27 Ga Mackenzie<br />

75


dikes (Ernst and Buchan, 2001b) and the 1.24 Ga Sudbury mafic dikes (Dudás et al., 1994)<br />

that are associated with the Nuna supercontinent breakup (Rogers and Santos, 2002).<br />

The breccia-type U 4 and metasomatic-type U 3 uraninites record 400 Myr of alteration<br />

extending from 1.3 to 0.9 Ga (Fig. 2.15), which likely corresponds to the protracted period<br />

of Rodinia supercontinent assembly (Piper, 2000, 2004, Li et al., 2008) through the<br />

Grenville Orogen (Rivers, 1997; Carr et al., 2004). This orogenic activity along the<br />

southern margin of Laurentia (Fig. 2.14) culminated into continent-continent collision that<br />

led to the final Rodinia assembly (Moores, 1991; Bogdanova et al., 2009).<br />

The metasomatic-type U 3 and breccia-type U 4 uraninites show intense alteration at<br />

800-780 Ma and 550-500 Ma (Fig. 2.15). These ages are consistent with diachronous<br />

breakup models of Rodinia (Dalziel, 1991; Moores, 1991; Li et al., 2008), comprised of an<br />

early rifting stage along the western margin of Laurentia at ca. 780-755 Ma (Harlan,<br />

2003b) followed by the main pulse of rifting along the eastern margin at ca. 600-550 Ma<br />

(Ernst and Buchan, 2001b). Mafic intrusions associated with this major extensional event<br />

occur along the western margin of Laurentia (Fig. 2.14) and include the ca. 780-770 Ma<br />

Gunbarrel mafic event (Harlan et al., 2003b). The ca. 570-550 Ma central-Iapetus mafic<br />

intrusion along the eastern margin of Laurentia occurred during Rodinia eastern breakup<br />

(Kamo et al., 1989; Li et al., 2008).<br />

All uraninite types have been affected by alteration between 460 Ma and 280 Ma,<br />

with peaks at ca. 350 Ma (Fig. 2.15) recording the thermotectonic event of the protracted<br />

Appalachian Orogen that affected the eastern margin of Laurentia (Fig. 2.14) during<br />

Pangea assembly (Cocks and Torsvik, 2002; Hatcher, 2002).<br />

76


U-Pb isotopic systems have lower intercept ages reflecting post-Appalachian tectonic<br />

history of the North American shield. These ages range from 166±30 Ma to 54±87 Ma<br />

(Tables 2.1b and 2.2b) and likely reflect tectonic activity during the Cretaceous and<br />

Paleocene Cordilleran orogenic belt of North America (Molnar and Atwater, 1978). The<br />

belt marked by a zone of strong folding and thrust faulting is located further east of the<br />

Beaverlodge area, along the western active margin of Laurentia (Fig. 2.14).<br />

77


Figure 2.15: Distribution of 207 Pb/ 206 Pb ages for 260 uraninite grains along with the timing of<br />

various uranium mineralization and tectonic events that affected the Beaverlodge area. The<br />

ages are from analysis of grains from different styles of uranium mineralization. Also shown<br />

are the area distribution of supercontinents and major magmatic events in North America.<br />

(e.g Hoffman, 1989; Ernst and Buchan, 2001b; Li et al., 2008)<br />

Lower U-Pb intercept and chemical Pb ages close to 0 Ma (Tables 2.1, 2.2, and 2.3)<br />

are interpreted to record recent fault reactivation and resetting events likely during the<br />

Pleistocene glaciations-related stress fluctuation that caused continental-scale isostatic<br />

readjustments as the upper crust deformed in response to deglaciation and lithospheric<br />

unloading (Adams, 1989; Karlstrom, 2000; Fullerton et al., 2003). Similar ages are also<br />

recorded in uranium deposits in the Athabasca Basin (Alexandre et al., 2005).<br />

These alteration and resetting stages of uraninites and the late Chl 9 , Cal 11 , Qtz 5 and<br />

Hem 9 veins that cut across the fault zones record the effect of late fluid events that have<br />

affected the deposits subsequent to their formation. The late fluid events may represent<br />

incursion and circulation of hydrothermal and meteoric water through the structurally<br />

reactivated fault zones (Kotzer and Kyser, 1995), suggesting that the fault zones were<br />

active after deposition of the uranium mineralization and remain zones of preferential fluid<br />

circulation (Fayek and Kyser, 1997).<br />

2.6. CONCLUSIONS<br />

Structural and metamorphic relationships within the Main Ore shear zone and the<br />

Saint Louis fault, and petrographic analysis and geochronological data from various<br />

uranium deposits indicate that the Beaverlodge area records ore-forming systems that<br />

result from a complex history of multiple reactivation and hydrothermal alteration<br />

78


processes during continent-scale protracted tectonic evolution. Stages of uranium<br />

mineralization and alteration events record over 2.3 Gyrs of tectonic history of the North<br />

American shield. Results presented indicate that uraninite in major structures is greatly<br />

sensitive to fluid events stimulated by both near- and far-field tectonic events. Therefore, it<br />

can serve as vehicle to understand the complex timing relationships between fault<br />

activities, hydrothermal and ore-forming processes, to regional thermotectonic events.<br />

Six distinct stages of uranium mineralization associated with multiple postmineralization<br />

alteration events are identified. The main event that hosts most of the<br />

uranium mineralization occurred during the Trans-Hudson Orogen or more likely postpeak<br />

Taltson-Thelon Orogen and is associated with far-field fault reactivation. This<br />

deformational event produced widespread uranium-rich breccia zones that overprinted<br />

early ductile and brittle-ductile shear zones and are the primary structural control for<br />

uranium mineralization. Exploration activities should therefore be focused in areas of fault<br />

zones that demonstrate evidence of tectonic reactivation that create dilatant areas, which<br />

are favorable structural sites for fluid flow, hydrothermal alteration, and uranium<br />

mineralization.<br />

79


CHAPTER 3<br />

GENESIS OF MULTIFARIOUS URANIUM MINERALIZATION IN<br />

THE BEAVERLODGE AREA, NORTHERN<br />

SASKATCHEWAN, CANADA<br />

Abstract<br />

The Beaverlodge area in northwestern Saskatchewan, Canada, hosts numerous faultcontrolled<br />

U deposits that are geochemically and structurally complex because of multiple<br />

deformation, hydrothermal alteration and U mineralization events. Field and petrographic<br />

studies combined with electron microprobe analysis, stable isotope geochemistry of H, C,<br />

O, as well as geochronological data have identified up to six temporally distinct stages of<br />

U mineralization. Early minor stages are hosted in cataclasite and veins at ca. 2.29 Ga and<br />

in albitized granite in the Gunnar deposit between ca. 2.3 Ga and 1.9 Ga, which predate<br />

the main stage of U mineralization as hydrothermal breccias that formed at ca. 1.85 Ga.<br />

Later stages of U mineralization are related to minor veins at ca. 1.82 Ga linked to alkaline<br />

mafic dikes associated with the Martin Lake Basin and to minor veins at ca. 1.62 Ga<br />

corresponding to the timing of unconformity-type uranium mineralization in the<br />

Athabasca Basin.<br />

Early vein and cataclasite-type mineralization formed during late stages of the early<br />

Paleoproterozoic Arrowsmith Orogen and represent the earliest recorded fluid events.<br />

Stable isotope geochemistry of C and O of syn-ore calcite and syn-ore chlorite crystal<br />

chemistry indicate that the early veins formed from fluids derived from retrograde<br />

metamorphic processes at 310 o C. Granite-related metasomatic-type mineralization at<br />

80


Gunnar formed from reducing hydrothermal brines that exsolved from magmatic fluid at<br />

315 o C. However, uranium associated with this metasomatic style of mineralization is<br />

overprinted by the more significant breccia-vein and later, minor volcanic-type<br />

mineralizations. The Gunnar deposit contains all three styles of mineralization.<br />

During the Paleoproterozoic, reactivation of major fault zones is related to the<br />

dominant breccia-type mineralizing event. Syn-ore chlorite crystal chemistry and stable<br />

isotope geochemistry of H, C, and O of syn-ore minerals indicate that the main U-<br />

mineralizing event at 1.85 Ga in all deposits in the Beaverlodge area, formed from Ca-Na-<br />

F-rich fluids at 330 o C associated with regional metamorphism coincident with the postpeak<br />

Thelon-Taltson Orogen or, more likely, early stages of the Trans-Hudson Orogen.<br />

During the late Paleoproterozoic, formation of the Martin Lake Basin and associated<br />

volcanic rocks is related to the volcanic-type mineralization at 1.82 Ga. Syn-ore chlorite<br />

crystal chemistry and stable isotope geochemistry of H, C, and O of syn-ore minerals<br />

indicate that this mineralization formed at 320 o C from magmatic fluids originating from<br />

the alkaline mafic dikes. The last stage of mineralization formed at ca. 1.62 Ga from<br />

oxidizing basinal brines at 235 o C originating from the Athabasca Basin. Subsequent<br />

erosion of the Athabasca and Martin Lake Basin rocks and weathering of the deposit<br />

resulted in the formation of secondary uranium minerals and late veins.<br />

These results improve the current genetic model for uranium mineralization in the<br />

Beaverlodge area to a level that takes into account the multiple stages of deformation and<br />

fluid overprinting that occurred over a period of at least 2.3 Gyrs. Although the<br />

Beaverlodge area represents several distinct mineralizing events, the major event is the<br />

81


eccia-type. The other styles of mineralization are minor, and their presence complicates<br />

both exploration and our understanding of deposit genesis in the area.<br />

3.1. Introduction<br />

The Martin Lake successor basin (Hendry, 1983; Mazimhaka and Hendry, 1985), in<br />

the Beaverlodge district, Saskatchewan, Canada, was affected by a protracted history of<br />

deformation, hydrothermal alteration and uranium mineralization during the Proterozoic<br />

(Dieng et al., 2011). Despite several decades of intense exploration and mining activities,<br />

only limited studies of the fluid characteristics of a few deposits have been reported (e.g.<br />

Robinson, 1955; Beck, 1969; Sassano et al., 1972; Hoeve, 1980, 1982; Sibbald, 1982;<br />

Rees, 1992; Kotzer and Kyser, 1995). Therefore, the key processes by which these<br />

deposits formed remain largely unknown. The U mineralization occurs in basement rocks<br />

beneath, and within, the Paleoproterozoic Martin Lake Basin (e.g. Tremblay, 1968;<br />

Sassano, 1972; Slater, 1983) that is stratigraphically older than, but spatially related to the<br />

U-rich Athabasca Basin (Kyser et al., 2000; Alexandre et al., 2009). However, whether or<br />

not these deposits are unconformity-related and how they are related to those in the<br />

Athabasca Basin is moot.<br />

In this chapter, we evaluate the character and formation of uranium deposits in the<br />

Beaverlodge area using mineral paragenesis that details the relative timing of alteration<br />

minerals. We also constrain the nature and origin of fluids in equilibrium with these<br />

minerals by using stable isotope geochemistry, rare earth element contents in uraninite,<br />

and chlorite and uraninite crystal chemistry. These results are used to identify key factors<br />

controlling U mineralization in the Martin Lake successor basin, present a conceptual<br />

82


genetic model for the different styles of U mineralization in the Beaverlodge area, and<br />

compare the Beaverlodge U deposits to those in the younger, U-rich Athabasca Basin.<br />

3.2. Geologic Setting<br />

3.2.1. General geology<br />

The Beaverlodge area lies within the southwestern Rae province (Fig. 3.1) and<br />

comprises Neoarchean to Mesoproterozoic rocks that can be broadly divided into four<br />

packages (Fig. 3.2).<br />

Location Map<br />

Study area<br />

<br />

Uranium deposits<br />

Figure 3.1. Generalized geological map of the Western Churchill Province, Canada, showing<br />

lithotectonic units, uranium deposits and location of the Beaverlodge area. (modified from<br />

Hoffman, 1988).<br />

83


The basement consist of Neoarchean granitoids (Ashton et al., 2004) including the<br />

Elliot Bay (3014 Ma; Persons, 1983), Lodge Bay (3060 Ma; O’Hanley, et al., 1991) and<br />

Cornwall Bay (2999 Ma; Hartlaub et al., 2004a) granites. The overlying Neoarchean to<br />

Paleoproterozoic supracrustal Murmac Bay Group (Hartlaub and Ashton, 1998; Hartlaub<br />

et al., 2004a) is composed of metamorphosed and moderately to highly deformed<br />

supracrustal rocks consisting of a basal quartzite, basalt, ultramafic to intermediate<br />

igneous rocks, and psammite and pelite with minor amounts of conglomerate, banded iron<br />

formation, and carbonates rocks (Hartlaub and Ashton, 1998; Ashton et al., 2004). The<br />

Murmac Bay Group was variably metamorphosed from granulite facies to lower<br />

greenschist facies (Hartlaub and Ashton, 1998). Recent work indicates that the basal<br />

quartzo-feldpathic units of the Murmac Bay Group have a maximum depositional age of<br />

2.33 Ga (Hartlaub et al., 2004a). The Murmac Bay Group is intruded by a suite of ca.<br />

2.33–2.30 Ga granites known as ‘North Shore Plutons’ (Macdonald et al., 1985) including<br />

the 2321±3 Ma Gunnar granite (Hartlaub et al., 2004a) that is associated with a major U<br />

deposit in the Beaverlodge area (Fig. 3.2). The tectonic environment of the plutonic suite<br />

and the depositional setting of the Murmac Bay Group and their timing relationships to<br />

deformation are still poorly understood.<br />

84


Figure 3.2. Simplified geological map of the Beaverlodge area showing the location of the<br />

studied uranium deposits. (modified from Macdonald and Slimmon, 1985).<br />

The Paleoproterozoic Martin Lake Basin (Fig. 3.2) is a ca. 5000 m-thick, molasse,<br />

red-bed succession (Langford, 1981; Mazimhaka and Hendry, 1985; Morelli et al., 2001)<br />

85


of essentially unmetamorphosed arkose, conglomerates and siltstone with mafic flows and<br />

sills of alkaline affinity (Morelli et al., 2009). The fault-controlled basin is confined to a<br />

broad open syncline centered on Martin Lake (Ramaekers, 1981; Ashton et al., 2001).<br />

Locally, extensive suites of east- to southeast striking mafic dikes, dated at 1818±4 Ma,<br />

are interpreted as feeders to the Martin Lake Basin mafic flows and sills (Morelli et al.,<br />

2009). The Martin Lake Basin formed during a period of active tectonism related to backarc<br />

extension (Dieng et al., 2011) following the peak Trans-Hudson Orogeny (Hoffman,<br />

1989, 1990; Corrigan, 2009) and can be therefore classified as a successor basin<br />

(Clendenin et al., 1988).<br />

Overlying the Martin Lake Basin are outliers of the Paleoproterozoic to<br />

Mesoproterozoic Athabasca Formation (Rainbird et al., 2007). These occur south of the<br />

Beaverlodge area and consist of generally flat-lying, undeformed quartz sandstone with<br />

minor shale, conglomerate, and greywacke (Sibbald, 1983).<br />

3.2.2. Uranium mineralization<br />

The Beaverlodge area hosts a multitude of U deposits (Fig. 3.2), which were<br />

actively mined between 1953 and 1963 from 284 deposits. Ore grades were generally in<br />

the range of 0.15 to 0.25 per cent U but in places, up to 0.4 per cent U (Robinson, 1955;<br />

Beck, 1969). About 25,000 t U was mined (Sibbald and Quirt, 1987), which is the<br />

equivalent of the Millennium deposit in the Athabasca Basin (Roy et al., 2005). Some<br />

previous investigators of the Beaverlodge U deposits reported a single event of U<br />

mineralization (Dudar, 1960; Sassano, 1972), but others described two mineralizing<br />

events (Turek, 1962). However, Tortosa (1983) identified five stages of U mineralization<br />

86


separated by fracturing events in the Cenex deposit that is located east of the Cinch Lake<br />

deposit. Joubin (1955) and Johns (1970) proposed a surficial origin for U mineralization<br />

and suggested that most of the pitchblende occurrences formed near the unconformity<br />

between the Tarzin and Martin Lake groups. Sassano et al. (1972) proposed a<br />

metamorphic hydrothermal source for the fluids and U based on studies of the Eldorado<br />

mine, wherein the deposits were generated by pore fluids in the supracrustal rocks and<br />

remobilized during metamorphism. Tortosa (1983) proposed a groundwater source for the<br />

mineralizing fluids that circulated through fracture zones near the surface and leached U<br />

from rocks to form the orebody at temperatures near 250 o C. Isotopic and<br />

microthermometric studies on silicate, carbonate, and oxide gangue minerals associated<br />

with U-oxide minerals from the Athabasca Basin and Beaverlodge area indicate that fluids<br />

involved with formation of unconformity-type and complex vein-type U mineralization<br />

were saline (10-40 wt % NaCl) having δ 18 O values ranging from -27 to -3 per mil and<br />

temperatures between 150 o C and 220 o C, but variably overprinted by relatively modern<br />

meteoric fluid processes (Peiris and Parslow, 1988; Kotzer and Kyser, 1995).<br />

3.3. Methodology<br />

Polished thin sections were prepared for 550 samples from outcrop and core of most<br />

of the major deposits (Fig. 3.2) and were examined using transmitted and reflected-light<br />

microscopy to determine mineral crosscutting relationships and develop a detail<br />

paragenesis for the Beaverlodge district (Fig. 3.3).<br />

Electron microprobe analysis of syn-ore chlorite and uraninite were accomplished<br />

on polished thin sections using a Cambax MBX electron microprobe equipped with 4<br />

87


WDX X-ray spectrometers at Carleton <strong>University</strong>, Ottawa, Canada. A suite of natural and<br />

synthetic minerals were used as calibration standards. The Cameca PAP matrix correction<br />

program was used to convert the raw X-ray data into elemental weight percent. The<br />

detection limit for the majority of the elements is ca. 0.05 percent and the accuracy of the<br />

measurements is 2% relative for major elements and 5% relative for minor elements. The<br />

crystal chemistry of paragenetically distinct chlorites was used to estimate their formation<br />

temperatures using the chlorite geothermometry of Cathelineau (1988). For uraninite,<br />

UO 2 , SiO 2 , CaO, Fe 2 O 3 , TiO 2 , Cr 2 O 3 , V 2 O 5 , PbO, P 2 O 5 , K 2 O ThO 2 , MnO, Y 2 O 3 , Tb 2 O 3 ,<br />

and CuO were measured to determine their chemical compositions.<br />

Clay minerals were extracted by ultrasound disintegration and centrifugation and<br />

analyzed by X-ray diffraction (XRD) using a Siemens X-pert instrument at Queen’s<br />

<strong>University</strong>, Canada. Monomineralic fractions, typically > 95 percent pure, were used for<br />

stable isotope analysis at the Queen’s Facility for Isotope Research (QFIR). Oxygen<br />

isotopic compositions of chlorite were measured using the BrF 5 method of Clayton and<br />

Mayeda (1963) and a dual inlet Finnigan MAT252 isotope ratio mass spectrometer.<br />

Hydrogen isotopic compositions were determined using a Thermo Finnigan TC/EA in-line<br />

with a DeltaPlus XP Finnigan Mat mass spectrometer. Isotopic compositions are reported<br />

in the δ notation in units of per mil relative to V-SMOW. Analyses of δ 18 O were<br />

reproducible to ±0.2 per mil and δ 2 H values were reproducible to ±3 per mil. The isotopic<br />

composition of fluid was calculated using the chlorite–water fractionation factor of<br />

Wenner and Taylor (1971) for oxygen and the chlorite–water fractionation factor of<br />

Marumo et al. (1980) for hydrogen.<br />

88


Stable isotopic compositions of C and O in calcite and dolomite were made using a<br />

Gas Bench coupled to a ThermoFinnigan Delta plus XP mass spectrometer and are reported<br />

in the δ notation in units of per mil relative to V-PDB and V-SMOW, respectively. The<br />

isotopic compositions of C and O in the fluid were calculated from the fractionation factor<br />

of Ohmoto and Rye (1979) and Hu and Clayton (2003), respectively.<br />

The content of REEs in uraninite was determined by LA-ICPMS using a<br />

ThermoFisher X-Series II. This instrument is equipped with a New Wave UP-213<br />

Nd:YAG laser-ablation system using a small volume (2.5 cm 3 ) and laminar-flow<br />

SuperCell ablation cell. Ablation was performed in an atmosphere of pure He (0.6<br />

l/min), with the ablated aerosol mixed with Ar (0.8 l/min) immediately after the ablation<br />

cell and prior to direct introduction into the torch. Pre-defined areas of the polished thin<br />

sections were ablated using a spot size of 30μm in diameter. Instrument drift was<br />

performed using NIST 612 and calibration was performed using zircon standard 91500<br />

(Wiedenbeck et al., 1995). The REE abundances are normalized to the abundances in<br />

chondrite meteorites reported by McDonough and Sun (1995). Heavy and light REE<br />

variations are reflected by chondrite normalized (La/Yb) N , (La/Sm) N and (Tb/Yb) N ratios,<br />

whereas redox conditions are recorded by Eu/Eu* and Ce/Ce* anomalies (DeBaar, 1991;<br />

Gao and Wedepohl, 1995).<br />

Mineral name abbreviations used in this chapter are those from Kretz (1983). The<br />

superscript numerical value on mineral name abbreviations reflects the mineral growth<br />

stage.<br />

89


3.4. Results<br />

3.4.1. Paragenesis of the alteration minerals and types of U mineralization<br />

The paragenetic mineral assemblage is based on detailed petrographic analysis of<br />

550 samples collected from the Ace-Fay, Gunnar and Cinch Lake deposits and on field<br />

relationships. These deposits are the largest in the Beaverlodge area (Fig. 3.2). There are<br />

six mineralogically, temporally, and structurally distinct U ore and related alteration<br />

assemblages within the U deposits in the Beaverlodge area (Figs. 3.3 and 3.4).<br />

Mylonitization is the earliest deformation observed (Dieng et al., 2011). The<br />

hornblende-feldspar gneiss at Cinch Lake and the Foot Bay gneiss at Ace-Fay define an<br />

amphibolite metamorphic assemblage of Kfs 1 +Pl 1 +Hbl 1 . Retrogression to greenschist<br />

metamorphic grade is indicated by the assemblage Bt 1 +Chl 1 +Src 1 +Hem 1 (Fig. 3.3). The<br />

mylonitic foliation is cut by Chl 2 chlorite, Qtz 2 quartz, Ab 1 albite, Cal 1 calcite, and Ep 1<br />

epidote veinlets (Fig. 3.3). The mylonites are further overprinted by a network of ductilebrittle<br />

and brittle features that host the U mineralization (Dieng et al., 2011). The<br />

cataclasite comprises mylonite fragments (Fig. 3.4A), Qtz 1 quartz and Kfs 1 feldspar clasts,<br />

and disrupted Cal 1 calcite and Qtz 2 quartz veinlets embedded in a matrix composed of<br />

recrystallized Qtz 1 quartz, Cal 2 calcite, Hem 3 hematite, Chl 3 chlorite, Src 2 sericite, and<br />

disseminated U 1 uraninite (Fig. 3.4B). Cataclasite rocks are occasionally cut by tensional<br />

Qtz 3 quartz-Cal 3 calcite and U 2 uraninite veins (Fig. 3.4C). Fine-grained Cal 4 calcite, Chl 4<br />

chlorite, Hem 4 hematite, and Py 3 pyrite are intergrown with U 2 uraninite (Fig. 3.4D). Qtz 3<br />

and Cal 3 display evidence of tensional opening (Sibson et al., 1975) and a syntaxial<br />

growth with fibers perpendicular to vein wall (Fig. 3.4C).<br />

90


Figure 3.3. Mineral paragenesis of the Beaverlodge U deposits showing regional greenschist<br />

metamorphism during exhumation of the fault zones to shallow crustal levels subsequent to<br />

mylonitization. Shown are six distinct stages of U mineralization that result from episodic<br />

tectonic reactivation of fault zones at shallower crustal levels. The main event of U<br />

mineralization occurs during the brecciation stage. The thickness of the lines indicates the<br />

relative mineral abundance. Temperatures associated with the different alteration minerals<br />

91


are derived from their chlorite crystal chemistry. The fluid composition is derived from the<br />

crystal chemistry of chlorite and U and from REE abundance of uraninite. The origin of the<br />

fluid is obtained from stable isotope geochemistry of chlorite and calcite in textural<br />

equilibrium with the U mineralization. The age of each event of U mineralization corresponds<br />

to the 207 Pb/ 206 Pb age obtained from LA-HR-ICPMS on uraninite (Dieng et al., 2011).<br />

Cl=chlorite crystal chemistry, U=Uraninite crystal chemistry, SI=Stable isotope,<br />

Pg=Paragenesis assemblage.<br />

Granite-related metasomatic-type alteration affected the Gunnar granite (Figs. 3.4E<br />

and 3.4F) and involved pervasive Ab 2 albite metasomatism. Replacement of Kfs 1 K-<br />

feldspar is complete and precedes Qtz 1 quartz dissolution resulting in a rock exclusively<br />

composed of Ab 2 albite (Fig. 3.4E), which is further carbonatized by Cal 5 . This calcite<br />

occupies voids left after Qtz 1 quartz dissolution. Petrographic evidence shows that the U 3<br />

mineralization was introduced subsequent to the albitization process and occupied space<br />

between Ab 2 albite grains probably left after Cal 5 calcite and Qtz 1 quartz dissolution. U 3<br />

uraninite is intergrown with Chl 5 chlorite, Src 3 sericite, Hem 5 hematite, Cal 6 calcite, Mz 1<br />

monazite, and Ttn 2 titanite (Fig. 3.4F). Late alteration associated with Cal 7 calcite, Qtz 4<br />

quartz and Chl 6 chlorite veins locally crosscut the mineralized albitized granite (Fig. 3.3).<br />

Breccias are associated with the main U-mineralizing event throughout the<br />

Beaverlodge area and result from a brittle reactivation of shear zones (Dieng et al., 2011).<br />

The breccia is composed of variable-sized (3-4 cm), locally albitized cataclasite and<br />

mylonite rock fragments, embedded in a Cal 8 calcite matrix (Fig. 3.4G). The matrix also<br />

contains broken fragments of Qtz 1 quartz and Kfs 1 feldspar. U 4 uraninite is associated with<br />

minor fine-grained (


fragments or as dissemination in the Cal 8 calcite matrix associated with Chl 7 chlorite<br />

(Figs. 3.4G and 3.4H).<br />

93


Figure 3.4. Photomicrographs of typical mineral assemblages and crosscutting relationship in<br />

the Beaverlodge area illustrating the mineral paragenesis in Figure 3: A: Transmitted light<br />

photomicrograph of a cataclasite granite gneiss with mylonitized fragments, Qtz 1 and Kfs 1<br />

embedded in a matrix of ±U 1 , Cal 2 , Hem 3 , Chl 3 , Src 2 , Cpy 2 , and Py 2 . B: Reflected light<br />

photomicrograph showing U 1 associated with Hem 3 and Py 2 . C: Transmitted light<br />

photomicrograph of U 2 -Hem 4 -Chl 4 -Cal 4 -Cpy 3 -Py 3 vein cutting cataclasite rock and filled by<br />

94


tensional mode I vein of Qtz 3 and Cal 3 . D: Reflected light photomicrograph of U 2 replacing<br />

Py 3 in vein. E: Transmitted light photomicrograph of mineralized albite-metasomatized<br />

granite showing U 3 associated with Hem 5 and Ttn 2 in void left after Cal 5 and Qtz 1 dissolution.<br />

F: Reflected light photomicrograph of mineralized albite-metasomatized granite. G:<br />

Transmitted light photomicrograph of mineralized breccia with albitized fragments of<br />

cataclasite rock in Cal 8 matrix. U 4 rims breccia fragments and disseminated in Cal 8 matrix<br />

associated with Chl 7 , and Hem 6 . H: Reflected light photomicrograph of a highly U-<br />

mineralized breccia. U 4 with Cal 8 and Chl 7 forming the matrix. I: Transmitted light<br />

photomicrograph of breccia vein composed of crushed Qtz 1 , Kfs 1 and Cal 1 embedded in a<br />

chlorite-rich matrix. U 5 is disseminated in the matrix associated with Hem 7 , Chl 8 and Ap 1 . J:<br />

Reflected light photomicrograph of breccia vein. K: Transmitted light photomicrograph of<br />

late mineralized veins containing U 6 , Chl 9 and Hem 8 . L: Reflected light photomicrograph of<br />

the late mineralized veins.<br />

Locally, U 4 uraninite displays a colloform texture with concentric banding indicating<br />

effects of late fluid alteration events. Chl 7 chlorite generally forms radiating aggregates<br />

enveloping U 4 uraninite. The size and texture of Chl 7 chlorite indicate growth into open<br />

pore spaces that were possibly created by brittle deformation. U 4 is associated with Src 3<br />

sericite, Hem 6 hematite, Py 5 pyrite, and Cpy 4 chalcopyrite. In places, U 4 replaces Py 4<br />

pyrite.<br />

U 5 uranium mineralization associated with mafic dikes occurs as veinlets or<br />

millimetric to metric breccia-dikes crosscutting the shear zone at Cinch Lake (Dieng et al.,<br />

2011). Field observations indicate a spatial relationship between breccia-dikes and mafic<br />

dikes. Breccia-dikes are composed of angular country rock fragments, Qtz 1 quartz, Kfs 1<br />

feldspar and Cal 1 calcite grains embedded in a chlorite matrix (Fig. 3.4I). U 5 occurs as<br />

disseminated grains cementing altered fragments (Fig. 3.4J) and is intergrown with Chl 8<br />

chlorite, Cal 9 calcite, Src 4 sericite, Hem 7 hematite, Mzn 2 monazite, and Ttn 3 titanite (Fig.<br />

95


3.4J). Py 6 Pyrite and Cpy 5 chalcopyrite are disseminated in the matrix. Ap 1 apatite as<br />

tabular crystals is intergrown with U 5 (Fig. 3.4J).<br />

Athabasca-type U mineralization fills late fractures and consists of U 6 uraninite<br />

associated with Cal 10 calcite, Chl 9 chlorite, Hem 8 hematite, and minor Py 7 pyrite (Fig.<br />

3.4L). These late veins (Fig. 3.4K) crosscut the Murmac Bay Group, the basal<br />

conglomerates of the Martin Lake Group and the mafic dikes and are the youngest<br />

mineralized phase. U 6 uraninite is typically massive and generally rims Cal 10 calcite veins.<br />

Late veins of Cal 11 calcite, Chl 10 chlorite, Qtz 5 quartz and sulfide occur as fracture-filling<br />

minerals cutting primary ore assemblages. The sulfides are Gn 1 galena, Cpy 6 chalcopyrite,<br />

Py 8 pyrite, Sph 1 sphalerite, and copper minerals. Gn 1 galena forms inclusions or fracturefilling<br />

in uraninite and Py 8 pyrite or thin films along Cal 8 calcite cleavage in the breccia<br />

rock. Sph 1<br />

sphalerite occurs as irregular masses or fine blebs in Py 8 pyrite. Copper<br />

mineralization is present as disseminated aggregates of Bn 1 bornite, Dg 1 digenite, and Cv 1<br />

covellite at the Ace-Fay and Gunnar deposits and appears to postdate the main event of U<br />

mineralization.<br />

3.4.2. Crystal Chemistry<br />

3.4.2.1. Mineral chemistry of uraninite and brannerite<br />

Electron microprobe and backscattered images reveal that uraninite from all stages of<br />

mineralization has been variably altered to different forms of uranyl-silicates (Table 3.1,<br />

Fig. 3.5). These uraninites demonstrate evidence of considerable variation in reflectance,<br />

suggesting significant heterogeneity in their chemical composition as a result of variable<br />

alteration by later fluids (Kotzer and Kyser, 1993; Alexandre et al., 2005).<br />

96


Chemical Pb Age (Ma)<br />

Figure 3.5. Content of substituting elements in uraninite as function of the chemical Pb age of<br />

different generations of uraninite in U deposits in the Beaverlodge area. Arrow indicates the<br />

effect of alteration by later fluids.<br />

The most altered samples are those of the granite-related metasomatic-type U 3<br />

uraninite from the Gunnar deposit (Fig. 3.5). In U 3 uraninite, the concentration of PbO is<br />

the lowest and the total Ca+Fe+Si the highest, reflecting a higher degree of postmineralization<br />

alteration that has affected U 3 uraninite subsequent to its formation. U 3<br />

uraninite has high P 2 O 5 and Y 2 O 3 contents. In contrast, U 4 uraninite from the breccia-type<br />

mineralization is less altered than U 3 uraninite. The concentration of UO 2 in U 4 uraninite<br />

varies from 73.23 to 78.93 weight percent and PbO contents range from 8.71 to 19.45<br />

weight percent (Table 3.1). The chemical composition of well-preserved breccia-type U 4<br />

uraninite indicates elevated MnO, Y 2 O 3 , SO 3 , and ThO contents (Table 3.1). Other<br />

elements present within the U 4 uraninite structure include CaO, SiO 2 , FeO, and TiO 2<br />

(Table 3.1). The concentration of UO 2 in Br 1<br />

brannerite from the breccia-type<br />

97


mineralization varies from 25.70 to 42.40 weight percent and TiO 2 contents vary<br />

inversely, from 52.90 to 13.36 weight percent. Br 1 brannerite contains also several weight<br />

percent of CaO, FeO, SiO 2, PbO (Table 3.1), and anomalous levels of V 2 O 3, MnO, P 2 O 5 ,<br />

SO 3 , ThO, and Y 2 O 3 (Table 3.1) . The presence of these elements in Br 1 brannerite is likely<br />

a result of post-precipitation alteration involving oxidation and partial hydration of the<br />

mineral (Smith, 1984).<br />

Volcanic-type U 5 uraninite has high contents of MnO, V 2 O 3 , and TiO 2 (Table 3.1).<br />

The high TiO 2 content is consistent with the presence of Ttn 3 titanite intergrown with U 5<br />

uraninite. The concentration of UO 2 varies from 70.31 to 76.1 weight percent (Table 3.1).<br />

The Pb contents are variable ranging from 0.85 to 20.40 weight percent. There are high<br />

Ca, Si, and Fe contents within the U 5 uraninite structure. Athabasca-type U 6 uraninite<br />

contains the highest concentrations of P 2 O 5 (Table 3.1). V 2 O 3 and MnO also are present in<br />

variable amounts.<br />

Sample ID UO 2 SiO 2 CaO Fe 2O 3 TiO 2 Cr 2O 3 V 2O 5 PbO P 2O 5 K 2O ThO 2 SO 2 MnO Y 2O 3 Tb 2O 3 CuO Total<br />

Early tensional vein-type U 2 mineralization<br />

6122_Pt21 71.83 2.02 3.61 0.39 0.40 0.02 0.11 17.88 0.02 0.03 0.02 0.05 0.12 0.00 0.14 0.03 96.50<br />

6122_Pt22 54.29 0.64 11.73 1.29 0.39 0.04 0.16 15.31 0.01 0.00 0.04 0.04 0.10 0.03 0.06 0.01 83.99<br />

6122_Pt31 73.07 3.05 3.44 0.91 0.38 0.05 0.03 14.52 0.04 0.09 0.01 0.02 0.15 0.07 0.11 0.07 95.90<br />

6122_Pt4_1 37.29 0.69 39.21 0.44 0.13 0.01 0.04 7.66 0.11 0.04 0.04 0.09 0.50 0.00 0.08 0.02 86.03<br />

6122_Pt4_2 72.61 0.59 3.33 0.31 0.65 0.02 0.04 17.42 0.03 0.02 0.02 0.03 0.18 0.04 0.02 0.00 95.29<br />

6122_Pt5_1 71.65 0.46 2.32 0.11 0.38 0.04 0.05 19.91 0.02 0.05 0.00 0.01 0.07 0.09 0.01 0.02 95.09<br />

6122_Pt92 78.10 1.92 3.38 0.95 2.58 0.03 0.17 7.11 0.05 0.05 0.00 0.02 0.43 0.02 0.00 0.04 94.74<br />

6122_Pt101 73.63 9.89 2.48 1.14 1.35 0.28 0.23 1.90 0.36 0.05 0.01 0.03 0.36 0.08 0.20 0.05 91.80<br />

Granite related metasomatic-type U 3 mineralization at the Gunnar deposit<br />

6134pt21 77.59 3.01 5.35 0.15 0.06 0.01 0.04 0.07 0.12 0.14 0.01 0.01 0.02 0.02 0.07 0.04 86.61<br />

6134pt22 80.25 3.04 5.60 0.22 0.03 0.01 0.09 0.12 0.00 0.08 0.03 0.00 0.08 0.04 0.06 0.04 89.46<br />

6134pt23 78.63 3.65 5.19 1.65 0.33 0.01 0.06 0.00 0.06 0.07 0.02 0.02 0.06 0.00 0.07 0.12 89.78<br />

6134pt24 78.36 3.72 5.28 1.82 0.44 0.05 0.02 0.03 0.06 0.06 0.05 0.02 0.05 0.01 0.05 0.02 89.84<br />

6134pt3 77.88 4.95 5.57 0.19 0.37 0.01 0.01 0.11 0.05 0.07 0.03 0.01 0.09 0.01 0.08 0.01 89.33<br />

6134pt31 79.27 3.95 5.52 0.15 0.01 0.03 0.04 0.11 0.08 0.08 0.04 0.01 0.03 0.00 0.04 0.02 89.22<br />

6134pt32 81.64 3.39 4.56 0.16 0.00 0.12 0.07 0.03 0.05 0.06 0.04 0.00 0.07 0.03 0.08 0.05 90.13<br />

6134pt33 79.50 3.78 5.54 0.11 0.06 0.04 0.02 0.06 0.09 0.06 0.02 0.00 0.04 0.00 0.06 0.01 89.23<br />

6134pt41 80.77 3.52 5.67 0.23 0.01 0.01 0.00 0.13 0.01 0.07 0.03 0.01 0.09 0.04 0.01 0.04 90.57<br />

6134pt42 79.52 3.13 5.90 0.26 0.13 0.01 0.03 0.09 0.07 0.05 0.00 0.03 0.07 0.00 0.03 0.01 89.31<br />

6134pt43 81.29 2.79 5.67 0.20 0.03 0.00 0.02 0.16 0.01 0.05 0.02 0.00 0.07 0.03 0.04 0.02 90.28<br />

6134pt51 81.39 2.70 5.41 0.13 0.00 0.04 0.00 0.11 0.04 0.06 0.07 0.00 0.04 0.06 0.02 0.07 89.88<br />

6134pt52 74.27 3.20 4.97 0.22 0.08 0.04 0.02 0.04 0.11 0.23 0.02 0.01 0.10 0.02 0.05 0.04 83.27<br />

98


6134pt53 80.12 4.95 4.53 0.22 0.41 0.01 0.01 0.10 0.12 0.11 0.05 0.01 0.02 0.16 0.00 0.01 90.75<br />

6134pt61 81.12 3.04 5.23 0.01 0.01 0.03 0.01 0.03 0.00 0.04 0.02 0.01 0.01 0.01 0.02 0.01 89.49<br />

6134pt62 81.92 3.06 5.24 0.04 0.04 0.00 0.00 0.10 0.01 0.04 0.02 0.00 0.08 0.04 0.04 0.04 90.45<br />

6134pt63 80.49 3.09 5.36 0.01 0.02 0.01 0.09 0.08 0.04 0.06 0.01 0.01 0.01 0.04 0.09 0.01 89.37<br />

6134pt64 81.96 3.12 4.98 0.05 0.04 0.01 0.02 0.10 0.02 0.06 0.04 0.00 0.07 0.02 0.01 0.01 90.44<br />

6134pt81 79.17 2.87 4.43 0.01 0.02 0.01 0.56 1.40 0.09 0.07 0.02 0.10 0.03 0.16 0.07 0.01 88.96<br />

6134pt82 79.67 2.90 4.69 0.02 0.07 0.03 0.35 1.44 0.06 0.00 0.03 0.07 0.02 0.08 0.10 0.05 89.42<br />

6134pt83 80.29 3.14 3.87 0.03 0.78 0.01 0.05 0.11 0.08 0.03 0.04 0.00 0.04 0.12 0.00 0.00 88.53<br />

6134pt84 77.08 2.76 5.44 0.04 0.02 0.02 0.52 0.61 0.09 0.01 0.00 0.04 0.06 0.21 0.02 0.04 86.86<br />

6134pt8a1 80.50 4.02 5.50 0.04 0.11 0.02 0.00 0.07 0.01 0.12 0.06 0.02 0.07 0.05 0.03 0.00 90.45<br />

6134pt8a2 82.92 2.92 5.30 0.07 0.04 0.02 0.09 0.11 0.01 0.07 0.01 0.04 0.09 0.01 0.07 0.02 91.62<br />

6134pt8a3 77.51 1.83 5.81 0.17 0.02 0.02 0.05 0.16 0.11 0.15 0.00 0.03 0.12 0.01 0.05 0.06 85.99<br />

6134pt91 63.41 3.15 4.32 0.08 0.04 0.03 0.24 1.46 0.18 0.19 0.03 0.05 0.08 0.12 0.05 0.02 73.42<br />

6134pt92 75.28 3.78 5.33 0.02 0.07 0.01 0.29 1.41 0.22 0.08 0.00 0.03 0.01 0.20 0.02 0.07 86.69<br />

6134pt93 73.41 2.98 5.18 0.09 0.09 0.05 0.31 1.60 0.28 0.29 0.03 0.02 0.07 0.19 0.06 0.03 84.62<br />

6134pt9a1 81.55 3.36 4.25 0.18 0.69 0.00 0.08 0.07 0.15 0.10 0.01 0.01 0.06 0.07 0.02 0.00 90.57<br />

6134pt9a2 80.44 2.93 4.23 0.04 0.47 0.06 0.14 0.20 0.15 0.07 0.01 0.01 0.05 0.13 0.02 0.04 88.96<br />

6134pt9a3 78.82 3.02 4.69 0.02 0.60 0.03 0.15 0.05 0.14 0.05 0.01 0.00 0.03 0.15 0.04 0.05 87.79<br />

6134pt9a4 77.24 5.45 4.77 0.44 0.46 0.04 0.00 0.12 0.19 0.16 0.00 0.01 0.09 0.16 0.05 0.03 89.07<br />

6134pt101 73.83 6.55 3.47 1.32 0.00 0.03 0.07 0.41 0.09 0.14 0.00 0.01 0.05 0.27 0.01 0.06 86.09<br />

6134pt102 64.50 9.49 2.43 9.15 0.06 0.01 0.12 0.65 0.12 0.28 0.06 0.03 0.05 0.32 0.26 0.05 87.17<br />

6134pt103 74.14 7.47 3.23 1.59 0.01 0.01 0.06 0.32 0.04 0.16 0.00 0.01 0.01 0.27 0.03 0.04 87.34<br />

6134pt104 74.03 5.88 2.71 1.97 0.08 0.01 0.18 1.96 0.14 0.13 0.03 0.01 0.01 0.41 0.03 0.07 87.58<br />

6134pt105 72.59 6.19 3.29 2.40 0.04 0.02 0.08 1.39 0.14 0.15 0.02 0.01 0.03 0.26 0.11 0.01 86.58<br />

Breccia-type U 4 mineralization<br />

Uraninite<br />

VRB_pt41 74.17 0.45 2.70 0.76 0.41 0.01 0.18 19.22 0.00 0.05 0.08 0.02 0.14 0.13 0.03 0.05 98.29<br />

5812Pt21 73.23 0.47 3.24 0.53 0.43 0.04 0.04 18.45 0.01 0.02 0.14 0.01 0.16 0.16 0.04 0.01 96.91<br />

5812Pt61 74.88 0.54 4.43 0.44 0.44 0.01 0.16 15.88 0.02 0.03 0.02 0.01 0.22 0.15 0.04 0.00 97.16<br />

5812Pt11 75.58 0.50 4.51 0.62 0.46 0.03 0.18 12.07 0.02 0.04 0.03 0.01 0.42 0.45 0.08 0.05 94.92<br />

5812Pt82 78.94 0.69 4.43 0.99 0.55 0.06 0.08 9.52 0.01 0.03 0.17 0.01 0.27 0.08 0.06 0.02 95.72<br />

5812Pt12 76.71 0.98 6.43 0.90 0.61 0.03 0.21 6.89 0.01 0.03 0.04 0.06 0.70 0.60 0.00 0.01 94.18<br />

5812Pt81 77.99 1.05 4.27 1.20 0.80 0.05 0.01 8.71 0.02 0.03 0.29 0.03 0.35 0.06 0.05 0.02 94.82<br />

5812Pt22 75.02 2.40 4.63 1.28 1.74 0.01 0.14 10.07 0.05 0.05 0.03 0.73 0.67 0.31 0.11 0.03 97.15<br />

Brannerite<br />

5812Pt41 42.40 14.29 1.51 2.09 13.36 0.02 0.18 12.43 0.55 0.07 0.56 2.15 0.04 0.14 0.08 0.08 89.88<br />

5812Pt31 27.03 4.83 19.26 3.17 26.60 0.11 0.20 0.81 0.03 0.05 0.04 0.01 0.17 0.01 0.08 0.04 82.29<br />

5812Pt71 36.98 8.11 2.27 2.98 34.85 0.16 0.64 2.89 0.03 0.05 0.10 0.23 0.27 0.03 0.05 0.05 89.61<br />

5812Pt42 34.57 3.88 9.83 2.11 36.31 0.23 0.35 1.47 0.02 0.01 0.13 0.01 0.32 0.01 0.01 0.01 89.25<br />

5812Pt51 37.19 5.75 2.29 2.64 41.70 0.14 0.41 1.87 0.02 0.01 0.11 0.15 0.16 0.02 0.01 0.04 92.48<br />

5812Pt72 34.34 5.10 2.06 3.13 44.54 0.13 0.46 1.91 0.01 0.02 0.06 0.09 0.23 0.01 0.11 0.04 92.09<br />

5812Pt52 32.87 4.46 2.05 3.10 47.65 0.17 0.37 1.74 0.02 0.00 0.13 0.10 0.17 0.00 0.04 0.01 92.84<br />

5812Pt32 25.70 4.77 4.33 4.16 52.90 0.18 0.26 1.42 0.01 0.03 0.09 0.05 0.15 0.01 0.09 0.01 94.04<br />

Volcanic-type U 5 mineralization<br />

6120B_pt1 76.10 0.89 3.71 0.62 0.58 0.03 0.16 13.77 0.00 0.03 0.04 0.02 0.22 0.01 0.04 0.05 96.13<br />

6120B_pt12 73.42 1.05 2.73 0.45 0.52 0.01 0.48 17.56 0.06 0.03 0.07 0.04 0.12 0.01 0.03 0.07 96.46<br />

6120B_pt22 71.88 1.43 3.00 0.46 0.48 0.03 0.25 17.14 0.06 0.02 0.00 0.01 0.08 0.01 0.07 0.03 94.86<br />

6120B_pt31 74.41 0.84 3.66 0.48 0.64 0.01 0.22 15.41 0.06 0.03 0.02 0.02 0.20 0.03 0.09 0.03 95.99<br />

6120B_pt32 74.38 1.68 2.57 0.54 0.58 0.03 0.13 15.68 0.03 0.03 0.00 0.02 0.10 0.09 0.00 0.03 95.82<br />

6120B_pt33 73.75 0.47 3.05 0.28 0.42 0.03 0.09 17.91 0.05 0.04 0.05 0.00 0.07 0.03 0.06 0.04 96.19<br />

6120B_pt34 74.03 0.50 2.50 0.32 0.30 0.03 0.13 20.15 0.04 0.03 0.02 0.03 0.00 0.02 0.03 0.04 98.05<br />

6120B_pt41 71.92 0.51 2.33 0.05 0.51 0.01 0.11 20.29 0.03 0.02 0.08 0.04 0.04 0.09 0.06 0.02 95.99<br />

6120B_pt35 74.17 9.32 1.73 2.09 1.11 0.02 0.22 0.85 0.07 0.05 0.04 0.01 0.23 0.00 0.03 0.00 89.82<br />

6120B_pt36 74.44 9.51 1.67 1.36 1.14 0.05 0.23 1.78 0.07 0.03 0.02 0.29 0.20 0.01 0.05 0.02 90.72<br />

6120B_pt41 70.14 0.67 2.65 0.15 0.37 0.01 0.33 19.62 0.04 0.02 0.05 0.02 0.08 0.04 0.08 0.01 94.13<br />

6120B_pt42 74.34 1.12 4.30 0.95 0.43 0.02 0.26 14.17 0.05 0.03 0.01 0.01 0.23 0.04 0.02 0.00 95.92<br />

6120B_pt51 72.87 0.38 2.37 0.23 0.29 0.01 0.16 19.91 0.05 0.02 0.01 0.04 0.04 0.11 0.09 0.03 96.56<br />

6120B_pt52 73.23 0.46 2.58 0.43 0.36 0.03 0.04 19.04 0.03 0.03 0.01 0.01 0.07 0.06 0.03 0.03 96.37<br />

6120B_pt61 71.72 0.92 2.35 0.28 0.49 0.04 0.46 19.28 0.04 0.02 0.02 0.03 0.01 0.03 0.05 0.01 95.67<br />

6120B_pt62 70.31 0.64 2.65 0.39 0.40 0.05 0.22 20.24 0.07 0.01 0.06 0.04 0.06 0.06 0.04 0.02 95.15<br />

Athabasca-type U 6 mineralization<br />

6137APt42 63.93 6.67 12.03 2.91 0.04 0.01 0.17 0.67 0.07 0.01 0.03 0.03 0.54 0.00 0.06 0.05 87.13<br />

6137APt51 35.55 9.15 24.28 7.30 0.00 0.03 0.10 0.80 0.04 0.05 0.02 0.01 0.47 0.00 0.12 0.03 77.73<br />

6137APt52 24.60 20.95 1.53 22.12 0.02 0.00 0.22 0.31 0.01 0.01 0.01 0.00 0.35 0.00 0.53 0.00 70.12<br />

6137APt61 61.82 4.25 16.19 2.40 0.08 0.01 0.20 2.04 0.04 0.05 0.03 0.03 0.57 0.01 0.03 0.03 87.68<br />

99


6137APt71 60.67 13.73 4.59 6.48 0.05 0.01 0.23 0.48 0.03 0.04 0.02 0.00 0.53 0.01 0.18 0.01 86.84<br />

6137APt72 48.70 10.57 6.69 9.26 0.04 0.01 0.03 0.54 0.05 0.08 0.03 0.02 0.45 0.02 0.25 0.02 76.46<br />

6137APt81 26.87 21.78 13.43 4.68 0.05 0.31 0.21 0.24 0.07 0.15 0.02 0.00 0.30 0.07 0.17 0.02 68.18<br />

6137APt82 60.21 16.36 3.11 4.97 0.11 0.04 0.13 0.17 0.16 0.14 0.02 0.00 0.51 0.08 0.02 0.04 86.00<br />

6137APt9 60.59 9.42 13.24 2.45 0.15 0.03 0.37 0.97 0.83 0.02 0.04 0.02 0.47 0.42 0.03 0.01 88.98<br />

Table 3.1. Electron microprobe analysis and chemical composition of uraninite and<br />

brannerite from different generations of U mineralization in the Beaverlodge area.<br />

3.4.2.2. Chlorite Crystal Chemistry<br />

Chlorite is associated with all stages of U mineralization and is used here to estimate<br />

temperatures and compositions of the mineralizing fluids. The chemical formulas and<br />

formation temperatures of chlorite from different types of U mineralization are<br />

summarized in Table 3.2.<br />

Average Structural Formulae of various generations of Chlorites<br />

Temperature of<br />

Formation ( o C)<br />

1 Mg 3.185Fe 1.72Al 1.Ca 0.02 (Si 3.19Al 0.81) O 10 (F 0.15 (OH) 7.85) 200<br />

2 Mg 2.62Fe 1.22Al 2.66Ca 0.4 (Si 2.85Al 1.16) O 10 (F 0.14CL 0.02 (OH) 7.84) 310<br />

3.a Mg 2.86Fe 1.82Al 2.41Ca 0.02Mn 0.03Ti 0.01 (Si 2.83Al 1.17) O 10 (F 0.09 (OH) 7.91) 315<br />

3.b Mg 3.37Fe 1.27Al 2.29 (Si 2.94Al 1.06) O 10 (F 0.11 (OH) 7.89) 278<br />

3.c Mg 3.34Fe 1.47Al 2.03 (Si 3.06Al 0.94) O 10 (F 0.16 (OH) 7.84) 242<br />

3.c Mg 3.22Fe 1.64Al 1.96 (Si 3.09Al 0.91) O 10 (F 0.1 (OH) 7.90) 230<br />

3.c Mg 3.09Fe 0.39Al 2.32 (Si 3.45Al 0.55) O 10 (F 0.43CL 0.02 (OH) 7.56) 116<br />

4 Mg 2.06Fe 2.37Al 2.57Ca 0.1 (Si 2.79Al 1.21) O 10 (F 0.06 (OH) 7.94) 330<br />

4.a Mg 3.71Fe 1.04Al 1.87 (Si 3.21Al 0.79) O 10 (F 0.17 (OH) 7.83) 194<br />

5a Mg 2.40Fe 2.32Al 2.38Mn 0.03Ti 0.01 (Si 2.83Al 1.17) O 10 (F 0.04 (OH) 7.96) 320<br />

5.b Mg 2.77Fe 2.06Al 1.95Mn 0.02 (Si 3.10Al 0.90) O 10 (F 0.02 (OH) 7.98) 229<br />

5.b Mg 2.49Fe 2.12Al 2.29Ca 0.03Mn 0.02 (Si 3.08Al 0.92) O 10 (OH) 8 212<br />

6 Mg 2.49Fe 2.36Al 1.97Ca 0.01 (Si 3.08Al 0.92) O 10 (F 0.13 Cl 0.01(OH) 7.86) 235<br />

Table 3.2. Temperatures of formation, and average structural formulas of different<br />

generations of chlorite phases from U deposits in the Beaverlodge area. Calculated<br />

temperatures are accurate to within 25-30°C based on replicate analyses.<br />

100


Textural evidence suggests that retrograde Chl 1<br />

chlorite predominantly replaced<br />

earlier metamorphic Bt 1 biotite and Hbl 1 amphibole in altered metasedimentary and<br />

feldspar-amphibole rocks at Cinch Lake (Dieng et al., 2011). Chl 1 chlorite has high Mg<br />

and Fe contents (19.45 and 19.74 wt. % respectively, Table 3.3), which supports<br />

inheritance of the chemistry of Bt 1 biotite into the Chl 1 chlorite. Chl 1 chlorites have a<br />

composition typical of Fe-clinochlore with a calculated formation temperature of ca.<br />

200°C (Table 3.3). They have high SiO 2 contents (30.25 wt. %), uniform Fe/Al and Mg/Al<br />

ratios and an average Fe/(Mg + Fe) ratio of 0.36, similar to the composition of retrograde<br />

metamorphic chlorite reported by Tortosa (1983) at the Cenex mine. The chemical<br />

composition of Chl 1 chlorite indicates that the fluid from which it formed contained Ca<br />

and F (Table 3.3).<br />

Chl 4 chlorite in early tensional vein-type U 2 mineralization has high Mg contents<br />

(17.03 wt.%) and the lowest Fe contents (14.17 wt.%). These chlorites have the lowest but<br />

relatively uniform Fe/Al, Mg/Al and Fe/Mg ratios and a calculated formation temperature<br />

of ca. 310°C (Table 3.3). Chl 4 chlorites are Ca-F-rich and have an average Fe/(Mg+Fe)<br />

ratio of 0.32 that is indistinguishable from retrograde Chl 1 chlorite.<br />

Syn-ore Chl 5 chlorite in granite-related metasomatic-type U 3 at the Gunnar deposit<br />

has high Mg and Al contents (18.17 wt.% and 19.41 wt.%, respectively) and low Fe<br />

contents (20.58 wt.%, Table 3.3, Fig. 3.6C) with a calculated formation temperature of ca.<br />

315°C. They have relatively uniform Fe/Al, Mg/Fe, and Mg/Al ratios and their low Fe/(Fe<br />

+ Mg) ratios (0.37 to 0.43) attest to the Mg-rich and Fe-poor composition of the fluid.<br />

Fluids in equilibrium with Chl 5 chlorite were relatively enriched in Ca, and F (Table 3.3;<br />

101


Fig. 3.6A). The Ca may result from the dissolution of Cal 5 calcite. Ttn 2 titanite and Mzn 1<br />

monazite are intergrown with Chl 5 chlorite and U 3 uraninite in the ore assemblage and are<br />

therefore coeval. Syn-ore Chl 5 chlorite was subsequently altered by later fluids resulting in<br />

local Mg-enrichment and Fe-depletion that form a mosaic texture. Calculated average<br />

formation temperatures of altered Chl 5 chlorites range from 115 o C to 240 o C (Table 3.4).<br />

Later Chl 6 chlorite veins crosscut the mineralized granite and have higher Mg and lower<br />

Fe contents and formation temperatures of ca. 275 o (Table 3.4).<br />

A) B)<br />

Ti<br />

Early vein-type<br />

Cl<br />

Ca<br />

C)<br />

D)<br />

Figure 3.6. Ternary and binary diagrams showing the compositional variation of chlorite<br />

phases (in wt %) from different types of U mineralization in the Beaverlodge area.<br />

102


Syn-ore Chl 7 chlorite in breccia-type U 4 mineralization yields the relatively highest<br />

Fe contents of 25.78 weight percent (Table 3.3; Fig. 3.6C) and high Fe/(Fe+Mg) ratios of<br />

0.53, indicating that the U-bearing fluid was Fe-rich. The average Fe/(Mg+Fe) ratio is<br />

similar to values reported by Tortosa (1983) for Fe-chlorite associated with the<br />

mineralized zone at the Cenex mine. Chl 7 chlorite has a composition typical for chamosite<br />

corresponding to formation temperatures near 330°C (Table 3.3). Cal 8 calcite and U 4<br />

uraninite intergrowths with Chl 7 chlorite in conjunction with high F contents in Chl 7<br />

chlorite, suggest that the U-bearing fluid contained Ca and F (Table 3.3; Figs..3.6A and<br />

3.6B). Electron microprobe and backscattered images show that Chl 7 chlorite was<br />

subsequently altered by fluids that were Mg-rich. These altered chlorites have average<br />

formation temperatures near 195 o C (Table 3.4).<br />

Syn-ore Chl 8 chlorite in volcanic-type U 5 mineralization is an Mg-Fe-chlorite with a<br />

formation temperature of ca. 320°C (Table 3.3). Chl 8 chlorite has the highest Mn and Ti<br />

contents (Table 3.3; Figs. 3.6A and 3.6B), although the presence of Ti and Ca reflects Ttn 3<br />

titanite and Ap 1 apatite grains respectively, intergrown with Chl 8 chlorite and U 5 uraninite<br />

(Fig. 3.4I). Chl 8 chlorites were subsequently altered by later Mg-rich fluids, resulting in<br />

altered chlorites with formation temperatures near 210 o C (Table 3.4). Chl 9<br />

chlorite<br />

associated with the Athabasca-type U 6 mineralization has high Mg and Fe contents (15.43<br />

wt.% and 26.01 wt.%, respectively) and is typically F-Cl-rich (Table 3.3; Figs. 3.6A and<br />

3.6B), with formation temperatures of ca. 235°C (Table 3.3). The Fe/(Fe+Mg) ratio of<br />

Chl 9 chlorite ranges from 0.56 to 0.67 and indicates that the U-mineralizing fluid was<br />

likely Mg-rich.<br />

103


Sample ID 1 ± 2 ± 3.a ± 4 ± 5.a ± 5.a ± 5.a ± 6 ±<br />

n= 5 5 5 15 8 9 8 10<br />

Oxides (Wt %)<br />

SiO2 30.25 0.66 27.56 2.23 26.84 0.31 25.34 1.21 26.07 0.46 26.66 0.39 26.10 0.48 28.38 0.92<br />

TiO2 0.00 - 0.00 - 0.06 0.02 0.02 - 0.02 - 0.01 - 0.09 0.03 0.02 -<br />

AL2O3 14.85 0.94 21.94 3.15 19.41 0.29 19.88 1.44 18.41 0.48 19.12 0.81 18.79 0.47 15.40 0.47<br />

CR2O3 0.02 - 0.05 - 0.00 - 0.10 - 0.02 - 0.03 - 0.01 - 0.17 0.07<br />

FeO 19.45 0.49 14.17 1.94 20.58 0.34 25.78 4.82 28.50 0.95 23.05 2.90 25.65 0.68 26.01 3.08<br />

MnO 0.11 0.03 0.15 0.07 0.38 0.06 0.08 0.07 0.22 0.17 0.51 0.14 0.24 0.05 0.01 -<br />

MgO 19.74 0.85 17.03 2.56 18.17 0.38 12.60 2.26 13.18 0.63 16.60 1.39 15.13 0.30 15.43 2.05<br />

CaO 0.15 0.09 3.47 5.00 0.01 - 0.85 1.12 0.01 - 0.02 - 0.02 - 0.08 -<br />

NA2O 0.01 - 0.28 0.17 0.02 - 0.04 - 0.01 - 0.02 - 0.03 - 0.05 -<br />

K2O 0.01 - 0.31 0.35 0.01 - 0.01 - 0.03 - 0.01 - 0.03 - 0.01 -<br />

F 0.45 0.11 0.40 0.36 0.26 0.06 0.17 0.10 0.08 0.05 0.10 0.08 0.18 0.06 0.38 0.20<br />

CL 0.00 - 0.13 0.05 0.00 - 0.01 - 0.00 - 0.00 - 0.01 - 0.04 -<br />

H2O 11.16 0.18 11.39 11.25 0.12 10.89 0.44 10.97 0.14 11.23 0.14 11.03 0.03 10.87 0.27<br />

O=F -0.19 - -0.17 - -0.11 - -0.02 - -0.03 - -0.04 - -0.07 - -0.16 -<br />

O=CL 0.00 - -0.03 - 0.00 - -0.01 - 0.00 - 0.00 - 0.00 - -0.01 -<br />

Total 96.01 1.35 97.08 3.21 96.88 0.91 95.66 5.07 97.48 0.95 97.31 0.64 97.22 0.51 96.94 1.95<br />

Atomic proportion<br />

Number of O 28 28 28 28 28 28 28 28<br />

Tetrahedral sites<br />

Si 4+ 3.19 0.04 2.85 0.06 2.83 0.02 2.79 0.05 2.84 0.03 2.83 0.02 2.81 0.05 3.08 0.08<br />

AL 4+ 0.81 0.04 1.16 0.06 1.17 0.02 1.21 0.05 1.16 0.03 1.17 0.02 1.19 0.05 0.92 0.08<br />

Total 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00<br />

Octahedral sites<br />

AL 6+ 1.85 0.11 2.66 0.24 2.41 0.04 2.57 0.08 2.36 0.05 2.40 0.09 2.39 0.06 1.97 0.06<br />

Ti 4+ 0.00 - 0.00 - 0.01 - 0.00 - 0.00 - 0.00 - 0.01 - 0.00 -<br />

Cr 3+ 0.00 - 0.00 - 0.00 - 0.01 - 0.00 - 0.00 - 0.00 - 0.01 -<br />

Fe 2+ 1.72 0.06 1.22 0.21 1.82 0.03 2.37 0.42 2.60 0.11 2.05 0.29 2.31 0.06 2.36 0.31<br />

Mn 2+ 0.01 - 0.01 - 0.03 0.00 0.01 - 0.02 - 0.05 - 0.02 - 0.00 -<br />

Mg 2+ 3.10 0.10 2.62 0.29 2.86 0.05 2.06 0.35 2.14 0.08 2.63 0.01 2.43 0.05 2.49 0.30<br />

Total 6.68 0.04 6.52 0.57 7.12 0.03 7.03 0.16 7.13 0.05 7.13 0.04 7.16 0.07 6.84 0.15<br />

Interlayers sites<br />

Ca 2+ 0.02 - 0.40 0.59 0.00 - 0.10 0.13 0.00 - 0.00 - 0.00 - 0.01 -<br />

Na + 0.00 - 0.06 0.04 0.00 - 0.02 - 0.00 - 0.00 - 0.01 - 0.01 -<br />

K + 0.00 - 0.04 0.04 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 -<br />

Total 0.02 - 0.50 0.66 0.01 - 0.12 0.07 0.01 - 0.01 - 0.01 - 0.02<br />

Anions<br />

F - 0.15 0.04 0.14 0.12 0.09 0.02 0.06 0.03 0.03 0.02 0.03 0.03 0.06 0.02 0.13 0.07<br />

CL - 0.00 - 0.02 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.01 -<br />

H + 7.85 0.04 7.84 0.12 7.91 0.02 7.94 0.05 7.97 0.02 7.97 0.03 7.94 0.02 7.86 0.07<br />

Total 8.00 0.00 8.00 0.00 8.00 0.00 8.00 0.00 8.00 0.00 8.00 0.00 8.00 0.00 8.00 0.00<br />

O 2- 17.85 0.04 17.84 0.12 17.92 0.02 17.98 0.05 17.97 0.02 17.97 0.03 17.94 0.02 17.86 0.07<br />

∑Cat 9.89 0.02 9.87 0.19 9.96 0.02 9.93 0.05 9.98 0.02 9.97 0.04 9.99 0.02 9.94 0.07<br />

∑ions 18.00 0.00 18.00 0.00 18.00 0.02 18.00 0.00 18.00 0.00 18.00 0.00 18.00 0.00 18.00 0.00<br />

Temperatures ( o C)<br />

200 14 310 20 315 6 330 16 311 9 313 7 338 16 235 24<br />

Table 3.3. Representative electron microprobe analysis of different generations of syn-ore<br />

chlorite phases from U deposits in the Beaverlodge area, including formation temperatures<br />

calculated using the method of Cathelineau (1988). 1=Retrograde metamorphic Chl 1 ; 2=Chl 4<br />

in early tensional vein type U 2 mineralization; 3a=Chl 5 in metasomatic-type U 3<br />

mineralization at Gunnar; 4=Chl 7 in breccia-type main U 4<br />

mineralization; 5a=Chl 8 in<br />

volcanic-type U 5 mineralization; 6=Chl 9 in Athabasca-type U 5 mineralization. One sigma<br />

variations are also shown. Paragenesis of all phases analyzed is shown in Figures 3 and 4 (see<br />

the text for more details). n= number of analyses<br />

104


Sample ID 3.b ± 3.c ± 3.d ± 3.e ± 4.a ± 5.b ± 5.c ±<br />

n= 5 13 5 4 6 8 6<br />

Oxides (Wt %)<br />

SiO2 29.15 0.39 29.48 1.16 29.54 0.39 35.50 0.77 31.27 1.03 29.27 0.98 30.16 1.19<br />

TiO2 0.01 - 0.02 - 0.01 - 0.01 - 0.03 - 0.02 - 0.02 -<br />

AL2O3 19.28 0.26 16.65 1.08 15.90 0.26 20.27 1.21 15.46 1.21 15.65 1.27 17.88 0.27<br />

CR2O3 0.06 - 0.02 - 0.03 - 0.01 - 0.00 - 0.05 - 0.04 -<br />

FeO 15.02 1.17 16.95 3.65 18.76 1.17 4.79 2.61 12.13 1.91 23.28 3.21 23.31 0.97<br />

MnO 0.24 0.07 0.20 - 0.05 0.02 0.26 0.07 0.16 0.06 0.26 0.08 0.19 0.06<br />

MgO 22.38 1.27 21.74 3.76 20.61 0.32 21.33 0.90 24.25 1.31 17.56 1.79 10.79 0.71<br />

CaO 0.03 0.01 0.03 0.03 0.01 1.03 0.62 0.14 0.05 0.11 0.08 0.30 0.05<br />

NA2O 0.01 - 0.04 0.04 0.01 - 0.05 - 0.02 - 0.05 - 0.19 -<br />

K2O 0.01 - 0.02 - 0.02 - 0.17 - 0.01 - 0.02 - 1.09 -<br />

F 0.36 0.05 0.48 0.25 0.31 0.06 1.38 0.57 0.51 0.12 0.28 0.09 0.00 -<br />

CL 0.00 - 0.00 - 0.00 - 0.11 0.04 0.00 - 0.00 - 0.00 -<br />

H2O 11.71 0.09 11.39 0.29 11.31 0.11 11.67 0.32 11.45 0.24 11.30 0.23 11.05 0.11<br />

O=F -0.15 - -0.20 - -0.13 - -0.59 - -0.22 - -0.03 - 0.00 -<br />

O=CL 0.00 - 0.00 - 0.00 - -0.02 - 0.00 - 0.00 - 0.00 -<br />

Total 98.10 0.41 96.99 1.30 96.44 0.73 96.04 1.51 95.21 1.90 97.61 2.10 95.01 0.36<br />

Atomic proportion<br />

Number of O 28 28 28 28 28 28 28<br />

Tetrahedral sites<br />

Si 4+ 2.94 0.02 3.06 0.06 3.09 0.03 3.45 0.08 3.21 0.07 3.10 0.08 3.27 0.10<br />

AL 4+ 1.06 0.02 0.94 0.06 0.91 0.03 0.55 0.08 0.79 0.07 0.90 0.08 0.73 0.10<br />

Total 4.00 4.00 4.00 4.00 4.00 4.00 4.00<br />

Octahedral sites<br />

AL 6+ 2.29 0.05 2.03 0.17 1.96 0.02 2.32 0.10 1.87 0.09 1.95 0.14 2.29 0.02<br />

Ti 4+ 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 -<br />

Cr 3+ 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 -<br />

Fe 2+ 1.27 0.11 1.47 0.35 1.64 0.08 0.39 0.21 1.04 0.17 2.06 0.31 2.12 0.11<br />

Mn 2+ 0.02 0.01 0.02 0.02 0.00 - 0.02 - 0.01 - 0.02 - 0.02 -<br />

Mg 2+ 3.37 0.18 3.34 0.51 3.22 0.04 3.09 0.17 3.71 0.16 2.77 0.30 1.75 0.13<br />

Total 6.96 6.85 0.05 6.83 0.05 5.82 0.19 6.63 0.10 6.81 0.13 6.18 0.22<br />

Interlayers sites<br />

Ca 2+ 0.00 - 0.00 - 0.00 - 0.11 0.07 0.02 - 0.01 - 0.03 0.01<br />

Na + 0.00 - 0.01 - 0.00 - 0.01 - 0.00 - 0.01 - 0.04 -<br />

K + 0.00 - 0.00 - 0.00 - 0.02 - 0.00 - 0.00 - 0.15 -<br />

Total 0.01 - 0.01 - 0.01 - 0.14 0.07 0.02 - 0.02 - 0.22 0.06<br />

Anions<br />

F - 0.11 0.02 0.16 0.08 0.10 0.02 0.43 0.18 0.17 0.04 0.02 - 0.00 -<br />

CL - 0.00 - 0.00 - 0.00 - 0.02 - 0.00 - 0.00 - 0.00 -<br />

H + 7.89 0.02 7.84 0.08 7.90 0.02 7.56 0.18 7.83 0.04 7.98 0.06 8.00 0.06<br />

Total 8.00 0.00 8.00 0.00 8.00 0.00 8.00 0.00 8.00 0.00 8.00 0.00 8.00 0.00<br />

O 2- 17.89 0.02 17.84 0.08 17.90 0.02 17.56 0.18 17.83 0.04 17.98 0.06 18.00 0.00<br />

∑Cat 9.91 0.03 9.93 0.05 9.93 0.03 9.41 0.08 9.86 0.03 9.93 0.07 9.68 0.08<br />

∑ions 18.00 0.00 18.00 0.00 18.00 0.00 18.00 0.00 18.00 0.00 18.00 0.00 18.00 0.00<br />

Temperatures ( o C)<br />

278 7 242 20 230 8 116 24 194 23 229 25 212 32<br />

Table 3.4. Representative electron microprobe analysis of various chlorites affected by late<br />

low-temperature alteration phases from U deposits in the Beaverlodge area, including<br />

formation temperatures (Cathelineau, 1988). 3a, 3b, 3c, 3d=altered Chl 5 in metasomatic-type<br />

U 3 mineralization at Gunnar; 4a=altered Chl 7 in breccia-type U 4 mineralization; 5b,<br />

5c=altered Chl 8 in volcanic-type U 5 mineralization. n= number of analyses<br />

3.4.3. Isotopic compositions of minerals and fluids involved in the U mineralization<br />

3.4.3.1. Oxygen and carbon isotopes of Calcite<br />

105


Stable isotopic O and C compositions were determined for calcite in textural<br />

equilibrium with uraninite for each of the U mineralization events in the Beaverlodge area<br />

(Fig. 3.7; Table 3.5).<br />

Figure 3.7. Calculated δ 18 O and δ 13 C values of mineralizing fluids in equilibrium with<br />

carbonate minerals. (Legend as in Fig. 3.8)<br />

Syn-ore Cal 6 calcite in the granite-related metasomatic-type U 3 at the Gunnar<br />

deposit has a wide range of δ 18 O values from 7.5 per mil to 22.6 per mil, but a narrow<br />

range of δ 13 C values comprising between -4.9 per mil and -3.4 per mil (Fig. 3.7; Table<br />

3.5). Using a formation temperature of 315°C based on coeval Chl 5 chlorite, Cal 6 calcite<br />

precipitated from a CO 2 -bearing fluid having δ 18 O fluid and δ 13 C fluid values between 2.5 per<br />

mil and 17.6 per mil, and -7.1 per mil and -5.5 per mil, respectively (Fig. 3.7; Table 3.5).<br />

Syn-ore Cal 4 calcite in the early tensional vein-type U 2 mineralization has δ 18 O values<br />

106


anging between 15.5 per mil and 24.1 per mil and δ 13 C values ranging from -2.4 per mil<br />

to -2.1 per mil (Fig. 3.7; Table 3.5). Assuming a formation temperature of 300°C based on<br />

coeval Chl 4 chlorite (Table 3.3), Cal 4 formed from fluids with δ 18 O fluid values varying<br />

between 10.2 and 18.8 per mil and δ 13 C fluid values between -4.6 per mil and -4.2 per mil<br />

(Fig. 3.7; Table 3.5).<br />

Sample ID Deposit Mineral<br />

Mineral values Temperatures Fluid values<br />

δ 18 O<br />

V-SMOW<br />

per mil<br />

δ 13 C<br />

V-PDB<br />

per mil<br />

o C<br />

δ 18 O fluid<br />

V-SMOW<br />

per mil<br />

δ 13 C fluid<br />

V-PDB<br />

per mil<br />

Metasomatic-type U 3 mineralization<br />

6134 Gunnar Dolomite-Calcite 22.6 -4.9 315 17.6 -7<br />

6134D Gunnar Dolomite-Calcite 22.5 -4.9 315 17.5 -7.1<br />

GN-03 Gunnar Calcite 7.5 -3.9 315 2.5 -6<br />

GN-03D Gunnar Calcite 7.6 -3.8 315 2.6 -5.9<br />

VR-190 Gunnar Calcite 12.5 -3.4 315 7.5 -5.5<br />

VR-190D Gunnar Calcite 12.6 -3.4 315 7.6 -5.6<br />

Early tensional vein-type U 2 mineralization<br />

6120 Ace-Fay MG-Calcite 15.5 -2.2 310 10.2 -4.3<br />

6120 DUP Ace-Fay MG-Calcite 15.6 -2.1 310 10.3 -4.2<br />

6120D Ace-Fay MG-Calcite 15.5 -2.2 310 10.3 -4.3<br />

C-22-111 Cinch Lake Dolomite-Calcite 21.3 -2.2 310 16 -4.3<br />

C-22-93 Cinch Lake Dolomite 24.1 -2.4 310 18.8 -4.5<br />

M51-5996-VEIN Cinch Lake Dolomite 16.9 -2.5 310 11.7 -4.6<br />

Breccia-type U 4 mineralization<br />

5799 Ace-Fay Calcite 10.9 -2.4 330 6.2 -4.9<br />

5810 Ace-Fay Calcite 10.8 -4.5 330 6 -6.9<br />

5812 Ace-Fay Dolomite-Calcite 12.1 -2.5 330 7.3 -4.9<br />

5812D Ace-Fay Dolomite-Calcite 12.2 -2.3 330 7.4 -4.8<br />

5812-1 Ace-Fay Dolomite 11.9 -1.6 330 7.1 -4<br />

5800A Ace-Fay Dolomite-Calcite 12.3 -2.9 330 7.6 -5.3<br />

5800B Ace-Fay Dolomite-Calcite 12.2 -2.9 330 7.5 -5.4<br />

C-16-285 Cinch Lake MG-Calcite 10.6 -2.2 330 5.9 -4.6<br />

C-22-128 Cinch Lake Calcite 13.3 -2.6 330 8.5 -5<br />

C-22-128D Cinch Lake Calcite 13.3 -2.3 330 8.5 -4.8<br />

C-27-198 Cinch Lake Calcite 13.3 -1.8 330 8.5 -4.2<br />

C-27-200 Cinch Lake MG-Calcite 10.6 -2.5 330 5.9 -4.9<br />

C-27-200D Cinch Lake Calcite 10.9 -2.4 330 6.1 -4.8<br />

C-27-373 Cinch Lake Calcite 9.8 -2.2 330 5.1 -4.6<br />

C-27-379 Cinch Lake Calcite 12.3 -3.8 330 7.6 -6.2<br />

C-42-167 Cinch Lake MG-Calcite 12 -2.6 330 7.2 -5<br />

C-42-167D Cinch Lake MG-Calcite 11.9 -2.4 330 7.2 -4.9<br />

C-42-191 Cinch Lake Calcite 14.4 -2.1 330 9.6 -4.6<br />

C-42-191D Cinch Lake Calcite 14.5 -2.3 330 9.7 -4.7<br />

M51-5996-MAT Cinch Lake Dolomite 22.2 -1.8 330 17.4 -4.2<br />

M51-5996-MAT-D Cinch Lake Dolomite 22.1 -1.7 330 17.4 -4.2<br />

VR Ace-Fay Calcite 12.9 -3.2 330 8.1 -5.6<br />

VR_D Ace-Fay Calcite 12.9 -3.4 330 8.2 -5.8<br />

VR-211 Ace-Fay Calcite 7.6 -4 330 2.8 -6.4<br />

VR79 Ace-Fay Calcite 10.7 -5.8 330 5.9 -8.3<br />

VR79D Ace-Fay Calcite 10.6 -5.8 330 5.9 -8.2<br />

Volcanic-type U 5 mineralization<br />

6122 Ace-Fay Dolomite 13.2 -1.1 320 8.1 -3.2<br />

6122D Ace-Fay Dolomite 13.4 -1.1 320 8.2 -3.3<br />

6139 Ace-Fay Dolomite 13.9 -1.2 320 8.7 -3.4<br />

6139D Ace-Fay Dolomite 13.9 -1.2 320 8.7 -3.4<br />

C-27-23 Cinch Lake Dolomite 20.8 -2.6 320 15.7 -4.7<br />

C-27-262 Cinch Lake Calcite 9.8 -2.4 320 4.7 -4.6<br />

C-27-319 Cinch Lake MG-Calcite 11.6 -2.7 320 6.4 -4.9<br />

107


Sample ID Deposit Mineral<br />

Mineral values Temperatures Fluid values<br />

δ 18 O<br />

V-SMOW<br />

per mil<br />

δ 13 C<br />

V-PDB<br />

per mil<br />

o C<br />

δ 18 O fluid<br />

V-SMOW<br />

per mil<br />

δ 13 C fluid<br />

V-PDB<br />

per mil<br />

C-27-319D Cinch Lake MG-Calcite 11.4 -2.6 320 6.3 -4.7<br />

C-37-28 Cinch Lake Calcite 12.7 -1.7 320 7.5 -3.8<br />

C-42-180 Cinch Lake Calcite 12.8 -2.1 320 7.6 -4.2<br />

C-42-180D Cinch Lake Calcite 12.6 -1.9 320 7.5 -4.1<br />

C-42-244-1 Cinch Lake Calcite 10.5 -1.9 320 5.4 -4.1<br />

Athabasca-type U 6 mineralization<br />

3705 Ace-Fay Dolomite 11.2 -1 235 3.3 -1.9<br />

3705-D Ace-Fay Dolomite 11.2 -0.9 235 3.3 -1.9<br />

Late calcite veins<br />

C-09-181 Cinch Lake Calcite 14.6 -2.5 140 1.2 -0.5<br />

C-16-220 Cinch Lake Calcite 12.8 -2.8 140 -0.6 -0.8<br />

C-42-244 Cinch Lake Calcite 13.4 -6.4 140 0.02 -4.5<br />

C-42-244D Cinch Lake Calcite 13.3 -6.5 140 -0.1 -4.6<br />

Table 3.5. Measured δ 18 O and δ 13 C for calcite and calculated δ 18 O fluid and δ 13 C fluid values for<br />

fluids in equilibrium with carbonate minerals for different generations of U mineralization in<br />

the Beaverlodge area. Paragenesis of all phases analyzed is shown in Figures 3.3 and 3.4 and<br />

data are plotted in Figure 3.8 (see the text for more details).<br />

Syn-ore Cal 8 calcite in the major breccia-type U 4 yields a wide range of δ 18 O values<br />

between 7.6 per mil and 22.2 per mil and δ 13 C values between -5.8 per mil and -1.6 per<br />

mil (Table 3.5). These values are similar to O and C isotopic compositions of calcite<br />

matrix from mineralized breccia reported by Tortosa (1983) at the Cenex deposit and to<br />

values reported by Sassano (1972) for the type-C calcite in the Ace-Fay deposit that he<br />

interpreted as syn-ore calcite-filling breccia. A formation temperature of 330°C was used<br />

to calculate δ 18 O fluid and δ 13 C fluid values, which range from 2.8 per mil to 17.4 per mil and<br />

-8.3 per mil to -4 per mil, respectively (Fig. 3.7; Table 3.5). The lowest δ 13 C fluid values<br />

(Fig. 3.7) likely reflect the influence of a reduced C source probably originating from the<br />

country rock with which the fluid has interacted (Fig. 3.7).<br />

Syn-ore Cal 9 calcite sampled from the volcanic-type U 5 mineralization has δ 18 O<br />

values ranging from 9.8 per mil to 20.8 per mil and δ 13 C values between -2.7 per mil and -<br />

1.1 per mil (Table 3.5). Using a formation temperature of 320°C (Table 3.3), the<br />

108


calculated δ 18 O fluid and δ 13 C fluid values of the fluid from which Cal 9 formed range from 4.7<br />

per mil to 15.7 per mil and -4.9 per mil to -3.1 per mil, respectively (Fig. 3.7; Table 3.5),<br />

with most of the δ 18 O fluid values between 5 per mil and 10 per mil. Syn-ore Cal 10 calcite<br />

from the Athabasca-type U 6 mineralization yields δ 18 O values of 11.2 per mil and δ 13 C<br />

values ranging from -1 per mil to -0.9 per mil (Table 3.5). Using a formation temperature<br />

of ca. 235°C (Table 3.3), the calculated δ 18 O fluid and δ 13 C fluid values of the fluid are 3.3 per<br />

mil and -1.9 per mil, respectively (Fig. 3.7; Table 3.5). Late Cal 11 calcite veins<br />

crosscutting all rocks within the Beaverlodge area have δ 18 O values that range from 12.8<br />

per mil to 14.7 per mil and δ 13 C values between -6.4 per mil and -2.5 per mil (Fig. 3.7;<br />

Table 3.5). Using a formation temperature of 140°C, the calculated δ 18 O fluid and δ 13 C fluid<br />

values are the lowest and give two components (Fig. 3.7). One has δ 18 O fluid and δ 13 C fluid<br />

values ranging from -0.6 per mil to 1.2 per mil and -0.9 per mil to -0.5 per mil,<br />

respectively, similar to isotopic compositions of seawater (Fig. 3.7). The second<br />

component has much lower δ 13 C fluid and slightly higher δ 18 O fluid values, near -4.5 per mil<br />

and 0 per mil, respectively.<br />

3.4.3.2. Oxygen and hydrogen isotopic compositions of chlorite<br />

Stable isotopic O and H compositions were determined for chlorite in textural<br />

equilibrium with U for the granite-metasomatic, breccia, volcanic, and Athabasca-type U<br />

mineralizations (Fig. 3.8; Table 3.6).<br />

Syn-ore Chl 5 chlorite in the Gunnar deposit has δ 18 O values that range from 5.8 per<br />

mil to 11.1 per mil and δ 2 H values between -75 per mil and -71 per mil (Fig. 3.8; Table<br />

3.6). Assuming a formation temperature of 315°C (Table 3.3), Chl 5 chlorite formed in<br />

109


equilibrium with a fluid having δ 18 O fluid values ranging from 6.1 per mil to 11.4 per mil<br />

and δ 2 H fluid values from -48 per mil to -44 per mil (Fig. 3.8; Table 3.6).<br />

Figure 3.8. Calculated δ 18 O and δ 2 H values of mineralizing fluids in equilibrium with chlorite<br />

minerals. Samples of breccia and Gunnar-type have preferentially exchanged H-isotopes with<br />

2 H-depleted, relatively modern meteoric water; their high δ 18 O values indicate alteration at<br />

low fluid/rock ratios. The fields of various fluid reservoirs participating in hydrothermal ore<br />

formation are also shown (e.g. Taylor, 1974; Faure, 1989; Cuney and Kyser, 2008).<br />

Syn-ore Chl 7 chlorite in the breccia-type U 4 uraninite has a wide range of δ 18 O<br />

values varying between 8.6 per mil and 17.1 per mil and δ 2 H values from -86 per mil to -<br />

131 per mil (Table 3.6). The δ 18 O values are the highest compared to other types of<br />

mineralization. Using a formation temperature of 330°C (Table 3.3), the calculated<br />

δ 18 O fluid and δ 2 H fluid values for the fluid that formed Chl 7 chlorite range from 8.2 per mil to<br />

110


16.6 per mil and -103 per mil to-59 per mil, respectively (Fig. 3.8; Table 3.6). The lowest<br />

δ 2 H fluid values likely reflect the influence of modern meteoric water with which Chl 7<br />

chlorite has reacted (Wilson and Kyser, 1987; Kyser and Kerrick, 1991).<br />

Sample ID<br />

Deposits<br />

Metasomatic-type U3 mineralization<br />

Mineral values Temperature Fluid values<br />

δ 18 O<br />

V-SMOW per<br />

mil<br />

δ 2 H<br />

V-SMOW per<br />

mil<br />

o C<br />

δ 18 O fluid<br />

V-SMOW per<br />

mil<br />

δ 2 H fluid<br />

V-SMOW per<br />

mil<br />

GN-06 Gunnar 9.2 -75 315 9.4 -48<br />

GN-06B Gunnar 7.9 -71 315 8.1 -44<br />

GN-36 Gunnar 5.8 -75 315 6.1 -48<br />

GN-01 Gunnar 11.1 -71 315 11.4 -44<br />

Breccia-type U4 mineralization<br />

5810 Ace-Fay 8.6 -90 330 8.2 -63<br />

5812 Ace-Fay 17.1 -104 330 16.6 -77<br />

5812-Dup Ace-Fay 17.1 -104 330 16.6 -77<br />

VR Ace-Fay 15 -108 330 14.6 -81<br />

VR-2 Ace-Fay 14.2 -88 330 13.8 -61<br />

CL47 Cinch Lake 15.4 -99 330 14.9 -72<br />

6124 Cinch Lake 13.3 -130 330 12.8 -103<br />

C-09-21 Cinch Lake 12.5 -86 330 12.1 -59<br />

C-09-21S Cinch Lake 12.5 -99 330 12.1 -72<br />

C-37-128 Cinch Lake 9.9 -109 330 9.5 -82<br />

Volcanic-type U5 mineralization<br />

CL Cinch Lake 10.4 -126 320 10.2 -99<br />

CL-19 Cinch Lake 9.2 -101 320 9 -74<br />

CL-19S Cinch Lake 9.2 -113 320 9 -86<br />

CL-25 Cinch Lake 6.8 -104 320 6.6 -77<br />

CL-25B Cinch Lake 8.9 -94 320 8.7 -67<br />

CL-48 Cinch Lake 6.4 -71 320 6.2 -44<br />

CL-48b Cinch Lake 7.3 -75 320 7.1 -48<br />

CL-49 Cinch Lake 7.3 -99 320 7.1 -72<br />

CL-55 Cinch Lake 7.3 -79 320 7.1 -52<br />

CL-55S Cinch Lake 7.3 -93 320 7.1 -66<br />

CL-64 Cinch Lake 6 -82 320 5.8 -55<br />

Cl-64B Cinch Lake 10.4 -97 320 10.2 -70<br />

F19-08 Ace-Fay 6.9 -100 320 7.1 -73<br />

F230-30 Ace-Fay 8.3 -72 320 8.5 -45<br />

F230-24 Ace-Fay 9.2 -79 320 9.4 -52<br />

F19-09 Ace-Fay 9.3 -98 320 9.5 -71<br />

Athabasca-type U6 mineralization<br />

F230-14a Ace-Fay 3.5 -67 235 2.2 -40<br />

F230-14b Ace-Fay 2.8 -65 235 1.5 -38<br />

F230-14c Ace-Fay 5.2 -71 235 3.8 -44<br />

F230-25 Ace-Fay 3.5 -63 235 2.2 -36<br />

F230-25 Dup Ace-Fay 3.5 -68 235 2.2 -41<br />

F230-46 Ace-Fay 7.7 -87 235 6.3 -60<br />

F230-31 Ace-Fay 4.1 -68 235 2.8 -41<br />

Table 3.6. Measured δ 18 O and δ 2 H for chlorite and calculated δ 18 O and δ 2 H values for fluids<br />

in equilibrium with chlorite minerals from different generations of U mineralizing events in<br />

the Beaverlodge area. Temperatures used to calculate the fluid values are derived from the<br />

chlorite chemistry (see Table 3.3).<br />

111


Syn-ore Chl 8<br />

chlorite sampled from the volcanic-type U 6 mineralization has a<br />

narrow range of δ 18 O values between 6 per mil and 10.4 per mil and a wide range of δ 2 H<br />

values comprising between -126 per mil and -71 per mil (Table 3.6). Using a formation<br />

temperature of 320°C (Table 3.3), δ 18 O fluid and δ 2 H fluid values for the equilibrium fluid<br />

range from 5.8 per mil to 10.2 per mil and -99 per mil to -44 per mil, respectively (Fig.<br />

3.8; Table 3.6). Chl 8 chlorite also records late alteration associated with the influence of<br />

modern meteoric water (Fig. 3.8). In contrast, Syn-ore Chl 9 chlorite in Athabasca-type U 6<br />

mineralization has the lowest δ 18 O values that range from 2.8 per mil to 7.7 per mil and<br />

δ 2 H values comprising between -87 per mil and -63 per mil (Table 3.6). These values<br />

indicate formation in equilibrium with brines having δ 18 O fluid values of 1.5 per mil to 6.3<br />

per mil and δ 2 H fluid values of -60 per mil to -38 per mil based on a formation temperature<br />

of 235°C (Fig. 3.8; Table 3.6). The calculated values of δ 18 O fluid and δ 2 H fluid are similar to<br />

those from unconformity-type U mineralization in the proximal Athabasca Basin (Wilson<br />

and Kyser, 1987; Kotzer and Kyser, 1995).<br />

3.4.4. Rare earth elements (REE) geochemical characteristics of the U mineralization<br />

REE contents of uraninite can constrain the origin and evolution of mineralizing<br />

fluids (Alexander et al., 2010; Mercadier et al., 2011). Based on REE patterns, several<br />

distinctions can be made between different types of U-mineralizing events. For example,<br />

the REE contents in the granite-related metasomatic-type U 3 uraninite at Gunnar are high<br />

(17834 ppm, Tables 3.7 and 3.8; Fig. 3.9B) and chondrite-normalized REE patterns<br />

indicate a slight LREE enrichment (La/Yb) N =5.8, Figs. 3.9A and 3.10A) and pronounced<br />

negative Eu and Ce anomalies (Eu/Eu*=0.1 and Ce/Ce*=0.1, Fig. 3.10A). In contrast, U 2<br />

112


uraninite from the early tensional vein-type has LREE enrichment (La N /Yb N =14.4) but<br />

low total REE contents (2386 ppm, Tables 3.7 and 3.8, Fig. 3.10B). The slope of the<br />

chondrite-normalized pattern is steep (LREE/HREE=9.7), with slight negative Eu<br />

(Eu/Eu*=0.6) and Ce (Ce/Ce*=0.7) anomalies (Fig. 3.10B). The total REE content in the<br />

breccia-type U 4<br />

uraninite, the most significant uranium mineralization, is the highest<br />

(15848 ppm, Tables 3.7 and 3.8, Figs. 3.9B and 3.10C) with chondrite-normalized REE<br />

patterns with a gentle slope (LREE/HREE=4.4), LREE fractionation (La/Yb) N =3.7; Figs.<br />

3.10C and 3.10D), a negative Eu anomaly (Eu/Eu*=0.7), and a poorly defined Ce anomaly<br />

(Ce/Ce*=0.9).<br />

A<br />

B<br />

C<br />

D<br />

113


Figure 3.9. Binary diagrams showing chondrite normalized REE compositions of different<br />

generation of uraninite A. Plot of (Yb) N vs (La/Yb) N , B. Plot of ΣREE vs LREE, C. Plot of<br />

(La/Sm) N vs (La/Yb) N , D. Plot of ΣREE vs LREE/HREE.<br />

The average total REE concentration in mafic dikes in the Martin Lake Basin is low<br />

(ΣREE=378 ppm, Tables 3.7 and 3.8; Figs. 3.9B and 3.9D), with a pronounced LREE<br />

enrichment (La N /Yb N =33.6) and slight negative Ce (Ce/Ce*=0.9) and Eu (Eu/Eu*=0.8)<br />

anomalies (Fig. 3.10G). The U 5 uraninite from the volcanic-type has low REE contents<br />

(ΣREE=4158 ppm) (Tables 3.7 and 3.8; Figs. 3.9B and 3.D) with pronounced LREE<br />

enrichment (La N /Yb N =28.2) and negative Ce (Ce/Ce*=0.7) and Eu (Eu/Eu*=0.7)<br />

anomalies (Table 3.7, Figs 10E and 10F). Chondrite-normalized REE patterns have a high<br />

LREE/HREE ratio of 18, which is similar to patterns in mafic dikes (Fig. 3.10G).<br />

Chondrite-normalized (La/Sm) N and (Tb/Yb) N and the ratio LREE/HREE are similar in<br />

both mafic dikes and U 5 uraninite (Table 3.7), suggesting a genetic relationship.<br />

Mineralisation Type n ΣREE ΣLREE ΣHREE LREE/HREE Eu/Eu* (La/Yb)N (La/Sm)N (Tb/Yb)N (Yb)N<br />

Metasomatic 3 17834 2162 1653 7.2 0.1 19.5 5.0 1.6 192.2<br />

Early Tensional vein 5 2386 2162 125 11.1 0.6 14.3 7.4 1.1 16.8<br />

Breccia-type 12 15848 12021 2493 4.5 0.7 4.2 2.0 1.3 372.2<br />

Volcanic-type 14 4158 3897 267 16.6 0.7 25.9 12.6 1.2 23.5<br />

Mafic dyke 10 378 359 19 18.6 0.8 33.6 4.7 2.1 1.7<br />

Athabasca-type 7 9497 8882 479 16.0 0.6 11.4 3.5 1.4 70.2<br />

Table 3.7: Characteristic of REE compositions uraninite for different generations of U<br />

mineralization in the Beaverlodge area. (LREE/HREE)=chondrite-normalized<br />

(La+Ce+Nd)/(Dy+Er+Yb); Eu*=theoretical value for no chondrite-normalized anomaly. n=<br />

number of analyses.<br />

114


A<br />

B<br />

C<br />

D<br />

E<br />

F<br />

G<br />

H<br />

115


Figure 3.10. Chondrite-normalized REE patterns in uraninite from U deposits of the<br />

Beaverlodge area. A: Metasomatic-type U 3 (Sample 6134, Gunnar Deposit), B: Early veintype<br />

U 2 (Sample 6122, Ace Deposit), C: Breccia-type U 4 (Sample 5812, Ace-Fay deposit), D:<br />

Breccia-type U 4 (Sample 90085, Ace-Fay deposit), E: Volcanic-type U 5 (Sample 6120, Ace Fay<br />

deposit), F: Volcanic-type U 5 (Sample 6137, Gunnar deposit), G: Mafic dike, H: Athabascatype<br />

U 6 (Sample 3705, Ace deposit).<br />

The U 6 uraninite that has the same timing as the Athabasca-type mineralization is<br />

LREE enriched (La N /Yb N =10.2) with a moderate total REE content (9497 ppm; Tables 3.7<br />

and 3.8). Chondrite-normalized REE patterns have a negative Eu anomaly (Eu/Eu*=0.6)<br />

and a positive Ce anomaly (Ce/Ce*=1.5) (Fig. 3.10H). This pattern differs from that of<br />

uraninite from high-grade mineralization in the eastern Athabasca Basin (Mercadier et al.,<br />

2011), indicating that fluids in the northern part of the basin had different REE<br />

geochemistry.<br />

Type Sample ID La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu<br />

Metasomatic 6134-12 3729.8 1650.0 1505.6 7426.5 1744.4 66.4 1281.9 156.4 875.6 162.7 408.2 57.3 374.7 42.9<br />

Metasomatic 6134-10 3526.3 1739.6 1491.9 7088.4 1601.7 62.4 1204.1 150.2 867.6 158.7 406.4 57.5 383.7 47.0<br />

Metasomatic 6134-9 3031.1 1371.2 1162.3 5581.2 1342.3 52.1 973.2 123.3 728.4 131.3 339.9 48.7 312.2 37.6<br />

Early vein 6122-18 640.2 736.2 87.0 342.2 66.9 11.5 64.0 8.9 60.4 12.8 36.9 5.0 30.7 4.5<br />

Early vein 6122-17 630.9 835.5 92.8 382.0 64.0 13.3 64.0 8.7 58.9 11.8 32.8 4.3 27.5 3.6<br />

Early vein 6122-19 675.6 863.8 95.6 408.3 65.3 11.9 57.4 7.9 52.1 12.7 34.8 5.4 31.9 4.1<br />

Early vein 6122-21 680.9 867.5 95.9 391.4 66.9 13.6 67.4 7.7 59.9 10.5 32.3 3.8 27.8 3.7<br />

Early vein 6122-22 822.9 1028.4 119.2 605.6 77.9 15.6 87.3 11.0 73.1 14.7 40.1 5.3 28.3 5.4<br />

Breccia 5812_9 3508.8 8452.6 1036.5 4487.9 1258.8 192.6 1199.0 263.1 2017.8 401.3 1249.2 246.5 1867.3 221.7<br />

Breccia 5812_3 4789.0 7968.2 903.1 3369.1 866.5 174.9 732.5 138.8 972.8 187.4 540.7 72.6 419.7 49.9<br />

Breccia 5812_8 3536.8 7751.8 886.5 3322.5 683.1 160.7 566.2 104.4 714.0 129.0 368.3 56.0 370.9 43.5<br />

Breccia 90085-5 2220.0 4653.4 599.9 2661.6 720.6 166.4 702.8 119.5 793.6 148.0 386.3 53.4 344.4 38.5<br />

Breccia 5812_5 1769.4 6915.6 919.6 3302.0 614.1 121.5 394.1 79.4 559.1 103.9 302.8 48.7 339.1 39.2<br />

Breccia 90085-10 1731.2 3981.7 514.2 2460.9 649.1 176.7 734.0 120.1 817.5 155.1 420.8 55.4 339.7 42.1<br />

Breccia 90085-11 2310.0 4095.9 550.8 2804.5 831.6 196.1 948.6 180.0 1319.4 257.1 726.6 104.3 669.1 81.6<br />

Breccia 90085-2 2015.6 3993.8 542.6 2464.9 673.4 168.2 676.0 116.1 800.5 145.7 383.5 54.1 337.1 38.6<br />

Breccia 5812_2 2010.3 4375.0 616.7 2937.2 790.8 173.4 778.6 141.6 943.7 187.5 527.6 68.6 426.6 52.6<br />

Breccia 90085-7 1888.5 3574.8 458.6 2139.1 593.9 158.7 691.8 115.8 791.9 157.3 420.7 56.1 358.1 41.2<br />

Breccia 90085-1 1676.0 3607.3 476.3 2106.9 532.0 128.2 522.9 85.5 571.7 108.0 293.9 38.6 234.6 28.3<br />

Breccia 90085-4 1678.9 3252.0 426.7 1843.8 506.2 120.4 501.3 79.0 508.7 100.7 256.3 34.4 213.3 24.3<br />

Volcanic 6120-11 1833.3 2728.2 230.0 632.1 57.7 14.0 54.5 7.0 46.4 9.9 27.5 3.8 24.6 3.4<br />

Volcanic 6120-8 1713.6 2312.2 188.7 550.8 62.5 14.6 69.8 9.9 65.0 13.6 39.2 5.0 29.8 4.4<br />

Volcanic 6139-6 1571.9 1978.3 172.3 586.1 99.7 24.3 106.2 17.7 129.8 25.9 69.5 9.9 61.0 8.1<br />

116


Volcanic 6120-5 1553.0 2260.4 186.0 519.3 51.4 11.9 52.9 7.5 50.2 10.5 29.2 3.9 24.5 3.4<br />

Volcanic 6120-1 1502.3 2267.9 181.4 471.9 42.4 10.5 44.8 5.8 39.3 8.4 25.0 3.4 22.2 3.1<br />

Volcanic 6139-4 1796.1 1485.6 129.3 469.2 72.8 16.6 78.9 12.0 84.2 17.3 46.2 6.5 43.9 4.8<br />

Volcanic 6120-4 1414.3 2016.8 154.9 391.0 33.9 7.9 35.9 4.8 33.3 7.1 20.7 2.8 18.6 2.8<br />

Volcanic 6120-10 1287.5 1866.2 151.3 393.7 37.6 9.5 41.6 5.6 38.8 8.1 23.2 3.1 20.6 3.0<br />

Volcanic 6139-3 1533.8 1271.3 122.0 460.2 82.7 18.3 94.7 14.4 101.7 20.7 55.4 7.9 49.4 6.0<br />

Volcanic 6139-2 1384.1 1280.7 126.5 498.2 89.2 19.4 97.0 14.3 99.2 19.9 53.5 7.2 44.6 5.7<br />

Volcanic 6139-9 1197.1 1228.3 127.1 521.8 100.5 22.7 118.0 16.6 113.1 22.4 59.4 7.7 49.8 6.3<br />

Volcanic 6139-7 1100.9 1179.8 112.0 472.2 88.7 20.6 104.2 14.4 96.6 19.3 49.9 6.4 39.8 5.2<br />

Volcanic 6120-3 1127.4 1478.6 112.0 310.7 34.2 8.6 46.6 6.2 43.0 9.7 27.9 3.7 24.3 3.7<br />

Volcanic 6139-5 1032.3 1127.3 115.5 480.0 89.9 19.1 91.8 13.9 92.5 19.5 49.8 6.9 43.4 5.3<br />

Athabasca 3705-4 1948.2 6666.6 601.0 2047.4 347.8 58.3 220.0 38.2 244.7 43.8 125.7 18.4 117.8 14.4<br />

Athabasca 3705-3 1775.0 6435.4 573.9 1869.6 312.8 53.4 214.5 36.0 233.2 41.4 121.2 16.3 110.0 14.4<br />

Athabasca 3705-12 1571.3 5964.9 511.0 1625.1 258.8 41.3 145.7 26.8 178.6 29.6 80.7 12.6 86.7 9.8<br />

Athabasca 3705-2 1175.1 4674.0 468.8 1617.6 288.7 49.1 172.4 31.2 197.3 35.5 100.5 14.9 91.1 10.9<br />

Athabasca 3705-6 1157.4 4863.5 442.2 1411.6 215.9 38.3 140.8 26.9 182.0 30.1 93.9 14.2 101.3 11.6<br />

Athabasca 3705-1 1459.7 4766.3 390.1 1181.7 248.0 41.6 152.1 29.1 198.6 35.6 92.2 15.3 87.6 10.9<br />

Athabasca 3705-5 893.9 2913.2 237.8 844.7 115.8 20.4 69.4 12.3 74.0 13.7 35.1 5.1 34.0 3.8<br />

Mafic dike RM-18 197.55 381.58 41.57 148.96 20.63 4.57 12.12 1.07 5.05 0.8 1.99 0.25 1.48 0.28<br />

Mafic dike RM-17 108.28 219.98 24.84 90.07 14.25 3.37 9.64 1.03 5.33 0.9 2.32 0.3 1.87 0.37<br />

Mafic dike RM-21 93.24 194.96 22.8 86.25 13.31 3.08 8.87 0.92 4.75 0.83 2.09 0.29 1.65 0.3<br />

Mafic dike RM-32 93.16 186.32 21.36 79.32 12.77 2.93 9.15 1 5.38 0.94 2.4 0.32 1.98 0.39<br />

Mafic dike RM-35 71.47 150.81 17.32 65.26 11.27 2.27 8.46 1.03 5.75 1.09 2.97 0.43 2.67 0.52<br />

Mafic dike RM-23 70.17 136.46 15.08 56.4 8.79 2.14 6.32 0.71 4.01 0.72 1.97 0.27 1.59 0.32<br />

Mafic dike RM-34 56.31 110.7 12.49 46.47 7.7 1.97 6.12 0.72 4.16 0.74 2.06 0.27 1.68 0.33<br />

Mafic dike RM-36 55.95 109.47 12.28 45.24 7.71 1.96 5.98 0.73 4.14 0.76 2.06 0.29 1.72 0.34<br />

Mafic dike RM-26 54.5 105.53 11.89 43.91 7.33 1.79 5.79 0.69 3.95 0.7 1.89 0.26 1.6 0.31<br />

Mafic dike RM-33 53.57 105.07 11.87 44.59 7.25 1.91 5.79 0.7 4.01 0.75 1.99 0.28 1.67 0.34<br />

Table 3.8. REE contents of uraninite from different generations of U deposits in the<br />

Beaverlodge area. Values for the mafic dike are from Moreilli et al. (2009). Data are plotted<br />

in Figure 3.10.<br />

3.5. Discussion<br />

Synthesis of the petrographic, structural, geochronologic, and geochemical data<br />

reveals the nature and sequence of alteration and mineralization leading to the formation<br />

of U deposits in the Beaverlodge area (Table 3.9). This sequence is geochemically and<br />

structurally complex, involving multiple overprinting events of deformation, hydrothermal<br />

alteration, and U mineralization occupying structurally disturbed zones created by ductilebrittle<br />

and brittle deformation that reactivated early ductile shear zones (Fig. 3.11).<br />

117


Retrograde<br />

metamorphism<br />

Early vein<br />

-type<br />

Metasomatic<br />

-type<br />

Breccia-type<br />

Volcanic<br />

-type<br />

Athabasca<br />

-type<br />

Deposits All deposits Ace-Fay Gunnar All deposits<br />

Ace-Fay-Cinch<br />

Lake-Gunnar<br />

Ace Fay,<br />

Martin Lake<br />

Mineral and ore<br />

assemblage<br />

Chl 1 -Hem 1 -Src 1 U2 -Chl 4 -Cal 4 - U 3 -Chl 5 -Cal 5 -Ttn 2<br />

U 5 -Chl 8 -Cal 9 -<br />

U 4 -Br 1 -Chl 7 -Cal 8 - Hem 7 -Ap 1 -Ttn 3 - U 6 -Chl 9 -Cal 10 -<br />

Hem 4 -Mnz 1 -Hem 5 Hem 6 Hem 8<br />

Mnz 2<br />

Age of formation


of the Arrowsmith Orogen at ca. 2.35 Ga (Berman et al., 2005, Dieng et al., 2011).<br />

Metamorphic retrogression continued during exhumation to shallower crustal depths<br />

resulting in greenschist facies conditions wherein retrograde Chl 1<br />

chlorite replaced<br />

regional metamorphic Bt 1 biotite down to ca. 200°C. Chl 1 chlorite reflects exhumation and<br />

retrograde metamorphism to lower greenschist facies in the basement rocks during the late<br />

stages of the Arrowsmith Orogen (Hartlaub et al., 2007; Berman et al., 2010).<br />

Metamorphic-hydrothermal fluids associated with Chl 1<br />

chlorite are relatively Ca-rich,<br />

have high F and Mg contents and likely result from interaction with, or metamorphic<br />

hydration of, Ca-Mg-F-rich rocks of the basement rocks.<br />

Shear zones were reactivated at shallower levels resulting in overprinting of<br />

mylonite by cataclasite and early tensional veins at ca. 2.29 Ga (Dieng et al., 2011).<br />

Petrographic observations indicate that U 1<br />

uranium mineralization occurs as fine<br />

disseminations in the cataclasite matrix and is cut by early tensional Qtz 3 +Cal 3 -±U 2 veins<br />

(Fig. 3.11B). Syn-ore Cal 4 calcite associated with U 2 uraninite at the Ace deposit has δ 13 C<br />

and δ 18 O values that are consistent with fluids derived from retrograde metamorphic<br />

processes. Syn-ore Chl 4 chlorite chemistry indicates that fluids associated with U 2<br />

mineralization formed at ca. 310 o C and were Ca-F-Mg-rich. The compositional similarity<br />

between syn-ore Chl 4 chlorite and retrograde Chl 1 chlorite indicates that U-bearing fluids<br />

derived from retrograde metamorphic processes during exhumation and erosion during the<br />

post-Arrowsmith Orogen may have been involved in the formation of U 2 mineralization.<br />

Hydraulic fracturing in response to fluid generation via decompression and hydration was<br />

probably the main mechanism of the early tensional vein formation. The high F and Ca<br />

119


contents in syn-ore Chl 4 chlorite indicate that uranyl-carbonate-fluoride complexes were<br />

the most likely form of U 2 complexes into solutions. The vein-forming fluid may have<br />

been driven into these fractures by suction pump processes (Sibson, 1987). The associated<br />

pressure decrease and fluid decompression during fracturing were sufficient to change the<br />

stability of the carbonate complexes, decrease the temperature of the fluids and likely<br />

promoted U 2 uraninite precipitation into the fracture systems (Fig. 3.11B).<br />

120


Figure 3.11. Conceptual genetic model for U mineralization in the Beaverlodge area. A:<br />

Deposition of the Murmac Bay Group sediments in a tectonically active fault-bounded basin is<br />

followed by mylonitization during the Arrowsmith Orogen. B: Mylonites reactivated during<br />

late stages of the Arrowsmith Orogen resulting in formation of cataclasite and early tensional<br />

vein-type U 2 mineralization. Hydraulic fracturing in response to fluid generation via<br />

121


decompression and hydration reactions was the mechanism of veins formation. U was<br />

transported as uranyl-carbonate-fluoride complexes. C: At Gunnar, U 3 was derived from<br />

magmatic fluids from the Gunnar granite. PO -3 4 and F - were important ore transporting<br />

complexes. D: Reactivation of fault zones during early regional metamorphism of the Trans-<br />

Hudson or post-peak Thelon-Taltson Orogen resulted in massive brecciation at shallow<br />

structural levels. Metamorphic-hydrothermal U-mineralizing fluids derived from dehydration<br />

of hydrous minerals during metamorphism ascended upward along deep fractures and<br />

decompression caused decrease in the solubility of the carbonate complexes promoting U<br />

deposition. E: During the Paleoproterozoic, the Martin Lake Basin and associated alkaline<br />

mafic dikes formed and hydrothermal U 5 -mineralizing solutions resulted in magmatichydrothermal<br />

degassing along pre-existing fractures. F: Ore-forming brines from the<br />

Athabasca Basin descended along fractures in the basement rocks and U 6 deposition was via<br />

reduction through interaction between oxidizing basinal brines and reduced metamorphic<br />

basement lithologies. G: Post-ore incursion and circulation of meteoric water through<br />

structurally reactivated fault zones that remain a zone of preferential fluid circulation. H:<br />

Erosion of the Athabasca and part of Martin Lake basin rocks and weathering of the deposit<br />

resulted in the recent formation of secondary uranium minerals and late alteration veins.<br />

Deposition of the 2.33 Ga Murmac Bay Group sediments (Hartlaub and Ashton,<br />

1998) was followed by intrusion of the ca. 2321±3 Ma Gunnar granite (Evoy, 1969;<br />

Hartlaub et al., 2004a), which hosts the granite-related metasomatic-type U 3 uranium<br />

mineralization (Fig. 3.11C). The timing of this mineralization is constrained between the<br />

age of the granite (ca. 2321±3 Ma) and the brecciation event (1850 Ma; Dieng et al., 2011)<br />

that overprinted the granite-related U-mineralization at Gunnar. δ 18 O, δ 13 C and δ 2 H<br />

isotopic compositions of syn-ore Cal 5 calcite and Chl 5 chlorite (Figs. 3.7 and 3.8) indicate<br />

that U 3 mineralization has ore-forming components consistent with derivation from<br />

magmatic fluids (Fig. 3.11C). The strong negative Eu anomaly in U 3 uraninite indicates<br />

retention of plagioclase during albitization of the granite. Collectively, these results<br />

demonstrate that fluids involved in the metasomatic alteration of the Gunnar granite could<br />

122


e the same as the U 3 -mineralizing fluid. Therefore, the source of U 3 uraninite in the<br />

granite-related mineralization was likely the Gunnar granitic rock itself. U 3 uraninite could<br />

have been transported by cooling exsolved residual magmatic hydrothermal fluid at ca.<br />

315 o C during magmatic-hydrothermal degassing and deposited in voids left after Qtz 1<br />

quartz and Cal 5 calcite dissolution. The negative chondrite normalized Ce anomaly could<br />

be related to Ce-absorption in Mnz 1 monazite during U 3 uranium precipitation. The high<br />

REE content in the metasomatizing brine is likely related to trace element fractionation<br />

into the fluid during its separation from the granitic melt (e.g. Giere, 1986). Abundant F<br />

within the syn-ore minerals and the presence of Mnz 1 monazite intergrown with U 3<br />

uraninite, suggest that P and F were important ore transporting complexes and that U 3<br />

uranium transfer into the exsolved magmatic-hydrothermal solutions was as uranylfluorine-phosphate<br />

complexes (e.g. U(HPO 4 ) 2 and UF 4 ). The negative chondrite<br />

normalized Eu anomaly (Fig. 3.10A) indicates that the hydrothermal mineralizing fluid<br />

was reduced and that magmatic-fluid degassing processes may have caused the loss of a<br />

large volume of CO 2 that destabilized U and REE complexes, thereby promoting the<br />

deposition of U 3 mineralization.<br />

The style of the granite autometasomatism and the mechanism of ore-forming<br />

processes are similar to deposits in the Xiazhuang district (e.g. Zhushanxia, and Xiwang<br />

deposits), southern China (Du Letian, 1986), the albitized granite-hosted U mineralization<br />

in Brazil (Porto da Silveira et al., 1991) and France (Leroy, 1978). At the Gunnar deposit,<br />

U 3 mineralization is later overprinted by the breccia- (U 4 ) and volcanic-type (U 5 )<br />

123


mineralizations, which upgraded the deposit significantly. The breccia-type U 4<br />

mineralization accounts for the majority of the U in the Gunnar deposit.<br />

3.5.2. Formation of breccia-type U deposits, the major U mineralization<br />

Massive brecciation and formation of the breccia-type main U 4 -mineralizing event at<br />

1850 Ma is linked to reactivation of the fault zones during the post-peak Thelon-Taltson<br />

Orogen or, more likely, early stages of the Trans-Hudson Orogen (Dieng et al., 2011)<br />

(Fig. 3.11D). δ 18 O, δ 13 C and δ 2 H values of syn-ore Chl 7 chlorite and Cal 8 calcite are<br />

consistent with the ore-forming fluid as predominantly metamorphic in origin (Figs. 7 and<br />

8). Syn-ore Chl 7 Chlorite crystal chemistry indicates that the fluid formed from Ca-Na-Fcontaining<br />

metamorphic brine at ca. 330 o C also had relatively high Fe contents. These<br />

fluids were likely derived from dehydration of hydrous minerals and ascended upward<br />

along deep and large fracture systems and dilatant jogs that resulted from brittle<br />

reactivation of early ductile shear zones, thus providing pathways for metamorphichydrothermal<br />

mineralizing solutions (Fig. 3.11D). REE enrichment in U 4 uraninite,<br />

abundant Cal 8 calcite in textural equilibrium with U 4 uraninite, and F in Chl 7 chlorite<br />

indicate that U 4<br />

uraninite transfer into the metasomatizing solutions was possibly as<br />

uranyl-carbonate-fluoride complexes. Experimental results of Bilal and Koss (1980a)<br />

demonstrate that both F - and CO 2- 3 can be effective ligands for complexing REE and U in<br />

metasomatic fluids. The association of U 4 uraninite and Cal 8 calcite in the ore assemblage<br />

(Fig. 3.4G) suggests that the fluids were likely alkaline (Cuney and Kyser, 2008). The<br />

occurrence of both Br 1 brannerite and U 4 uraninite in the ore assemblage is similar to<br />

others metamorphic-related U systems such as Valhalla (Polito et al., 2007) and the<br />

124


Ukraine (Cuney and Kyser, 2008) wherein both U and Ti are mobilized in F-rich and CO 2 -<br />

rich fluids (Hynes, 1980; Gieré, 1990). U 4 uranium precipitation in the breccia system is<br />

likely caused by a decrease in the solubility of the carbonate complexes resulting from a<br />

loss of CO 2 and a decrease in temperature caused by fluid decompression during<br />

brecciation so that pressure and temperature conditions may have been the most dominant<br />

factors controlling U 4 uranium mineralization. However, U transported by F-rich oxidized<br />

fluids in metamorphic-related U-systems may be deposited via reduction reactions<br />

(Skirrow et al., 2009) as the U 4 -mineralizing fluid reacted with reducing Ca-Fe-rich<br />

metamorphic host rocks, resulting in the following reaction (Langmuir, 1978):<br />

2Ca 2+ + UO 2 (CO 3 ) 3<br />

4-<br />

+ 2Fe 2+ +4HCO 3<br />

-<br />

= UO 2+ ↓ + Fe 2 O 3 ↓ + 2CaCO 3 ↓ + 2H 2 O + 5CO 2 ↑.<br />

This process may explain the abundance of Hem 6 hematite associated with U 4 uraninite,<br />

the Cal 8 calcite alteration in the breccia matrix, and the Fe-rich Chl 7 chlorite. In hightemperature,<br />

reduced F-rich metamorphic-related U-systems, the activity of calcium and<br />

pH may be more important than redox in controlling U deposition due to the low<br />

solubility of fluorite (Skirrow et al., 2009).<br />

These results corroborate the findings of Hoeve (1982) who proposed that the<br />

Beaverlodge U deposits may represent a Na-Ti-U style mineralization related to Nametasomatism<br />

during regional metamorphism by the Trans-Hudson Orogen. He suggested<br />

that the resulting Na-alteration involving addition of Na and Ca and loss of K, Mg, Fe, Ti,<br />

and U from the rocks are related to interaction between metamorphic-related hydrothermal<br />

fluids and country rocks. The mineralizing brine deposited the U mineralization in fracture<br />

and breccia systems at structurally shallow levels. Others have also proposed a<br />

125


metamorphic origin of the main U 4 mineralizing event. Tremblay et al. (1972) suggested<br />

that rocks of the Beaverlodge area may represent previously U-rich regions that were<br />

leached during metamorphic-hydrothermal alteration during late Trans-Hudson<br />

granitization processes and that the U mineralization was deposited along major fault<br />

zones. Rees (1992) proposed a metamorphic origin for fluids associated with the lode-gold<br />

quartz vein mineralization at the Nicholson deposit, which formed at ca. 1.85-1.84 Ga at<br />

temperatures of ca. 300-400 o C. His results demonstrate that Au gold and U mineralization<br />

likely formed from the same mineralizing event.<br />

A strong structural control is reported in most metamorphic-related U systems, with<br />

U commonly hosted by reactivated ductile to brittle-ductile fault zones (Cuney and Kyser,<br />

2008). Skirrow et al. (2009) suggest that fluids in these systems are saline Na-Ca brines<br />

that were F-rich and CO 2 -bearing. Such U deposits formed from fluids of metamorphicdehydration<br />

origin and appear to be rare and of low grade and tonnage (Plant et al., 1999).<br />

The relatively low oxidation state of such fluids may explain why these systems are not<br />

associated with significant U mineralization. The Beaverlodge U deposits are therefore,<br />

similar to these metamorphic-related U mineralization systems associated with Nametasomatism<br />

(Cuney and Kyser, 2008). Examples include the Krivoy-Rog district in<br />

Ukraine (Belevtsev and Koval, 1968), the Kurupung district in Guyana (Cinelu and<br />

Cuney, 2007) and Skuppesavon in Sweden (Smellie and Laurikko, 1984). Therefore, these<br />

deposits could be related to the global 1.9-1.75 Ga alkali-metasomatism associated with<br />

the plate tectonic-scale collisional orogenesis culminating with the Nuna supercontinent<br />

assembly (Cuney, 2010; Evans et al., 2010).<br />

126


3.5.3. Later basin-related U mineralization<br />

Formation of the Martin Lake Basin (Langford, 1981; Mazimhaka and Hendry,<br />

1984) and associated 1818±4 Ma alkaline mafic dikes (Morelli et al., 2009) is coincident<br />

with periods of active tectonism related to back-arc extension following peak Trans-<br />

Hudson Orogen (Hoffman, 1989; Corrigan, 2009). Extrusion of mafic dikes is associated<br />

with the ca. 1820 Ma volcanic-type U 5 -mineralization (Dieng et al., 2011) identified at the<br />

Cinch Lake, Ace-Fay, and Gunnar deposits (Fig. 3.11E). Syn-ore Chl 8 chlorite and Cal 9<br />

calcite have δ 18 O, δ 13 C and δ 2 H values typical of magmatic fluids (Fig. 3.8) that are likely<br />

exsolved from mafic dikes during their emplacement. Chl 8<br />

chlorite crystal chemistry<br />

indicates that the U 5 -bearing hydrothermal fluid formed at ca. 320°C from an Mg- and Ferich<br />

fluid. REE patterns of U 5 uraninite are similar to those in the mafic dikes and there is<br />

a close spatial field relationship between mafic dikes and fractures hosting U 5 uraninite.<br />

Therefore, during the mafic dikes intrusion and subsequent magmatic-hydrothermal<br />

degassing, pre-existing fractures would have provided pathways for U 5<br />

uranium<br />

mineralizing solutions. Chondrite normalized REE patterns of U 5 uraninite indicate that<br />

Eu is relatively more depleted in U 5 uraninite than in mafic dikes, suggesting that the<br />

exsolved fluid changed from oxidized to less so during U 5 uranium deposition. The<br />

shallow structural levels of emplacement and the presence of Mn-oxides and Hem 7<br />

hematite alteration associated with U 5<br />

uraninite indicate that during early stages, the<br />

hydrothermal fluids were oxidized and capable of transporting U. In such an oxidizing<br />

environment with intermediate pH conditions (4-8) and temperatures near 320°C, uranylphosphate<br />

complexes were likely the most stable (Langmuir, 1978). This is corroborated<br />

127


y the abundance of Ap 1 apatite and Mnz 2 monazite intergrown with U 5 uraninite in the<br />

ore assemblage, suggesting that U 5 uraninite was probably transported in its oxidized state<br />

as U 6+ primarily as uranyl-phosphate complexes (e.g. UO 2 (HPO 4 ) -2 2 ). Therefore, changes<br />

in the pH or Eh state of the mineralizing solution through interaction between the<br />

oxidizing hydrothermal brine and the reduced metamorphic host rocks was likely the key<br />

process leading to U 5 uranium deposition. Destabilization of the aqueous uranyl-phosphate<br />

complexes have resulted in the phosphate-bearing minerals intergrown with U 5 uraninite.<br />

During the late Paleoproterozoic, the Athabasca Basin formed at ca. 1750 Ma<br />

(Kyser et al., 2000) following exhumation of the Martin Lake Basin rocks. Tectonic<br />

reactivation along fault zones during the Mesoproterozoic Mazatzal Orogen (Labrenze and<br />

Karlstrom, 1991; Eisele and Isachsen, 2001) caused minor fracturing, deformation of the<br />

basin and deposition of the 1620 Ma Athabasca-type U 6 mineralization observed in the<br />

Ace-Fay and Martin Lake deposits (Dieng et al., 2011). Syn-ore Chl 9 chlorites formed<br />

from fluids with δ 18 O and δ 2 H values (Fig. 3.8) identical to those of the unconformityrelated<br />

U-deposits in the Athabasca Basin (e.g. Fayek and Kyser, 1997; Cuney and Kyser,<br />

2008). The crystal chemistry of syn-ore Chl 9 chlorite indicates that fluids related to U 6<br />

uraninite formed at ca. 235°C also identical to those of the Athabasca brines. U 6 uraninites<br />

have total REE contents intermediate to those of U 4 and U 5 uraninites and are LREE<br />

enriched, suggesting that these uraninites may have originated from an environment where<br />

both U 4 and U 5 uraninites were remobilized. These observations suggest that this event<br />

may be related in part to remobilization of pre-existing U mineralization into late fractures<br />

from fluids that formed the unconformity-type U-mineralization in the Athabasca Basin<br />

128


(Alexandre et al., 2009). Positive chondrite normalized Ce anomaly in U 6 uraninite may<br />

indicate destruction of monazite and incorporation of Ce into the mineralizing brine<br />

(Kyser et al., 2003), but the similarity of the isotopic composition, temperature and timing<br />

of fluid events, all suggest that U 6 mineralizing brines originated in the Athabasca Basin<br />

and descended downward along fracture systems into the basement rocks (Fig. 3.11F).<br />

Syn-ore Chl 9 chlorite and U 6 uraninite crystal chemistry indicate that F - , Chl - , CO 2- 3 , and<br />

PO 4<br />

3-<br />

were likely present in the ore assemblage and could be effective ligands for<br />

complexing U 6 (e.g. UO 2 F 2 , UO 2 Cl 2 , UO 2 (CO 3 ) 2- , and UO 2 (H 2 PO 4 ) 2 ). In oxidized aqueous<br />

basinal brines with pH between 4 and 7.5, uranyl-phosphate complexes are the important<br />

species (Cuney and Kyser, 2008), uranyl-carbonate complexes are dominant under<br />

relatively oxidizing and near-neutral pH conditions and the chlorine- and fluorinecomplexes<br />

are dominant in fluids under acidic conditions at temperatures up to 200°C<br />

(Romberger, 1984; Kojima et al., 1994). Therefore, the key process controlling U 6<br />

uranium deposition was likely reduction of the mineralizing solution through interaction<br />

between the oxidizing basinal brines and the reducing metamorphic basement lithologies<br />

(Hoeve and Quirt, 1984; Polito et al., 2005, 2006; Cuney and Kyser, 2008).<br />

Destabilization of the aqueous uranyl complexes is indicated by syn-ore Cal 10 carbonate<br />

alteration, high phosphate contents in U 6 uraninite and elevated values of fluorine and<br />

chlorine in Chl 9 chlorite.<br />

3.5.4. Late alteration events<br />

Electron microprobe analyses indicate that Chl 5 , Chl 7 , and Chl 8<br />

chlorites were<br />

subsequently altered to low-temperature Mg-rich chlorite (Table 3.4) recording the effect<br />

129


of late fluid events that have affected the deposits subsequent to their formation (Figs.<br />

3.11F and 3.11E). These late events may represent incursion and circulation of meteoric<br />

water through structurally reactivated fault zones (Kotzer and Kyser, 1995). This is<br />

reflected in the hydrogen isotopic composition of Chl 7 and Chl 8 chlorites, which record<br />

retrograde exchange of H-isotopes with relatively recent meteoric water having low δ 2 H<br />

values (Fig. 3.8) (Kyser and Kerrich, 1991; Kotzer and Kyser, 1995). The preferential<br />

exchange of hydrogen isotopes in Chl 7 and Chl 8 chlorites suggests that the fault zones<br />

were active after U-mineralization and remain a zone of preferential fluid circulation (e.g.<br />

Fayek and Kyser, 1997; Beyer et al., 2011).<br />

3.6. Conclusions<br />

This study demonstrates that the Beaverlodge area records ore-forming systems that<br />

resulted from multistage deformation, hydrothermal alteration and U mineralization, and<br />

modern meteoric fluid processes during protracted tectonic evolution. The main brecciatype<br />

U 4 mineralizing event that affected all deposits in the Beaverlodge area formed from<br />

Ca-Na-dominated metamorphic fluids at ca. 330 o C associated with metasomatism<br />

accompanying the regional metamorphism of the Trans-Hudson Orogen or post-peak<br />

Thelon-Taltson Orogen. The ore-forming fluids were likely derived from dehydration of<br />

hydrous minerals and ascended upward along deep fracture systems that resulted from<br />

brittle reactivation of early ductile shear zones. U 4<br />

transfer into the metasomatizing<br />

solutions was as uranyl-carbonate-fluoride complexes and precipitation in the breccia<br />

systems by a decrease in the solubility of the carbonate complexes and temperature caused<br />

by fluid decompression during brecciation. Pressure and temperature conditions were the<br />

130


most dominant factors controlling U 4 uranium deposition. The style of the mineralization<br />

process is similar to U deposits in northern Sweden, Ukraine, Brazil and Guyana, all of<br />

which contain high grade U mineralization in zones of brecciation related to the global<br />

1.9-1.75 Ga alkali-metasomatism during plate tectonic-scale collisional orogenesis<br />

culminating with the Nuna supercontinent assembly. In the Beaverlodge area, brittle<br />

reactivated ductile shear zones represent an exploration target for U mineralization.<br />

However, the metamorphic origin of the main U mineralization with fluids incapable of<br />

transporting significant amounts of U may indicate that these deposits have only marginal<br />

potential to host economic U mineralization, and certainly they would be relatively lowgrade.<br />

These U mineralization events are older than the unconformity-related U<br />

mineralization in the overlying Athabasca Basin. Therefore, U mineralization in this older<br />

successor basin would have been one potential source of U for the Athabasca Basin.<br />

131


CHAPTER 4<br />

FLUID EVOLUTION AND GENESIS OF URANIUM<br />

MINERALIZATION IN THE SOUTH ALLIGATOR VALLEY AREA,<br />

NORTHERN TERRITORIES, AUSTRALIA<br />

Abstract<br />

Uranium deposits in the South Alligator Valley Mineral Field, Northern Territories,<br />

Australia, are hosted in deformed and metamorphosed volcanoclastic rocks and calcareous<br />

and carbonaceous sedimentary units of the Koolpin Formation, at the unconformity with<br />

overlying El Sherana Basin sandstones. The ore is confined to greenschist facies host rocks<br />

that are cut by the El Sherana-Palette fault, a northwest-striking, southwest dipping and<br />

dextral strike-slip fault system. Petrographic studies on polished thin sections combined<br />

with electron microprobe analysis, stable isotope geochemistry, and geochronology of<br />

uranium-bearing minerals at the El Sherana and Coronation Hill deposits have identified a<br />

multistage fluid history, involving hydrothermal alteration and uranium mineralization.<br />

The pre-ore stage mineralogy consists of sericite, quartz, chlorite, and calcite<br />

alteration at temperatures at ca. 300°C, interpreted to result from regional greenschist<br />

metamorphism of the basement rocks during the ca. 1860-1840 Ma Nimbuwah event and<br />

prior to deposition of the ca. 1840-1830 Ma El Sherana Basin. The basement pre-ore<br />

alteration is followed by diagenesis of the El Sherana Basin sediments by oxidizing low<br />

latitude basinal brines that produced a kaolinite+quartz+hematite assemblage. The ore stage<br />

of uranium, gold, and galena formed at ca. 1820 Ma from evolved basinal brines that<br />

originated from the El Sherana Basin and descended downward into basement rocks along<br />

132


fracture systems created by brittle reactivation of the El Sherana-Palette fault at<br />

temperatures near 250°C. Syn-ore mineral crystal chemistry suggests that uranyl-fluoridechloride<br />

and -phosphate were dominant ore transporting complexes. Interaction of<br />

oxidizing basinal brines with reducing Koolpin Formation sediments led to deposition of<br />

the ore metals. Uranium deposits of the South Alligator Valley Mineral Field can therefore,<br />

be classified as unconformity-related uranium mineralization associated with the El<br />

Sherana successor basin. Post-ore alteration is dominated by secondary uraninite along late<br />

fractures, kaolinite and hematite alteration, and chlorite and calcite veins, which formed at<br />

temperatures near ca. 100°C. Post-ore alteration occurred during major tectonic events<br />

based on U-Pb and Pb-Pb dating of uraninite and was coincident with fluid flow induced by<br />

both near and far-field tectonic events that altered much of the primary uraninite into<br />

secondary uranium minerals.<br />

Our results show that the age of the uranium deposits are older than previously<br />

proposed and are also older than the unconformity-related uranium mineralization in the<br />

Kombolgie Basin. Unconformity-related uranium mineralization is associated with basinal<br />

brines from the Paleoproterozoic successor basin, thereby enhancing the uranium<br />

prospectivity of the area.<br />

4.1. Introduction<br />

The South Alligator Valley Mineral Field (SAVMF), Northern Territories, Australia,<br />

lies within a north-west-trending zone of folded and faulted Paleoproterozoic<br />

metasediments (Fig. 4.1) exposed within the South Alligator Valley in the Pine Creek<br />

Orogen (Needham et al., 1980, 1987, 1988; Needham and Stuart-Smith, 1985, Valenta,<br />

133


1990, 1991; Wyborn et al., 1990). Historic exploration within the SAVMF resulted in the<br />

discovery of several uranium deposits and occurrences. Nevertheless, the SAVMF is the<br />

smallest uranium field in the Pine Creek uranium province (Fig. 4.1). Between 1956 and<br />

1964 only 874 t of U 3 O 8 was mined from 14 deposits (Foy, 1975). Since the discovery of<br />

unconformity-type uranium deposits in the Kombolgie Basin, research in the Pine Creek<br />

Orogen has been focused on the large and higher grade deposits within the Kombolgie<br />

Basin, which uncomformably overlies the successor El Sherana Basin (Friedmann and<br />

Grotzinger, 1994). The character and formation of unconformity-related uranium deposits<br />

associated with the younger Kombolgie Basin (Sweet et al., 1999) have been well<br />

documented and a general genetic model proposed (e.g. Gustafson and Curtis, 1983; Polito<br />

et al., 2004; 2005; Cuney, 2005). In contrast, uranium mineralization in the successor El<br />

Sherana Basin has been less studied, despite several decades of intense exploration and<br />

mining activities and the discovery of several uranium and precious metal deposits (e.g.<br />

Needham and Stuart-Smith, 1987; Mernagh et al., 1994). Moreover, there is limited<br />

information on the role of the successor basin and the key processes by which these<br />

deposits formed. The U mineralization occurs in basement rocks beneath, and within, the<br />

successor El Sherana Basin (e.g. Ayres et al., 1975; Mernagh et al., 1994) that is<br />

stratigraphically older than, but spatially related to, the younger U-rich Kombolgie Basin<br />

(e.g. Wilde, 1992; Polito et al., 2005). Whether these deposits are unconformity-related<br />

associated with the successor basin or similar to those in the younger Kombolgie Basin is<br />

inconclusive.<br />

134


Figure 4.1. a) Geological map of the SAVMF showing location of the Coronation Hill and El<br />

Sherana deposits and other U deposits. b) Map of Australia showing location of the (SAVMF)<br />

in Northern Territories. c) Simplified map of Pine Creek Orogen, showing the Coronation<br />

Hill and El Sherana deposits in the SAVMF, U deposits in the Alligator Rivers Uranium Field<br />

(ARUF), and deposits in the Rum Jungle Mineral Field (RJMF) (modified from<br />

www.ga.gov.au/minerals/projects/current projects/ geologica lmapsstandards.html).<br />

In this chapter, we evaluate the character and formation of U mineralization of the El<br />

Sherana and Coronation Hill deposits in the SAVMF, using a mineral paragenesis that<br />

details the relative timing of alteration minerals in the deposits (Fig. 4.1). We also constrain<br />

the timing, nature and origin of the fluids that produced and affected the deposits using<br />

135


stable isotope geochemistry, U-Pb geochronology of paragenetically well-characterized U-<br />

rich minerals, and chlorite and uraninite crystal chemistry. These results are used to identify<br />

key processes controlling U mineralization in the SAVMF, present a genetic model for U<br />

mineralization, and compare the South Alligator Valley U deposits to those in the younger<br />

and U-rich Kombolgie Basin.<br />

4.2. Geologic Setting<br />

4.2.1. General geology<br />

The South Alligator Valley area, Northern Territories, Australia (Fig. 4.1) comprises<br />

rocks dated from Neoarchean to Paleoproterozoic, which are divided into four main<br />

sequences. 1) Neoarchean basement granitic units (ca. 2.5 Ga; Needham and Stuart-Smith,<br />

1985; Needham et al., 1988); 2) Paleoproterozoic sedimentary rocks of the Pine Creek<br />

Orogen (2200 Ma to 1870 Ma) uncomformably overlying Neoarchean basement rocks<br />

(Needham et al., 1987); 3) Paleoproterozoic silisiclastic red beds and associated volcanic<br />

rocks of the El Sherana-Edith River Group (1829 Ma to 1822 Ma), which uncomformably<br />

overlie Pine Creek Orogen sediments (Jagodzinski, 1992); and 4) late Paleoproterozoic<br />

sedimentary rocks of the Kombolgie Basin (1822 Ma to 1720 Ma; Sweet et al., 1999)<br />

uncomformably overlying older rocks and intruded by the 1723±6 Ma Oenpelli dolerite<br />

(e.g. Kyser et al., 2000).<br />

In the SAVMF, the oldest exposed unit of the Pine Creek Orogen sequence is the<br />

Mundogie sandstone of the Mount Partridge Group (2025 Ma, Worden et al., 2004),<br />

followed by the Koolpin Formation, the basal unit of the South Alligator Group (Needham,<br />

1987). Sedimentation of the Koolpin Formation was accompanied by felsic volcanism,<br />

136


epresented by the 1884±3 Ma Gerowie Tuff (Pietsch and Stuart-Smith, 1987) and the<br />

overlying 1877±11 Ma Mount Bonnie Formation (Needham et al., 1988). These rocks are<br />

uncomformably overlain by the ca. 1863 Ma Finniss Group (Walpole et al., 1968).<br />

Following deposition of the Pine Creek Orogen sequence, the 1870±6 Ma Zamu<br />

Dolerite sills (Page et al., 1980) were intruded, folded, and metamorphosed with the host<br />

rocks by the 1860–1840 Ma Nimbuwah event of the Top End Orogen (Ferguson and<br />

Needham, 1978; Lally and Worden 2004). In the SAVMF, the regional metamorphic grade<br />

is greenschist facies (Needham et al., 1988a). Deformation and metamorphism were<br />

accompanied and followed by emplacement of granitic rocks (Stuart-Smith et al., 1993;<br />

Ferenczi and Sweet, 2005; Rasmussen et al., 2006; Neumann and Fraser, 2007).<br />

Following exhumation of the final stages of the Nimbuwah event, minor deformation<br />

and rift-related sedimentation occurred during the ca. 1825 Ma Cullen Event (Wyborn et<br />

al., 1997), resulting in deposition of the El Sherana Group (Needham et al., 1988a). The El<br />

Sherana Group consists of the Coronation sandstone and associated felsic volcanics, the Pul<br />

Pul Rhyolite at 1829±5 Ma (Jagodzinski, 1991). Following folding, faulting and erosion of<br />

the El Sherana Group, the Edith River Group (Kurrundie Sandstone) overlain by the Plum<br />

Tree Creek volcanics at 1822±6 Ma (Jagodzinski, 1992) were deposited. Ahmad et al.,<br />

(2006) interpreted the initial deposition of the El Sherana Group at 1865 Ma associated<br />

with graben formation centred on the South Alligator River valley and followed later by<br />

rifting and deposition of the Edith River Group at 1850 Ma. A regional low-grade<br />

metamorphism, the ca. 1780 Ma Shoobridge event, may represent a thermal stage<br />

137


coincident with the initiation of sedimentation in the McArthur Basin (Wyborn et al.,<br />

1997).<br />

All of these rocks are uncomformably overlain by the Paleoproterozoic fluvial redbed<br />

sandstone successions of the Kombolgie Basin (Ojakangas, 1979; Sweet et al., 1999),<br />

which is part of the McArthur Basin sequence (Kyser et al., 2000). Rocks of the Kombolgie<br />

Basin were intruded by the late Paleoproterozoic 1723±6 Ma Oenpelli dolerite (e.g. Kyser<br />

et al., 2000).<br />

In the South Alligator Valley, the Pine Creek Orogen rocks were deformed during the<br />

1870-1780 Ma Top End Orogen (Needham and DeRoss, 1990). Johnston (1984) and<br />

Valenta (1990) identified three deformation phases. D 1 occurred during the 1890–1870 Ma<br />

Barramundi Orogen (Page and Williams, 1988) and produced meso-scale isoclinal folding<br />

and bedding-parallel cleavage, related to major low-angle reverse faulting, at the base of<br />

the Koolpin Formation. D 2 occurred during the 1860-1840 Ma Nimbuwah tectonic event<br />

and formed regional-scale, northwest trending, upright, tight to isoclinal folds, and a<br />

penetrative axial-plane cleavage. Open, upright northeast-trending southeast-plunging folds<br />

and fault movements formed during D 3 and affected the El Sherana and Edith River Group<br />

rocks. (Valenta, 1991; Lally and Bajwah, 2006).<br />

4.2.2. Uranium mineralization<br />

Uranium deposits of the SAVMF are on or near the El Sherana–Palette fault system<br />

(Fig. 4.1; Valenta, 1990), and were formed in dilatational zones at fault bends or<br />

intersections (Valenta, 1991). The mineralization occurred as vein-type lodes in faults at the<br />

unconformity between the El Sherana Group and the underlying Koolpin Formation<br />

138


(Mernagh et al., 1994). Uraninite is associated with galena, chalcopyrite, pyrite, gold, and<br />

clausthatite (Ayres et al., 1975). The alteration is dominated by quartz+sericite±chlorite±<br />

kaolinite+hematite (Mernagh and Wyborn, 1994).<br />

Mernagh et al. (1994) suggested that highly oxidizing, acid and low temperature<br />

basinal brines transported Au–PGE–U as oxy-chloride and chloride species and proposed a<br />

model for the Coronation Hill deposit wherein U mineralization formed by reaction of<br />

acidic oxidized basinal brines from the cover sandstone with reducing basement rocks of<br />

the Koolpin Formation. The precipitation of Au-PGE ore in the quartz feldspar porphyry<br />

resulted from acid neutralization and moderate reduction from fluid interaction with<br />

feldspathic host rocks (Mernagh et al., 1994). Ayres (1975) suggested that the U source was<br />

the El Sherana Basin volcanics. The U-bearing groundwater percolated down to an aquifer<br />

in the sandstone unit at the base of the volcanics. U precipitation occurred where U-bearing<br />

basinal brines reacted with reducing carbonaceous shales of the Koolpin Formation.<br />

Previous dating of uraninite from the SAVMF deposits proved inconclusive.<br />

Uraninites from the El Sherana and Palette deposits have U-Pb ages ranging from 815 Ma<br />

to 710 Ma (Hills and Richards, 1972; Cooper, 1973). Thermal Ionization Mass<br />

Spectrometry (TIMS) dating of U-bearing samples indicate young 207 Pb/ 206 Pb ages ranging<br />

between 830 Ma and 494 Ma and an U-Pb upper intercept of 730 Ma at the Palette deposit<br />

whereas 207 Pb/ 206 Pb dates of 1196 Ma and U-Pb upper intercept ages of 1600 Ma occur at<br />

the El Sherana deposit (Greenhalgh and Jeffery, 1959). U-Pb dating of uraninite from the<br />

Palette deposit gives 207 Pb/ 206 Pb dates ranging from 964 Ma to 634 Ma (Greenhalgh and<br />

Jeffery, 1959) and uraninite analyzed by laser ablation-high resolution inductively-coupled<br />

139


plasma mass spectrometry (LA-HR-ICP-MS; Chipley et al., 2007) yielded 207 Pb/ 206 Pb dates<br />

between 1855 Ma and 820 Ma at the El Sherana deposit and between 964 Ma and 634 Ma<br />

at the Palette deposit (Chipley et al., 2007). Uraninite from the Adelaide River deposit<br />

gives 207 Pb/ 206 Pb ages ranging between 1069 Ma and 735 Ma (Chipley et al., 2007). Ages<br />

for the unconformity-related U deposits in the overlying Kombolgie Basin are 1675 to 1650<br />

Ma (Polito et al., 2004; 2005).<br />

4.3. Characteristics of selected uranium deposits<br />

4.3.1. Coronation Hill uranium deposit<br />

The oldest rocks in the Coronation Hill deposit area consist of interbedded<br />

ferruginous slate, carbonate and quartzite of the Koolpin Formation and green<br />

volcanoclastic sedimentary rocks (Fig. 4.2; Wyborn et al., 1991). Quartz-feldspar porphyry<br />

and mafic intrusive rocks are correlated with the Gerowie Tuff (Carville et al., 1991) and<br />

the Zamu Dolerite (Warren and Kamprad, 1990), respectively. The mafic intrusive rocks<br />

consist of quartz diorite and minor granophyre, which are overlain by a sedimentary breccia<br />

that is part of the Coronation sandstone (Mernagh et al. 1994). All of these rocks are<br />

uncomformably overlain by a quartz sandstone unit of the Kombolgie Formation (Fig. 4.2,<br />

Carville et al., 1991).<br />

Valenta (1991) described three events of faulting. East-striking normal faults separate<br />

quartz-feldspar porphyry and conglomerate and are overprinted by a north-striking dip-slip<br />

fault that separates conglomerate and green volcanoclastic sedimentary rocks. North<br />

northwest-striking, subvertical, strike-slip shear zones offset earlier faults and control the<br />

mineralization (Mernagh and Wyborn, 1994; Eupene, 2003).<br />

140


100m<br />

Figure 4.2. (A) Geological plan of the Coronation Hill deposit showing main lithological units<br />

and structural elements. (B) East-west geological cross-sections (line AB) across the<br />

Coronation Hill deposit illustrating lithological units, fault systems and location of Au-PGE<br />

and U-Au-PGE mineralization (modified from Wyborn et al., 1990).<br />

141


The Coronation Hill deposit occupies a zone of complex faulting near the El Sherana-<br />

Palette fault system (Fig. 4.1) and was mined between 1955 and 1964. Over this period,<br />

25,306 metric tons of U ore grading 0.26% U 3 O 8 were mined (Fisher, 1969). Some gold<br />

and PGE (4 850 000t at 4.31 g/t Au, 0.65 g/t Pd and 0.19 g/t Pt) were recovered from the<br />

deposit. Two types of ore have been recognized (Fig. 4.2B). 1) U±Au mineralization in<br />

faulted blocks of the Koolpin Formation (Needham, 1987), and 2) a Au-PGE±U orebody in<br />

a north northwest-trending zone of fractured and sheared volcanoclastic rocks, quartzfeldspar<br />

porphyry, sedimentary breccia and diorite (Carville et al., 1990, 1991).<br />

4.3.2. El-Sherana uranium deposit<br />

The El Sherana deposit is located within the El Sherana–Palette fault (Fig. 4.1;<br />

Valenta, 1991). The deposit area consists of interlayered cherty ferruginous and<br />

carbonaceous shale of the Koolpin Formation, uncomformably overlain by the Coronation<br />

sandstone and volcanics of the Pul Pul Rhyolite (Fig. 4.3). The two dominant faults are<br />

steeply southwest-dipping normal faults and younger, shallowly southwest-dipping reverse<br />

faults (Valenta, 1991). Faulted and brecciated contact between carbonaceous and<br />

ferruginous shale was the focus of the U mineralization (Fig. 4.3, Lally and Bajwah, 2006).<br />

The uranium ore is hosted within subvertical, northwest-trending, interlayered cherty<br />

ferruginous shale and carbonaceous shale at the unconformity below the Coronation<br />

sandstone (Fig. 4.3; Crick et al., 1980). Minor mineralization also occurred within the<br />

Coronation sandstone and altered volcanic rocks close to the unconformity.<br />

142


Surface<br />

100m<br />

Figure 4.3. Geological cross-section of El Sherana and El Sherana West U deposits showing<br />

main lithological units and location of the U mineralization. (modified from Valenta, 1991)<br />

The mineralized zone has a strike length of 400 m and a vertical range of 180 m (Taylor,<br />

1968). The total production was 226 t U 3 O 8 and 0.33 t Au from El Sherana, and 185 t U 3 O 8<br />

and 0.007 t Au from El Sherana West during the period 1956-1964. Primary U<br />

mineralization occurs as pods, lenticular masses, veins and disseminations and is associated<br />

with fault zones and brittle fracturing (Taylor, 1968; Ayres and Eadington, 1975; Valenta,<br />

1989, 1991). Gold occurs as veinlets within the uranium ore or as separate zones of<br />

mineralization. Minor galena, angelsite, clausthalite, pyrite, marcasite, cobalt-nickel<br />

143


arsenides, nickel selenide and copper sulfides are also associated with the ore (Threadgold,<br />

1960).<br />

4.4. Methodology<br />

Polished thin sections were prepared from 250 core samples from the El Sherana and<br />

Coronation Hill deposits (Fig. 4.1) and were examined using transmitted and reflected-light<br />

microscopy to determine mineral crosscutting relationships and develop a paragenetic<br />

succession for the area.<br />

Electron microprobe analysis of syn-ore chlorite and uraninite were done on polished<br />

thin sections using a JEOL JXA-8230 equipped with five wavelength dispersive<br />

spectrometers (WDS) at Queen’s <strong>University</strong>, Canada. A suite of well-characterized natural<br />

and synthetic minerals and compounds were used as calibration standards. Analytical<br />

conditions were 15 kV accelerating voltage, 10 nA beam current, and a defocused beam.<br />

Typical counting times were 10 s for major elements and 20 s for minor elements.<br />

Analytical errors were


<strong>University</strong>, Canada. Monomineralic fractions, typically >95% pure, were used for stable<br />

isotope analyses at the Queen’s Facility for Isotope Research. Oxygen isotopic<br />

compositions of muscovite and kaolinite were measured using the BrF 5 method of Clayton<br />

and Mayeda (1963) and a dual inlet Finnigan MAT252 isotope ratio mass spectrometer.<br />

Hydrogen isotope compositions were determined using a Thermo Finnigan TC/EA in-line<br />

with a DeltaPlus XP Finnigan Mat mass spectrometer. Isotopic compositions are reported<br />

in the δ notation in units of permil (‰) relative to V-SMOW. Analyses of δ 18 O were<br />

reproducible to ±0.2‰, and δ 2 H values were reproducible to ±3‰. The isotopic<br />

composition of fluid was calculated using the oxygen isotope fractionation factors proposed<br />

by O’Neil and Taylor (1969) for water-muscovite and Sheppard and Gilg (1996) for<br />

kaolinite-water. The hydrogen isotope fractionation factors of Sheppard and Gilg (1996)<br />

were used for water-muscovite and of Capuano (1992) for kaolinite-water.<br />

U-Pb isotope ratios were determined by laser ablation-high resolution inductivelycoupled<br />

plasma mass spectrometry (LA-HR-ICP-MS; Chipley et al., 2007) using a<br />

Finnigan MAT Element 1 HR-ICP-MS and a Neptune HR-MC-ICP-MS, both equipped<br />

with a high-performance Nd.YAG New Wave UP-213 laser ablation system at <strong>Queen's</strong><br />

Facility for Isotope Research. Ablation of uraninite was achieved on polished thin sections<br />

using a 30 to 40μm spot size with 35% to 40% laser power at a frequency of 2Hz. The<br />

argon gas flows were as follows; cooling gas, 1.5l/min; auxiliary gas, 1.0l/min; and sample<br />

carrier gas, 1.0 l/min. A low resolution of 350 defined as the ratio of mass over peak width<br />

mass at 5% of the signal height was used. For each sample, 204 Pb, 206 Pb, 207 Pb, 235 U, and<br />

238 U were measured and corrections for common Pb were made scan-by-scan to each spot.<br />

145


No corrections were made to the 238 U/ 235 U ratios as they were near the 137.8 natural ratios.<br />

Instrument checks were done using an in-house uraninite standard.<br />

Mineral name abbreviations used in this chapter are those from Kretz (1983). The<br />

superscript numerical value on the mineral name abbreviations reflects the mineral growth<br />

stages.<br />

4.5. Results<br />

4.5.1. Mineral Paragenesis<br />

4.5.1.1. Coronation Hill uranium deposit<br />

Mineral paragenesis for the Coronation Hill deposit is based on textural relationships<br />

shown in Figures 4.4, 4.5, 4.6 and 4.7. Quartz-feldspar porphyry and granophyre rocks host<br />

the U mineralization and three main stages of alteration: pre-ore, syn-ore, and post-ore<br />

alteration. The quartz-feldspar porphyry is composed of Qtz 0 quartz and Kfs 0 feldspar<br />

xenoliths of variable size embedded in a fine-grained matrix composed of Qtz 0 quartz, Kfs 0<br />

feldspar, and Ms 0 muscovite (Fig. 4.5A). The granophyre rock consists of Qtz 0 quartz and<br />

Kfs 0<br />

alkali feldspar in characteristic angular intergrowths, embedded in a groundmass<br />

consisting of fine-grained Qtz 0 quartz and Kfs 0 feldspars, Ms 0 muscovite and Bt 0 biotite<br />

(Fig. 4.4).<br />

4.5.1.1.1. Pre-ore alteration<br />

Pre-ore alteration of the quartz-feldspar porphyry is characterized by fine-grained<br />

Qtz 1 quartz grains as overgrowths on Qtz 0 quartz xenoliths (Fig. 4.5A). Src 1 sericite is the<br />

most extensive alteration and occurs as fine-grained replacement of Qtz 0 quartz and Kfs 0<br />

146


Deformation-Metamorphism:<br />

1860-1840 Ma (Nimbawah Event)<br />

Deposition of El Sherana Group (ca. 1830 Ma)<br />

Deposition of Kombolgie Group (ca. 1750 Ma)<br />

feldspar xenoliths in the matrix (Fig. 4.5A). In places, Kfs 0<br />

feldspar xenoliths are<br />

completely replaced by Src 1 .<br />

Minerals<br />

Deposition of Koolpin Formation and associated volcanic rocks (1900-1870 Ma)<br />

Quartz Qtz 0<br />

Feldspar KFs 0<br />

Biotite* Bt 0<br />

Muscovite Ms 0<br />

Pre-Ore alteration<br />

Quartz overgrowth Qtz 1<br />

Sericite Src 1<br />

Monazite Mzn 1<br />

Titanite Tt 1<br />

Chalcopyrite Cpy 1<br />

Pyrite Py 1<br />

Apatite* Ap 1<br />

Early quartz vein Qtz 2 140 o C<br />

Hematite Hem 1<br />

Chlorite Chl 1 160 o C<br />

Calcite Cal 1<br />

Main U mineralization Event<br />

250 o C<br />

Chlorite Chl 2<br />

Calcite Cal 2<br />

Muscovite Ms 2<br />

Uraninite U 1 1820Ma<br />

Hematite Hem 2<br />

Galena Pb 1<br />

Gold Au 1<br />

Chalcopyrite Cpy 2<br />

Late alteration Event<br />

Chlorite Chl 3 100 o C<br />

Secondary uraninites U 2<br />

Calcite Cal 3<br />

Quartz Qtz 3<br />

Hematite Hem 3<br />

Azurite Az 1<br />

Kaolinite Kln 1<br />

Relative timing<br />

Host rock<br />

Pre-ore Syn-ore Post-ore<br />

Figure 4.4. General mineral paragenesis of the Coronation Hill deposit. The three main<br />

alteration stages include a pre-, syn-, and post-ore alteration of the basement rocks. The<br />

thickness of the lines indicates the relative mineral abundance. An asterisk (*) marks the<br />

primary minerals present in quartz feldspar porphyry and granophyre rocks. Temperatures<br />

associated with the different alteration minerals are derived from their chlorite crystal<br />

chemistry. The temperature of 140 o C for the pre-ore Qtz 2 is from Mernagh et al. (1994),<br />

147


which was interpreted as being associated with the U mineralization. The age of 1820 Ma is<br />

interpreted from U-Pb geochronology of paragenetically constrained U 1 . (See text for details).<br />

Disseminated Cpy 1 chalcopyrite and Py 1 pyrite are present in the most altered<br />

samples. Mzn 1 monazite associated with Ttn 1 titanite occurs as disseminated aggregates of<br />

grains (Fig. 4.5B) and Ap 1 apatite occurs as elongated euhedral and transparent tabular<br />

crystals (Fig. 4.5C). Early Qtz 2 quartz veins crosscut the quartz-feldspar porphyry (Fig.<br />

4.5D) and occur locally as stockworks. Chl 1 chlorite is present as replacement of Src 1<br />

sericite in the matrix (Fig. 4.5E) or frequently as coarse, felty-textured, radiating aggregates<br />

coating Qtz 2 veins (Fig. 4.5D) where it forms thin needles crosscutting Qtz 2 veins (Fig.<br />

4.5D). Hem 1 hematite forms primary inclusions in Qtz 2 veins where it replaces Chl 1<br />

chlorite needles (Fig. 4.5D) and Src 1 sericite (Fig. 4.5E) in the matrix. Cal 1 calcite also<br />

replaces Src 1 sericite and Chl 1 chlorite in the matrix (Fig. 4.5F).<br />

The granophyre rock displays a similar pre-ore alteration pattern. Src 1<br />

sericite<br />

replaces Kfs 0 alkali feldspar in quartz-alkali feldspar intergrowths. Src 1 sericite is later<br />

replaced by Cal 1 calcite. Bt 0 biotite and Ms 0 muscovite laths are typically pseudomorphous<br />

after Chl 1 Chlorite. Ap 1 apatite, Hem 1 hematite and Ttn 1 titanite are part of the pre-ore<br />

assemblage.<br />

148


A<br />

C<br />

B<br />

Qtz 0<br />

Mzn 1<br />

Qtz 0<br />

Qtz 1 Ttn 1<br />

Src 1<br />

Cpy 1<br />

Qtz 0 Hem 1<br />

500μm<br />

Chl 1<br />

D<br />

Ap 1 Qtz 2 Hem 1<br />

Chl 1<br />

500μm<br />

150μm<br />

Qtz 2<br />

100μm<br />

E<br />

Cal 1 Src 1<br />

Cal 1<br />

Src 1 Hem 1 Chl 1<br />

Chl 1<br />

F<br />

250μm<br />

500μm<br />

Figure 4.5. Photomicrographs of typical mineral alteration phases of the pre-ore stage. (A)<br />

Pre-ore alteration of the quartz-feldspar porphyry showing fine-grained Qtz 1 overgrowth on<br />

xenolith Qtz 0 . Src 1 occurs as fine-grained minerals replacing Qtz 0 and Kfs 0 into the matrix.<br />

(B) Altered quartz-feldspar porphyry showing disseminated Cpy 1 , aggregates of Mzn 1<br />

associated with Ttn 1 , Chl 1 and Hem 1 . (C) Quartz-feldspar porphyry matrix showing elongated<br />

euhedral and transparent crystals of Ap 1 . (D) Early Qtz 2 vein crosscutting the quartz-feldspar<br />

149


porphyry and coated by Chl 1 forming thin needles injecting into the Qtz 2 vein. Hem 1 occurs as<br />

inclusions in Qtz 2 and as fine grains replacing Chl 1 needle. (E) Highly altered quartz-feldspar<br />

porphyry showing Hem 1 and Chl 1 as replacement of Src 1 in the matrix. (F) Altered quartzfeldspar<br />

porphyry showing Cal 1 as replacement of Src 1 in the matrix.<br />

4.5.1.1.2. Uranium and gold mineralization<br />

Following the pre-ore alteration stage, the host rocks of the Coronation Hill deposit<br />

were brecciated and mineralized. Mineralization consists of U 1 uraninite, Au 1 gold and Gn 1<br />

galena confined to zones that were mostly affected by the pre-ore alteration. Cross-cutting<br />

relationships show that the ore assemblage crosscuts and obliterates the pre-ore mineral<br />

assemblage. Mineralized breccias typically comprise sub-angular and altered quartzfeldspar<br />

porphyry fragments cemented by U 1 uraninite (Fig. 4.6A) that occurs as massive<br />

grains occupying open space in the matrix or as veins crosscutting the pre-ore assemblage<br />

minerals.<br />

U 1 uraninite is associated with Cal 2 calcite, Chl 2 chlorite, Hem 3 hematite (Fig. 4.6B),<br />

and Ms 2 muscovite (Fig. 4.6C). In places, U 1 uraninite coats or replaces Py 1 pyrite grains<br />

(Fig. 4.6D). U 1 uraninite is also disseminated in the granophyre, wherein it is associated<br />

with Chl 2 chlorite, Cal 1 calcite, and Hem 2 hematite. U 1 uraninite is associated with the<br />

assemblage Gn 1 Galena- Au 1 gold- Cpy 2 chalcopyrite (Fig. 4.6E). Gn 1 galena occurs as fine<br />

white crystals, typically less than 50 μm across, or generally as massive euhedral to<br />

anhedral grains greater than 1 mm in size.<br />

Crystals of Gn 1 galena are intimately intergrown with U 1 uraninite, native Au 1 gold<br />

and Cpy 2 chalcopyrite (Fig. 4.6E). Native Au 1 gold forms subhedral grains typically ca. 10–<br />

150


100 μm diameter within Gn 1 galena (Figs. 4.6E and 4.6F). Cpy 2 chalcopyrite inclusions in<br />

Gn 1 galena are common (Fig. 4.6E).<br />

A<br />

B<br />

U 1 Cal 2<br />

U 1<br />

U 1 Chl 2<br />

U 1<br />

Altered quartz-feldspar<br />

porphyry fragments<br />

Hm 1<br />

U 1<br />

U 1 U 1<br />

200μm<br />

Src 1<br />

150μm<br />

C<br />

D<br />

U 1 Ms 1 U 1<br />

Chl 1<br />

Chl 2<br />

Py 1<br />

U 1<br />

U 1 Qtz 1<br />

100μm<br />

500μm<br />

E<br />

U 1<br />

U 1 U 2<br />

U 1 U 2<br />

U 2 Cpy 1<br />

U 2 Gn 1<br />

Au 1<br />

Gn 1<br />

Az 1 Au 1<br />

Coffinite<br />

Figure 4.6. Photomicrographs of typical mineral alteration phases of the syn-ore stage. (A)<br />

151


Mineralized breccias showing quartz-feldspar porphyry fragments cemented by massive U 1 .<br />

(B) Mineralized breccias showing U 1 vein crosscutting the early pre-ore alteration assemblage<br />

and associated with Cal 2 , Chl 2 , and Hem 2 . (C) Syn-ore Ms 2 associated with the U 1 and Chl 1 .<br />

(D) Mineralized breccias showing U 1 replacing early Py 1 grains. (E) Assemblage U 1 -Gn 1 -Au 1 -<br />

Cpy 2 . Gn 1 galena as sub-euhedral crystals associated with native Au 1 , Cpy 2 and U 1 . Cpy 2 is<br />

locally altered to Az 1 azurite. (F) Mineralized breccias showing U 1 intimately intergrown with<br />

Gn 1 and Au 1 .<br />

4.5.1.1.3. Post-ore alteration<br />

Post-ore alteration is characterized by late mineralized veins containing banded<br />

colloform U 2 uraninite coating Cal 3 calcite veins (Fig. 4.7A) and associated with minor<br />

Chl 3 chlorite and Hem 3 hematite. U 2 uraninite fills late fractures indicating remobilization<br />

during the post-ore alteration stage. Microprobe investigation reveals that secondary U 2<br />

uraninite grains rim primary U 1 uraninite crystals in the ore (Figs. 4.6E and 4.6F). In<br />

reflected light and backscattered electron images, U 2 uraninite is commonly heterogeneous<br />

and zoned, has a mottled and speckled appearance, and forms sub -euhedral aggregates<br />

(Fig. 4.6E). Post-ore Cal 4 calcite veins cut the ore assemblage (Fig. 4.7B). Thin, fibrous<br />

Qtz 3 quartz veinlets crosscut the pre- and syn-ore assemblages (Fig. 4.7C). Cpy 2<br />

chalcopyrite is locally altered to Az 1 azurite (Fig. 4.6E) likely during the post-ore stage.<br />

Late Kln 1 kaolinite and Hem 4 hematite alteration obliterates earlier texture and minerals of<br />

the pre-ore and syn-ore assemblage (Fig. 4.7D).<br />

152


A<br />

B<br />

Cal 3 Cal 3<br />

U 2 U 2 U 2 Cal 3 U 2<br />

Sr 1 500μm Sr 1<br />

Cl 1<br />

500μm<br />

C<br />

D<br />

S<br />

U 1 Cpy 2<br />

Qz 3 Kln 1<br />

500μm<br />

500μm<br />

Figure 4.7. Photomicrographs of typical mineral alteration phases of the post-ore stage. (A)<br />

Post-ore mineralized veins containing banded colloform secondary U 2 coating Cal 3 vein. (B)<br />

Post-ore Cal 4 veins cutting the ore assemblage. (C) Thin, fibrous Qtz 2 veinlets crosscutting the<br />

pre- and syn-ore assemblages. (D) Late Kln 1 obliterating earlier texture and minerals of the<br />

pre-ore and syn-ore mineral assemblage.<br />

4.5.1.2. El-Sherana uranium deposit<br />

The mineral paragenesis for the El Sherana deposit is shown in Figures 4.8, 4.9 and<br />

4.10. The basement Koolpin Formation rocks have been altered during pre-ore, syn-ore and<br />

post-ore alteration stages while the overlying Coronation sandstone has been affected by a<br />

pre-ore basin-related diagenetic alteration stage. The pre-ore alteration assemblage is absent<br />

from the Coronation sandstone. This corroborates the suggestion of Wyborn et al. (1991)<br />

153


SOUTH ALLIGATOR RIVER GROUP EL SHERAN GROUP<br />

Coronation Sandstone<br />

Koolpin Formationn<br />

Deformation and Metamorphism 1860-1840 Ma (Nimbawah Event)<br />

Deposition El Sherana Group (ca. 1830 Ma)..<br />

that the pre-ore alteration formed during the Nimbuwah event that predates deposition of El<br />

Sherana Group sediments.<br />

Minerals Host rock Pre-ore Diagenesis Syn-ore Post-ore<br />

Quartz Qtz 0<br />

Feldspar KFs 0<br />

Muscovite Ms 0<br />

Tourmaline* Tur 0<br />

Late events<br />

Quartz overgrowth Qtz 2<br />

Hematite Hem 3<br />

Kaolinite Kln 1<br />

Sericite Src 2<br />

Calcite Cal 2<br />

Monazite Mzn 1<br />

Titanite Ttn 1<br />

Secondary uraninite U 2<br />

U n c o n f o r m i t y<br />

Pre-ore alteration<br />

Early quartz vein Qtz 1<br />

Sericite Src 1<br />

Chalcopyrite Cpy 1<br />

Pyrite Py 1<br />

Monazite Mzn 1<br />

Titanite Ttn 1<br />

Chlorite Chl 1 300 o C<br />

Apatite Ap 1<br />

Hematite Hem 1<br />

Main U mineralization Event<br />

Chlorite Chl 2 260 o C<br />

Calcite Cal 1<br />

Uraninite U 1 1820 Ma<br />

Chalcopyrite Cpy 2<br />

Galena Gn 1<br />

Hematite Hem 2<br />

Late events<br />

Chlorite Chl 3<br />

Hematite Hem 3<br />

Kaolinite Kln 1<br />

Secondary uraninite U 2 Relative timing<br />

(B)<br />

(A)<br />

Figure 4.8. General mineral paragenesis of the El Sherana deposit for (A) basement rocks of<br />

the Koolpin Formation and (B) Coronation sandstones of the El Sherana Group. The three<br />

main alteration stages for the basement rocks include a pre-, syn-, and post-ore alteration.<br />

The overlying Coronation sandstone is affected by diagenetic alteration, which postdates the<br />

pre-ore alteration in the basement rocks. The thickness of the lines indicates the relative<br />

mineral abundance. An asterik (*) marks the primary minerals present in the carbonaceous<br />

shale and Coronation sandstones. Temperatures associated with the alteration minerals are<br />

154


derived from their chlorite crystal chemistry. The age of 1820 Ma is interpreted from U-Pb<br />

geochronology of paragenetically constrained U 1 .<br />

4.5.1.2.1. Pre-ore basement hydrothermal alteration<br />

The pre-ore alteration of the cherty ferruginous shale of the Koolpin Formation is<br />

characterized by the occurrence of 0.1 to 1 cm-wide comb-textured Qtz 1 quartz veins (Fig.<br />

4.9A). Crosscutting relationships indicate that Qtz 1<br />

quartz veins predate massive<br />

brecciation associated with pervasive Src 1 sericite alteration that fills and cements the pore<br />

space between brecciated fragments (Fig. 4.9B). Src 1 sericite is replaced by Chl 1 chlorite<br />

(Fig. 4.9C). Chl 1 chlorite also forms radially-textured laths around Qtz 1 quartz (Fig. 4.9D).<br />

Their size and texture indicate growth into open pore spaces that were possibly created by<br />

brittle deformation. Hem 1 hematite alteration is pervasive. The pre-ore assemblage includes<br />

Ap 1 apatite (Fig. 4.9C), minor Mzn 1 monazite, Ttn 1 titanite, Cpy 1 chalcopyrite and Py 1<br />

pyrite disseminated in the matrix in the most altered samples.<br />

4.5.1.2.2. Pre-ore diagenetic alteration of the Coronation sandstone<br />

Detrital minerals in well-sorted, quartz-dominated sandstones of the Coronation<br />

sandstone consist of rounded Qtz 0 quartz grains and granite fragments (Fig. 4.10A), altered<br />

Mzn 0 monazite (Fig. 4.10B), fragmented and altered Tur 1 tourmaline (Fig. 4.10C) and<br />

altered Ms 0<br />

muscovite laths (Fig. 4.10D). Diagenesis of the Coronation sandstone is<br />

indicated by the occurrence of thin, discontinuous veneers of dark red-brown Hem 2<br />

hematite (Fig. 4.10C) and well developed Qtz 2 quartz overgrowths that outline detrital Qtz 0<br />

quartz grains (Fig. 4.10C).<br />

155


A<br />

Carbonaceous<br />

Shale<br />

B<br />

Src 1<br />

Qtz 1<br />

Qtz 1<br />

Qtz 1<br />

500μm<br />

Src 1 Qtz 1<br />

Carbonaceous<br />

Shale fragment<br />

500μm<br />

C<br />

D<br />

Src 1 Chl 2<br />

Chl 1 Ap 1<br />

Qtz 1<br />

Chl 1<br />

Src 1<br />

500μm<br />

E<br />

Qtz 1<br />

U 1<br />

Qtz 1<br />

Src 1 Src 1<br />

Chl 1 Chl 2<br />

Chl 1<br />

Qtz 1 Cal 1<br />

Cal 1<br />

500μm<br />

U 1<br />

U 1<br />

Src 1<br />

F<br />

Kln 2 Qtz 1<br />

Cal 2<br />

500μm<br />

500μm<br />

Figure 4.9. Microphotograph of typical mineral assemblages and crosscutting relationships of<br />

the pre-, syn, and post-ore stage in the El Sherana deposit. A. Pre-ore Qtz 1 vein cutting the<br />

interlayered cherty ferruginous shale of the Koolpin Formation. (B) Massive brecciation<br />

associated with pervasive Src 1 alteration, which fills and cements the pore space between<br />

brecciated fragments. (C) Pre-ore assemblage Src 1 replaced by Chl 1 . Chl 1 forms locally<br />

radially-textured laths around Qtz 1 fragments associated with Ap 1 . (D) Syn-ore assemblage<br />

156


cutting early Qtz 1 veins and the assemblage Src 1 -Chl 1 -dominated pre-ore alteration. (E) U 1<br />

associated with Chl 2 , Cal 2 , and Hem 2 cutting the assemblage Src 1 -Chl 1 -dominated pre-ore<br />

alteration. (F) Post-ore Kln 1 alteration obliterating texture of the pre-ore and syn-ore mineral<br />

assemblage.<br />

Qtz 2 quartz has Hem 3 hematite inclusions (Fig. 4.9C) and displays irregular contours<br />

(Fig. 4.10C) that suggest partial dissolution during a late alteration event. Qtz 2 quartz<br />

displays similar morphology to those recognized in sandstone of the Athabasca and<br />

Kombolgie basins (Hiatt and Kyser. 2000; Polito et al., 2005; Hiatt et al., 2007). Pressure<br />

solution features such as grain-point contacts and sutured grain boundaries are well<br />

developed and locally forming stylolites. Kln 1 kaolinite alteration is pervasive and fills<br />

well-developed secondary porosity (Fig. 4.10E) where it partially replaces detrital Ms 0<br />

muscovite (Fig. 4.10D). The morphology of the Kln 1 kaolinite varies from coarse-grained<br />

vermiform to very fine-grained (Fig. 4.10E). Aggregates of Ttn 1 titanite are disseminated<br />

and generally associated with altered Mzn 0 monazite (Fig. 4.10B).<br />

4.5.1.2.3. Uranium mineralization<br />

The ore alteration stage in the basement overprints the pre-ore alteration assemblage.<br />

Crosscutting relationships indicate that the syn-ore assemblage cross cuts Qtz 1 quartz veins<br />

and the pre-ore alteration assemblage Src 1 sericite and Chl 1 chlorite (Fig. 4.9D). U 1<br />

Uraninite is spatially associated with, or rimmed by Chl 2 chlorite, Cal 2 calcite, and Hem 3<br />

hematite (Fig. 4.9E). Cpy 2 chalcopyrite and minor Gn 1 galena are associated with the U 1<br />

uranium mineralization.<br />

157


A<br />

Granite<br />

Qtz 0<br />

fragments<br />

Qtz 0<br />

B<br />

Mzn 1 Ttn 1 Qtz 0<br />

Qtz 0 Kln 1<br />

500μm<br />

150μm<br />

C<br />

D<br />

E<br />

Kln 1 Kln 1<br />

Qtz 0 Qtz 0<br />

150μm<br />

Kln 1<br />

F<br />

Qtz 0<br />

Kln 1<br />

Qtz 0 Src 2<br />

Qtz 0 Kln 1 Qtz 0<br />

250μm<br />

Qtz 0 Hem 2 Qtz 0<br />

Qtz 2 Tur 1<br />

150μm<br />

150μm<br />

Figure 4.10. Photomicrographs of typical mineral assemblages of the Coronation sandstones.<br />

(A) Well-sorted, quartz-dominated sandstones of the Coronation sandstone including rounded<br />

Qtz 0 grains and granite fragments. (B) Altered Mzn 0 in sandstone. (C) Fragmented Tur 1 in<br />

sandstone. Well-developed Qtz 2 overgrowths outlining detrital Qtz 0 grains in sandstone. Qtz 2<br />

overgrowths have very fine Hem 2 grains inclusions and display irregular contours that<br />

suggest partial dissolution during late alteration event. (D) Altered Ms 0 laths in the altered<br />

158


sandstone. (E) Pervasive Kln 1 alteration in the sandstone filling well-developed secondary<br />

porosity between detrital Qtz 0 grains. (F) Late Src 2 alteration replacing Kln 1 in sandstone.<br />

The uranium mineralization was not observed in the overlying Coronation sandstone.<br />

Ayres et al. (1975) observed minor uranium mineralization occurring within the Coronation<br />

sandstone, close to the unconformity with the underlying mineralized Koolpin Formation.<br />

4.5.1.2.4. Post-Ore alteration<br />

Post-ore alteration in the basement rock is characterized by the occurrence of thin<br />

veinlets of Chl 3 chlorite cutting through the syn-ore alteration assemblage. Late Kln 2<br />

kaolinite alteration obliterates the pre-ore and syn-ore mineral assemblage (Fig. 4.9F).<br />

Backscattered electron images indicate that U 1 uraninite is coarsely mottled and areas of<br />

apparently pristine uraninite coexist with finely pitted altered U 2<br />

uraninite. Post-ore<br />

alteration in the Coronation sandstone is reflected also by the presence of minor Src 2<br />

sericite that locally replaces Kln 1 kaolinite (Fig. 4.10F). Extensive secondary uranium<br />

mineralization has been previously described associated with the overlying Coronation<br />

sandstone (e.g. Valenta, 1991) (Fig. 4.3).<br />

4.5.2. Crystal chemistry of the alteration minerals<br />

4.5.2.1. Coronation Hill uranium deposit<br />

4.5.2.1.1. Uraninite Crystal Chemistry<br />

Electron microprobe analysis and backscatter images indicate that U 1 and U 2<br />

uraninites have been variably altered to different forms of uranyl-silicates and have variable<br />

U, Pb, Fe, Mg, Mn, and Ca contents (Table 4.1). These uraninites show considerable<br />

variation in reflectance (Figs. 4.6E and 4.6F), suggesting significant heterogeneity in their<br />

159


chemical composition as a result of alteration by later fluids (Kotzer and Kyser, 1993;<br />

Polito et al., 2007). The chemical compositions of well-preserved U 1 uraninite (Table 4.1,<br />

Sample C29-214B) have elevated amounts of PbO (4.5 wt% to 18 wt%) and UO 2 (71 wt%<br />

to 85 wt%) and variable amounts of SiO 2 , CaO, FeO, Na 2 O, MnO, Y 2 O 3 , and P 2 O 5 . The<br />

most reflective area in U 1 uraninite (Table 4.1, Sample C29-217A) has low silica contents<br />

(e.g. from 0.4 wt% to 6.4 wt%) and high UO 2 contents (77 wt% to 86 wt %), in contrast,<br />

the most altered area (U 2 ) have high silica contents (e.g. from 13.85 wt% to 21.88 wt%),<br />

lower UO 2 contents (55 wt% to 65 wt%) and a low total due to the presence of structural<br />

water (Table 4.1). The presence of these elements in the U structure reflects post-ore<br />

alteration of the uraninite (Smith, 1984). U 1 uraninite has typically high P 2 O 5 (0.01 wt% to<br />

1.64 wt%) and Y 2 O 3 (0.02 wt% to 5.52 wt%) contents (Table 4.1).<br />

Sample I.D SiO 2 CaO FeO ThO 2 MnO UO 2 PbO Na 2O Y 2O 3 P 2O 5 Total<br />

Chemical<br />

Pb age<br />

C29-214B-1 0.21 1.1 0.1 0.09 0.08 75.09 17.91 0.14 0.74 0.01 95 1479<br />

C29-214B-2 0.62 1.7 0.2 0.23 0.16 79.91 10.65 0.19 0.44 0.04 94 827<br />

C29-214B-3 1.22 3.33 0.36 0.12 0.35 81.56 6.8 0.25 0.62 0.07 95 517<br />

C29-214B-4 1.19 2.86 0.35 0.2 0.33 83.46 5.21 0.23 0.73 0.07 95 387<br />

C29-214B-5 0.36 1.34 0.17 0.04 0.11 77.7 16.21 0.1 0.32 0.04 96 1294<br />

C29-214B-6 1.14 2.84 0.27 0.33 0.25 83.19 5.27 0.21 0.84 0.07 94 393<br />

C29-214B-7 1.3 2.64 0.32 0.2 0.23 80.77 8.81 0.18 0.64 0.08 95 677<br />

C29-214B-8 1.16 3.08 0.14 0.25 0.24 83.82 5.06 0.19 0.6 0.04 95 375<br />

C29-214B-9 1.34 3.76 0.11 0.28 0.32 85.23 4.7 0.17 0.54 0.05 96 342<br />

C29-214B-10 0.65 2 0.31 0.06 0.19 78.47 11.77 0.25 0.47 0.04 94 930<br />

C29-214B-11 1.12 2.92 0.43 0.14 0.3 82.18 8.17 0.34 0.55 0.08 96 617<br />

C29-214B-12 0.88 2.65 0.37 0.15 0.34 84.44 5.52 0.28 0.62 0.07 95 405<br />

C29-214B-13 0.45 1.66 0.24 0.05 0.14 78.08 13.57 0.23 0.35 0.03 95 1078<br />

C29-214B-14 1.04 2.74 0.37 0.25 0.29 82.62 6.54 0.28 0.63 0.06 95 491<br />

C29-214B-15 1.34 3.54 0.46 0.24 0.44 83.18 4.57 0.27 0.78 0.08 95 341<br />

C29-214B-16 0.87 2.16 0.21 0.13 0.18 78.39 11.57 0.18 0.45 0.06 94 916<br />

C29-214B-17 1.76 3.88 0.13 0.26 0.29 83.36 4.55 0.16 0.47 0.06 95 338<br />

C29-214B-18 0.44 2.3 0.19 0.04 0.16 81.12 10.77 0.21 0.44 0.03 96 824<br />

C29-214B-19 0.85 2.53 0.28 0.21 0.21 80.49 9.25 0.19 0.47 0.05 95 713<br />

C29-214B-20 0.37 1.39 0.17 0.04 0.1 75.38 14.93 0.19 0.46 0.03 93 1228<br />

C29-214B-21 1.4 2.33 0.11 0.29 0.21 71.71 6.24 0.29 0.94 0.71 84 540<br />

C29-217A-28 0.40 1.15 0.05 0.07 0.03 86.99 5.52 0.08 0.98 0.03 95 393<br />

C29-217A-7 0.60 2.68 0.36 0.02 0.24 84.28 6.49 0.36 0.40 0.08 96 477<br />

C29-217A-12 0.63 2.86 0.35 0.03 0.30 83.99 6.49 0.25 0.42 0.05 95 479<br />

160


Sample I.D SiO 2 CaO FeO ThO 2 MnO UO 2 PbO Na 2O Y 2O 3 P 2O 5 Total<br />

Chemical<br />

Pb age<br />

C29-217A-23 0.73 2.44 0.28 0.01 0.23 85.06 6.30 0.33 0.68 0.06 96 459<br />

C29-217A-19 0.96 6.60 0.25 0.33 0.26 80.12 2.59 0.20 0.40 0.12 92 200<br />

C29-217A-8 0.97 3.15 0.48 0.10 0.33 83.39 6.02 0.31 0.63 0.08 95 447<br />

C29-217A-25 0.99 1.21 0.07 0.02 0.04 85.02 5.83 0.18 0.70 0.13 94 425<br />

C29-217A-2 1.01 2.64 0.20 0.45 0.17 83.20 6.90 0.17 0.54 0.07 95 514<br />

C29-217A-4 1.02 5.93 0.39 0.73 0.38 83.82 2.71 0.21 0.46 0.09 96 200<br />

C29-217A-1 1.06 3.22 0.41 0.13 0.33 83.96 6.24 0.35 0.62 0.10 96 461<br />

C29-217A-22 1.15 5.36 0.28 0.12 0.21 86.25 2.81 0.32 0.41 0.17 97 202<br />

C29-217A-21 1.15 5.96 0.40 0.00 0.25 85.97 2.70 0.19 0.40 0.19 97 195<br />

C29-217A-27 1.15 1.24 0.15 0.14 0.09 86.24 5.41 0.20 0.57 0.15 95 389<br />

C29-217A-9 1.19 3.73 0.48 0.05 0.41 82.84 5.15 0.32 0.82 0.11 95 386<br />

C29-217A-24 1.27 5.87 0.35 0.04 0.29 84.96 2.04 0.27 0.50 0.17 96 149<br />

C29-217A-14 1.28 3.55 0.43 0.00 0.35 83.13 6.78 0.39 0.55 0.11 97 506<br />

C29-217A-13 1.29 2.76 0.20 0.06 0.24 77.36 10.30 0.19 0.41 0.06 93 826<br />

C29-217A-18 3.06 6.91 0.11 0.02 0.67 83.03 1.35 0.09 0.34 0.16 96 101<br />

C29-217A-17 5.37 6.60 0.00 0.09 0.44 80.39 2.14 0.05 0.02 0.17 95 165<br />

C29-217A-16 6.14 6.50 0.01 0.01 0.45 79.62 2.06 0.06 0.14 0.22 95 161<br />

C29-217A-15 13.85 3.18 0.04 0.14 0.04 56.94 10.55 0.03 0.89 0.70 86 1150<br />

C29-217A-11 13.98 3.27 0.00 0.18 0.05 55.03 5.28 0.04 2.16 0.95 81 595<br />

C29-217A-6 15.68 3.53 0.02 0.07 0.12 62.37 0.44 0.03 4.12 1.43 88 43<br />

C29-217A-3 16.33 3.12 0.01 0.03 0.05 59.01 4.35 0.02 4.29 1.64 89 458<br />

C29-217A-5 16.80 3.74 0.00 0.00 0.09 65.86 0.65 0.05 2.14 0.97 90 61<br />

C29-217A-26 18.50 3.30 0.01 0.00 0.00 61.86 0.27 0.02 5.52 1.45 91 27<br />

C29-217A-29 18.58 3.20 0.01 0.00 0.01 61.92 0.07 0.01 5.09 1.27 90 7<br />

C29-217A-20 21.88 3.33 0.01 0.01 0.08 59.86 0.58 0.02 1.94 1.03 89 60<br />

C29-217B-1 0.92 2.83 0.27 0.04 0.26 83.72 6.28 0.24 0.71 0.08 95 466<br />

C29-217B-2 1.03 3.23 0.19 0.03 0.29 80.04 9.41 0.18 0.50 0.07 95 729<br />

C29-217B-3 1.17 3.21 0.23 0.04 0.27 82.90 5.95 0.23 0.61 0.07 95 445<br />

C29-217B-4 4.13 6.78 0.05 0.02 0.65 82.47 2.83 0.07 0.39 0.08 97 213<br />

C29-217B-5 0.99 2.82 0.23 0.03 0.24 84.64 6.33 0.24 0.57 0.07 96 464<br />

C29-217B-6 4.67 8.00 0.00 0.00 0.58 78.29 2.99 0.06 0.53 0.11 95 237<br />

C29-217B-7 0.48 2.72 0.30 0.03 0.27 85.76 5.72 0.25 0.57 0.07 96 414<br />

C29-217B-8 4.51 5.58 0.02 0.00 0.38 81.05 2.19 0.15 0.75 0.26 95 168<br />

C29-217B-9 4.12 7.33 0.11 0.00 0.69 81.89 0.50 0.09 0.75 0.20 96 38<br />

C29-217B-10 4.36 6.20 0.10 0.00 0.49 82.51 0.70 0.15 0.76 0.26 96 52<br />

C29-217B-11 0.54 2.43 0.29 0.02 0.26 85.80 5.76 0.31 0.73 0.08 96 416<br />

C29-217B-12 0.56 2.04 0.23 0.00 0.19 85.75 6.33 0.26 0.54 0.07 96 458<br />

C29-217B-13 1.54 3.74 0.20 0.00 0.34 83.80 4.60 0.17 0.64 0.09 95 340<br />

C29-217B-14 1.11 2.82 0.19 0.01 0.23 84.04 6.09 0.26 0.57 0.10 95 449<br />

C29-217B-15 1.53 3.26 0.16 0.03 0.27 83.52 5.58 0.18 0.52 0.09 95 415<br />

C29-217B-16 1.12 3.33 0.35 0.01 0.34 82.58 7.10 0.25 0.69 0.10 96 534<br />

C29-217B-17 0.67 2.44 0.24 0.00 0.23 83.59 7.03 0.25 0.67 0.07 95 522<br />

C29-217B-18 1.22 3.60 0.36 0.02 0.30 82.56 6.22 0.37 0.79 0.11 96 468<br />

C29-217B-19 1.11 3.32 0.33 0.01 0.33 83.84 4.96 0.27 0.78 0.12 95 367<br />

C29-217B-20 0.60 3.76 0.16 0.08 0.16 86.48 3.64 0.25 0.77 0.11 96 261<br />

C29-217B-21 8.49 0.00 0.00 0.02 0.28 72.01 4.44 0.22 0.83 0.40 87 382<br />

C29-217B-22 18.58 3.49 0.02 0.00 0.01 63.53 0.34 0.03 3.61 1.45 91 34<br />

C29-217B-23 19.34 3.25 0.01 0.04 0.04 61.61 0.38 0.01 3.80 1.15 90 38<br />

C29-217B-24 0.89 5.07 0.17 0.01 0.18 82.87 2.86 0.38 0.66 0.17 93 214<br />

C29-217B-25 0.94 5.68 0.25 0.00 0.18 82.83 2.69 0.28 0.77 0.28 94 201<br />

C29-217B-26 0.96 5.37 0.25 0.00 0.19 86.27 2.92 0.34 0.72 0.20 97 210<br />

C29-217B-27 1.09 2.93 0.27 0.06 0.26 83.12 5.44 0.26 0.62 0.11 94 406<br />

161


Sample I.D SiO 2 CaO FeO ThO 2 MnO UO 2 PbO Na 2O Y 2O 3 P 2O 5 Total<br />

Chemical<br />

Pb age<br />

C29-217B-28 1.03 2.96 0.25 0.06 0.25 83.60 5.66 0.24 0.64 0.10 95 420<br />

C29-217B-29 0.44 2.35 0.27 0.06 0.25 84.03 6.28 0.34 0.62 0.07 95 464<br />

C29-217B-30 0.50 2.19 0.25 0.03 0.21 82.86 5.60 0.32 0.80 0.09 93 419<br />

C29-217B-31 2.65 4.91 0.10 0.02 0.58 81.79 3.84 0.12 0.56 0.08 95 291<br />

Table 4.1. Results of the electron microprobe analyses for uraninite occurrences in the<br />

Coronation Hill deposit with average chemical composition and calculated chemical Pb age.<br />

The composition is reported in weight percent and the age in Ma.<br />

4.5.2.1.2. Chlorite crystal chemistry<br />

Pre-ore Chl 1<br />

chlorite is Mg-rich with a calculated structural formula of<br />

Mg 3.04 Al 2.53 Fe 0.47 (Si 3.3, Al 0.7 )O 10 (F 0.1 Cl 0.01 (OH) 7.89 ), corresponding to clinochlore (Deer et<br />

al., 1992). Formation temperatures are near 160°C (Table 4.2), based on site occupancy<br />

(Cathelineau, 1988). Syn-ore Chl 2 chlorite is similar in composition to pre-ore Chl 1 chlorite<br />

with a structural formula of Mg 3.26 Al 2.52 Fe 0.89 (Si 3.03, Al 0.97 )O 10 (F 0.16 Cl 0.01 (OH) 7.73 , but with<br />

formation temperatures near 250°C (Table 4.2). Post-ore Chl 3 chlorite has a structural<br />

formula of Mg 2.67 Al 2.52 Fe 0.49 (Si 3.03 Al 0.97 )O 10 (F 0.16 Cl 0.01 (OH) 15.8 ) and records formation<br />

temperatures near 100°C (Table 4.2). Chl 1 , Chl 2 and Chl 3 chlorites are low-Fe chlorite with<br />

low Fe/Fe+Mg ratios (0.14 to 0.21) and high Si contents (Table 4.2), likely reflecting the<br />

chemistry of the felsic quartz-feldspar porphyry host rock with which the hydrothermal<br />

fluid has reacted. The composition of these chlorites includes trace amounts of Mn, F, and<br />

Cl. Syn-ore Chl 2 chlorites have higher F contents (0.16 wt %; Table 4.2).<br />

Coronation Hill Deposit<br />

El Sherana Deposit<br />

Pre-Ore Chl 1 Ore Stage Chl 2 Post-Ore Chl 3 Pre-Ore Chl 1 Ore Stage Chl 2<br />

Oxides Wt % n=16 n=53 n=8 n=22 n=61<br />

SiO2 33.48 30.76 35.64 26.11 28.44<br />

TiO2 0.01 0.01 0.01 0.02 0.02<br />

Al2O3 21.78 21.78 21.88 18.67 17.55<br />

162


Coronation Hill Deposit<br />

El Sherana Deposit<br />

Pre-Ore Chl 1 Ore Stage Chl 2 Post-Ore Chl 3 Pre-Ore Chl 1 Ore Stage Chl 2<br />

FeO 5.63 10.68 5.97 34.40 35.83<br />

MnO 0.08 0.08 0.20 0.01 0.01<br />

MgO 20.74 22.23 18.28 9.15 10.48<br />

CaO 0.50 0.07 0.20 0.02 0.03<br />

Na2O 0.05 0.02 0.05 0.02 0.02<br />

K2O 0.40 0.05 0.72 0.03 0.02<br />

F 0.25 0.39 0.23 0.13 0.16<br />

Cl 0.05 0.03 0.04 0.01 0.02<br />

H2O* 11.91 11.81 12.03 10.81 11.29<br />

Total 94.87 97.93 95.23 99.38 103.86<br />

Atomic proportion<br />

Number of O 28.00 28.00 28.00 28.00 28.00<br />

Tetrahedral sites<br />

Si 3.30 3.03 3.49 2.86 2.98<br />

Al iv 0.70 0.97 0.51 1.14 1.02<br />

Total 4.00 4.00 4.00 4.00 4.00<br />

Octahedral sites<br />

Al vi 2.53 2.52 2.52 2.41 2.17<br />

Ti 0.00 0.00 0.00 0.00 0.00<br />

Fe2+ 0.47 0.89 0.49 3.15 3.14<br />

Mn 0.01 0.01 0.02 0.00 0.00<br />

Mg 3.04 3.26 2.67 1.50 1.64<br />

Interlayers sites<br />

Ca 0.05 0.01 0.02 0.00 0.00<br />

Na 0.01 0.00 0.01 0.00 0.00<br />

K 0.05 0.01 0.09 0.00 0.00<br />

Total 0.11 0.02 0.12 0.01 0.01<br />

Anions<br />

O=F 0.10 0.16 0.10 0.06 0.07<br />

0=Cl 0.01 0.01 0.01 0.00 0.01<br />

OH* 15.67 15.51 15.70 15.81 15.78<br />

Total 25.94 26.37 25.62 26.94 26.80<br />

Fe/Fe+Mg 0.14 0.21 0.16 0.68 0.66<br />

Temperatures o C 163 252 103 305 266<br />

Table 4.2. Representative electron microprobe analyses of various chlorite phases from the<br />

Coronation Hill and El Sherana deposits, including formation temperatures calculated using<br />

the method of Cathelineau (1988). Calculated temperatures are accurate to 30°C based on<br />

replicate analyses.<br />

4.5.2.2. El-Sherana Uranium deposit<br />

Pre-ore alteration Chl 1 chlorite is an Fe-chlorite with a calculated structural formula<br />

of Fe 3.45 Mg 1.5 Al 2.41 (Si 2.86, Al 1.14 )O 10 (F 0.06 (OH) 7.94 ), reflecting the composition of chamosite<br />

(Deer et al., 1992). Calculated formation temperatures are near 300°C (Table 4.2), based on<br />

163


site occupancy (Cathelineau, 1988). Syn-ore chlorites Chl 2 are similar in composition to<br />

pre-ore Chl 1 chlorites with a calculated structural formula of Fe 3.14 Mg 1.64 Al 2.17 (Si 2.98, Al 1.02 )<br />

O 10 (F 0.07 Cl 0.01 (OH) 7.92 ). The calculated formation temperatures are near 260°C,<br />

indistinguishable from those of the syn-ore chlorite from the Coronation Hill deposit. Chl 1<br />

and Chl 2 chlorites contain lower MgO and higher FeO contents relative to those from the<br />

Coronation Hill deposit (Table 4.2). They have high Fe/Fe+Mg ratios (0.66-0.68) and low<br />

Si contents (Table 4.2) likely reflecting the chemistry of the host cherty ferruginous shale,<br />

which has affected the mineralizing hydrothermal fluid. Syn-ore Chl 2 chlorites have trace<br />

amounts of F (0.16 wt%) and Cl (0.02 wt%).<br />

4.5.3. Isotopic compositions of minerals and fluids involved in the U mineralization<br />

Pre-ore Src 1 sericite at the Coronation Hill deposit has δ 18 O values that range from<br />

10.1 ‰ to 14.2 ‰ and δ 2 H values between -76 ‰ and -44 ‰ (Fig. 4.11; Table 4.3). Using<br />

a formation temperature of 160°C based on coexisting chlorite (Table 4.2), Src 1 sericite<br />

formed in equilibrium with a fluid having δ 18 O fluid values ranging from 5.1 ‰ to 7.7 ‰ and<br />

δ 2 H fluid values from -84 ‰ and -52 ‰ (Fig. 4.11 ; Table 4.3 ). In contrast, pre-ore Src 1<br />

sericite at the El Sherana deposit have higher δ 18 O values near 14.2 ‰ and δ 2 H values of -<br />

44 ‰. With a formation temperature of 300°C (Table 4.2) the fluid that equilibrated with<br />

the pre-ore Src 1 sericite at El Sherana has δ 18 O fluid and δ 2 H fluid values of 10.7 ‰ and -60‰,<br />

respectively.<br />

Syn-ore Ms 2 muscovite in textural equilibrium with U 1 uranium mineralization at the<br />

Coronation Hill deposit has δ 18 O values that range from 11.8 ‰ to 13.8 ‰ and δ 2 H values<br />

between -85 ‰ and -67 ‰ (Fig. 4.11; Table 4.3). Using a formation temperature of 250°C<br />

164


calculated from chlorite crystal chemistry (Table 4.2), the calculated δ 18 O fluid and δ 2 H fluid<br />

values for the mineralizing fluid that formed Ms 2 muscovite range from 2.8 ‰ to 4.8 ‰<br />

and -75 ‰ to -57 ‰ respectively (Fig. 4.11; Table 4.3 ). At the El Sherana deposit the<br />

isotopic composition of the mineralizing fluid is not obtainable due to difficulties from<br />

separating pure syn-ore minerals.<br />

Figure 4.11. Calculated δ 2 H and δ 18 O values of fluids in equilibrium with clay minerals from<br />

various alteration stages of the basement rocks at the Coronation Hill and El Sherana deposits<br />

(Table 4.3). Also shown are the meteoric water line and the isotopic composition of standard<br />

modern ocean water (SMOW).<br />

165


Mineral values Temperature Fluid values<br />

Sample ID Deposits δ 18 O δ 2 H o C<br />

δ 18 O fluid δ 2 H fluid<br />

V-SMOW ‰ V-SMOW‰ V-SMOW‰ V-SMOW‰<br />

Basement<br />

Synore muscovite<br />

C29-214 Coronation Hill 11.8 -74 250 2.8 -64<br />

C29-195 Coronation Hill 13.8 -85 250 4.8 -75<br />

C29-202 Coronation Hill 12.0 -67 250 3.0 -57<br />

Pre-ore sericite<br />

C29-189 Coronation Hill 12.7 -73 160 7.7 -81<br />

C77-121 Coronation Hill 10.2 -53 160 5.2 -61<br />

C29-209 Coronation Hill 12.7 -76 160 7.7 -84<br />

C7788 Coronation Hill 11.8 -53 160 6.9 -62<br />

C29-80 Coronation Hill 10.1 -44 160 5.1 -52<br />

C29-80 (dup) Coronation Hill 10.1 -49 160 5.1 -57<br />

E30-81 El Sherana 14.2 -44 300 10.7 -60<br />

Table 4.3. Measured δ 18 O and δ 2 H for muscovite and calculated δ 18 O and δ 2 H values for fluids<br />

in equilibrium with minerals from various alteration stages of the basement rocks at the<br />

Coronation Hill and El Sherana deposits. Temperatures used to calculate the fluid values are<br />

derived from the chlorite crystal chemistry (see Table 4.2)<br />

4.5.4. Geochronology of uraninite and isotopic systematics<br />

Paragenetically constrained uraninite from the Coronation Hill and El Sherana<br />

deposits were dated by LA-HR-ICP-MS (Chipley et al., 2007). Uraninite samples analyzed<br />

have a mottled appearance with micron-size areas that are highly reflective surrounded by<br />

dull areas, which is typical of the ore from both deposits (Figs. 4.6E and 4.6F). The<br />

majority of the U–Pb isotope ratios are significantly discordant, as in other deposits (e.g.<br />

Fayek and Kyser, 1997; Polito et al., 2004). The oldest 207 Pb/ 206 Pb ages are likely to be<br />

closer to the initial formation age because Pb-Pb ratios in U are less susceptible to resetting<br />

by younger fluid events than are the U-Pb ratios (Collins et al., 1954). The errors observed<br />

166


in the U-Pb systems are in large part a function of the U age (Chipley et al., 2007); older<br />

uraninite is more likely affected by multiple alteration events so that errors obtained in the<br />

U-Pb system are greater. Analytical results are presented in Table 4.4 and the U-Pb<br />

concordia results summarized in Table 4.5.<br />

4.5.4.1. U-Pb geochronology of U-rich minerals by LA-HR-ICP-MS<br />

U 1 uraninite grains from the syn-ore stage at the Coronation Hill deposit have U-Pb<br />

isotopic compositions that define a discordia line with an upper intercept age of 1823±140<br />

Ma and an oldest 207 Pb/ 206 Pb age of 1719±31 Ma (2σ, MSWD=2.6) (Fig. 4.12A). Two<br />

samples from the El Sherana deposit have upper intercept ages of 1819±150 Ma (2σ,<br />

MSWD=7.8; Fig. 4.12B) and 1616±100 Ma (2σ, MSWD=1.02; Fig. 4.12C) and the oldest<br />

207 Pb/ 206 Pb ages of 1810±15 Ma and 1825±90 Ma, respectively. The upper intercept and<br />

oldest 207 Pb/ 206 Pb ages at Coronation Hill are identical to oldest 207 Pb/ 206 Pb ages at El<br />

Sherana and can therefore be interpreted as the estimate formation age for U 1<br />

mineralization.<br />

The U-Pb system in uraninite from various samples from the Coronation Hill deposit<br />

records various periods of post-mineralization alteration coincident with major tectonic<br />

events that have affected the area. These ages include 1654±170 Ma and 1638±160 Ma<br />

(Figs. 4.12D and 4.12E respectively), 1510±10 Ma (Fig. 4.12F), 1266±68 Ma (Fig. 4.12G),<br />

and 837±130 Ma (Fig. 4.12H). Similar post-formation alteration dates of uraninite have<br />

been reported from unconformity-type deposits in the Athabasca (Kotzer and Kyser 1993;<br />

Fayek and Kyser 1997; Cloutier et al., 2009) and Kombolgie basins (Polito et al., 2004).<br />

167


Corrected ratios<br />

Apparent ages ( ±2σ, Ma)<br />

Sample I.D Deposit n<br />

206 Pb/ 204 Pb<br />

207 Pb/ 204 Pb<br />

207 Pb/ 206 Pb ±2σ<br />

206 Pb/ 238 U ±2σ<br />

207 Pb/ 235 U ±2σ R‡<br />

207 Pb/ 206 Pb ±<br />

206 Pb/ 238 U ±<br />

207 Pb/ 235 U ± Disc‡<br />

c29-217 Coronation Hill 17 6022 420 0.0703 0.0009 0.1013 0.0042 0.9859 0.0391 0.90 935 27 622 24 695 20 26<br />

C29-214 Coronation Hill 14 21973 1802 0.0813 0.0007 0.0886 0.0038 1.0014 0.0455 0.92 1224 18 545 23 692 23 56<br />

C29-295 Coronation Hill 12 4045 238 0.0609 0.0016 0.0518 0.0060 0.4426 0.0522 0.90 619 56 322 36 349 33 46<br />

C29-217Ac Coronation Hill 10 6216 516 0.0799 0.0012 0.1055 0.0063 1.1987 0.0760 0.90 1188 30 645 37 786 34 46<br />

C29-217Ax Coronation Hill 11 6052 430 0.0706 0.0009 0.1028 0.0049 1.0044 0.0479 0.92 944 25 630 29 704 24 33<br />

Cor29_201.6G Coronation Hill 18 1989 170 0.0885 - 0.1204 - 1.4988 - - 1387 39 742 57 911 58 -<br />

El Sherana 7b El Sherana 14 - - 0.0936 - 0.0751 - 1.1023 - - 1492 - 463 - 729 - -<br />

El Sherana 20 El Sherana 14 1823 - 0.0931 0.0034 0.0787 0.0045 0.9425 0.0351 0.32 1481 65 487 27 666 16 67<br />

Table 4.4. Isotopic data of the U-Pb LA-HR-ICP-MS analysis and apparent-ages for uraninite from the Coronation Hill and El<br />

Sherana deposits. The paragenesis of each type of uraninite analyzed is shown in Figures 4.3 and 4.5 and described in Section<br />

4.2.1.1., R. error correlation coefficient, Disc‡. % discordant. n:number of grains. 206 Pb/ 238 U, 207 Pb/ 235 U, and 207 Pb/ 206 Pb ages are<br />

calculated using equations reported by Ludwig (2000) and expressed in Ma.<br />

168


A<br />

B<br />

C<br />

D<br />

E<br />

F<br />

169


G<br />

H<br />

Figure 4.12. U-Pb concordia diagrams from in situ isotopic analysis by LA-HR-ICP-MS of U-<br />

rich minerals from the Coronation Hill and El Sherana deposits (see text for details).<br />

Mineralization<br />

event<br />

Deposit<br />

Upper<br />

intercept age<br />

(Ma)<br />

Lower<br />

intercept<br />

age (Ma)<br />

207 Pb/ 206 Pb<br />

age (Ma)<br />

MSWD<br />

Figures<br />

a. Primary uranium mineralization.<br />

Coronation Hill 1823±140 362±82 1719±31 2.6 4.10A<br />

El Sherana 1819±150 45±92 1810 7.8 4.10B<br />

El Sherana 1616±100 160±49 1825 1.02 4.10C<br />

b. Post-mineralization alteration events recorded in altered uraninite<br />

Coronation Hill 1654±170 493±35 1169 1 4.10D<br />

Coronation Hill 1638±160 486±32 1152 1.6 4.10E<br />

Coronation Hill 1510±100 257±71 1402 3.8 4.10F<br />

Coronation Hill 1266±68 23±73 1303 2.5 4.10G<br />

Coronation Hill 837±130 122±90 1021 8 4.10H<br />

Table 4.5. Summary of the U-Pb concordia results of U-rich minerals for various events of. a)<br />

primary uranium mineralization and b) post-mineralization alteration event in the<br />

Coronation Hill and El Sherana deposits.<br />

170


4.5.4.2. Pb-Pb geochronology of galena and uraninite by LA-HR-ICP-MS<br />

The Gn 1 Galena- Au 1 gold- U 1 uraninite assemblage from the Coronation Hill deposit<br />

has been dated by means of Pb-Pb dating of cogenetic Gn 1 galena (Table 4.6). A Pb-Pb<br />

isochron from Gn 1 galena in equilibrium with Au 1 gold and U 1 yields an age of 1601±98<br />

Ma (Fig. 4.13A) recording a period of post-ore alteration coincident with the timing of<br />

unconformity-related U mineralization in the Kombolgie Basin (Gulson and Mizon, 1980;<br />

Page et al., 1980; Maas, 1989; Polito et al., 2004). This event is also identical to alteration<br />

periods recorded in the U-Pb system in U 1 uraninite (Figs. 4.12D, 4.12C and 4.12E).<br />

The Pb-Pb system in uraninite from various samples records periods of postmineralization<br />

alteration events as well. Model ages obtained are 1412±86 Ma (Fig. 4.13B),<br />

1282±54 Ma (Fig. 4.13C), 790±240 Ma (Fig. 4.13D), 719±110 Ma (Fig. 4.13E), and<br />

377±67 Ma (Fig. 4.13F).<br />

171


Figure 4.13. Pb-Pb isochron diagrams of galena and uraninite from the Coronation Hill<br />

deposit.<br />

Corrected ratios<br />

Sample<br />

206 Pb/ 204 Pb ±2σ<br />

207 Pb/ 204 Pb ±2σ<br />

207 Pb/ 206 Pb ±2σ<br />

238 U/ 235 U ±2σ<br />

238 U ±2σ<br />

C29-217BPPz1 240.47 15.10 39.36 3.43 0.16 0.004 138 10.32 0.04 0.04<br />

C29-217BPPz6 235.20 10.20 38.02 0.93 0.16 0.004 141 0.84 0.75 0.40<br />

C29-217BPPz4 382.59 41.87 51.10 4.81 0.13 0.007 140 9.41 0.05 0.03<br />

C29-217BPPz3 314.68 25.13 45.96 4.79 0.14 0.008 142 20.44 0.05 0.07<br />

C29-217BPPz2 250.33 23.84 41.60 5.87 0.17 0.007 133 14.17 0.03 0.02<br />

C29-217BPPy 227.09 8.98 38.43 2.50 0.17 0.005 135 7.67 0.17 0.18<br />

C29-217BPPx 230.35 22.68 37.77 5.65 0.16 0.008 142 16.12 0.04 0.04<br />

C29-217BPPw 266.64 25.05 40.11 4.33 0.15 0.005 145 13.02 0.05 0.04<br />

C29-217BPPv 426.15 49.45 54.95 4.24 0.13 0.007 139 2.85 0.15 0.06<br />

C29-217BPPu 294.97 10.66 43.59 1.68 0.15 0.003 140 4.47 0.07 0.05<br />

C29-217BPPt 419.20 20.21 54.79 2.45 0.13 0.003 139 6.64 0.22 0.15<br />

C29-217APPs 252.77 10.49 39.75 1.18 0.16 0.004 141 2.26 0.18 0.13<br />

172


C29-217APPr 295.26 13.37 43.50 1.34 0.15 0.005 139 2.11 0.36 0.28<br />

C29-217APPr1 246.05 19.17 39.12 1.72 0.16 0.006 140 1.97 0.21 0.09<br />

C29-217APPq 242.05 24.61 38.84 5.90 0.16 0.009 143 18.50 0.02 0.01<br />

C29-217APPp 195.35 1.13 32.74 0.53 0.17 0.000 154 2.72 0.02 0.01<br />

C29-217APPo 224.24 53.26 38.51 12.99 0.17 0.021 157 61.47 0.02 0.02<br />

C29-217APPm 236.15 7.59 38.67 1.01 0.16 0.005 139 2.80 0.19 0.11<br />

C29-217APPk 211.22 9.58 36.70 2.11 0.17 0.003 142 7.34 0.07 0.04<br />

C29-217APPh 644.46 57.38 81.54 10.87 0.13 0.006 116 15.61 0.07 0.00<br />

C29-217APPg 187.96 16.40 34.21 3.95 0.18 0.009 145 22.67 0.02 0.01<br />

C29-217APPf 247.09 18.16 40.02 4.70 0.16 0.007 145 16.59 0.01 0.00<br />

C29-217APPd 233.28 9.80 38.43 2.41 0.16 0.006 139 7.35 0.08 0.05<br />

Table 4.6. Isotopic analyses data of the Pb-Pb LA-HR-ICP-MS analysis of galena from the<br />

Coronation Hill deposit. Result of the age model is shown in Figure 4.12A.<br />

4.5.4.3. Chemical Pb age of the uranium mineralization<br />

The chemical Pb age is derived from the assumption that the total Pb present in the<br />

sample is of radiogenic origin, resulting exclusively from the decay of U and Th and that<br />

the mineral has not lost or acquired Pb since it formed (Bowles, 1990). Different Chemical<br />

Pb ages in the same grain reflect variable alteration by subsequent fluids during<br />

recrystallization of the uraninite to new uranium minerals, resulting in a decrease in the<br />

Chemical Pb age and an increase in elements other than uranium. As alteration is expected<br />

to result in a decrease in radiogenic Pb contents, the formation age of the uraninite can be<br />

estimated by extrapolating the Chemical Pb ages to when the concentrations of the<br />

secondary elements (e.g. Ca, Fe and Si) were negligible (e.g. Alexandre and Kyser, 2005).<br />

Chemical Pb ages derived from the composition of U 1 uraninite vary from 341 Ma to<br />

1479 Ma (Table 4.1), suggesting variable recrystallization, Pb loss, and gain of elements<br />

that make up new uranium alteration phases. Regression of the SiO 2 +Fe 2 O 3 +CaO+MnO<br />

contents to zero in U 1 uraninite corresponds to 1822 Ma (Fig. 4.14), which is within error<br />

identical to the U-Pb upper intercept dates of 1823±140 Ma and 1819±150 Ma (Figs. 4.12A<br />

173


and 4.12B), and to 207 Pb/ 206 Pb ages of 1810±15 Ma and 1825±90 Ma (Figs. 4.12B and<br />

4.12C).<br />

Chemical Pb ages (Ma)<br />

Figure 4.14. Plot of element contents in uraninite as a function of chemical Pb ages.<br />

4.6. Discussion<br />

Paragenetic minerals and geochronologic data from the Coronation Hill and El<br />

Sherana deposits indicate that basement rocks of the Koolpin Formation and the overlying<br />

El Sherana Basin sandstones have been affected by multistage deformation and fluid<br />

events, including early stages of basement metamorphism and basin diagenesis followed by<br />

hydrothermal alteration and U mineralization and post-ore alteration (Fig. 4.15, Table 4.7).<br />

Alteration assemblage<br />

Pre-ore Stage Diagenesis Ore Stage Post-ore stage<br />

Src 1 -Chl 1 -Hem 1 -<br />

Qtz 1 Kln1 -Hem 2 -Qtz 2 U 1 -Au 1 -Gn 1 -Chl 4 -<br />

Cal 4 -Hem 4 U 2 -Chl 5 -Cal 5 -Hem 5<br />

Age of formation 1860 – 1840 Ma 1830 – 1820 Ma 1820 Ma Post 1820 Ma<br />

174


Tectonic Event<br />

Formation<br />

temperature<br />

Pre-ore Stage Diagenesis Ore Stage Post-ore stage<br />

Nimbuwah event<br />

Late stage<br />

Nimbuwah event<br />

Post stage<br />

Nimbuwah event<br />

Various tectonic events<br />

160 o to 300 o C - 250 o C ca. 100 o C<br />

δ 18 O fluid (‰) 5.1 to10.7 - 2.8 to 4.8 -<br />

δ 2 H fluid (‰) -81 to -52 - -75 to -57 -<br />

Complexing agent F - , PO 3 -4 , Cl -<br />

Fluid source<br />

low grade<br />

greenschist<br />

metamorphic<br />

Basinal Basinal Meteoric<br />

Table 4.7. Summary of the major results presented in this chapter showing the paragenetic<br />

mineral assemblages and timing of the U mineralization, major thermotectonic events,<br />

formation temperatures, isotopic compositions of fluids, source of fluid events recorded in U<br />

deposits in the SAVMF area. (Ap=apatite, Cal=calcite, Chl=chlorite, Hem=hematite,<br />

Qtz=quartz, Src=sericite, U=uraninite).<br />

4.6.1. Basement metamorphism and basin diagenesis<br />

The pre-ore alteration assemblage Src 1 -Qtz 1 -Chl 1 -Cal 1<br />

(Figs. 4.5 and 4.9) at the<br />

Coronation Hill and El Sherana deposits is similar to alteration patterns described by<br />

Warren and Kamprad (1990) and Wyborn et al. (1991), which they interpreted as related to<br />

early metamorphism and metasomatism of the basement rocks during D 2 deformation<br />

associated with the 1860-1840 Ma Nimbuwah tectonic event. This event predates<br />

deposition of the ca. 1830 Ma El Sherana Group. δ 18 O and δ 2 H isotopic compositions of the<br />

pre-ore Src 1 sericite indicate that the pre-ore alteration fluids at the Coronation Hill and El<br />

Sherana deposits are metamorphic in origin (Fig. 4.11) and therefore associated with<br />

deformation and regional metamorphism during the Nimbuwah event (Fig. 4.15 A). The<br />

high δ 18 O value of pre-ore Src 1 sericite at the El Sherana deposit is indicative of extensive<br />

water/rock interaction. The fluid formed at ca. 300 o C at the El Sherana deposit and ca.<br />

175


160 o C at Coronation Hill. The temperature of ca. 300 o C at the El Sherana deposit is<br />

consistent with fluids derived from low grade greenschist metamorphic processes (Wyborn<br />

et al., 1991). Extensive hematite inclusions in pre-ore Qtz 2 quartz veins (Fig. 4.5D) at the<br />

Coronation Hill deposit suggest that pre-ore metamorphic fluids were highly oxidized (e.g.<br />

Mernagh et al., 1994).<br />

A Sensitive High Resolution Ion Microprobe (SHRIMP) U-Pb age of 1827±3 Ma for<br />

the Pul Pul Rhyolite (Jagodzinski, 1998) near the top of the El Sherana Group indicates that<br />

sediments of the El Sherana Basin could have begun to accumulate well before ca. 1830<br />

Ma during deformation associated with the Nimbuwah event (Fig. 4.15B). Ahmad et al.<br />

(2006) suggested that the initial deposition of El Sherana Group sediments occurred at<br />

around ca. 1865 Ma associated with graben formation centred on the South Alligator River<br />

valley. Therefore deposition of the El Sherana Basin sediments took place rapidly in a<br />

tectonically active environment associated with the Nimbuwah Orogen (Friedmann and<br />

Grotzinger, 1994). The prevailing geothermal gradient must have been higher compared to<br />

the younger and larger Kombolgie Basin.<br />

Petrographic analysis of the Coronation sandstone at the El Sherana deposit indicate<br />

features typical for diagenetic alteration processes (Fig. 4.10), including well developed<br />

Qtz 2 quartz overgrowths outlining detrital Qtz 0 quartz grains accompanied by partial to<br />

complete resorption and pressure solution features that occurred during compaction at deep<br />

burial levels. Extensive Kln 1 kaolinite alteration that is associated with development of<br />

secondary porosity indicates that there were diagenetic aquifers in the El Sherana Basin<br />

sandstone, which could have conducted U-bearing basinal brines (Fig. 4.15B). This<br />

176


alteration is similar to sandstone alteration of Proterozoic basins in Canada and Australia<br />

(Wilson and Kyser, 1987; Kotzer and Kyser, 1995; Hiatt et al., 2001; Polito et al., 2005).<br />

Koolpin Formation<br />

Carbonaceous Shale<br />

Koolpin Formation<br />

Carbonaceous Shale<br />

177


Figure 4.15. Conceptual genetic model for U mineralization in the SAVMF. A. Deformation,<br />

metamorphism and metasomatism of the basement lithologies during the 1860-1840 Ma<br />

Nimbuwah tectonic event. The pre-ore alteration Src 1 -Qtz 1 -Chl 1 -Cal 1<br />

formed from<br />

metamorphic fluids between 150 o and 300 o C. B. Deposition of the El Sherana Group during<br />

extensional tectonism associated with the Nimbuwah event is followed by basin-diagenesis<br />

during burial. Subsequently, reactivation of the El Sherana-Palette fault system more focused<br />

in zones of pre-existing tectonic weakness that were previously affected by an early pre-ore<br />

alteration, created structural traps for fluid flow, hydrothermal alteration and U<br />

mineralization. The ore-forming fluids originated in the El Sherana Basin and descended<br />

downward into the basement rocks along fracture systems. Interaction of the oxidizing<br />

basinal brine with reducing lithologies of the Koolpin Formation led to deposition of the ore<br />

metals at ca. 1820 Ma. C. U 1 was altered during multiple stages of fluid overprinting related<br />

to fault reactivation during successive regional thermotectonic events that occurred over a<br />

period of at least 1.8 Gyrs. These alteration events resulted in subsequent alteration of the<br />

deposits and the formation of the post-ore mineral assemblage including widespread<br />

secondary uraninite occurring as fracture-filling veinlets.<br />

Koolpin Formation<br />

Carbonaceous Shale<br />

178


4.6.2. Hydrothermal alteration and uranium mineralization<br />

Following metamorphism and pre-ore alteration of the basement and diagenesis of<br />

the overlying Coronation sandstone of the El Sherana Basin, the rocks were affected by the<br />

main U mineralization event associated with an intense brecciation that is likely related to<br />

tectonic reactivation along the El Sherana-Palette fault system (Lally and Bajwah, 2006).<br />

Petrographic and textural observations indicate a spatial relationship between the intensity<br />

of the pre-ore alteration and the location of the U mineralization. Fault reactivation was<br />

likely more focused in zones of pre-existing tectonic weakness that were previously<br />

affected by pre-ore alteration, creating structural traps that were open for fluid flow,<br />

hydrothermal alteration, and uranium mineralization. Syn-ore Ms 2 muscovite has δ 18 O and<br />

δ 2 H isotopic compositions typical of low latitude basinal brines (Fig. 4.11) similar to those<br />

of unconformity-related U-deposits in the Athabasca (e.g. Fayek and Kyser, 1997; Cuney<br />

and Kyser, 2008) and Kombolgie basins (e.g. Polito et al., 2004, 2006). The ore-forming<br />

fluid most likely originated in the El Sherana Basin and descended downward into the<br />

basement rocks along fracture systems created by brittle reactivation of the El Sherana-<br />

Palette fault system (Fig. 4.15B). The mineralizing brine contained U, Au and PGE, the<br />

former most likely leached from detrital U-bearing minerals (e.g. monazite and apatite) in<br />

the El Sherana Basin sandstone, and the Au and PGE from alteration of felsic volcanics and<br />

mafic rocks that comprised much of the El Sherana Group subsequent to burial and<br />

diagenesis (Fig. 4.15B).<br />

The syn-ore alteration is associated with precipitation of U 1 ±Au 1 mineralization in<br />

faulted and brecciated contact between reducing carbonaceous and cherty ferruginous shale<br />

179


of the Koolpin Formation, while deposition of ±U 1 -Au 1 -PGE occurred in fractured and<br />

sheared quartz-feldspar porphyry at the Coronation Hill deposit. The U 1 -Gn 1 -Au 1 -Cpy 2 ore<br />

assemblage formed at temperatures of ca. 250 o C, based on chlorite crystal chemistry (Table<br />

4.4, Cathelineau, 1988). Mernagh et al. (1994) indicated a temperature of 140 o C based on a<br />

microthermometry study of quartz veins at Coronation Hill. However, cross-cutting<br />

relations indicate that these quartz veins formed earlier, during the pre-ore alteration stage<br />

and therefore, pre-date the U mineralizing event. Chl 2<br />

chlorites at Coronation Hill<br />

paragenetically associated with the Qtz 2 quartz veins have formation temperatures near<br />

160 o C (Table 4.4), similar to temperatures proposed by Mernagh et al. (1994).<br />

The presence of small amounts of fluorine and chlorine in syn-ore Chl 2 chlorite<br />

(Table 4.4) and phosphate in U 1 uraninite (Table 4.1) suggest that fluorine, chlorine, and<br />

phosphate were important ore transporting complexes. Uranium is mobile under oxidizing<br />

conditions (Cuney and Kyser, 2008) and in oxidized aqueous basinal brines between pH 4<br />

and 7.5, uranyl-phosphate complexes are the important species (Cuney and Kyser, 2008),<br />

while chlorine- and fluorine-complexes are dominant in fluids under acidic conditions at<br />

temperatures up to 200°C (Romberger, 1984; Kojima et al., 1994). Interaction of oxidizing<br />

mineralizing fluid with the reducing Fe-rich interlayered cherty ferruginous shale of the<br />

Koolpin Formation may have led to deposition of the U-ore metals at El Sherana.<br />

Petrographic observation indicates that early Py 1 pyrite (Fig. 4.6D) in the basement rock<br />

was a reductant so that Fe 2+ or S in Py 1 pyrite would have acted as reductants for U 6+ .<br />

In hydrothermal fluids, Au and PGE are soluble as chloride complexes (Mountain<br />

and Wood, 1988a, 1988b), which are more important in oxidized, low-temperature, acidic,<br />

180


and saline fluids (Mernagh et al., 1994). Therefore, the occurrence of Au 1 -PGE±U 1<br />

associated with the quartz feldspar porphyry at the Coronation Hill deposit may have<br />

resulted from acid neutralization and moderate reduction resulting from fluid interaction<br />

with feldspathic host rocks (Wyborn, 1992; Mernagh et al., 1994). Ore metal deposition is<br />

therefore, strongly controlled by the composition of the host lithology (e.g. Needham and<br />

Stuart-Smith, 1984; Needham, 1988b)<br />

Our results corroborate Ayres (1975) suggestion that the Au source was the El<br />

Sherana Basin volcanics, particularly the Pul Pul Rhyolite of the Coronation sandstone.<br />

Mernagh et al. (1994) indicated that highly oxidizing, basinal, low temperature and low-pH<br />

solutions transported simultaneously Au, PGE and U as oxy-chloride and chloride species,<br />

but proposed the Kombolgie Basin sediments as the source of the mineralizing fluids. Sener<br />

et al. (2002) suggested that the nature of the ore elements and alteration at the Coronation<br />

Hill deposit is consistent with deposition from acid and oxidizing fluids.<br />

Au and PGE are found in ore grade concentrations in unconformity-related uranium<br />

deposits. For example, U ore in the Jabiluka deposit contains Au grading 10 g/t and<br />

significant concentrations of Pd (Wilde et al., 1989). Unconformity-related U deposits in<br />

the Athabasca Basin in Canada have also been reported to contain minor concentrations of<br />

Au and PGE (Wray et al., 1985).<br />

LA-HR-ICPMS data indicate that initial U precipitation occurred in the basement at<br />

ca. 1820 Ma (Figs. 4.12A to 4.12C). The 1822 Ma chemical Pb age of U 1 uraninite (Fig.<br />

4.14) at Coronation Hill is identical to the U-Pb concordia ages at the El Sherana deposit<br />

(Figs. 4.12A to 4.12C). These ages suggest that the U mineralization in the SAVMF formed<br />

181


at ca. 1820 Ma, approximately 40 Myr after initial deposition and diagenesis of the EL<br />

Sherana Basin.<br />

The timing of the U-Au-PGE mineralization at the Coronation Hill at El Sherana<br />

deposits is coincident with a period of regional extension tectonism and granite intrusion in<br />

the Pine Creek Orogen (Ferguson et al., 1980a; Stuart-Smith and Needham, 1984;<br />

Needham et al., 1988). These granites include the 1820±8 Ma Malone Creek Granite<br />

(Edgecombe et al., 2002), which intruded El Sherana Group rocks, the ca. 1820 Ma<br />

calcalkaline Cullen Suite granite intruding the Pine Creek Orogen (Stuart-Smith et al.,<br />

1993) and the 1818±3 Ma Fenton Granite in the Gold Ridge area (Needham et al., 1988).<br />

4.6.3. Late stage alteration and resetting events<br />

Post-ore alteration recorded in uraninite samples indicate that the U-Pb and Pb-Pb<br />

isotopic system in U 1 uraninite and cogenetic Gn 1 galena were reset during multiple fluid<br />

events related to fault reactivation during successive regional thermotectonic events that<br />

occurred over a period of at least 1.8 Gyrs (Figs. 4.15A and 4.16). These alteration events<br />

resulted in subsequent alteration of the El Sherana and Coronation Hill deposits and<br />

formation of the post-ore mineral assemblage including widespread secondary uranium<br />

minerals (Figs. 4.6E and 4.6F) occurring as fracture-filling veinlets (Fig. 4.7A).<br />

The U 1 mineralization records an alteration event at ca. 1720 Ma, consistent with the<br />

timing of the Oenpelli dolerite intrusion of the Kombolgie Basin (Fig. 4.16, Sweet et al.,<br />

1999; Kyser et al., 2000). This event is coincident with the timing of post-ore alteration<br />

event at the Ranger (1737±20 Ma, Ludwig et al., 1985, 1987) and Koongarra U deposits<br />

(1800 Ma to 1700 Ma, Hills and Richards, 1976). Polito et al. (2004) interpreted ages of<br />

182


1696 Ma - 1715 Ma from pre-ore sericite in altered schist at the Nabarlek deposit to be<br />

related to resetting during intrusion of the Oenpelli dolerite at 1720 Ma.<br />

The 1601±98 Ma model age of Gn 1 galena (Fig. 4.13A) from the Coronation Hill<br />

deposit is coincident with formation of unconformity-related U mineralization in the<br />

Kombolgie Basin (Fig. 4.16; e.g. Page et al., 1980; Riley et al., 1980; Maas, 1989; Polito et<br />

al., 2004). This timing is coincident with Mesoproterozoic compressional tectonism and<br />

metamorphism during the early Isan Orogen (1600 Ma - 1580 Ma) in northern Australia<br />

(Hand, 2006). Peak Isan Orogen (MacCready et al., 1998) is recorded by alteration of<br />

uraninite at ca. 1500 Ma (Fig. 4.16), which deformed the McArthur Basin (Page and Bell,<br />

1986; Connors and Page, 1995). This event is followed by fault reactivation at ca. 1400 Ma<br />

(Figs. 4.13B, 4.16) and is attributed to deformation related to post-peak Isan exhumation<br />

and crustal extension (Fig. 4.16, Spikings et al., 2001). Similar U-Pb ages from Jabiluka<br />

uraninite of 1473±40 Ma (Ludwig et al., 1985) and 1400 Ma from Nabarlek (Polito et al.<br />

2004) are interpreted to be related to this late alteration event.<br />

An alteration event at ca. 1300 Ma (Fig. 4.16) records widespread intrusive activity<br />

within the Pine Creek Orogen. These events correlate with the intrusion of the<br />

Maningkorrirr phonolitic dikes and the Derim Derim Dolerite at ca. 1316±40 and 1324±4<br />

Ma, respectively (Sweet et al., 1999). Extensive alteration between 1200 Ma - 1250 Ma<br />

(Fig. 4.16) corresponds to tectonic activity during the Proterozoic Australia assembly as an<br />

early component of Rodinia, involving the amalgamation of West and North Australian<br />

cratons, followed by collision with the South Australian craton (Myers et al., 1996). At ca.<br />

1140 Ma (Fig. 4.16) Australia and Laurentia amalgamated during the Grenville Orogen<br />

183


culminating with the formation of Rodinia (Wingate et al., 2002; Li et al., 2008). Alteration<br />

of uraninite at ca. 1380 Ma and 1100 Ma is also recorded at Jabiluka and Nabarlek (Gulson<br />

and Mizon, 1980; Polito et al., 2004).<br />

Figure 4.16. Distribution of 207 Pb/ 206 Pb ages for 176 uraninite grains along with the timing of<br />

various U mineralization and tectonic events that affected the South Alligator Valley area.<br />

Alteration peaks at ca. 1000 Ma and 800 Ma (Fig. 4.16) are consistent with periods of<br />

Rodinia breakup (Dalziel, 1991; Li et al., 2008) with the rifting of Laurentia and Gondwana<br />

along the eastern margin of Proterozoic Australia at ca. 900 Ma-850 Ma and formation of<br />

the Paleo-Pacific Ocean (Wingate and Giddings, 2000; Harlan et al., 2003b). These<br />

alteration events are also recorded in uraninite from Ranger, Jabiluka, Nabarlek and<br />

184


Koongarra, and deposits in the SAVMF (Hills and Richards, 1972; Gulson and Mizon,<br />

1980). Subsequent fault reactivation and alteration continued into the Phanerozoic at ca.<br />

530 Ma - 510 Ma (Fig. 4.16), coincident with the formation of Cambrian to early<br />

Ordovician Georgina Basin (Shergold and Druce, 1980) and the extrusion of the 513 Ma<br />

Antrim Volcanics (Hanley and Wingate, 2000) outpouring early Cambrian Plateau over<br />

most of the North Australian Craton (Myers et al., 1996). Following a period of apparent<br />

tectonic quiescence from the Ordovician to Devonian (Fig. 4.16), uraninite alteration<br />

occurred during the Carboniferous coincident with tectonic activities during continental<br />

rifting that separated Asian terranes to the north from the NW Australian Gondwana to the<br />

south at around ca. 350 Ma - 270 Ma (Metcalfe, 2001).<br />

Lower intercept ages in the U-Pb system of 122±90 Ma, 45±92 Ma and 23±73 Ma<br />

(Figs. 4.12H, 4.12G and 4.12B, respectively) and recent chemical Pb ages of uraninite<br />

(Table 4.1) record tectonic activities along the western active margin of the Australian plate<br />

including the Mesozoic breakup between Greater India and Australia at ca. 136 Ma and<br />

various recent collisional processes and plate boundary reorganizations north and east of<br />

Australia during the Cenozoic (Müller et al., 2000).<br />

4.7. Conclusions<br />

Hydrothermal alteration, uranium mineralization, and late remobilization events have<br />

affected rocks of the SAVMF during protracted tectonic evolution that spans over 1.8 Gyrs<br />

(Table 4.7). Results indicate that these deposits formed at ca. 1820 Ma, subsequent to<br />

deposition of the El Sherana Group and are therefore, older than the unconformity-related<br />

U mineralization at 1650-1675 Ma in the Kombolgie Basin. The formation of these<br />

185


deposits is related to fluids derived from diagenetic processes in sandstone of the El<br />

Sherana Group and have particularly affected zones of preexisting weakness of the<br />

basement rocks that were previously altered by a metamorphic pre-ore alteration stage. The<br />

source of U was U-bearing minerals (monazite, apatite) in the sandstone and felsic rocks of<br />

the El Sherana Group. The Au and PGE are derived from basement felsic and mafic rocks,<br />

as proposed by Wyborn et al. (1997). Therefore, these deposits can be classified as<br />

unconformity-related uranium mineralization like those in the younger overlying<br />

Kombolgie Basin.<br />

Results from Stewart (1965) indicate that felsic volcanic rocks of the Pul Pul Rhyolite<br />

of the El Sherana Group have above background radioactivity. Analyses indicate<br />

concentration of up to 25-30 ppm U in these volcanic rocks (Ayers, 1975). Fluid inclusion<br />

data (Mernagh et al., 1994) indicate that the fluids were saline, acidic, calcium-dominated<br />

(ca. 26 wt% CaCl 2 equiv) and highly oxidizing. Such fluids would have been particularly<br />

favorable for uranium transport (Hedges et al., 1984) as uranyl-complexes in basinal brines<br />

in the sandstone aquifer above the unconformity. Tectonic reactivation of the El Sherana-<br />

Palette fault during deformation associated with the Nimbuwah event would have provided<br />

structural conduits for hydrothermal basinal brines that descended downward into the<br />

metamorphic basement rocks. Interaction between the oxidized U-bearing basinal brines<br />

and the reducing carbonaceous shale of the Koolpin Formation would have led to U<br />

reduction and precipitation. The occurrence of Au and PGE associated with quartz feldspar<br />

porphyry at Coronation Hill may have resulted from acid neutralization and reduction<br />

186


during fluid interaction with feldspathic host rocks (Mernagh et al., 1994), thus indicating<br />

that ore metals deposition is also controlled by lithology composition.<br />

Subsequent to their formation, the uranium deposits in the SAVMF have been<br />

affected by late alteration fluid event related to both near and far-field tectonic events that<br />

formed much of the secondary U minerals. These late events may represent incursion and<br />

circulation of meteoric water through structurally reactivated fault zones (e.g. Kotzer and<br />

Kyser, 1995) that remain areas of preferential fluid flow (e.g. Fayek and Kyser, 1997).<br />

187


CHAPTER 5<br />

GENERAL DISCUSSION<br />

5.1. Introduction<br />

Results presented in the preceding chapters contribute in understanding the<br />

Proterozoic tectonic evolution and U mineralizing system in successor basins in the<br />

Beaverlodge area of Northern Saskatchewan, Canada, and the South Alligator River area of<br />

the Northern Territories, Australia. Based on structural, geochemical, geochronological and<br />

petrographic relationships, this research has evaluated the character and formation of U<br />

deposits in successor basins by detailing the relative timing relationships between<br />

deformation and fluid events, elucidating the timing, nature and origin of ore-forming<br />

fluids, identifying critical key structural and geochemical factors controlling U<br />

mineralization, and presenting a conceptual genetic model for U mineralization in successor<br />

basin areas (Fig. 5.1.).<br />

The following elucidates the general models for uranium mineralizing systems in<br />

Paleoproterozoic successor basins, compares them with the unconformity-related uranium<br />

mineralization in the younger, U-rich Athabasca and Kombolgie basins and discusses the<br />

potential implication for uranium metallogeny and exploration strategy in others<br />

Paleoproterozoic successor basins in Finland and Guyana.<br />

188


Figure 5.1. Generalized model for different types of U mineralizing systems manifest<br />

in Paleoproterozoic successor basins.<br />

5.2. Uranium mineralizing system in Paleoproterozoic successor basins: A<br />

generalized model<br />

Rocks underlining Paleoproterozoic successor basins in the Beaverlodge area in<br />

Canada and the South Alligator River area in Australia record a history of dynamic<br />

geologic events that span more than 2 Gyr. These geologic events contributed significantly<br />

to the development of multifarious U deposits (Fig. 5.1) in these areas. Subsequent to major<br />

deformation that affected the supracrustal rocks during the Paleoproterozoic, sedimentary<br />

189


ed-bed strata and associated volcanic rocks were deposited in continental environments<br />

along pre-existing faults that were reactivated during the waning stage of a major orogen.<br />

Most of the U deposits in successor basins are structurally controlled and are affected by<br />

repeated deformation events that affected the host rock.<br />

In the Beaverlodge area, the Martin Lake Basin formed at ca. 1820 Ma (Langford,<br />

1981; Morelli et al., 2001) but was immediately deformed, fractured and folded during<br />

tectonism following the peak Trans-Hudson Orogen (Hoffman, 1990; Corrigan, 2009). The<br />

main U mineralization event predated the deposition of the Martin Lake successor basin<br />

and is associated with regional metamorphism and deformation during early stages of the<br />

Trans-Hudson Orogen (Dieng et al., 2011). These deposits are classified as metamorphicrelated<br />

uranium mineralization system (Fig. 5.1) (e.g Cuney and Kyser, 2008).<br />

In the South Alligator River area, the El Sherana Basin formed at ca. 1830 Ma<br />

(Jagodzinski, 1992) during crustal extension following the peak Nimbuwah event that<br />

reactivated previous fault zones (Needham et al., 1988). The main U mineralizing event<br />

that affected both the supracrustal rocks and sediments of the successor basin is associated<br />

with basinal brines generated from the successor basin itself. Deposition of the El Sherana<br />

Basin is followed by a period of relative tectonic quiescence during which time<br />

sedimentary and associated volcanic rocks of the El Sherana group were altered by basinal<br />

brines capable of transporting and depositing the scavenged U at the unconformity between<br />

the basement rock and sediments of the El Sherana Basin. These deposits are variants of<br />

unconformity-related U mineralization system (Fig. 5.1), similar to those in the younger<br />

overlying Kombolgie Basin (e.g. Polito et al., 2004, 2006).<br />

190


Tectonic during and immediately after basin formation plays a critical role in the<br />

formation of unconformity-related uranium mineralization. Deformation may prevent<br />

alteration of the successor basin sediments by inhibiting fluids circulating into the basin<br />

thereby reducing fluid-rock interaction. This is corroborated by the weakly to unaltered<br />

character of the Martin Lake Basin sediments that were deposited at ca. 1820 Ma during<br />

active tectonism associated with the Trans-Hudson Orogen (Hoffman, 1989). In contrast,<br />

deformation was less intense in the South Alligator River area during the deposition of the<br />

El Sherana Basin at ca. 1830 Ma immediately after the peak Nimbuwah Orogen (Needham<br />

et al., 1988), thus promoting fluid-rock interaction and alteration of the El Sherana Basin<br />

sediments. The spatial association of U deposits with successor basins may result from the<br />

presence of pre-existing lines of tectonic weakness that focus both near and far field<br />

deformation and can therefore be easily reactivated, creating structural traps that are<br />

favorable for hydrothermal fluid flow and uranium mineralization.<br />

5.2.1. Early U mineralization<br />

Supracrustal rocks underlying successor basins are commonly affected by multiple<br />

tectonic events and thereby metamorphosed, granitized and intruded by granitic rocks. In<br />

the Beaverlodge area, early U mineralization predating the formation of the successor basin<br />

is associated with thermotectonic activities accompanied by magmatism, regional<br />

metamorphism, and hydrothermal alteration. On the basis of their structural setting, host<br />

rock geology, timing and style of mineralization, the early U mineralization can be divided<br />

into two main U mineralizing systems: the granite-related U mineralization and<br />

metamorphic-related U mineralization systems (Fig. 5.1). Similarly, based on the origin and<br />

191


character of the fluid that formed them, early vein- and cataclasite-type mineralization can<br />

be classified as metamorphic-related U mineralization.<br />

5.2.1.1. Granite-related uranium mineralization<br />

Extensional deformation during deposition of Neoarchean to Paleoproterozoic<br />

supracrustal rocks of the Murmac Bay Group may have provided channel ways for granite<br />

intrusions. In the Beaverlodge area, the Gunnar granite (Hartlaub et al., 2004a) was<br />

emplaced along extensional fault systems (Fig. 5.2, Mary’s Channel and Frasier) that likely<br />

formed during the ca. 2.35 Ga Arrowsmith Orogen (Hartlaub et al., 2007; Berman et al.,<br />

2010), concomitant with deposition of the Murmac Bay Group (Ashton et al., 2009b). The<br />

magmatic-related U mineralization in the Gunnar deposit produced about 7,420 t of U<br />

metal from ores grading 0.15% U (Evoy, 1986). Isotopic compositions of syn-ore minerals<br />

indicate that the U mineralization was derived from magmatic fluids that exsolved from the<br />

albitized granitic rock itself during its emplacement (Fig. 5.1). Uraninite formed when<br />

reduced and cooling exsolved residual hydrothermal magmatic fluids near 315 o C were<br />

deposited in voids left after quartz and calcite dissolution. The loss of a large volume of<br />

CO 2 during magmatic-fluid degassing controlled U precipitation. However, the U<br />

associated with the granite-related mineralization is minor in the deposit and is overprinted<br />

later by more substantial breccia-type U mineralization. The metasomatism that affected the<br />

granite produced an albitized rock that is more competent than the surrounding rocks and<br />

therefore capable of focusing brittle reactivation caused by tectonic events. The age of the<br />

magmatic-related U mineralization at Gunnar is not known with certainty because of the<br />

multiple late fluid events that affected the uraninite, but it can be bracketed between the age<br />

192


of the 2321±3 Ma Gunnar granite and the age of the 1.85 Ga major brecciation event that<br />

overprinted the mineralized albitized granite.<br />

Figure 5.2. Geologic cross-section through the Gunnar deposit (modified from Evoy, 1960)<br />

The metasomatic-type U mineralization at Gunnar is genetically linked to the albite<br />

metasomatism of the Gunnar granite because all of it was derived from the same magmatichydrothermal<br />

alteration process. Ashton (2010) reported albite metasomatic alteration<br />

associated with U mineralization at several localities in the Beaverlodge area but suggested<br />

that this alteration affected a variety of rock types of different ages. There are a number of<br />

granite intrusions in the Beaverlodge area that are coeval with the Gunnar granite, including<br />

the Cameroon, Mackintosh Bay, Rogers Lake and White granites (Fig. 2.2). Whether the<br />

same hydrothermal magmatic-related U mineralization system affected these granites is<br />

currently not known.<br />

193


5.2.1.2. Metamorphic-related uranium mineralization<br />

5.2.1.2.1. Early-vein and cataclasite-type uranium mineralization<br />

Minor U mineralization associated with early veins and cataclasite in the Beaverlodge<br />

area formed at ca. 2.29 Ga during late stages of the ca. 2.35 Ga Arrowsmith Orogen and<br />

was triggered by reactivation of basement-rooted shear zones during exhumation, resulting<br />

in overprinting of mylonite by cataclasite and early tensional veins (Fig. 5.3; Dieng et al.,<br />

2011). The δ 13 C and δ 18 O values and chlorite crystal chemistry of syn-ore minerals are<br />

consistent with formation of Ca-F-Mg-rich fluids at ca. 310 o C derived from retrograde<br />

metamorphic processes during exhumation and erosion of the supracrustal rocks. Hydraulic<br />

fracturing and hydration during decompression and exhumation is interpreted as the main<br />

mechanism for the early tensional vein formation. The associated pressure decrease and<br />

fluid decompression during fracturing changed the stability of the U-carbonate complexes,<br />

decreased the temperature of the fluids, and likely promoted U precipitation into fractures.<br />

Although this style of U mineralization is limited, it indicates that the Beaverlodge area<br />

probably had elevated reserves of leachable U.<br />

5.2.1.2.2. Breccia-type uranium mineralization<br />

The major event of U mineralization in the Beaverlodge area coincided with massive<br />

brecciation at ca. 1850 Ma triggered by reactivation of fault zones that breached the host<br />

rock (Fig, 5.3) during the early stages of the Trans-Hudson Orogen. The δ 18 O, δ 13 C and δ 2 H<br />

values and chlorite crystal chemistry of syn-ore minerals indicate that the ore-forming<br />

brines originated from a ca. 330 o C, Ca-Na-F-containing metamorphic-hydrothermal fluid.<br />

194


Figure 5.3. Schematic illustration of the tectonic evolution of the Main Ore Shear Zone and<br />

the Saint Louis Fault on a crustal scale showing the spatial distribution of breccias, cataclasite<br />

and mylonite. A: Mylonitisation with oblique-normal and lateral dextral sense of motion in<br />

the ductile environment. B: Cataclasite overprinted the ductile shear zones subsequent to<br />

exhumation of the fault zone to shallower crustal depths. C: Breccias formed during<br />

reactivation the ductile-brittle fault zone in the brittle environment presumably at near<br />

surface conditions.<br />

These fluids were likely derived from dehydration of hydrous minerals and ascended<br />

upward along fracture systems and dilatant jogs that resulted from brittle reactivation of<br />

early shear zones (Fig. 5.3), thus providing pathways for metamorphic fluids that<br />

scavenged and transported U-bearing fluids (Fig. 5.1). Uranium precipitation in the breccia<br />

system was likely caused by a decrease in the solubility of the U-carbonate complexes<br />

resulting from a loss of CO 2 and a decrease in temperature caused by fluid decompression<br />

195


during brecciation or reduction as the U-mineralizing fluid reacted with reducing<br />

metamorphic host rocks (e.g. Skirrow et al., 2009).<br />

Strong structural control is reported in most metamorphic-related U systems, with U<br />

originating from saline, F-rich and CO 2 -bearing, Na-Ca brines (Skirrow et al., 2009) and<br />

commonly hosted by reactivated fault zones (Cuney and Kyser, 2008). In the Beaverlodge<br />

area, the high δ 18 O values of metamorphic fluids reflect the low water/rock ratios, and<br />

hence the relatively low volume of fluid, during hydrothermal alteration, preventing the<br />

transport of enough U by metamorphic brines to produce economically significant U<br />

mineralization. This is consistent with Plant et al. (1999) suggestion that U deposits of<br />

metamorphic-dehydration origin are of low grade and tonnage. The Beaverlodge U deposits<br />

are similar to metamorphic-related U mineralization systems associated with Nametasomatism<br />

(Cuney and Kyser, 2008) and related to the global 1.9-1.75 Ga alkalimetasomatism<br />

(Cuney, 2010).<br />

5.2.2. Successor basin-related U mineralization<br />

5.2.2.1. Volcanic-related U mineralization<br />

Volcanic-related U mineralization in the Beaverlodge area was triggered by extrusion<br />

of the 1818±4 Ma alkaline mafic dikes (Morelli et al., 2009) during deposition of the<br />

Martin Lake Basin (Langford, 1981; Mazimhaka and Hendry, 1984). Extrusion of the mafic<br />

dikes is coincident with periods of active tectonism related to back-arc extension following<br />

peak Trans-Hudson Orogen (Hoffman, 1989; Corrigan, 2009). The δ 18 O, δ 13 C and δ 2 H<br />

values and chlorite crystal chemistry of syn-ore minerals indicate that the U mineralization<br />

formed at ca. 1820 Ma from ca. 320°C, Mg- and Fe-rich magmatic fluids that were likely<br />

196


exsolved from the mafic dikes during their emplacement (Fig. 5.1). Faulting and fracturing<br />

of the host rock during extrusion of the mafic dikes provided pathways for exsolved<br />

magmatic-hydrothermal mineralizing solutions. The key geochemical process leading to U<br />

deposition was changes in the pH or Eh state of the mineralizing solution through<br />

interaction between the magmatic hydrothermal brine and fluids resident in metamorphic<br />

host rocks that destabilized the uranyl-phosphate complexes.<br />

5.2.2.2. Unconformity-related U mineralization<br />

Minor U-veins associated with fluids generated in the 1750 Ma Athabasca Basin<br />

(Kyser et al., 2000) formed at ca. 1620 Ma in the Beaverlodge area and were triggered by<br />

tectonic reactivation of fault zones during the Mesoproterozoic Mazatzal Orogen (Eisele<br />

and Isachsen, 2001). This deformation caused minor faulting and fracturing of the basement<br />

and basin rocks followed by deposition of Athabasca-type U-mineralization observed in the<br />

Ace-Fay and Martin Lake deposits (Dieng et al., 2011). δ 18 O and δ 2 H values and chlorites<br />

crystal chemistry of syn-ore chlorite indicates that U mineralization formed oxidizing<br />

basinal brines near 235°C, identical to those of the unconformity-related U-deposits in the<br />

Athabasca Basin (e.g. Fayek and Kyser, 1997). Syn-ore mineral crystal chemistry indicates<br />

that F - , Chl - , CO 2- 3 , and PO 3- 4 were likely present in the ore assemblage and could be<br />

effective ligands for complexing U. The key process controlling U deposition in vein<br />

systems was likely reduction of the oxidizing U-bearing basinal brines through interaction<br />

with reducing basement lithologies (e.g. Hoeve and Quirt, 1984; Cuney and Kyser, 2008).<br />

U mineralization in the El Sherana Basin in the South Alligator River area coincided<br />

with a hydrothermal alteration event during later stages of the Nimbuwah tectonic event at<br />

197


ca. 1820 Ma that triggered reactivation of the El Sherana-Palette fault system (Lally and<br />

Bajwah, 2006). Faulting and brecciation was likely more focused in zones of pre-existing<br />

tectonic weakness that were previously affected by pre-ore alteration, thus creating<br />

structural traps near the unconformity that were open to fluid flow, hydrothermal alteration<br />

and U mineralization. The mineralization formed when a 250 o C, low latitude, oxidizing, U-<br />

bearing basinal brine from diagenetic aquifers in the Coronation sandstone, similar to those<br />

of unconformity-related U-deposits in the Athabasca (e.g. Cuney and Kyser, 2008) and<br />

Kombolgie basins (e.g. Polito et al., 2004, 2006), descended downward into the<br />

unconformity along fracture systems created by brittle reactivation of the El Sherana-<br />

Palette fault system (Fig. 5.1). At Coronation Hill, the mineralizing brine contained U, Au<br />

and PGE, the former most likely leached from detrital U-bearing minerals in the El Sherana<br />

Basin sandstone, and the Au and PGE from alteration of felsic volcanics and mafic rocks<br />

that are part of the El Sherana Group (Jagodzinski, 1992). Interaction of oxidizing basinal<br />

brines with the reducing Fe-rich ferruginous shale of the Koolpin Formation may have led<br />

to deposition of the U-ore metals at El Sherana. The U, Au and PGE ore associated with the<br />

quartz feldspar porphyry at Coronation Hill may have resulted from acid neutralization and<br />

moderate reduction caused by fluid interaction with feldspathic host rocks (Needham,<br />

1988b; Wyborn, 1992; Mernagh et al., 1994).<br />

5.2.3. Late alteration events<br />

Subsequent to their formation, U deposits in the Beaverlodge and South Alligator<br />

River areas were affected by alteration events associated with multiple stages of<br />

deformation and fluid events that are related to both near and far-field geodynamic events<br />

198


and coincident with the timing of major thermotectonic events that have affected these<br />

areas. Results show that periods of alteration and remobilization events recorded over 2 Gyr<br />

of tectonic evolution of the North American Shield and the Australian craton.<br />

Early vein and cataclasite-type U mineralization in the Beaverlodge area was<br />

significantly affected by the 2.2-2.1 Ga and 2.1-2.0 Ga tectonism coincident with a period<br />

of rifting related to the breakup of the Kenorland supercontinent (Williams et al., 1991).<br />

This event is followed by the 2.0-1.9 Ga period of alteration during the Taltson-Thelon<br />

Orogen (Chacko et al., 2000) and activation of the Snowbird Tectonic Zone (Berman et al.,<br />

2007a).<br />

A major event, which has significantly reactivated structures in the Beaverlodge area,<br />

corresponds to the Trans-Hudson Orogen, which produced brecciation along reactivated<br />

fault zones, fluid flow and the major U mineralization. This mineralization has been altered<br />

during intracratonic deformation following the peak Trans-Hudson Orogen and formation<br />

of the Martin Lake Basin (Mazimhaka and Hendry, 1985). The event has produced the<br />

volcanic-type mineralization and subsequent alteration during emplacement of 1788±3 Ma<br />

lamprophyre (Sassano et al., 1974) and granitic dikes (Ashton et al., 2009b).<br />

Late brittle reactivation along fault zones during the Mesoproterozoic caused minor<br />

fracturing and alteration of preexisting mineralization and records tectonism of the 1.65-<br />

1.60 Ga Mazatzal Orogen in southern Laurentia (Labrenze and Karlstrom, 1991).<br />

From the Mesoproterozoic to recent time, far field tectonic events of several<br />

orogenic episodes during the evolution of the Laurentian plate (e.g. Evans and Pisarevsky,<br />

2008) caused minor brittle reactivation in the Beaverlodge area. These include the Granite<br />

199


Plutons Event at 1.4 Ga (Barinek et al., 1999), the 1.27 Ga Mackenzie mafic dike swarms<br />

(Ernst and Buchan, 2001b) coincident with the final breakup of the Nuna supercontinent<br />

(Rogers and Santos, 2002), the Grenville Orogen at ca. 1.2–0.9 Ga (Carr et al., 2004)<br />

reflecting the assembly of Rodinia (Moores, 1991), the diachronous breakup of Rodinia at<br />

0.7-0.8 Ga and 0.6-0.5 Ga (Li et al., 2008), and the Appalachian Orogen at 0.3-0.4 Ga<br />

linked to Pangea assembly (Cocks and Torsvik, 2002). Lower intercept ages in the U-Pb<br />

system reflect tectonic activity during the Cordilleran Orogen (Molnar and Atwater, 1978)<br />

and recent reactivation during the Pleistocene glaciations (Adams, 1989).<br />

In the South Alligator River area, deposits also have been significantly affected by<br />

late fluid events related to fault reactivation during successive regional thermotectonic<br />

events that occurred over a period of at least 1.8 Gyrs. The first coincided with the timing<br />

of the ca. 1720 Ma Oenpelli dolerite intrusion (Sweet et al., 1999). Uraninite from the<br />

Coronation Hill deposit record the Isan Orogen (1600-1580 Ma) in northern Australia<br />

(Hand, 2006), shortly after formation of unconformity-related U mineralization in the<br />

Kombolgie Basin (Polito et al., 2004). From the Mesoproterozoic to recent time, far field<br />

tectonic events affected deposits in the South Alligator River area as discussed in a greater<br />

detail in Chapter 4.<br />

Electron microprobe analyses of various chlorite phases in deposits of the<br />

Beaverlodge and South Alligator River areas indicate also that these deposits were<br />

subsequently altered to low-temperature, recording the effect of late fluid events. These<br />

events may represent incursion and circulation of meteoric water through fault zones<br />

(Kotzer and Kyser, 1995). Hydrogen isotopic composition of chlorites in the Beaverlodge<br />

200


area record retrograde exchange of H-isotopes with relatively recent meteoric water having<br />

low δ 2 H values (e.g. Kyser and Kerrich, 1991). The preferential exchange of H-isotopes in<br />

these chlorites suggests that the fault zones were active after U-mineralization and remain<br />

a zone of preferential fluid circulation (e.g. Fayek and Kyser, 1997).<br />

5.3. Implication for uranium metallogeny in others Paleoproterozoic successor<br />

basins: the case of Finland and Guyana<br />

U mineralization in Paleoproterozoic successor basins similar to those in the<br />

Beaverlodge and South Alligator River areas are also known in Finland and Guyana.<br />

5.3.1. Uranium metallogenic in Paleoproterozoic successor basins in Finland<br />

Rocks of the Fennoscandinavian shield in central Finland (Fig. 5.4) are divided into<br />

the Karelian and Kola domains separated by the Lapland granulite belt (Sorjonen-Ward et<br />

al., 1994). The Kola domains comprise Archean and Paleoproterozoic terrains that were<br />

accreted to the Karelian domain between 2 Ga and 1.8 Ga (Sorjonen-Ward and Luukkonen,<br />

2005) and consist of granitoids and gneisses (Gaál and Gorbatschev, 1987). The 2.5-1.85<br />

Ga Karelian domain consists of Neoarchean basement and Paleoproterozoic sedimentary<br />

rocks with minor volcanic rocks and occurs in separate basins within Neoarchean basement<br />

blocks.<br />

201


Kolari-Kittila<br />

Province<br />

Kuusamo<br />

Province<br />

Muhos<br />

Basin<br />

Koli<br />

Province<br />

Satakunta<br />

Basin<br />

Uussimaa<br />

Province<br />

Figure 5.4. Bedrock of Finland showing the location of Mesoproterozoic basins and successor<br />

basin U provinces. Map from Geological Survey of Finland.<br />

The early Paleoproterozoic Karelian rocks in the Koli province (Fig. 5.4) have been<br />

affected by amphibolite facies metamorphism and cut by 2.1–1.97 Ga tholeitic and 2.2 Ga<br />

spilitic intrusions (Saltikoff et al., 2006) (Fig. 5.5). The Karelian stratigraphy comprises the<br />

Sariolan (2.5–2.3 Ga), Jatulian (2.3–2.0 Ga), and Kalevan (2.0–1.9 Ga) units (Fig. 5.5; äikä,<br />

202


2006) that likely formed during rifting and breakup between 2.5 Ga and 2.0 Ga that<br />

strongly affected and partly dispersed the Archean domains (Gorbatschev and Bogdanova,<br />

1993). Sedimentary rocks of the Jatulian lower sequence (Fig. 5.5) constitute a successor<br />

basin to this major tectonic event and are later inverted during the 1.95-1.82 Ga<br />

Svecofennian Orogen (Pharaoh and Brewer, 1990), exhumed and overlain by the late<br />

Mesoproterozoic Satakunta Basin at ca.1.4–1.3 Ga (Simonen, 1980).<br />

Figure 5.5. Schematic Karelian stratigraphy, lithology, and uranium occurrences in the Koli<br />

area, eastern Finland, showing location of various U deposits (modified from Piiarinen (1968),<br />

Merlainen (1980) and Äikä (2006))<br />

In the Koli domain, six U deposits are known within the lower quartzite and middle<br />

arkosite member of the Jatulian unit (Fig 5.5, Äikä, 2006).<br />

203


The uranium deposits in various provinces shown in Fig. 5.4 have been interpreted as<br />

epigenetic in origin with fluid probably originated from the Archean granitoids and<br />

associated Paleoproterozoic rocks (Äikä and Sarikkola, 1987). The U mineralization occurs<br />

as: (1) lenses and disseminations in the quartz-pebble conglomerate in quartzite and<br />

arkosite members, (2) near the contact between the Jatulian diabase dikes and the basal<br />

conglomerate where they cut the uraniferous quartzite-conglomerate horizon, and (3) at the<br />

unconformity between the Sariolian basement rocks and the basal conglomerate of the<br />

lower Jatulian unit (Fig.5.5).<br />

Recent geochronological studies suggest that the age of the Jatulian U mineralization<br />

is close to ca. 2273 Ma (K. Kyser, pers. Comm.2012) with extensive late alteration related<br />

to subsequent tectonic events such as the dominant 1.95-1.82 Ga Svecofennian Orogen<br />

(Pharaoh and Brewer, 1990). The age of the U mineralization in this successor basin is<br />

therefore older than the overlying late Mesoproterozoic Satakunta sandstones deposited at<br />

1.4-1.3 Ma (Fig. 5.4). Aikas and Sarikkola (1987) suggested that mineralogical and<br />

geochemical evidence indicate multistage epigenetic U mineralization in these deposits.<br />

Äikä and Sarikkola (1987) and Saltikoff et al (2006) suggested some similarities with<br />

known economically important, unconformity, vein, breccia, and sandstone deposit styles.<br />

The styles of U mineralization spatially associated with Jatulian successor basins in<br />

the Koli area, the occurrence of U at the basal Jatulian unconformity, the close association<br />

between the U mineralization and the 2.1–1.97 Ma mafic dikes, and U occurrences as<br />

disseminations in metamorphosed conglomerate of the Jatulian quartzite and arkosite<br />

members (Fig. 5.5), suggest many similarities between these deposits and U deposits<br />

204


associated with the Martin Lake successor Basin in the Beaverlodge area and El Sherana<br />

Basin in South Alligator River area. U mineralization at the basal Jatulian unconformity<br />

may have formed from fluid originating from diagenetic processes in the overlying basal<br />

quartzite and conglomerates of the lower Jatulian sequence similar to deposits in the South<br />

Alligator River area. U mineralization in close association with the mafic dikes are similar<br />

to those of volcanic-type associated with the Martin Lake mafic dikes in the Beaverlodge<br />

area. Uranium mineralization disseminated in the metamorphosed conglomerate of the<br />

quartzite and arkosite members could have originated from remobilization of pre-existing<br />

uranium enrichments from the Sariolian rocks along fault zones (K. Kyser, pers. Comm.<br />

2012).<br />

The occurrence of early U mineralization associated with the Jatulian successor basin<br />

could be a favorable indication for the presence of unconformity-related U mineralization<br />

in the younger overlying late Mesoproterozoic basins in the Karelia region of Finland, as<br />

the early U mineralization in the successor basin could be a potential source for detrital<br />

uraninite in younger Mesoproterozoic basins, such as the Satakunta Basin (Fig. 5.4).<br />

5.3.2. Uranium metallogeny in Paleoproterozoic basins in Guyana<br />

The Roraima Basin was deposited in a large Paleoproterozoic foreland basin in<br />

northern South America. The basin covers a large area in Brazil, Venezuela, Guyana,<br />

Suriname, and Colombia (Fig. 5.6) and consists mostly of horizontal and gently dipping<br />

fluvial sandstones (Santos al., 2003).<br />

205


Fig. 5.6. Distribution of the Roraima Supergroup and outliers in northern South America<br />

(modified from Santos et al., 2000).<br />

This broad region comprises five geologic provinces of different age and structural<br />

settings: the Archean Imataca province and the Proterozoic Trans-Amazon, Tapajo´s-<br />

Parima, Central Amazon, Rio Negro, and Sunsa´s provinces (Santos et al., 2000). Roraima<br />

Basin sedimentary rocks consist principally of sandstone derived from the 2.25–2.0 Ga<br />

Trans-Amazonian granitoid-greenstone basement rocks (Santos et al., 2000; Gibbs and<br />

Olszewski, 1982), to the north and northeast and deposited in braided, deltaic, and shallow<br />

marine environments (Reis et al., 1990). These sediments overlap sandstones of the post-<br />

Roraima Neblina successor foreland basin (Pinheiro et al., 1976), which was also derived<br />

206


from both the Trans-Amazon and Tapajo´s-Parima orogenic belts to the east and northeast<br />

(Santos al., 2003). The minimum age of the Roraima Basin was determined by U-Pb<br />

geochronology from mafic sills to be 1782±3 Ma (Santos et al., 2003).<br />

A number of U showings are spatially associated with the Roraima Basin. These<br />

include the Aricheng albitite-hosted U mineralization (Fig. 5.7) and several other<br />

occurrences hosted by the Kurupung Batholith in the basement near the Roraima Basin, in<br />

western Guyana (Cinelu and Cuney 2006; Alexandre, 2010).<br />

The Aricheng deposit is geologically similar to albitite-hosted deposits worldwide<br />

(Cinelu and Cuney 2006, Alexandre, 2010). The Lagoa Real and Espinharas U deposits in<br />

Brazil have host rocks that resemble those of around Kurupung Batholith in the Aricheng<br />

deposit. Syn-ore hydrothermal zircon gives a minimum age of 1995±15 Ma for the U<br />

mineralization (Alexandre, 2010), which is older than the age of the Roraima Basin. The<br />

timing and style of U mineralization in the Aricheng deposit (Cinelu and Cuney 2006,<br />

Alexandre, 2010) in Guyana and Lagoa Real (Lobato and Fyfe, 1990) and Espinharas<br />

deposits (Porto de Silveira et al. 1991) in Brazil are similar to those of the granite-related U<br />

mineralization in the Beaverlodge area (Dieng et al., 2011). This early U mineralization<br />

associated with the underlying basement rock in the Roraima Basin could have been a<br />

potential source for detrital uraninite in the younger Paleoproterozoic Roraima Basin as<br />

most of the detritus in the basin were derived from Trans-Amazonian granitoids (Orestes<br />

al., 2003) that host most of the U deposits in the successor basins.<br />

The presence of early U mineralization in successor basins is thus a favorable<br />

indication for unconformity-related U mineralization in the younger Paleoproterozoic<br />

207


Roraima Basin, similar to what is observed in the Beaverlodge area in Canada, the South<br />

Alligator River area in Australia, and the Koli province in eastern Finland<br />

Fig. 5.7. Geological map of the Aricheng occurrence with the major geotectonic units in South<br />

America (top) and with the major rock types observed in its vicinity in western Guyana<br />

(bottom) (modified from Alexander et al., 2010).<br />

208


CHAPTER 6<br />

CONCLUSIONS<br />

An integrated multidisciplinary geological study, including structural geology,<br />

geochronology, petrographic and geochemistry approaches, was used to detail the structural<br />

and fluid evolution of uranium deposits in successor basins in the Beaverlodge area in<br />

Canada, and the South Alligator River area in Australia.<br />

The results presented in this research demonstrate that:<br />

a) The Beaverlodge area in Canada and the South Alligator River area in Australia record<br />

ore-forming systems that resulted from multistage deformation, hydrothermal<br />

alteration, U mineralization, and late fluid processes during protracted tectonic<br />

evolution that spans over 2.3 Gyr.<br />

b) The main breccia-type U mineralizing event that affected all deposits in the<br />

Beaverlodge area formed at ca. 1850 Ma from Ca-Na-dominated metamorphic fluids at<br />

ca. 330 o C linked to metasomatism accompanying regional metamorphism of the Trans-<br />

Hudson Orogen. The ore-forming fluids were likely derived from metamorphic<br />

remobilization of pre-existing U-rich basement rocks, and ascended upward along deep<br />

fracture systems that resulted from brittle reactivation of early ductile shear zones. U<br />

precipitated when decompression during brecciation decrease the solubility of the U-<br />

carbonates complexes and the temperature of the fluid.<br />

c) Early minor stages of U mineralization in the Beaverlodge area are hosted in<br />

cataclasite and veins at ca. 2.29 Ga and in albitized granite in the Gunnar deposit<br />

209


etween ca. 2.3 Ga and 1.9 Ga. Later stages are related to minor U veins at ca. 1.82 Ga<br />

linked to Martin Lake mafic dikes and to minor late veins at ca. 1.62 Ga corresponding<br />

to the timing of unconformity-type U mineralization in the Athabasca Basin.<br />

d) The main event of U mineralization in the South Alligator River area formed at ca.<br />

1820 Ma, subsequent to deposition of the El Sherana Group at 1840-1830 Ma. The<br />

formation of these deposits is related to fluids derived from diagenetic processes in<br />

sandstone of the El Sherana Group. The source of the ore was likely U-bearing<br />

minerals in the sandstone and volcanic rocks of the El Sherana Group and the source of<br />

metals such as Au and PGE are from basement rocks, similar to some of the multielement<br />

deposits (i.e. Nicholson) in the Beaverlodge area of Canada. These deposits<br />

can be classified as a variation on unconformity-related U mineralization similar to<br />

those in the overlying Kombolgie Basin. Tectonic reactivation of the El Sherana-<br />

Palette fault during the Nimbuwah event would have provided structural conduits for<br />

hydrothermal basinal brines that descended downward into the metamorphic basement<br />

rocks. Interaction between the oxidizing U-bearing basinal brines and the reducing<br />

carbonaceous shale of the Koolpin Formation would have led to U precipitation.<br />

Uranium deposits in the Beaverlodge and South Alligator River areas record late<br />

alteration fluid events related to both near and far-field tectonic events. These late<br />

events represent circulation of meteoric water through fault zones.<br />

e) Uraninite in major structures is greatly sensitive to fluid events stimulated by both<br />

near- and far-field tectonic events. It can serve as vehicle to understand the complex<br />

210


timing relationships between fault activities, hydrothermal and ore-forming processes<br />

to regional thermotectonic events.<br />

f) Uranium deposits in the Beaverlodge and South Alligator River area are older than<br />

those in the U-rich Athabasca and Kombolgie basins. Rocks that host these deposits<br />

have been folded and exhumed during subsequent tectonic events. These older U<br />

deposits can be considered as a potential source for detrital uraninite that fed sediments<br />

of the Athabasca and Kombolgie basins and therefore contributed to the inventory of<br />

uranium that formed unconformity-related U mineralization in the younger basins.<br />

g) Uranium deposits in the Beaverlodge and South Alligator River areas share many<br />

similarities with those associated with the Jatulian successor basin of the<br />

Fennoscandinavian shield of central Finland. The overlying late Mesoproterozoic<br />

Satakunta Basin can be considered as being a potential basin to host unconformityrelated<br />

U mineralization similar to those in the Athabasca and the Kombolgie basins.<br />

Similarly, the Roraima basin in Guyana has also potential to host unconformity-related<br />

U mineralization.<br />

h) The occurrence of older U mineralization associated with successor basins and<br />

basement lithology can be considered as a new criterion for exploration of<br />

unconformity-related uranium mineralization in younger Paleoproterozoic basins.<br />

211


REFERENCES<br />

Adams, J., 1989. Postglacial faulting in eastern Canada: Nature, origin and seismic hazard<br />

implications. Tectonophysics 163, issue 3-4, 323-331.<br />

Ahmad M, Lally J.H., McCready A.J., 2006. Economic geology of the Rum Jungle Mineral<br />

Field, Northern Territory. Northern Territory Geological Survey, Report 19.<br />

Äikä, O and Sarikkola, R., 1987. Uranium in lower Proterozoic conglomerates of the Koli<br />

area, eastern Finland. In: Uranium deposits in Proterozoic quartz-pebble<br />

conglomerates. IAEA-TECDOC-427, Wien, pp. 189–234.Aldrich, L. T. and<br />

Wetherill, G. W., 1956. Evaluation of mineral age measurements, I and II.<br />

National Research Council Science 19, 147-156.<br />

Äikä, O., 2006. Uranium in Finland: Geology, deposits & exploration. http://www.atsfns.fi/archive/esitys_aikas.pdf<br />

Alexandre P. and Kyser K., 2005. Effects of cationic substitutions and alteration of<br />

uraninite and implications for the dating of uranium deposits. Canadian<br />

Mineralogy 43, 1005–1017.<br />

Alexandre P., Kyser K., Thomas D., Polito P., Marlat J., 2007. Geochronology of<br />

unconformity-related uranium deposits in the Athabasca Basin, Saskatchewan,<br />

Canada and their integration in the evolution of the basin. Mineralium Deposita.<br />

44-1, 41-59.<br />

Alexandre P., Kyser K., Thomas D., Polito P., Marlat J., 2009, Geochronology of<br />

unconformity-related U deposits in the Athabasca Basin, Saskatchewan, Canada<br />

and their integration in the evolution of the basin: Mineralium Deposita, v. 44-1,<br />

p. 41-59.<br />

Alexandre, P., 2010. Mineralogy and Geochemistry of Sodium Metasomatism-Related<br />

Uranium Occurrence of Aricheng South, Guyana,” Mineralium Deposita, Vol.<br />

45, No. 4, pp. 351-367.<br />

Alexandre P., Kyser K., Layton-Matthews D., 2010. REE concentrations in zircon and the<br />

origin of U in the unconformity-related U deposits in the Athabasca Basin,<br />

Canada: GeoCanada 2010, 10-14 May, Calgary, Canada.<br />

Allen, J. A., 1963. Structural control of the 01 and 09 orebodies, Ace and Fay mine,<br />

Beaverlodge, Saskatchewan. Unpublished M.Sc. Queen’s <strong>University</strong>, Kingston,<br />

Ontario, Canada, 70p.<br />

Ansdell, K.M. and Yang, H., 1995. Detrital zircons in the McLennan Group meta-arkoses<br />

and MacLean Lake belt, western Trans-Hudson Orogen: In Hajnal, Z., Lewry, J.<br />

212


(Eds.). Lithoprobe Trans-Hudson Orogen Transect Report 48, Lithoprobe<br />

Secretariat, <strong>University</strong> of British Columbia, pp. 190–197.<br />

Ansdell, K.M., Corrigan, D., Stern, R., Maxeiner, R., 1999. Shrimp U–Pb geochronology<br />

of complex zircons from Reindeer Lake Saskatchewan: implications for timing<br />

of sedimentation and metamorphism in the northwestern Trans-Hudson Orogen.<br />

Geological Association of Canada. Abstract 24, 3–4.<br />

Ansdell, K.M., 2005. Tectonic evolution of the Manitoba-Saskatchewan segment of the<br />

Paleoproterozoic Trans-Hudson Orogen, Canada. Canadian Journal of Earth<br />

Sciences 42, 741-759.<br />

Ashton, K. E. and Card, C. D., 1998. Rae northeast: a reconnaissance of the Rae province<br />

northeast of Lake Athabasca. Saskatchewan Geological Survey. Miscellaneous<br />

Report 98-4, 3–16.<br />

Ashton, K. E., Kraus, J., Hartlaub, R. P., Morelli, R., 2000. Uranium City revisited: a new<br />

look at the rocks of the Beaverlodge Mining Camp. Saskatchewan Geological<br />

Survey. Miscellaneous Report 2000-4, 2 3–15.<br />

Ashton, K. E., Boivin, D., Heggie, G., 2001. Geology of the southern Black Bay Belt, west<br />

of Uranium City, Rae province. Saskatchewan Geological Survey, Miscellaneous<br />

Report 2001-4, 50–63.<br />

Ashton, K.E., Hartlaub, R.P., Heaman, L.M., Morelli, R., Bethune, K.M., Hunter, R.C.,<br />

2004. Paleoproterozoic sedimentary successions of the southern Rae Province:<br />

Ages, origins and correlations: Geological Association Canada/Mineralogy<br />

Association Canada, Jt. Annual Meeting., St. Catharines, Abstract. V., CD-ROM,<br />

p. 434.<br />

Ashton, K.E. and Hartlaub, R.P., 2008. Geological compilation of the Uranium City area.<br />

Saskatchewan Ministry of Energy and Resources, Open File 2008-5, set of four<br />

1:50 000- scale maps.<br />

Ashton, K.E., Hartlaub, R.P., Heaman, L.M., Morelli, R.M., Card, C.D., Bethune, K.,<br />

Hunter. R.C., 2009a. Post-Taltson sedimentary and intrusive history of the<br />

southern Rae province along the northern margin of the Athabasca Basin,<br />

Western Canadian shield. Precambrian Research 175, 16-34.<br />

Ashton, K.E., Rayner, N.M., Bethune, K.M., 2009b. Meso- and Neoarchean Granitic<br />

Magmatism, Paleoproterozoic (2.37 Ga and 1.93 Ga) Metamorphism and 2.17<br />

Ga Provenance Ages in a Murmac Bay Group Pelite; U-Pb SHRIMP Ages from<br />

the Uranium City Area. In Summary of Investigations, 2009. v. 2, Saskatchewan<br />

Geological Survey, Saskatchewan Ministry of Energy and Resources,<br />

Miscellaneous Report, 2009-4,2, Paper A-5, 9p.<br />

213


Ashton, K.E., 2010. The Gunnar Mine: an episyenite-hosted, granite-related uranium<br />

deposit in the Beaverlodge uranium district; in Summary of Investigations 2010<br />

Volume 2,. Saskatchewan Geological Survey, Saskatchewan Ministry of Energy<br />

and Resources, Miscellaneous Report, 2010-4,2, Paper A-4, 21p.<br />

Ayres, D.E. and Eadington P.J., 1975. Uranium Mineralization in the South Alligator<br />

ValleyValley. CSIRO Division of Mineralogy, Sydney, Aust. Min. Deposita<br />

Berl.. 10, 27-41.<br />

Baldwin, J.A., Bowring, S.A., Williams, M.L., 2003. Petrological and geochronological<br />

constraints of high pressure, high temperature metamorphism in the Snowbird<br />

tectonic zone, Canada. Journal of Metamorphic Geology 21, 81–98.<br />

Barinek, M. F., Foster C. T., Chaplinsky P. P., 1999. Metamorphism and deformation near<br />

the N 1.4-Ga Mount Ethel pluton, Park Range, Colorado. Rocky Mountain<br />

Geology 34, 21-35.<br />

Beck, L.S., 1969. Uranium Deposits of the Athabasca Region, Saskatchewan.<br />

Saskatchewan Department Mineral Resources 126, 139p.<br />

Beecham, A.W., 1969. A structural study of the ABC fault, Beaverlodge, Saskatchewan.<br />

Unpublished M.Sc. thesis, Queen’s <strong>University</strong>, Kingston, Ontario, Canada 80p.<br />

Belevtsev, Y.N. and Koval, V.B., 1968. Genesis of U deposits associated with sodium<br />

metasomatism in crystalline rocks of shields: Geologicheskiy Zhurnal (Kiev.) v.<br />

28, p. 4-17.<br />

Bell, K., 1981. A review of the geochronology of the Precambrian of Saskatchewan- some<br />

clues to uranium mineralization Mineralogical Magazine. Vol. 44, 371-378.<br />

Bergeron, J., 2001. Deformation of the Black Bay structure: Unpublished M.Sc. Thesis,<br />

<strong>University</strong> of Saskatchewan, Saskatoon, Saskatchewan.<br />

Bergeron, J., Stauffer, M., Ansdell, K., 2002. The Black Bay deformation zone, Rae<br />

province, Canadian Shield: Archean ductile deformation to Paleoproterozoic<br />

brittle slip; 900 my of reactivation. Geological Association Canada – Mineralogy<br />

Association Canada, Program with Abstract, 27, 8.<br />

Berman, R.G., Sanborn-Barrie, M., Stern, R.A., Carson, C., 2005. Tectono-metamorphism<br />

at ca. 2.35 and 1.85 Ga in the Rae domain, western Churchill province, Nunavut,<br />

Canada: insights from structural, metamorphic and in situ geochronological<br />

analysis of the southwestern Committee Bay belt. Canadian Mineralogy 43, 409–<br />

442.<br />

214


Berman, R.G., Davis, W.J., Pehrsson, S., 2007a. The collisional Snowbird tectonic zone<br />

resurrected: growth of Laurentia during the 1.9 Ga accretionary phase of the<br />

Trans-Hudson Orogen. Geology 35, 911–914.<br />

Berman, R.G., Ryan, J.J., Davis, W.J., Nadeau, L., 2008. Preliminary results of linked insitu<br />

SHRIMP dating and thermobarometry studies in the Boothia mainland area,<br />

north-central Rae province, Nunavut. Geological Survey of Canada 2, 1–13.<br />

Berman, R.G., Sandeman, H.A.I., Camacho, A., 2010. Diachronous deformation and<br />

metamorphism in the Committee Bay belt, Rae province, Nunavut: insights from<br />

40Ar–39Ar cooling ages and thermal modeling: Precambrian Research181,<br />

Issues 1-4, 1-20.<br />

Bethune, K.M., 1997. The Sudbury dike swarm and its bearing on the tectonic development<br />

of the Grenville Front, Ontario, Canada: Precambrian Research 85, 117-146.<br />

Bethune, K.M., Ashton, K.E., Berman, R.G., Knox, B., 2008. U–Pb SHRIMP<br />

geochronology in the western Beaverlodge Domain, Saskatchewan: unraveling<br />

the polyphase tectono-metamorphic history of the SW Rae province. GAC–MAC<br />

2008 Abstract, 33, 21.<br />

Bethune, K., Ashton, K. E. and Knox, B., 2010. Tectonic evolution of the Beaverlodge<br />

domain, SW Rae province, based on structural, petrological and<br />

geochronological study: implications for the nature and extent of Taltson (-<br />

Thelon) Orogen and the origin of the Snowbird tectonic zone. Geocanada, 2010,<br />

Calgary, Canada.<br />

Beyer, S. R., 2011, Basin analysis and the evaluation of critical factors for unconformityrelated<br />

U mineralization, Paleoproterozoic western Thelon and Otish basins,<br />

Canada: Unpublished Ph.D. thesis, Queen’s <strong>University</strong> Kingston, Ontario,<br />

Canada, 230 p.<br />

Bilal, B.A. and Koss, V., 1980a, Studies on the distribution of fluoro complexes of rare<br />

earth elements in fluorite bearing model systems: Journal of Inorganic and<br />

Nuclear Chemistry, v. 42, p. 629-630.<br />

Bogdanova, S. V., Pisarevsky, S. A., Li, Z. X., 2009. Assembly and Breakup of Rodinia<br />

(Some Results of IGCP Project 440): Stratigraphy and Geological Correlation<br />

17, 259–274.<br />

Bostock, H.H. and van Breemen, O., 1992. The timing of emplacement and distribution of<br />

the Sparrow diabase dike swarm, District of Mackenzie, Northwest Territories:<br />

In Radiogenic Age and Isotopic Studies: Report 6, Geological Survey of Canada<br />

92-2, 49-55.<br />

215


Bowles, J.F.W., 1990. Age dating of individual grains of uraninite in rocks from electron<br />

microprobe analyses. Chem. Geology. 83, 47-53.<br />

Capuano R.M., 1992. The temperature dependence of hydrogen isotope fractionation<br />

between clay minerals and water: Evidence from a geopressured system.<br />

Geochim. Cosmochim. Acta 56, 2547–2554.<br />

Card, C.D., Pana, D., Portella, P., Thomas, D.J., Annesley, I.R., 2007. Basement rocks to<br />

the Athabasca Basin, Saskatchewan and Alberta, in: EXTECH IV, Geology and<br />

Uranium Exploration Technology of the Proterozoic Athabasca Basin,<br />

Saskatchewan and Alberta. Geological Survey Canada, Bulletin. 588, pp. 193–<br />

209.<br />

Carr, S.D., Easton, R.M., Jamieson, R.A., Culshaw, N.G. and White, D.J., 2004. The<br />

Grenville Orogen of Ontario and New York—a Himalayan-scale mountain belt:<br />

Significance of along strike-variations: In: The Celebratory Conference, From<br />

Parameters to Processes—Revealing the Evolution of a Continent, October 12-<br />

15, 2004, Toronto, Program and Abstract, Lithoprobe Secretariat, <strong>University</strong> of<br />

British Columbia, Vancouver, British Columbia, Lithoprobe Report No. 86, 4p.<br />

Carville D.P, Leckie J.F, Moorhead C.F, Rayner J.G, Durbin A.A., 1990. Coronation Hill<br />

gold-platinum palladium deposit: in Hughes FE editor. ‘Geology of the mineral<br />

deposits of Australia and Papua New Guinea. The Australasian Institute of<br />

Mining and Metallurgy Monograph 14, 759 – 762.<br />

Carville D.P, Leckie J.F, Moorhead C.F, Rayner, J.G., 1991. Coronation Hill Unconformity<br />

related gold, platinum, palladium prospect, Northern Territory. World Gold 91,<br />

Australasian Institute of Mining and Metallurgy, 287-291.<br />

Cathelineau, M., 1988. Cation site occupancy in Chlorite and illites as a function of<br />

temperature: Clay Minerals, v. 23, p. 471–485.<br />

Chacko, T., De, S. K., Creaser, R. A., Muehlenbachs, K., 2000. Tectonic setting of the<br />

Taltson magmatic zone at 1.9–2.0 Ga: a granitoid-based perspective. Canadian<br />

Journal of Earth Sciences 37, 1597–1609.<br />

Chiarenzelli, J.R., Aspler, L.B., Villeneuve, M., Lewry, J.F., 1998. Paleoproterozoic<br />

evolution of the Saskatchewan Craton, Trans-Hudson Orogen. J. Geol. 106, 247–<br />

267.<br />

Chipley, D., Paul A., Polito, T., Kyser K., 2007. Measurement of U-Pb ages of uraninite<br />

and davidite by laser ablation-HR-ICP-MS. American Mineralogist 92, 1925–<br />

1935.<br />

216


Cinelu, S. and Cuney, M., 2006, Sodic metasomatism and U–Zr mineralization: A model<br />

based on the Kurupung batholith (Guyana): Abstract, Geochimica et<br />

Cosmochimica Acta, v. 70, p. 103.<br />

Clayton, R.N., and Mayeda, T.K., 1963. The use of bromine pentafluoride in the extraction<br />

of oygen from oxides and silicates for isotopic analysis: Geochimica et<br />

Cosmochimica Acta, v. 27, p. 43–52.<br />

Clendenin, C.W., Charlesworth E.G., Maske S., 1988. Tectonic style and mechanism of<br />

Early Proterozoic successor basin development, southern Africa. Tectonophysics<br />

156, 275-291.<br />

Cloutier J, Kyser K, Olivo G.R, Alexandre P., Halaburda J., 2009. The Millennium<br />

Uranium Deposit, Athabasca Basin, Saskatchewan, Canada: An Atypical<br />

Basement- Hosted Unconformity-Related Uranium Deposit: Economic Geology,<br />

104, 815-840.<br />

Cocks, L.R.M. and Torsvik, T.H., 2002. Earth Geography from 500 to 400 million years<br />

ago: a faunal and palaeomagnetic review. Journal Geological Society London<br />

159, 631-644.<br />

Collins, C.B., Farquhar, R.M. and Russel, R.D., 1954. Isotopic constitution of radiogenic<br />

leads and the measurements of geological time. Geological Society America 65,<br />

1-22.<br />

Condon M.A and Walpole B.P, 1955. Sedimentary environments as a control of uranium<br />

mineralisation in the Katherine– Darwin region, Northern Territory. Bureau of<br />

Mineral Resources, Australia, Report 24.<br />

Connors K.A and Page R.W., 1995. Relationships between magmatism, metamorphism and<br />

deformation in the western Mount Isa inlier, Australia. Precambrian Res 71:131–<br />

153<br />

Cooper, J.A., 1973. On the age of uranium mineralization at Nabarlek, N. T., Australia. J.<br />

Geol. Soc. Australia 19, 483<br />

Corrigan, D., Pehrsson, S., Wodicka, N., Kemp, E., 2009. The Paleoproterozoic Trans-<br />

Hudson Orogen: a prototype of modern accretionary processes. Journal<br />

Geological Society of London 327, 457-479.<br />

Crick, I.H, Muir M.D, Needham R.S, Roarty M.J., 1980. The Geology and Mineralization<br />

of the South Alligator Valley Mineral Field. In J. Ferguson and A. Goleby, Eds.,<br />

Uranium in the Pine Creek Geosyncline, p. 273–285. Proceedings of the<br />

International Atomic Energy Agency, Vienna<br />

217


Cuney, M.L., 2005. World-class unconformity-related uranium deposits: key factors for<br />

their genesis. In: Mao Jingwen & Bierlein FP eds., Mineral Deposit Research:<br />

Meeting the Global Challenge. Proceedings of the Eighth Biennial SGA Meeting<br />

2005, Beijing, August 18–21.<br />

Cuney, M. and Kyser, K., 2008. Recent and not-so-recent developments in U deposits and<br />

implications for exploration: Mineralogical Association of Canada, Short Course<br />

Series Volume 39, 257 p.<br />

Cuney, M., 2010. Evolution of Uranium Fractionation Processes through Time: Driving the<br />

Secular Variation of Uranium Deposit Types: Economic Geology, v. 105, p. 553-<br />

569.<br />

Dahlkamp, F.J., 1978. Geologic appraisal of the Key Lake U-Ni deposits, northern<br />

Saskatchewan: Economic Geology, v. 73, p. 1430-1449.<br />

Dalziel, I.W.D., 1991. Pacific margins of Laurentia and East Antarctica–Australia as a<br />

conjugate rift pair: Evidence and implications for an Eocambrian supercontinent:<br />

Geology, v. 19, 598–601.<br />

DeBaar, H.J.W., 1991. On cerium anomalies of the Saragasso Sea: Geochimica et<br />

Cosmochimica Acta, v. 55, p, 2981-2983.<br />

Deer, WA, Howie RA, Zussman J 1992. An introduction to the rock-forming minerals:<br />

London, Longman, 696.<br />

Dieng, S., Kyser, K., Godin, L., 2011. Tectonic setting, Fluid History and Genesis of<br />

Uranium Mineralization in the Beaverlodge area, Saskatchewan, Canada:<br />

Mineralogical Association of Canada, the Society of Economic Geologists and<br />

the Society for Geology Applied to Mineral Deposits (GAC- MAC), May 25-27,<br />

2011 Ottawa.<br />

Du Letian, 1986. Granite-type U deposits of China. In: H. Fuchs: Vein Type U Deposits:<br />

International Atomic Energy Agency, IAEA-TECDOC, v. 361, p. 377-393.<br />

Dudar, J. S., 1960. The geology and mineralogy of the Verna uranium deposit,<br />

Beaverlodge, Saskatchewan <strong>University</strong> of Michigan. Unpublished M.Sc thesis,<br />

312 pages.<br />

Dudás, F.Ő., Davidson, A., Bethune, K.M., 1994. Age of the Sudbury diabase dikes and<br />

their metamorphism in the Grenville province. Radiogenic age and isotopic<br />

studies. Geological Survey of Canada, Current Research 1994-F, 97-106.<br />

Eisele, J. and Isachsen, C.E., 2001. Crustal growth in southern Arizona: U-Pb<br />

geochronologic and Sm-Nd isotopic evidence for addition of the<br />

218


Paleoproterozoic Cochise block to the Mazatzal province. American Journal of<br />

Earth Sciences 310, 773–797.<br />

Eckelman, N.N. and Kulp J. L., 1957. Uranium-lead method of age determination II: North<br />

American Localities. BuIletin G.S.A.<br />

Edgecombe, S.M, Hazell M, Page R.W, Black L.P., Sun S.S., 2002. OZCHRON National<br />

Geochronology Database Canberra: Geoscience Australia. Accessible at<br />

http://www.ga.gov.au/ databases/20010926_27.jsp<br />

Ernst, R.E. and Buchan, K.L., 2001a. Mantle Plumes: Their Identification through Time.<br />

Geological Society of America Special Paper 352, 483-575.<br />

Ernst, R.E and Buchan, K.L., 2001b. Large mafic magmatic events through time and links<br />

to mantle plume heads. Geological Society of America Special Paper 362. 230 p<br />

Ernst, R.E., 2007. Large igneous provinces in Canada through time and their metallogenic<br />

potential, in: Goodfellow, W.D., ed., Mineral Deposits of Canada: A Synthesis of<br />

Major Deposit-Types, District Metallogeny, the Evolution of Geological<br />

provinces and Exploration Methods. Geological Association of Canada, Mineral<br />

Deposits Division, Special Publication No. 5, 929-937.<br />

Ernst, R.E., Wingate, M.T.D., Buchan, K.L., Li, Z.X., 2008. Global record of 1600–700 Ma<br />

Large Igneous provinces (LIPs): implications for the reconstruction of the<br />

proposed Nuna (Columbia) and Rodinia supercontinents. Precambrian Research<br />

160, 159–178.<br />

Eupene, G.S., 2003. Modelling of the Coronation Hill drill hole database. Northern<br />

Territory Geological Survey, Technical Note 2003-011.<br />

Evans, D.A.D. and Pisarevsky, S.A., 2008. Plate tectonics on early Earth Weighing the<br />

paleomagnetic evidence: In Condie, K.C., Pease, V. (Eds.), When Did Plate<br />

Tectonics Begin on Earth Geological Society of America, Special Paper, 249–<br />

263.<br />

Evans, A.D., Mitchell, R. N., Kilian, M., Joseph E. P., 2010. Reconstruction of Nuna: A<br />

working hypothesis: GeoCanada 2010, 10-14 May, Calgary, Canada.<br />

Evoy, E.F., 1961. Geology of the Gunnar uranium deposit, Beaverlodge area,<br />

Saskatchewan: Unpublished Ph.D thesis, <strong>University</strong> of Wisconsin, Madison, 62<br />

p.<br />

Faure, G., 1989, Principles of Isotope Geology: Wiley, New York, 1986; Mir, Moscow.<br />

Fayek, M. and Kyser, K., 1997. Characterization of multiple fluid-flow events and rareearth<br />

elements mobility associated with formation of unconformity uranium<br />

219


deposits in the Athabasca Basin, Saskatchewan: The Canadian Mineralogist 35,<br />

627-658.<br />

Ferenczi, P.A and Sweet I.P., 2005. Mount Evelyn, Northern Territory Second Edition.<br />

1:250 000 geological map series explanatory notes, SD 53-05. Northern Territory<br />

Geological Survey, Darwin.<br />

Ferguson, J. and Needham R.S., 1978. The Zamu Dolerite. A Lower Proterozoic<br />

preorogenic continental tholeiitic suite from the Northern Territory, Australia. J.<br />

Geol. Soc. Aust, 25: 309-322.<br />

Ferguson, J, Chappell B.W, Goleby A.B., 1980a. Granitoids in the Pine Creek Geosyncline:<br />

in Ferguson J and Goleby AB editors. Uranium in the Pine Creek Geosyncline.<br />

International Atomic Energy Agency, Vienna, 73–90.<br />

Fisher, W.J., 1969. Mining practice in the South Alligator Valley: Atomic Energy in<br />

Australia. 12, 25-40.<br />

Foy, M.F., 1975. South Alligator Valley Uranium Deposits. In Knight, C. L. ed.., Geology<br />

of Australia and Papua New Guinea: Melbourne, Australasian Institute of Mining<br />

and Metallurgy, 1, 301–303.<br />

Friedmann, J.S, and Grotzinger, P.J., 1994. Sedimentology, stratigraphy, and tectonic<br />

implication of a Paleoproterozoic continental extensional basin: the El Sherana–<br />

Edith River groups, Northern Territory, Australian: Canadian Journal of Earth<br />

Sciences, 31, 743–764.<br />

Fullerton, D.S., Colton, R.B., Bush, C.A. & Straub, A.W., 2003. Spatial and temporal<br />

relationships of Laurentide continental glaciations and mountains glaciations on<br />

the northern Plains in Montana and northwestern North Dakota, with<br />

implications for reconstruction of the configurations of vanished ice sheets: U.S.<br />

Geological Survey Miscellaneous Geologic Investigations Map, with text.<br />

Gaál, G and Gorbatschev, R., 1987. An outline of the Precambrian evolution of the Baltic<br />

Shield. In: Gaál, G and Gorbatschev, R. (Eds.), Precambrian Geology and<br />

Evolution of the Central Baltic Shield. Special Issue. Precambrian Research 35:<br />

15–52.Gao, S. and Wedepohl, K. H., 1995, The negative Eu anomaly in Archean<br />

sedimentary rocks: Implications for decomposition, age and importance of their<br />

granitic sources: Earth and Planetary Science Letters, v. 133, p. 81–94.<br />

Ghandi, 2007. Significant Unconformity Associated Uranium Deposits of the Athabasca<br />

Basin, Saskatchewan and Alberta, and Selected Related Deposits of Canada and<br />

the World: Geological Survey of Canada, Open File 5005, Saskatchewan<br />

Industry and Resources, Open File 2007- 11, CD-ROM.<br />

220


Gibbs, A.K., and Olszewski, W.J., 1982, Zircon U-Pb ages of Guyana greenstone-gneiss<br />

terrane: Precambrian Research, v. 17, p. 199–214.<br />

Greenhalgh, D. and Jeffery P.N., 1959. A contribution to the Precambrian chronology of<br />

Australia. Geochim. Cosmochim. Acta, 16: 39-57.<br />

Gulson,, B.L. and Mizon K.J., 1980. Pb isotope studies at Jabiluka. In: Ferguson J and<br />

Goleby, AB Eds.., Proceedings of the International Uranium Symposium on the<br />

Pine Creek Geosyncline International Atomic Energy, Vienna, 439–455.<br />

Gustafson, L.B. and Curtis L.W., 1983. Post-Kombolgie metasomatism at Jabiluka,<br />

Northern Territory, Australia, and its significance in the formation of high-grade<br />

uranium mineralization in lower Proterozoic rocks. Economic Geology 78, 26–<br />

56.<br />

Gorbatschev, R., and Bogdanova, S. 1993. Frontiers in the Baltic Shield: Precambrian<br />

Research, v. 64, pp. 3–21.<br />

Hajnal, Z., Lucas, S.B., White, D.J., Lewry, J., Bezdan, S., Stauffer, M.R. & Thomas,<br />

M.D., 1996. Seismic reflection images of strike-slip faults and linked<br />

detachments in the Trans-Hudson Orogen, Tectonics, 15, 427-439.<br />

Hand, M., 2006. Intracratonic Orogeny in Mesoproterozoic Australia. In: LYONS, P. &<br />

HUSTON, D. L. eds. Evolution and Metallogenesis of the North Australian<br />

Craton. Geoscience Australia, Record2006/16, Alice Springs.<br />

Hanley, L.M. and Wingate M.T.D., 2000. SHRIMP zircon age for an Early Cambrian<br />

dolerite dyke: an intrusive phase of the Antrim Plateau Volcanics of northern<br />

Australia: Australian Journal of Earth Sciences, 47, 1029–1040.<br />

Hanmer, S., Williams, M.L., Kopf, C., 1995. Striding-Athabasca mylonite zone:<br />

implications for Archean and Early Proterozoic tectonics of the western<br />

Canadian shield: Canada Journal Earth Science 32, 178–196.<br />

Harlan, S.S., Heaman, L.W., LeCheminant, A.N., Premo, W. R., 2003b. The Gunbarrel<br />

mafic magmatic event: A key 780 Ma time marker for Rodinia plate<br />

reconstructions. Geology 31, 1053–1056.<br />

Hartlaub, R. P. and Ashton, K. E., 1998. Geological investigations of the Murmac Bay<br />

group, Lake Athabasca north shore transect. Saskatchewan Geological Survey<br />

Miscellaneous Report 98-4, 17–28.<br />

Hartlaub, R. P., Heaman, L. M., Ashton, K. E., Chacko, T., 2004a. The Archean Murmac<br />

Bay Group: evidence for a giant Archean rift in the Rae province, Canada.<br />

Precambrian Research 131, 345–372.<br />

221


Hartlaub, R.P., Heaman, L.M., Chacko, T., Ashton, K.E., 2007. Circa 2.3-Ga magmatism<br />

of the Arrowsmith Orogen, Uranium City region, western Churchill Craton,<br />

Canada. Journal of Geology 115, 181-195.<br />

Hatcher, Jr., R.D., 2002. Alleghanian (Appalachian) Orogen, a product of zipper tectonics:<br />

Rotational transpressive continent–continent collision and closing of ancient<br />

oceans along irregular margins. Geological Society of America 364, 199-208.<br />

Heaman, L.M., LeCheminant, A.N., Rainbird, R.H., 1992. Nature and timing of Franklin<br />

igneous events, Canada; the break-up of Laurentia. Earth Planet Science Letters<br />

109, 117–131.<br />

Heaman, L.M., Hartlaub, R.P., Ashton, K.E., Harper, C.T., Maxeiner, R.O., 2003.<br />

Preliminary results of the 2002–2003 Saskatchewan Industry and Resources<br />

geochronology program. In Summary of Investigations 2003, 2. Saskatchewan<br />

Geological Survey, Saskatchewan Industry Resources, Miscellaneous Report<br />

2003-4, 2, Paper A-3, p. 4.<br />

Hedges, M.M., Wall V.J, Bloom M.S., 1984. Hydrothermal transport and deposition of<br />

uranium: Modelling and implications. Geol. Soc. Australia, 12, 226-227.<br />

Henderson, J.B., McGrath, P.H., Theriault, R.J., van Breemen, O., 1990. Intracratonic<br />

indentation of the Archean Slave province into the early Proterozoic Thelon<br />

tectonic zone of the Churchill province, NW Canadian shield: Canada Journal<br />

Earth Science 27, 1699-1713.<br />

Hendry, H. E., 1983. Sedimentology study of the Martin Group: In Summary of<br />

Investigations, 1983, Saskatchewan Geological Survey, Miscellaneous Report<br />

83-4, 46-48.<br />

Hiatt, E.E. and Kyser T.K., 2000. Links between depositional and diagenetic processes in<br />

basin analysis: Porosity and permeability evolution in sedimentary rocks:<br />

Mineralogical Association of Canada Short Course, 28, 63–92<br />

Hiatt, E.E, Fayek M, Kyser T.K, Polito 2001. The importance of early quartz cementation<br />

events in the evolution of aquifer properties of ancient sandstones: Isotopic<br />

evidence from ion probe analysis of sandstones from the McArthur, Athabasca,<br />

and Thelon basins [abs]: Geological Society of America Abstracts with<br />

Programs, 33, no 6, A74<br />

Hiatt, E.E, Kyser T.K, Fayek M, Polito P, Holk G.J., Riciputi L.R., 2007. Early quartz<br />

cements and evolution of paleohydraulic properties of basal sandstones in three<br />

Paleoproterozoic continental basins: Evidence from in situ δ18O analysis of<br />

quartz cements: Chemical Geology, 238, 19-37<br />

222


Hills, J.H and Richards J.R., 1972. The age of uranium mineralization in northern Australia<br />

Search; 392396<br />

Hills, J.H. and Richards J.R., 1976. Pitchblende and galena ages in the Alligator Rivers<br />

region, Northern Territory, Australia Mineralium Deposita, 11, 133–154<br />

Hoeve, J., 1982, Perspective on U mineralization at Beaverlodge: Saskatchewan Research<br />

Council, Publication. No. G-745-1-E-82.<br />

Hoeve, J., and Quirt, D., 1984. U mineralization and host rock alteration in relation to clay<br />

mineral diagenesis and evolution of the Middle-Proterozoic Athabasca basin,<br />

Saskatchewan Canada: Saskatchewan Research Council, Publication, R-855-2-B,<br />

190 p.<br />

Hoffman, P.F., 1987. Continental transform tectonics: Great Slave Lake shear zone (ca. 1.9<br />

Ga), northwest Canada. Geology 15, 785-788.<br />

Hoffman, P.F., 1988. United plates of America, the birth of a craton: early Proterozoic<br />

assembly and growth of Laurentia. Annual Review of Earth and Planetary<br />

Sciences 16, 543–603.<br />

Hoffman, P.F., 1989. Precambrian geology and tectonic history of North America, in: The<br />

Geology of North America: An Overview (eds. A.W. Bally and A.R. Palmer)<br />

Geological Society of America, Boulder pp. 447-511.<br />

Hoffman, P.F., 1990. Subdivision of the Churchill province and extent of the Trans-<br />

Hudson Orogen, in: The Early Proterozoic Trans-Hudson Orogen of North<br />

America. Edited by J.F. Lewry and M.R. Stauffer. Geology Association of<br />

Canada, Special Paper, 37, 15-39.<br />

Hoffman, P.F., 1997. Tectonic genealogy of North America, in: van der Pluijm, B,A. and<br />

Marshak, S., eds., Earth structure: An introduction to structural geology and<br />

tectonics: New York, McGraw-Hill, pp. 459–464.<br />

Hou, G., Santosh, M., Qian, X., Lister, G.S., Li, J., 2008. Configuration of the late<br />

Paleoproterozoic supercontinent Columbia: insights from radiating mafic dike<br />

swarms. Gondwana Research 14, 395–409.<br />

Hu, G.X., Clayton R.N., 2003. Oxygen isotope salt effects at high pressure and high<br />

temperature and the calibration of oxygen isotope geothermometry: Geochimica<br />

et Cosmochimica Acta v. 67, p. 3227-3246.<br />

Hunter, R.C., Bethune, K.M., Ashton, K.E., 2003. Stratigraphic and structural<br />

investigations of the Paleoproterozoic Thluicho Lake Group, central Zemlak<br />

Domain (Uranium City Project). In: Summary of Investigations 2003, Volume 2,<br />

223


Saskatchewan Geological Survey, Sask. Industry Resources, Misc. Rep. 2003-<br />

4.2, CD-ROM, Paper A-2, p. 14.<br />

Hunter, R.C., Bethune, K.M., Yeo, G.M., Ashton, K.E., 2004. Investigations of the<br />

Thluicho Lake Group: A stratigraphic, structural and tectonic perspective<br />

(Uranium City Project). In: Summary of Investigations 2004, Volume 2,<br />

Saskatchewan Geological Survey, Sask. Industry Resources, Misc. Rep. 2004-<br />

4.2, CD-ROM, Paper A-9, p. 14.<br />

Hynes, A., 1980. Carbonatization and mobility of Ti, Y, and Zr in Ascot Formation<br />

metabasalts, SE Quebec: Contrib. Miner. Petrol., v. 75, p. 79-87.<br />

Jagodzinski E.A., 1991. Stratigraphy of the Pul Pul Rhyolite, South Alligator Valley<br />

Mineral Field BMR Research Newsletter, 14, 4-5<br />

Jagodzinski, E.A., 1992. A study of the felsic volcanic succession south-east of Coronation<br />

Hill: Palaevolcanology-geochemistry-geochronology Bureau of Mineral<br />

Resources, Geology and Geophysics, Record, 1992/9, 147<br />

Jagodzinski, E.A., 1998. Shrimp U-Pb dating of ignimbrites in the Pul Pul Rhyolite,<br />

Northern Territory AGSO Research Newsletter, 28, 23–25<br />

Jefferson, C.W., Thomas, D.J., Gandhi, S.S., Ramaekers, P., Delaney, G., Brisbin, D.,<br />

Cutts, C., Portella, P., and Olson, R.A., 2007, Unconformity-associated uranium<br />

deposits of the Athabasca Basin, Saskatchewan and Alberta, in Jefferson, C.W.<br />

and Delaney, G., eds., EXTECH IV: Geology and uranium EXploration<br />

TECHnology of the Proterozoic Athabasca Basin, Saskatchewan and Alberta:<br />

Geological Survey of Canada, Bulletin 588, p. 23-67.<br />

Johns, R.W., 1970. The Athabasca U deposits: Western miner, Oct., p. 42-52<br />

Johnston, J.D., 1984. Structural evolution of the Pine Creek inliers and mineralization<br />

therein PhD thesis, Monash <strong>University</strong>, Australia<br />

Joubin, F.R., 1955. Some economic U deposits in Canada. Precambrian Research , v. 28,<br />

no.1 p. 6-8<br />

Kamo, S. L., Gower, C. F., Krogh, T. E., 1989. Birthdate for the Iapetus Ocean A precise<br />

U-Pb zircon and baddeleyite age for the Long Range dikes, southern Labrador:<br />

Geology, v. 17, p. 602–605.<br />

Karlstrom, K.E., Harlan, S.S., Williams, M.L., McLelland, J., Geissman, J.W. and Ahall,<br />

K.I., 1999. Refining Rodinia: Geologic evidence for the Australia–Western U.S.<br />

connection for the Proterozoic: GSA Today 9, no. 10, 1–7.<br />

224


Karlstrom, E.T., 2000. Fabric and origin of multiple diamictons within the pre-Illinoian<br />

Kennedy Drift of Waterton- Glacier International Peace Park, Alberta, Canada<br />

and Montana, USA. Geological Society of America Bulletin, 112, 1496–1506.<br />

Karlstrom, K.E., Ahall, K.-I., Harlan, S.S., William, M.L., McLelland, J. and Geissman,<br />

J.W., 2001. Long-lived (1.8–0.8 Ga) convergent Orogen in southern Laurentia,<br />

its extensions to Australia and Baltica and implications for refining Rodinia:<br />

Precambrian Research 111, 5–30.<br />

Koeppel, V., 1969. Age and history of the uranium mineralization of the Beaverlodge area,<br />

Saskatchewan. Geological Survey Canada, paper 67-31, 111p.<br />

Kojima, S., Takeda S., Kogita S., 1994, Chemical factors controlling the solubility of<br />

uraninite and their significance in the genesis of unconformity-related U<br />

deposits: Mineralium Deposita, v. 29 (4): p. 353-360.<br />

Kotzer, T.G. and Kyser, T.K., 1993. O, U, and Pb isotopic and chemical variations in<br />

uraninite: implications for determining the temporal and fluid history of ancient<br />

terrains. Am. Mineral. 78, 1262-1274.<br />

Kotzer, T.G., and Kyser, T.K., 1995. Petrogenesis of the Proterozoic Athabasca basin,<br />

northern Saskatchewan, and its relation to diagenesis, hydrothermal U<br />

mineralization and paleohydrology: Chemical Geology, v. 120, p. 45–89.<br />

Kretz, R., 1983. Symbols for rock-forming minerals, American Mineralogist 68, 277-279.<br />

Krupicka, J. and Sassano, G.P., 1972. Multiple deformations of crystalline rocks in the<br />

Tazin Group, Eldorado, Fay Mine, NW Saskatchewan: Canadian Journal Earth<br />

Science 9, 422-433.<br />

Kyser, T.K., and Kerrich, R., 1991. Retrograde exchange of hydrogen isotopes between<br />

hydrous minerals and water at low temperatures, in Taylor, Jr., H.P., O’Neil,<br />

J.R., and Kaplan, I., 19 8 eds., Stable isotope geochemistry: A tribute to Samuel<br />

Epstein: Geochemical Society Special Publication, v. 3, p. 409-424.<br />

Kyser, T.K., Hiatt, E.E., Renac, C., Durocher, K., Holk, G., Deckart, K., 2000. Diagenetic<br />

fluids in Paleo- and Meso-Proterozoic sedimentary basins and their implications<br />

for long protracted fluid histories: In Fluids and Basin Evolution (T.K. Kyser,<br />

ed.). Mineralogy Association Canada, Short Course, v. 28, p. 225-262.<br />

Kyser, T.K., Polito, P.A., Holk, G.J. and Hiatt, E.E., 2003. Pb-isotope ratios in sandstones<br />

near unconformity-related U deposits in Australia - a guide for exploration:<br />

Association of Exploration Geochemists' 21st International Geochemical<br />

Exploration Symposium, Dublin, Ireland, p. 75.<br />

225


Kyser, K., and Cuney, M., 2008. Geochemical characteristics of U and analytical<br />

methodologies, in Cuney, M. and Kyser, K., eds., Recent and not-so-recent<br />

developments in U deposits and implications for exploration: Mineralogical<br />

Association of Canada Short Course, v. 39, p. 23-85.<br />

Labrenze, M.E. and Karlstrom, K.E., 1991. Timing of the Mazatzal Orogeny: Constraints<br />

from the Young Granite, Pleasant Valley, Arizona, in: Karlstrom, K.E. and<br />

DeWitt, E., (Eds.), Proterozoic geology and ore deposits of Arizona. Arizona<br />

Geological Society Digest, v. 19, pp. 225–236.<br />

Lally, J. and Worden K., 2004. Geochronology in the Pine Creek Orogen – new results<br />

from NTGS: in ‘Annual Geoscience Exploration Seminar AGES. 2004 Record of<br />

abstracts’ Northern Territory Geological Survey, Record 2004-001, 3–4<br />

Lally, J.H. and Bajwah Z.U., 2006. Uranium deposits of the Northern Territory Northern<br />

Territory Geological Survey, Report 20<br />

Langford, F.F., 1981. The Martin Group in the Greater Beaverlodge area. In Summary of<br />

Investigations 1981. Saskatchewan Geological Survey, Saskatchewan Energy<br />

Mines, Miscellaneous Report 81-4, 38–43.<br />

Langmuir, D., 1978. U solution-minral equilibria at low temperatures with applications to<br />

sedimentary ore deposits: Geochimica et Cosmochimica Acta, v. 42, p. 547-569.<br />

LeCheminant, A.N. and Heaman, L.M., 1989. Mackenzie igneous events, Canada: Middle<br />

Proterozoic hotspot magmatism associated with ocean opening. Earth and<br />

Planetary Science Letters 96, 38–48.<br />

LeCheminant, A.N. and Heaman, L.M., 1994. 779 mafic magmatism in the northwestern<br />

Canadian shield and northern Cordillera: A new regional time-marker. Eighth<br />

International Conference on Geochronology, Cosmochronology and Isotope<br />

Geology, Berkeley, California, Programs with Abstract: U.S. Geological Survey<br />

Circular 1107, 187 p.<br />

LeCheminant, A.N., Buchan, K.L., van Breemen, O., 1997. Paleoproterozoic continental<br />

breakup and reassembly: Evidence from 2.19 Ga diabase dike swarms in the<br />

Slave and western Churchill provinces, Canada: Geological Association of<br />

Canada/Mineralogical Association of Canada, Abstract volume, p. A-86.<br />

Leroy, J., 1978, The Margnac and Fanay U deposits of the La Crouzille district (western<br />

Massif Central, France), geologic and fluid inclusion studies: Economic<br />

Geology, v. 73, p. 1611-1634.<br />

Lewry, J.F. and Collerson, K.D., 1989. The Trans-Hudson Orogen: Extent, subdivision and<br />

problems, in: The Early Proterozoic Trans-Hudson Orogen of North America.<br />

226


Edited by J.F. Lewry and M.R. Stauffer. Geological Association of Canada,<br />

Special Paper 37, 1-14.<br />

Li, Z.X. Bogdanova, S.V., Collins, A.S., Davidson, A. B., Wael, D., Ernst, R.E.,<br />

Fitzsimons, I.C.W., Fuck , R.A., Gladkochub, D.P., Karlstrom, K.E., Natapovm,<br />

S. L. L.M., Peas, V., Pisarevsky , S.A. Thrane , K., Vernikovsky, V., 2008.<br />

Assembly, configuration, and break-up history of Rodinia: a synthesis.<br />

Precambrian Research 160, 179–210.<br />

Ludwig, K.R, Grauch R.I, Nutt C.J, Frisman D, Nash JT, Simmons K.R., 1985. Age of<br />

uranium ores at Ranger and Jabiluka unconformity vein deposits, Northern<br />

Territory, Australia Economic Geology 82, 857–874<br />

Ludwig, K.R, Frauch, R.I, Nutt, C.J, Frishman, D, Simmons K.R., 1987. Age of uranium<br />

mineralization at the Jabiluka and Ranger deposits, Northern Territory, Australia:<br />

new U-Pb isotope evidence: Economic Geology, 82, 857–874<br />

Ludwig, K.R., 2000. Decay constant errors in U–Pb concordia-intercept ages. Chem. Geol.<br />

166, 315–318.<br />

Maas, R., 1989. Nd-Sr isotope constraints on the age and origin of unconformity type<br />

uranium deposits in the Alligator Rivers Uranium Field, Northern Territory,<br />

Australia Economic Geology 84, 64–90<br />

MacCready, T, Goleby B.R, Goncharov A, Drummond B.J, Lister G.S., 1998. A<br />

framework of overprinting orogens based on interpretation of the Mount Isa deep<br />

seismic transect: Economic Geology, 93, 1422–1434<br />

Macdonald, R. and Slimmon, W.L., 1985. Bedrock Geology of the Greater Beaverlodge<br />

Area, NTS 74N-6 to -11: Saskatchewan Energy Mines, Map 241A, 1:100 000<br />

scale.<br />

Marumo, K., Nagasawa K., Kuroda Y., 1980. Mineralogy and hydrogen isotope<br />

geochemistry of clay minerals in the Ohnuma geothermal area, northeastern<br />

Japan: Earth and Planetary Science Letters, v. 47, p. 255–262.<br />

Mazimhaka, P.K. and Hendry, H.E., 1984. The Martin Group, Beaverlodge Area. In<br />

Summary of Investigations 1984, Saskatchewan Geological Survey,<br />

Saskatchewan Energy Mines, Miscellaneous Report 84-4, 53-62.<br />

Mazimhaka, P.K. and Hendry, H.E., 1985. The Martin Group, Charlot Point and Jug Bay<br />

areas. In Summary of Investigations 1985. Saskatchewan Geological Survey,<br />

Saskatchewan Energy Mines, Miscellaneous Report 85-4, 67-80.<br />

McDonough, M. R. McNicoll, V. J. Schetsela, E. M., Grover, T. W., 2000.<br />

Geochronological and kinematic constraints on crustal shortening and escape in a<br />

227


two-sided oblique-slip collisional and magmatic Orogen, Paleoproterozoic<br />

Taltson magmatic zone, northeastern Alberta: Canada Journal of Earth Science<br />

37, 1549–1573.<br />

McDonough, W. F. and Sun, S, S., 1995. The composition of the Earth: Chemical Geology,<br />

v. 120, p. 223–253.<br />

McLelland, J., Daly, S., McLelland, J., 1996. The Grenville orogenic cycle: An Adirondack<br />

perspective. Tectonophysics, 265, 1-29.<br />

Mckenzie, D. P., 1978. Some remarks on the development of sedimentary basins. Earth and<br />

Planetary Science Letters 40, 25-32.<br />

McNicoll, V.J., Thériault, R.J., McDonough, M.R., 2000. Taltson basement gneissic rocks;<br />

U–Pb and Nd isotopic constraints on the basement to the Paleoproterozoic<br />

Taltson magmatic zone, northeastern Alberta: Canada Journal of Earth Science<br />

37, 1575-1596.<br />

Mercadier, J., Cuney, M., Lach, P., Boiron, M.C., Bonhoure, J., Richard, A., Leisen, M.,<br />

Kister, P., 2011. Origin of uranium deposits revealed by their rare earth element<br />

signature: Terra Nova, v. 23, p. 264-269.<br />

Metcalfe, I., 2001. Paleozoic and Mesozoic tectonic evolution and biogeography of SE<br />

Asia-Australasia Pages 15–34 in I Metcalfe, JMB Smith, M Morwood, and I<br />

Davidson, eds, Faunal and Floral Migrations and Evolution in SE Asia-<br />

Australasia AA Balkema, Lisse, Switzerland<br />

Mernagh, T.P, Heinrich C.A, Leckie J.F, Carville D.P, Gilbert D.J, Valenta R.K, Wyborn<br />

L.A.O., 1994. Chemistry of low-temperature hydrothermal gold, platinum, and<br />

palladium±uranium. mineralization at Coronation Hill, Northern Territory,<br />

Australia: Economic Geology, 89, 1053–1073<br />

Mernagh T.P and Wyborn L.A.I., 1994. The genesis of the Coronation Hill gold, palladium<br />

and platinum deposit: implications for exploration: in Australian research on ore<br />

genesis symposium, Adelaide, South Australia, December 12 -14, 1994,<br />

Proceedings Australian Mineral Foundation, Adelaide, 231 – 235<br />

Miller, J. A., Buick, I. S., Cartwright, I., 2002. Fluid processes during the exhumation of<br />

high-P metamorphic belts, Mineral. Mag. 66, 93-119.<br />

Miller, J.A. and Cartwright, I., 2006. Albite vein formation during exhumation of highpressure<br />

terranes: a case study from Alpine Corsica. Journal of Metamorphic<br />

Geology, 24, 409-428.<br />

228


Molnar, P. and Atwater. T., 1978. Interarc spreading and Cordilleran tectonics as alternates<br />

related to the age of subducted oceanic lithosphere: Earth and Planetary Science<br />

Letters 41, 330-340.<br />

Moores, E.M., 1991. The Southwest U.S.–East Antarctica (SWEAT) connection: A<br />

hypothesis. Geology 19, 425–428.<br />

Morelli, R., Ashton, K., Ansdell, K., 2001. A geochemical investigation of the Martin<br />

Group igneous rocks, Beaverlodge Domain, northwestern Saskatchewan. In<br />

Summary of Investigations 2001, Saskatchewan Geological Survey,<br />

Saskatchewan Energy Mines v. 2, Miscellaneous Report 2001-4, 64-75.<br />

Morelli, R.M., Hartlaub, R.P., Ashton, K.E., Ansdell, K.M., 2009. Evidence for enrichment<br />

of subcontinental lithospheric mantle from Paleoproterozoic intracratonic<br />

magmas: geochemistry and U–Pb geochronology of Martin Group igneous rocks,<br />

western Rae craton, Canada. Precambrian Research 175, 1-15.<br />

Morton, R. D. and Sassano, G. P., 1972. Structural studies on the uranium deposit of the<br />

Fay Mine, Eldorado, northwest Saskatchewan. Canada Journal of Earth Science<br />

9, 803-823.<br />

Mountain, B.W. and Wood S.A., 1988a. Solubility and transport of platinum-group<br />

elements in hydrothermal solutions: Thermodynamic and physical chemical<br />

constraints; in Geo-Platinum 87, Prichard, HM, Potts, PJ, Bowles, JFW and<br />

Cribb, SJ eds., Elsevier Science Publishing Ltd, Barking, Essex, UK, 57-82<br />

Mountain, B.W. and Wood S.A., 1988b. Chemical controls on the solubility, transport, and<br />

deposition of platinum and palladium in hydrothermal solutions: A<br />

thermodynamic approach; Economic Geology 83, 492-510<br />

Müller, R.D, Gaina C, Clarke S., 2000. Seafloor spreading around Australia, In: J Veevers<br />

ed., Billion-year earth history of Australia and neighbours in Gondwanaland –<br />

BYEHA 18-28<br />

Myers, J.S, Shaw R.D, Tyler I.M., 1996. Tectonic evolution of Proterozoic Australia<br />

Tectonics 15, 1431 – 1446<br />

Needham, R.S, Crick I.H, Stuart-Smith P.G., 1980. Regional geology of the Pine Creek<br />

Geosyncline: in Ferguson J and Goleby AB editors. Uranium in the Pine Creek<br />

Geosyncline International Atomic Energy Agency, Vienna, 1-22<br />

Needham, R.S., 1982. Cahill, Northern Territory 1:100 000 geological map series<br />

commentary, 5472 Bureau of Mineral Resources, Australia<br />

Needham, R.S. and Stuart-Smith P.G., 1984. The relationship between mineralisation and<br />

depositional environment in the Early Proterozoic metasediments of the Pine<br />

229


Creek Geosyncline: in ‘The mineral potential of northern Australia and changing<br />

concepts of development’ Australasian Institute of Mining and Metallurgy, 1984<br />

Annual Conference, Darwin, Northern Territory, Australia, August 1984<br />

Australasian Institute of Mining and Metallurgy, Conference Series 13, 201–211<br />

Needham, R.S. and Stuart-Smith P.G., 1985. Stratigraphy and tectonics of the Early to<br />

Middle Proterozoic transition, Katherine-E1 Sherana area, NT Aust J Earth Sci,<br />

32: 219-230<br />

Needham, R.S. and Stuart-Smith P.G., 1986. Coronation Hill U-Au mine, South Alligator<br />

Valley, Northern Territory: an epigenetic sandstone-type deposit hosted by<br />

debris-flow conglomerate BMR Journal of Australian Geology and Geophysics<br />

10, 121-131<br />

Needham, R.S., 1987. A review of mineralisation in the South Alligator Conservation Zone<br />

Bureau of Mineral Resources, Australia, Record 1987/52<br />

Needham, R.S., 1987. Geology of the Alligator Rivers Uranium Field, northern Territory<br />

Australian Government Publishing Service, Canberra<br />

Needham, R.S, Stuart-Smith P.G, Page R.W., 1988. Tectonic evolution of the Pine Creek<br />

Inlier, Northern Territory Precambrian Research 40/41, 543–564<br />

Needham, R.S., 1988a. Geology of the Alligator Rivers Uranium Field, Northern Territory<br />

Bureau of Mineral Resources, Australia, Bulletin 224<br />

Needham, R.S., 1988b. Geology and mineralization of the South Alligator Valley Mineral<br />

Field 1:75 000 scale map. Bureau of Mineral Resources, Australia<br />

Needham, R.S. and DeRoss G.J., 1990. Pine Creek Inlier – regional geology and<br />

mineralisation: in Hughes FE editor. ‘Geology and mineral deposits of Australia<br />

and Papua New Guinea’ Australasian Institute of Mining and Metallurgy,<br />

Monograph 14, 727–737<br />

Neumann, N.L. and Fraser G.L., 2007. Geochronological synthesis and Time-Space plots<br />

for Proterozoic Australia Geoscience Australia Record 2007/06<br />

O’Hanley, D.S., Kyser, T.K., Sibbald, T.I.I., 1991. The Age of the Mine Granites,<br />

Goldfields Area. In Summary of Investigations, 1991; Saskatchewan Geological<br />

Survey; Saskatchewan Energy and Mines, Miscellaneous Report 91-4.<br />

Ohmoto, H. and Rye R. O., 1979. Isotopes of sulfur and carbon: In Geochemistry of<br />

Hydrothermal Ore Deposits, 2nd ed. (ed. H. L. Barnes), p. 509–567.<br />

Ojakangas, R.W., 1979. Sedimentation of the basal Kombolgie Formation Upper<br />

Precambrian-Carpentarian. Northern Territory, Australia: Possible significance in<br />

230


the genesis of the underlying Alligator Rivers Unconformity- type uranium<br />

deposits US Dept of Energy, GJBX- 173 79., 38<br />

O’Neil,, J..R. and Taylor H.P. Jr., 1969. Oxygen isotope equilibrium between muscovite<br />

and water: Journal of Geophysical Research, 74, 6012–6022<br />

Page, R.W, Compston W, Needham R.S., 1980. Geochronology and evolution of the late<br />

Achaean basement and Proterozoic rocks in the Alligator River Uranium Field,<br />

Northern Territory, Australia: in Ferguson J and Goleby AB editors. Uranium in<br />

the Pine Creek Geosyncline International Atomic Energy Agency, Vienna, 39–68<br />

Page, R.W. and Williams I.S., 1988. Age of the Barramundi Orogeny in northern Australia<br />

by means of ion microprobe and conventional U-Pb zircon studies Precambrian<br />

Research 40/41, 21–36<br />

Page, R.W. and Bell T.H., 1986. Isotopic and structural responses of granite to successive<br />

deformation and metamorphism J Geol 94:365–379<br />

Persons, S.S., 1983. U–Pb geochronology of Precambrian rocks in the Beaverlodge area,<br />

northwestern Saskatchewan: Unpublished M.Sc. Thesis, <strong>University</strong> of Kansas,<br />

68 p.<br />

Peiris, E. and Parslow, G., 1988. Geology and geochemistry of the uranium-gold<br />

mineralization in the Nicholson Bay-Fish Hook Bay Area: In Summary of<br />

Investigations, Saskatchewan Geological Survey Miscellaneous Report 88-4, p.<br />

70-77<br />

Pharaoh, T. C. and Brewer, T. S., 1990. Spatial and temporal diversity of Early Proterozoic<br />

volcanic sequences. Comparisons between the Baltic and Laurentian Shields:<br />

Precambrian Research, v. 47, p. 169-189.<br />

Pietsch, B.A. and Stuart-Smith P.G., 1987. Darwin SD52-4 1:250 Geological Map Series,<br />

Northern Territory Geological Survey, Department of Mines and Energy<br />

Comparisons between the Baltic and Laurentian Shields: Precambrian Research,<br />

v. 47, p. 169-189.<br />

Pinheiro, S.S., Fernandes, P.E.C.A., Pereira, E.R., Vasconcelos, E.G., Pinto, A.C.,<br />

Montalva˜o, R.M.G., Issler, R.S., Dall’Agnoll, R., Teixeira, W., and Fernandes,<br />

C.A.C., 1976, Geologia, in Levantamento de Recursos Naturais, Projeto Radar na<br />

Amazoˆnia: Rio de Janeiro, Brazil, Departamento Nacional da Produc¸a˜o<br />

Mineral, sheet NA.19—Pico da Neblina, v. 11, p. 19–137.<br />

Piper, J.D.A., 2000. The Neoproterozoic Supercontinent: Rodinia or Palaeopangaea: Earth<br />

and Planetary Science Letters 176, 131-146.<br />

231


Piper, J.D.A., 2004. Discussion on “The making and unmaking of a supercontinent:<br />

Rodinia revisited” Tectonophysics, 375, 261–288.<br />

Pisarevsky, S.A., Natapov, L.M., Donskaya, T.V., Gladkochub, D.P., Vernikovsky, V.A.,<br />

2008. Proterozoic Siberia: a promontory of Rodinia. Precambrian Research 160,<br />

66-76.<br />

Plant, J.A., Simpson, P.R., Smith, B., Windley, B.F., 1999. U ore deposits: products of the<br />

radioactive earth: Reviews in Mineralogy and Geochemistry, v. 38, p. 255-319.<br />

Polito, P.A, Kyser T.K, Marlatt J, Alexandre P, Bajwah Z.U, Drever, D., 2004.<br />

Significance of alteration assemblages for the origin and evolution of the<br />

Proterozoic Nabarlek unconformity-related uranium deposit, Northern Territory,<br />

Australia Economic Geology 99, 113–139<br />

Polito, P.A, Kyser T.K, Thomas D, Marlatt J, Drever G., 2005. Re-evaluation of the<br />

petrogenesis of the Proterozoic Jabiluka unconformity-related U deposit,<br />

Northern Territory, Australia Miner Depos 40:257–288<br />

Polito, P.A, Kyser T.K, Southgate P.N, Jackson M.J., 2006. Sandstone Diagenesis in the<br />

Mount Isa Basin: An isotopic and fluid inclusion perspective in relation to<br />

district-wide Zn, Pb, and Cu mineralization Econ Geol 101:1159–1188<br />

Polito, P.A, Kyser K.T, Stanley C., 2007. The Proterozoic, albitite hosted, Valhalla U<br />

deposit, Queensland, Australia: A description of the alteration assemblage<br />

associated with U mineralization in diamond drill hole: Mineralium Deposita, 44,<br />

p11–40<br />

Porto da Silveira, C,L., Schorscher H,D., Miekeley N., 1991, The geochemistry of<br />

albitization and related U mineralization, Espinharas, Paraiba (PB), Brazil.<br />

Journal of Geochemical Exploration, v. 40, p. 329–347.<br />

Quirt, D.H., 2003. Athabasca unconformity-type uranium deposits: one deposit type with<br />

many variations, in Cuney, M., ed., Uranium Geochemistry 2003, International<br />

Conference, April 13-162003, Proceedings: Unité Mixte de Recherche CNRS<br />

7566 G2R, Université Henri Poincaré, Nancy, France, p. 309-312.<br />

Rainbird, R.H., Stern, R.A., Rayner, N., Jefferson, C.W., 2007. Age, provenance and<br />

regional correlation of the Athabasca Group, Saskatchewan and Alberta<br />

constrained by igneous and detrital zircon geochronology, in: Jefferson, C.W.,<br />

Delaney, G. (Eds.), Extech IV: Geology and Uranium Exploration Technology of<br />

the Proterozoic Athabasca Basin Saskatchewan and Alberta. Geological Survey<br />

of Canada, Bulletin 588, pp. 193-209.<br />

232


Ramaekers, P., 1981. Hudsonian and Helikian basins of the Athabasca region, northern<br />

Saskatchewan, in: Campbell, F.H.A. (Ed.), Proterozoic Basins of Canada.<br />

Geological Survey of Canada, Paper 81-10, pp. 219-233.<br />

Ramsay, J G., 1967. Folding and fracturing of rocks. New York: McGraw Hill. 568 p.<br />

Rasmussen, B, Sheppard S, Fletcher I.R., 2006. Testing ore deposit models using in situ U-<br />

Pb geochronology of hydrothermal monazite: Paleoproterozoic gold<br />

mineralization in northern Australia Geology 34:77–80<br />

Rees, M.I., 1992. History of the fluids associated with the Lode-Gold deposits, and<br />

complex U-PGE-Au vein-typedeposits, Goldfields Peninsula, northern<br />

Saskatchewan, Canada; unpubl. M.Sc. thesis, Univ. Saskatchewan, 209p.<br />

Riley, G.H, Binns R.A, Craven,S.J., 1980. Rb-Sr chronology of micas at Jabiluka, In:<br />

Ferguson, John, and Goleby, A B, eds, Uranium in the Pine Creek Geosyncline:<br />

Vienna, Int Atomic Energy Agency, 457-468<br />

Rivers, T., 1997. Lithotectonic elements of the Grenville province: Review and tectonic<br />

implications. Precambrian Research 86, 117-154.<br />

Robinson, S.C., 1955. Mineralogy of Uranium Deposits, Goldfields, Saskatchewan.<br />

Canadian Geological Survey, Bulletin 31.<br />

Rogers, J.J.W. and Santosh, M., 2002. Configuration of Columbia, a Mesoproterozoic<br />

supercontinent: Gondwana Research 5, 5-22.<br />

Romberger, S.B., 1984. Mechanisms of Deposition of Gold in Low Temperature<br />

Hydrothermal Systems: Assoc Expl. Geochemists Annual Meeting, Reno,<br />

Nevada.<br />

Russel, R.D. and Ahren, L. D., 1957. Additional regularities among discordant Pb/U ages.<br />

Geochimica et Cosmochimica Acta 11, 213-218.<br />

Ruzicka, V.R., 1996. Unconformity-associated uranium, Chapter 7 in Eckstrand, O.R.,<br />

Sinclair, W.D., and Thorpe, R.I., eds., Geology of Canadian Mineral Deposit<br />

Types: Geological Survey of Canada, Geology of Canada, v, 8, p. 197-210.<br />

Saltikoff, B., Puustinen, K. and Tontti, M., 2006. Metallogenic zones and metallic mineral<br />

deposits in Finland–Explanation to the Metallogenic Map of Finland. Geological<br />

Survey of Finland, Special paper 35, pp 66.<br />

Santos, J.O.S., Hartmann, L.A., Gaudette, H.E., Groves, D.I., McNaughton, N.J., and<br />

Fletcher, I.R., 2000. A new understanding of the provinces of the Amazon craton<br />

based on integration of field mapping and UPb and Sm-Nd geochronology:<br />

Gondwana Research, v. 3, p. 453–488. Science B.V., Amsterdam, 19–<br />

233


99.Sheppard SMF and Gilg HA 1996. Stable isotope geochemistry of clay<br />

minerals: Clay Minerals, 31, 1-24<br />

Santos, J.O.S., Potter, P.E., Reis, N.J., Hartmann, L.A., Fletcher, I.R., McNaughton, N.J.,<br />

2003. Age, source and regional stratigraphy of the Roraima Supergroup and<br />

Roraima-like outliers in northern South America based on U-Pb geochronology.<br />

Geological Society of America Bulletin 115 (3): 331–348.<br />

Sassano, G. P., 1972. The nature and origin of the uranium mineralization at the Fay Mine,<br />

Eldorado, Saskatchewan: Unpublished Ph.D. thesis, <strong>University</strong> of Alberta,<br />

Edmonton, Alberta, 416p.<br />

Sassano, G.P., Fritz P., Morton R.D., 1972. Paragenesis and isotopic composition of some<br />

gangue minerals from the uranium deposits of Eldorado, Saskatchewan.<br />

Canadian Journal of Earth Science 9, 141-157.<br />

Sassano, G.P., Baadsgaard, H., Burwash, R.A., 1974. Rb-Src age of the late kinematic<br />

phase of the Hudsonian Orogen in the Beaverlodge area, Saskatchewan:<br />

Canadian Journal of Earth Science 11, 643-649.<br />

Scott, B.P., 1978. The geology of an area east of Thluicho Lake, Saskatchewan (part of<br />

NTS area 74N-11). Saskatchewan Mineral Resources, Report 167, p. 51<br />

(1:31680 scale map).<br />

Sener, A.K, Grainger C.J, Groves D.I., 2002. Epigenetic gold-platinum-group deposits:<br />

examples from Brazil and Australia Transactions of the Institution of Mining and<br />

Metallurgy: Section B 111: 65-73<br />

Shergold, J.H. and Druce E.C., 1980. Upper Proterozoic and Lower Palaeozoic rocks of the<br />

Georgina Basin In Henderson, RA & Stephenson, PJ Editors.: The Geology and<br />

Geophysics of Northeastern Australia Geological Society of Australia,<br />

Queensland Division, 149-174<br />

Sibbald, T.I.I., 1982. Uranium Metallogenic Studies: Nicholson Bay Area. In Summary of<br />

Investigations, 1982; Saskatchewan Geological Survey; Saskatchewan Energy<br />

and Mines, Miscellaneous Report 82-4.<br />

Sibbald, T.I.I., 1983. Geology of the crystalline basement, NEA/AEA Athabasca Test Area,<br />

in: Cameron, E.M. (Ed.), Uranium Exploration in Athabasca Basin<br />

Saskatchewan, Canada, Geological Survey of Canada, pp. 1-14.<br />

Sibbald, T.I.I. and Quirt, D., 1987. U deposits of the Athabasca basin: Saskatchewan<br />

Research Council Publication R-855-1-G-87, 79 p.<br />

Sibson, RH., Moore, J., Rankin, A., 1975. Seismic pumping-a hydrothermal fluid transport<br />

mechanism. Journal of Geological Society of London, vol. 131, p. 653-659.<br />

234


Sibson, R.H., 1977. Fault rocks and fault mechanisms: Journal Geological Society, London<br />

133, 191-213.<br />

Sibson, R.H., 1987. Earthquake rupture as a hydrothermal mineralizing agent. Geology, vol<br />

15, p. 701-704.<br />

Simonen, A., 1986. Stratigraphic studies on the Precambrian in Finland. Geological Survey<br />

of Finland, Bulletin 336: 21–37<br />

Skirrow, R.G., Jaireth, S., Huston, D.L., Bastrakov, E.N., Schofield, A., van, der Wielen,<br />

S.E., Barnicoat, A.C., 2009. U Mineral, Systems: Processes, Exploration Criteria<br />

and a New Deposit Frame Systems: Framework; work; Geoscience Australia<br />

Record 2009/20, 44 p.<br />

Slater, J. R., 1983. Some relationships between deformation, mineralization and ore genesis<br />

at the Fay mine, Eldorado, Saskatchewan: Unpublished M.Sc. thesis, <strong>University</strong><br />

of Alberta, 105 p.<br />

Smellie, J.A.T. and Laurikko, J., 1984. Skuppesavon, northern Sweden: a U mineralization<br />

associated with alkali metasomatism: Mineralium Deposita v. 19, p. 184-192.<br />

Smith, D.K., 1984. U mineralogy. In: De Vivo B, Ippolito F, Capaldi G, Simpson PR (eds)<br />

U geochemistry, mineralogy, geology, exploration and resources: The Institution<br />

of Mining and Metallurgy, London, England, p 43–88.<br />

Sorjonen-Ward, P., Claoué-Long, J. and Huhma, H., 1994. SHRIMP isotope studies of<br />

granulite zircons and their relevance to early Proterozoic tectonics in northern<br />

Fennoscandia. In: Lamphere, M., Darymple, G., Turrin, B (Eds.), Abstract of the<br />

Eighth International Conference on Geochronology, Cosmochronology and<br />

isotope Geology, Berkeley, Califormia, USA, June 5-11, 1994. U.S Geological<br />

Survey Circular 1107: 1–299.<br />

Sorjonen-Ward, P. & Luukkonen, E., 2005. Archean rocks. In: Lehtinen, M., Nurmi, P. A.<br />

& Rämö, O. T., (eds.) Precambrian geology of Finland: key to the evolution of<br />

the Fennoscandian Shield. Developments in Precambrian geology 14. Elsevier<br />

Spikings, R.A, Foster D.A, Kohn B.P, Lister G.S., 2001. Post-orogenic


Proceedings Darwin Conference 1984 Australasian Institute of Mining &<br />

Metallurgy; 329338<br />

Stuart-Smith, P.G, Needham R.S, Page R.W, Wyborn L.A.I., 1993. Geology and mineral<br />

deposits of the Cullen Mineral Field, Northern Territory Australian Geological<br />

Survey Organisation, Bulletin 229<br />

Sweet, I.P, Brakel A.T, Carson L., 1999. The Kombolgie Subgroup a new look at an old<br />

formation AGSO Research Newsletter 1999; No 30: 2628<br />

Taylor J., 1968. Origin and controls of uranium mineralization in the South Alligator<br />

valley: in Berkman DA, Cuthbert RH and Harris LA Editors. Uranium in<br />

Australia Symposium, Rum Jungle, June 1968 Proceedings Australasian Institute<br />

of Mining and Metallurgy, 32-44<br />

Taylor, H. P. Jr., 1974. The application of oxygen and hydrogen isotope studies to<br />

problems of hydrothermal alteration and ore deposition. Economic Geology, v.<br />

69, p. 843.<br />

Thériault, R.J., 1992. Nd isotopic evolution of the Taltson magmatic zone, Northwest<br />

Territories, Canada: insights into Early Proterozoic accretion along the western<br />

margin of the Churchill province: Journal of Geology 100, 465–475.<br />

Thompson, A.G. and Barnes, C.G., 1999. 1.4 Ga peraluminous granites in central New<br />

Mexico: Petrology and geochemistry of the Priest pluton: Rocky Mountain.<br />

Geology 34, 223–243.<br />

Torsvik, T.H. and Van der Voo, R., 2002. Refining Gondwana and Pangaea<br />

Palaeogeography: Estimates of Phanerozoic (octupole) non-dipole fields.<br />

Geophysical Journal International 151, 771-794.<br />

Tortosa, D. J.-J., 1983. The Geology of the Cenex Uranium Deposit, Beaverlodge,<br />

Saskatchewan, in: C.I.M.M. Special Volume 33, Uranium Deposits of Canada,<br />

Dr. E. L. Evans, Editor.<br />

Tremblay, L. P., 1968. Geology of the Beaverlodge Mining Area, Saskatchewan (Parts of<br />

74N/9 and 74N/10). Geological Survey of Canada, Memoir 367.<br />

Tremblay, L.P., 1972. Geology of the Beaverlodge Mining Area, Saskatchewan. Geological<br />

Survey of Canada, Memoir 367, including two maps at 1:14,400 that encompass<br />

the entire Beaverlodge Mining Area, 265p.<br />

Turek, A., 1962. Geology of the Cinch Lake Mine Limited, Uranium City, Saskatchewan.<br />

Unpublished M.Sc. thesis, <strong>University</strong> of Alberta, 101 p.<br />

236


Valenta, R.K., 1989. Structure and mineralization in the South Alligator Valley, NT Bureau<br />

of Mineral Resources<br />

Valenta, R.K., 1990. Structural setting of unconformity-related U Au platinoid<br />

mineralization in the South Alligator Valley, NT In: Gondwana and Resources<br />

Geologl Society of Australia; Abstracts No 25: 173<br />

Valenta, R.K., 1991. Structural controls on mineralization of the Coronation Hill deposit<br />

and surrounding area: Australia Bureau of Mineral Resources: Geology and<br />

Geophysics Record1991/107, 186<br />

Walpole, B.P, Crohn P.W, Dunn P.R, Randal M.A., 1968. Geology of the Katherine–<br />

Darwin region, Northern Territory Bureau of Mineral Resources, Australia,<br />

Bulletin 82<br />

Warren, R.G. and Kamprad, J.L., 1990. Mineralogical petrographic and geochemical<br />

studies in the South Alligator region Pine Creek inlier, NT: Australia Bureau of<br />

Mineral Resources, Geology and Geophysics Record1 990/54, 113<br />

Wasserburg, G. J. and Hayden, R. J., 1955. Ar 40 :K 40 dating. Geochimica et Cosmochimica<br />

Acta 7, 51–60.<br />

Wenner, D.B., and Taylor, H.P., Jr., 1971. Temperature of serpentinization of ultramafic<br />

rocks based on O18/O16 fractionation between coexisting serpentinite and<br />

magnesite: Contributions to Mineralogy and Petrology, v. 32, p. 165–185.<br />

Whitmeyer, S. J. and Karlstrom K. E., 2007. Tectonic model for the Proterozoic growth of<br />

North America. Geosphere, 3, 220–259.<br />

Wiedenbeck, M., Allé P., Corfu, F., Griffin, W.L, Meier, M., Oberli, F., von Quadt, A.,<br />

Roddick, J.C., Spiegel, W., 1995. Three natural Zircon standards for U-Th-Pb,<br />

Lu-Hf, trace element and REE analysis: Geostandards Newsletter, v. 19, p. 1-23.<br />

Wilde, A.R, Mernagh T.P, Bloom M.S, Hoffmann C.F., 1989. Fluid inclusion evidence on<br />

the origin of some Australian Unconformity-related Uranium Deposits:<br />

Economic Geology, 84, 1627- 1642<br />

Wilde, A.R., 1992. Unconformity-related uranium-gold deposits on northern Australia;<br />

resources, genesis and exploration IAEA-Tecdoc, 650, 49-58<br />

Williams, H., Hoffman, P.F., Lewry, J.F., Monger, J.W.H., Rivers, T., 1991. Anatomy of<br />

North America: thematic portrayals of the continent. Tectonophysics 187, 117–<br />

134.<br />

Wilson, M.R., and Kyser, K., 1987. Stable isotopes geochemistry of alteration associated<br />

with the Key Lake U deposit, Canada: Economic Geology, v. 82, p. 1540–1557.<br />

237


Wingate, M.T.D, Pisarevsky SA, Evans D.A.D., 2002. Rodinia connections between<br />

Australia and Laurentia: no SWEAT, no AUSWUS Terra Nova 14:121–128<br />

Wingate, M.T.D and Giddings J.W., 2000. Age and paleomagnetism of the Mundine Well<br />

dyke swarm, Western Australia: implications for an Australia–Laurentia<br />

connection at 755 Ma Precamb Res100:335–357<br />

Wray, E.M, Ayres, D.E, Ibrahim H., 1985. Geology of the Mid-west uranium deposit<br />

northern Saskatchewan Canadian Institute of Mining and Metallurgy, 32, 54-66<br />

Wyborn, L.A.I, Valenta R, Needham R.S, Jagodzinski E.A, Whitaker A, Morse M.P., 1990.<br />

A review of the geological, geophysical and geochemical data of the Kakadu<br />

Conservation Zone: a basis for the assessing resource potential Report by the<br />

Bureau of Mineral Resources to the Resource Assessment Commission, Inquiry<br />

on the Kakadu Conservation Zone<br />

Wyborn, L.A.I, Valenta, R.K, Jagodzinski, E.A, Whitaker A, Morse M.P, Needham R.S.,<br />

1991. A review of the geological, geophysical and geochemical data of the<br />

Kakaduc conservation zone basis for estimating resource potential: Australia<br />

Bureau of Mineral Resources Geology and Geophysics Report to Resource<br />

Assessment Commission 2, 90 p<br />

Wyborn, L.A.I., 1992. Au-Pt-Pd-U mineralization in the Coronation Hill-EL Sherana<br />

region NT: BMR Research Newsletter, 16, 1-3<br />

Wyborn, L.A.I, Budd A., Bastrikova, I., 1997. The metallogenic potential of Australian<br />

Proterozoic Granites Final Meeting Report Australian Geological Survey<br />

Organisation, Canberra<br />

Yeo, G.M., 2005. Stratigraphy and metallogeny of the Paleoproterozoic Thluicho Lake<br />

Group, northwestern Saskatchewan (NTS 74N/11). In: Summary of<br />

Investigations 2005, Volume 2, Saskatchewan Geological Survey, Sask. Industry<br />

Resources, Misc. Rep. 2005-4.2, Paper A-2, p. 20.<br />

238


APPENDIX A<br />

Isotopic Data and Apparent Ages for Various generations of Uraninite from the Beaverlodge area<br />

Sample<br />

Deposit<br />

207 Pb/ 206 Pb ±2σ<br />

207 Pb/ 235 U ±2σ<br />

206 Pb/ 238 U ±2σ R‡<br />

207 Pb/ 206 Pb ±<br />

206 Pb/ 238 U ±<br />

207 Pb/ 235 U ± Disc‡<br />

Cataclasite-type uraninite<br />

6122-Cat_6b Ace Fay 0.125 0.002 4.36 0.47 0.26 0.01 0.22 2023 24 1493 690 1705 90 26<br />

6122-Cat_7b Ace Fay 0.1020 0.0004 2.84 0.18 0.21 0.03 1.00 1660 8 1223 510 1366 46 26<br />

6122-Cat_11c Ace Fay 0.102 0.001 3.47 0.58 0.23 0.04 0.30 1668 20 1338 187 1521 132 20<br />

6122-Cat_14b Ace Fay 0.112 0.003 3.89 0.53 0.25 0.03 0.19 1829 50 1421 161 1612 110 22<br />

6122-Cat_16b Ace Fay 0.1345 0.0003 4.29 0.34 0.25 0.03 0.90 2158 4 1463 419 1691 65 32<br />

6122-Cat_22b Ace Fay 0.1335 0.002 4.12 0.32 0.26 0.04 0.24 2144 25 1491 194 1659 63 30<br />

6122-Cat_24a Ace Fay 0.145 0.001 5.28 0.11 0.31 0.03 1.00 2293 17 1718 298 1866 18 25<br />

6122-Cat_24c Ace Fay 0.117 0.003 4.30 0.11 0.26 0.02 0.86 1903 46 1468 391 1693 216 23<br />

6122-Cat_26b Ace Fay 0.128 0.002 3.42 0.84 0.22 0.03 0.62 2066 29 1305 366 1510 195 37<br />

6122-Cat_28a Ace Fay 0.134 0.003 4.49 0.10 0.27 0.02 0.05 2155 37 1522 364 1729 168 29<br />

6122-Cat_29b Ace Fay 0.132 0.002 3.03 0.45 0.21 0.03 0.78 2126 26 1237 523 1415 115 42<br />

Early tensional vein-type uraninite<br />

6122BV_Cat_9c Ace Fay 0.085 0.002 3.22 0.68 0.24 0.07 0.66 1310 49 1396 373 1461 166 -7<br />

6122BV_Cat_11a Ace Fay 0.094 0.002 3.2 0.6 0.23 0.08 0.63 1505 43 1360 405 1456 144 10<br />

6122BV_Cat_14d Ace Fay 0.089 0.000 4.1 0.5 0.31 0.02 0.22 1399 5 1753 117 1655 101 -25<br />

6122BV_Cat_16d Ace Fay 0.113 0.002 3.37 0.54 0.24 0.05 0.01 1851 28 1399 270 1498 125 24<br />

6122BV_Cat_16f Ace Fay 0.098 0.002 3.2 0.4 0.24 0.05 0.21 1586 44 1409 274 1467 108 11<br />

6122BV_Cat_17b Ace Fay 0.135 0.003 3.7 0.6 0.27 0.05 0.92 2158 39 1525 267 1579 134 29<br />

6122BV_Cat_21c Ace Fay 0.097 0.003 3.3 0.5 0.24 0.08 0.15 1573 67 1364 393 1481 117 13<br />

6122BV_Cat_22c Ace Fay 0.113 0.003 3.54 0.31 0.26 0.04 0.08 1855 55 1510 183 1536 70 19<br />

6122BV_Cat_22d Ace Fay 0.103 0.001 3.1 0.2 0.23 0.04 1.00 1682 11 1328 208 1430 41 21<br />

6122BV_Cat_22e Ace Fay 0.096 0.002 3.79 0.24 0.28 0.07 0.11 1540 35 1582 333 1590 51 -3<br />

6122BV_Cat_25a Ace Fay 0.145 0.002 3.49 0.36 0.25 0.05 0.62 2289 20 1448 234 1525 82 37<br />

6122BV_Cat_25d Ace Fay 0.114 0.003 3.5 0.6 0.26 0.05 0.20 1864 45 1469 232 1536 128 21<br />

6122BV_Cat_27e Ace Fay 0.094 0.001 3.77 0.23 0.29 0.10 0.53 1503 28 1628 483 1587 49 -8<br />

6122BV_Cat_29e Ace Fay 0.103 0.002 4.0 1.0 0.30 0.09 0.70 1682 44 1688 433 1634 198 0<br />

6122a Ace Fay 0.099 0.001 2.25 0.23 0.17 0.02 1.00 1599 12 987 91 1197 71 38<br />

6122b Ace Fay 0.088 0.003 1.40 0.14 0.11 0.01 0.98 1387 58 701 50 889 59 49<br />

239


Sample<br />

Deposit<br />

207 Pb/ 206 Pb ±2σ<br />

207 Pb/ 235 U ±2σ<br />

206 Pb/ 238 U ±2σ R‡<br />

207 Pb/ 206 Pb ±<br />

206 Pb/ 238 U ±<br />

207 Pb/ 235 U ± Disc‡<br />

Gunnar type-uraninite<br />

6037b_1 Gunnar 0.0571 0.0007 0.24 0.02 0.030 0.002 0.99 497 26 190 14 215 15 62<br />

6037b_2 Gunnar 0.0530 0.0003 0.28 0.01 0.039 0.001 0.98 329 15 246 8 254 7 25<br />

6037b_3 Gunnar 0.0533 0.0006 0.33 0.02 0.045 0.002 0.98 341 25 283 13 289 12 17<br />

6037b_4 Gunnar 0.055 0.001 0.29 0.02 0.039 0.001 1.00 394 49 246 9 261 13 38<br />

6037b_5 Gunnar 0.0531 0.0006 0.23 0.01 0.031 0.001 0.97 335 28 197 9 208 9 41<br />

6037b_6 Gunnar 0.053 0.001 0.17 0.01 0.024 0.001 0.93 326 42 151 7 161 7 54<br />

6037b_7 Gunnar 0.054 0.002 0.17 0.02 0.022 0.002 0.99 373 93 141 13 156 19 62<br />

6037b_8 Gunnar 0.053 0.003 0.16 0.04 0.022 0.004 1.00 324 138 141 22 153 33 57<br />

6037b_9 Gunnar 0.054 0.001 0.37 0.32 0.050 0.042 1.00 362 62 315 255 323 238 13<br />

6037b_10 Gunnar 0.051 0.003 0.11 0.02 0.016 0.002 0.95 238 130 102 12 109 15 57<br />

6134 Gunnar 0.084 0.005 0.09 0.01 0.0075 0.0004 0.77 1290 126 48 3 85 8 96<br />

6134e Gunnar 0.077 0.003 0.44 0.10 0.0419 0.0098 0.99 1122 87 264 60 373 73 76<br />

6134g Gunnar 0.074 0.003 0.015 0.001 0.00151 0.00002 0.36 1037 87 10 0 15 1 99<br />

6134j Gunnar 0.0866 0.0004 0.33 0.01 0.027 0.001 0.99 1352 9 175 8 288 11 87<br />

6134k Gunnar 0.0867 0.0004 0.29 0.01 0.0242 0.0007 1.00 1353 9 154 5 258 8 89<br />

6134l Gunnar 0.0866 0.0005 0.34 0.04 0.028 0.003 1.00 1351 11 179 21 293 31 87<br />

6134m Gunnar 0.0875 0.0002 0.31 0.01 0.0258 0.0009 0.05 1372 4 164 5 274 8 88<br />

GN-42 Gunnar 0.0787 0.0007 0.34 0.04 0.032 0.004 1.00 1164 18 201 23 300 30 83<br />

GN-42_1 Gunnar 0.0786 0.0012 0.35 0.01 0.032 0.001 0.93 1162 31 204 8 304 11 82<br />

GN-42_2 Gunnar 0.0791 0.0009 0.32 0.02 0.029 0.002 0.99 1174 23 186 14 281 17 84<br />

GN-42_3 Gunnar 0.084 0.001 0.47 0.03 0.041 0.003 0.99 1284 22 256 17 389 21 80<br />

GN-42_4 Gunnar 0.081 0.001 0.38 0.02 0.034 0.002 0.99 1222 25 217 15 329 17 82<br />

GN-42_6 Gunnar 0.0788 0.0009 0.34 0.03 0.031 0.002 0.99 1166 23 196 15 294 19 83<br />

GN-42_8 Gunnar 0.0830 0.0007 0.44 0.04 0.038 0.004 1.00 1270 16 243 22 370 29 81<br />

GN-42_9 Gunnar 0.0807 0.0015 0.37 0.03 0.033 0.002 0.97 1213 38 209 14 317 21 83<br />

GN-42_10 Gunnar 0.0822 0.0008 0.40 0.02 0.035 0.002 0.98 1250 18 223 11 341 15 82<br />

GN-42_11 Gunnar 0.0796 0.0009 0.36 0.02 0.033 0.002 0.99 1187 22 208 14 312 19 82<br />

GN-42_12 Gunnar 0.081 0.002 0.39 0.03 0.035 0.003 0.96 1221 48 224 17 338 24 82<br />

VR69190-2 Gunnar 0.0652 0.0005 0.653 0.049 0.073 0.005 0.99 782 18 452 32 510 30 42<br />

VR69190-3 Gunnar 0.0655 0.0005 0.678 0.042 0.075 0.005 0.99 790 16 467 28 525 26 41<br />

VR69190-4 Gunnar 0.0649 0.0006 0.557 0.042 0.062 0.005 0.99 772 20 389 29 449 28 50<br />

VR69190-5 Gunnar 0.0651 0.0009 0.566 0.049 0.063 0.006 0.99 777 29 395 35 456 32 49<br />

VR69190-7 Gunnar 0.0657 0.0005 0.683 0.043 0.075 0.005 0.99 796 15 469 28 528 26 41<br />

VR69190-8 Gunnar 0.0656 0.0008 0.674 0.046 0.074 0.005 0.99 795 25 463 31 523 28 42<br />

VR69190-9 Gunnar 0.0655 0.0006 0.733 0.050 0.081 0.006 0.99 791 19 503 34 559 29 36<br />

240


Sample<br />

Deposit<br />

207 Pb/ 206 Pb ±2σ<br />

207 Pb/ 235 U ±2σ<br />

206 Pb/ 238 U ±2σ R‡<br />

207 Pb/ 206 Pb ±<br />

206 Pb/ 238 U ±<br />

207 Pb/ 235 U ± Disc‡<br />

VR69190-10 Gunnar 0.0653 0.0007 0.599 0.050 0.067 0.006 0.99 783 21 415 34 476 32 47<br />

VR69190-11 Gunnar 0.0652 0.0004 0.596 0.025 0.066 0.003 0.99 782 12 414 17 475 16 47<br />

VR69190-12 Gunnar 0.0654 0.0006 0.613 0.055 0.068 0.006 1.00 788 19 424 35 486 35 46<br />

Breccia type-uraninite<br />

B5812_1 Ace Fay 0.104 0.002 3.12 0.07 0.197 0.026 0.15 1698 39 1157 140 1437 17 32<br />

B5812_2 Ace Fay 0.112 0.003 2.04 0.01 0.126 0.025 0.50 1825 44 767 142 1130 2 58<br />

B5812_3 Ace Fay 0.110 0.002 2.61 0.01 0.153 0.011 0.50 1802 33 920 64 1304 2 49<br />

B5812_4 Ace Fay 0.110 0.004 2.32 0.05 0.146 0.022 0.32 1800 74 879 125 1218 16 51<br />

B5812_5 Ace Fay 0.108 0.004 2.58 0.03 0.160 0.004 0.59 1759 67 958 25 1294 7 46<br />

B5812_6 Ace Fay 0.1130 0.0003 2.72 0.02 0.168 0.010 0.50 1848 5 1001 57 1335 5 46<br />

B5812_7 Ace Fay 0.109 0.002 3.48 0.05 0.219 0.004 0.50 1778 42 1278 23 1523 12 28<br />

B5812_8 Ace Fay 0.111 0.001 2.77 0.07 0.196 0.056 0.29 1812 24 1155 299 1349 20 36<br />

B5812_9 Ace Fay 0.101 0.001 3.52 0.05 0.234 0.058 0.16 1649 24 1353 305 1531 11 18<br />

B5812_10 Ace Fay 0.107 0.005 2.41 0.03 0.166 0.046 0.31 1742 88 990 252 1247 9 43<br />

B5812_11 Ace Fay 0.112 0.003 3.90 0.64 0.255 0.088 0.64 1838 53 1465 451 1613 133 20<br />

B5812_12 Ace Fay 0.066 0.001 1.23 0.11 0.090 0.015 0.50 802 31 557 87 814 50 31<br />

C23-116 Cinch Lake 0.073 0.007 0.22 0.07 0.022 0.008 0.99 1010 188 143 50 201 57 86<br />

C23-116a Cinch Lake 0.078 0.002 0.55 0.05 0.051 0.005 0.97 1145 49 320 33 443 34 72<br />

C23-116b Cinch Lake 0.072 0.001 0.37 0.01 0.038 0.001 0.98 986 16 238 6 322 8 76<br />

C23-116d Cinch Lake 0.072 0.001 0.37 0.01 0.038 0.001 0.99 986 16 238 6 322 8 76<br />

C23-116e Cinch Lake 0.079 0.001 0.74 0.04 0.068 0.005 0.99 1164 24 426 27 563 25 63<br />

C23-116f Cinch Lake 0.075 0.002 0.06 0.02 0.006 0.002 0.50 1069 43 38 11 61 19 96<br />

C23-116n Cinch Lake 0.072 0.001 0.56 0.10 0.057 0.011 1.00 992 37 357 69 455 67 64<br />

C23-116o Cinch Lake 0.076 0.000 0.63 0.15 0.060 0.015 1.00 1089 7 376 90 494 97 65<br />

C23-116p Cinch Lake 0.070 0.003 0.26 0.06 0.027 0.007 0.99 929 83 173 45 235 50 81<br />

C23-116q Cinch Lake 0.073 0.004 0.18 0.08 0.018 0.009 1.00 1016 122 115 55 165 67 89<br />

C23-116r Cinch Lake 0.076 0.000 0.95 0.02 0.091 0.003 0.99 1093 10 563 15 680 13 49<br />

C23-116s Cinch Lake 0.070 0.001 0.46 0.09 0.048 0.009 1.00 916 34 300 55 382 62 67<br />

C23-116t Cinch Lake 0.077 0.001 0.57 0.08 0.054 0.008 1.00 1120 27 340 51 461 55 70<br />

C23-116u Cinch Lake 0.074 0.001 0.37 0.07 0.036 0.007 1.00 1052 23 227 44 318 55 78<br />

C23-116v Cinch Lake 0.077 0.001 0.22 0.04 0.020 0.004 1.00 1127 32 130 27 199 37 88<br />

C23-116w Cinch Lake 0.070 0.002 0.21 0.04 0.022 0.004 0.99 936 66 137 26 192 31 85<br />

C23-116x Cinch Lake 0.066 0.001 0.32 0.05 0.034 0.006 1.00 822 28 218 35 278 40 73<br />

C23-116y Cinch Lake 0.075 0.000 0.61 0.08 0.060 0.008 1.00 1056 13 374 46 486 48 65<br />

C23-116zb Cinch Lake 0.075 0.001 0.39 0.09 0.038 0.009 1.00 1065 29 238 57 333 68 78<br />

241


Sample<br />

Deposit<br />

207 Pb/ 206 Pb ±2σ<br />

207 Pb/ 235 U ±2σ<br />

206 Pb/ 238 U ±2σ R‡<br />

207 Pb/ 206 Pb ±<br />

206 Pb/ 238 U ±<br />

207 Pb/ 235 U ± Disc‡<br />

C23-116zc Cinch Lake 0.073 0.001 0.26 0.05 0.026 0.005 1.00 1007 20 163 31 232 41 84<br />

C23-116zd Cinch Lake 0.073 0.001 1.08 0.05 0.107 0.006 0.97 1016 34 657 35 744 23 35<br />

C23-116ze Cinch Lake 0.068 0.003 0.35 0.03 0.037 0.002 0.85 854 105 236 15 303 25 72<br />

C23-116zf Cinch Lake 0.071 0.001 0.19 0.03 0.019 0.003 1.00 954 29 124 18 176 22 87<br />

C23-116zg Cinch Lake 0.074 0.001 0.46 0.06 0.045 0.007 1.00 1039 15 286 41 386 45 72<br />

VRC2 Gunnar 0.0840 0.0003 1.60 0.09 0.138 0.008 1.00 1293 6 836 45 972 35 35<br />

VRC3 Gunnar 0.0838 0.0004 1.58 0.05 0.137 0.004 0.99 1288 10 826 21 962 18 36<br />

VRC4 Gunnar 0.0879 0.0015 1.09 0.03 0.090 0.001 1.00 1380 34 553 5 747 14 60<br />

VRC5 Gunnar 0.0855 0.0002 1.74 0.07 0.147 0.006 1.00 1327 4 887 32 1023 25 33<br />

VRC7 Gunnar 0.0850 0.0002 1.50 0.06 0.128 0.006 1.00 1316 5 778 32 932 26 41<br />

VRC8 Gunnar 0.0851 0.0003 1.31 0.07 0.112 0.006 1.00 1318 7 683 33 851 29 48<br />

VRC9 Gunnar 0.0848 0.0002 1.42 0.08 0.121 0.007 1.00 1312 4 738 42 897 35 44<br />

VRC10 Gunnar 0.0860 0.0002 1.71 0.05 0.144 0.004 1.00 1338 4 869 23 1012 18 35<br />

VRC11 Gunnar 0.0865 0.0003 1.77 0.07 0.148 0.006 0.99 1349 8 891 31 1033 25 34<br />

VRC12 Gunnar 0.0857 0.0006 1.30 0.07 0.110 0.006 0.99 1332 14 673 34 846 30 49<br />

VRC13 Gunnar 0.0854 0.0004 1.47 0.09 0.125 0.008 1.00 1325 9 757 44 916 36 43<br />

VRC14 Gunnar 0.0864 0.0002 2.08 0.07 0.174 0.006 1.00 1348 5 1036 33 1142 23 23<br />

VRC15 Gunnar 0.0867 0.0002 2.04 0.07 0.171 0.006 1.00 1354 5 1017 30 1130 22 25<br />

VRC16 Gunnar 0.087 0.001 2.13 0.09 0.178 0.008 0.96 1356 24 1054 42 1157 31 22<br />

Volcanic type-uraninite<br />

6120a Ace Fay 0.1073 0.0002 2.98 0.12 0.202 0.008 1.00 1754 4 1184 44 1403 30 32<br />

6120b Ace Fay 0.1085 0.0002 3.43 0.19 0.229 0.012 0.89 1774 4 1331 61 1511 43 25<br />

6120c Ace Fay 0.1078 0.0005 4.45 0.31 0.299 0.020 1.00 1763 9 1688 101 1722 58 4<br />

6120e Ace Fay 0.1081 0.0003 3.41 0.09 0.229 0.006 1.00 1768 5 1329 33 1507 21 25<br />

6120f Ace Fay 0.1072 0.0005 3.70 0.19 0.250 0.012 1.00 1753 8 1441 63 1572 42 18<br />

6120g Ace Fay 0.1065 0.0001 3.36 0.11 0.229 0.007 1.00 1740 2 1328 38 1495 25 24<br />

6120i Ace Fay 0.1080 0.0004 3.51 0.10 0.235 0.007 0.99 1766 6 1363 36 1529 24 23<br />

6120k Ace Fay 0.1075 0.0005 3.27 0.13 0.221 0.009 0.99 1758 9 1285 48 1474 30 27<br />

6120l Ace Fay 0.1067 0.0003 3.43 0.29 0.233 0.019 1.00 1743 5 1352 101 1512 67 22<br />

6120m Ace Fay 0.1085 0.0003 3.69 0.25 0.246 0.017 1.00 1775 4 1420 85 1569 55 20<br />

6120n Ace Fay 0.1054 0.0005 2.83 0.17 0.195 0.012 1.00 1722 9 1146 66 1363 45 33<br />

6120q Ace Fay 0.1100 0.0023 2.99 0.34 0.208 0.033 0.52 1800 37 1218 178 1405 86 32<br />

6139a Gunnar 0.1097 0.0001 4.74 0.28 0.316 0.019 1.00 1794 2 1768 91 1774 49 1<br />

6139b Gunnar 0.1096 0.0001 4.53 0.20 0.302 0.014 1.00 1792 2 1702 69 1737 38 5<br />

6139d Gunnar 0.1094 0.0002 4.55 0.29 0.304 0.019 1.00 1789 4 1711 94 1740 53 4<br />

242


Sample<br />

Deposit<br />

207 Pb/ 206 Pb ±2σ<br />

207 Pb/ 235 U ±2σ<br />

206 Pb/ 238 U ±2σ R‡<br />

207 Pb/ 206 Pb ±<br />

206 Pb/ 238 U ±<br />

207 Pb/ 235 U ± Disc‡<br />

6139e Gunnar 0.1085 0.0004 4.0 0.4 0.271 0.028 1.00 1775 7 1545 140 1639 84 13<br />

6139f Gunnar 0.1094 0.0001 4.40 0.32 0.294 0.021 1.00 1789 2 1662 106 1713 60 7<br />

6139g Gunnar 0.1100 0.0001 4.52 0.23 0.300 0.015 1.00 1799 2 1692 77 1734 43 6<br />

6139h Gunnar 0.1095 0.0002 4.2 0.4 0.281 0.024 1.00 1791 3 1595 121 1676 70 11<br />

6139i Gunnar 0.1094 0.0003 4.30 0.22 0.287 0.016 1.00 1790 5 1627 79 1693 43 9<br />

6139j Gunnar 0.1102 0.0001 4.56 0.26 0.302 0.017 1.00 1803 1 1703 85 1742 47 6<br />

6139k Gunnar 0.1091 0.0002 4.52 0.17 0.303 0.011 1.00 1784 3 1707 56 1735 31 4<br />

6139l Gunnar 0.1093 0.0002 4.51 0.32 0.301 0.021 1.00 1787 3 1698 106 1732 60 5<br />

6139m Gunnar 0.1101 0.0001 3.96 0.28 0.264 0.019 1.00 1800 2 1508 94 1626 57 16<br />

6139n Gunnar 0.1104 0.0003 4.0 0.4 0.268 0.025 1.00 1806 5 1529 127 1641 74 15<br />

6139o Gunnar 0.1101 0.0002 4.0 0.4 0.268 0.024 1.00 1801 4 1529 121 1639 71 15<br />

6139p Gunnar 0.1098 0.0002 3.71 0.29 0.247 0.019 1.00 1797 4 1422 101 1573 62 21<br />

6139q Gunnar 0.1098 0.0003 3.66 0.29 0.244 0.020 1.00 1795 4 1406 102 1562 64 22<br />

6139r Gunnar 0.1108 0.0009 4.0 0.3 0.268 0.019 0.99 1812 15 1529 94 1641 53 16<br />

6139s Gunnar 0.1080 0.0005 3.3 0.5 0.226 0.033 1.00 1766 8 1315 171 1490 111 26<br />

6139t Gunnar 0.1106 0.0002 4.21 0.38 0.279 0.025 1.00 1809 4 1584 125 1677 73 12<br />

6139u Gunnar 0.1099 0.0002 4.14 0.42 0.276 0.028 1.00 1797 4 1569 143 1662 83 13<br />

6139v Gunnar 0.1084 0.0005 3.56 0.33 0.241 0.023 1.00 1773 8 1390 117 1541 74 22<br />

6139vna Gunnar 0.1097 0.0001 4.63 0.24 0.309 0.016 1.00 1794 2 1734 79 1755 44 3<br />

EA3011 Eagle-Ace 0.0524 0.0008 0.25 0.01 0.035 0.002 0.96 303 36 222 13 229 12 27<br />

EA3011a Eagle-Ace 0.0523 0.0006 0.23 0.03 0.032 0.004 0.99 300 28 202 25 210 24 33<br />

EA3011b Eagle-Ace 0.0536 0.0003 0.26 0.01 0.035 0.002 1.00 354 11 221 11 232 10 38<br />

EA3011c Eagle-Ace 0.0537 0.0008 0.23 0.02 0.031 0.003 0.99 360 35 198 18 211 20 45<br />

EA3011d Eagle-Ace 0.0519 0.0010 0.21 0.02 0.029 0.002 0.97 282 43 186 13 193 14 34<br />

EA3011e Eagle-Ace 0.0531 0.0004 0.27 0.01 0.037 0.002 0.99 334 17 232 10 241 10 31<br />

EA3011f Eagle-Ace 0.0535 0.0003 0.26 0.02 0.036 0.002 1.00 348 14 225 15 236 14 35<br />

EA3011g Eagle-Ace 0.0516 0.0009 0.18 0.01 0.025 0.001 0.97 269 40 158 9 166 10 41<br />

EA3011h Eagle-Ace 0.0514 0.0013 0.21 0.02 0.030 0.003 0.98 259 59 188 20 193 21 27<br />

EA3011j Eagle-Ace 0.0525 0.0007 0.20 0.02 0.027 0.002 0.99 306 31 172 15 181 14 44<br />

EA3011k Eagle-Ace 0.0539 0.0005 0.29 0.02 0.039 0.003 0.99 369 20 247 17 259 16 33<br />

EA3011l Eagle-Ace 0.0540 0.0002 0.30 0.01 0.040 0.001 0.99 373 10 254 8 266 8 32<br />

EA3011n Eagle-Ace 0.0529 0.0006 0.20 0.02 0.028 0.002 0.99 323 26 176 13 186 13 46<br />

EA3011o Eagle-Ace 0.0518 0.0005 0.19 0.02 0.027 0.003 1.00 278 24 173 18 180 17 38<br />

EA3011t Eagle-Ace 0.0552 0.0005 0.31 0.01 0.040 0.001 0.96 419 21 254 7 271 8 39<br />

Athabasca type-uraninite<br />

243


Sample<br />

Deposit<br />

207 Pb/ 206 Pb ±2σ<br />

207 Pb/ 235 U ±2σ<br />

206 Pb/ 238 U ±2σ R‡<br />

207 Pb/ 206 Pb ±<br />

206 Pb/ 238 U ±<br />

207 Pb/ 235 U ± Disc‡<br />

2202p2 Martin Lake 0.0896 0.0003 2.33 0.16 0.190 0.013 1.00 1416 7 1123 68 1223 48 21<br />

2202p2-1 Martin Lake 0.0859 0.0004 1.80 0.10 0.153 0.009 1.00 1336 8 920 50 1047 36 31<br />

2202p2-2 Martin Lake 0.0890 0.0008 2.20 0.14 0.180 0.013 1.00 1404 16 1069 70 1180 45 24<br />

2202p2-3 Martin Lake 0.0863 0.0002 2.0 0.2 0.171 0.013 1.00 1345 4 1018 73 1122 52 24<br />

2202p2-4 Martin Lake 0.0931 0.0002 2.05 0.08 0.161 0.006 1.00 1489 4 963 36 1133 28 35<br />

2202p2-5 Martin Lake 0.0841 0.0002 1.82 0.16 0.159 0.014 1.00 1295 4 949 77 1054 58 27<br />

2202p2-6 Martin Lake 0.0882 0.0003 2.09 0.06 0.173 0.005 0.99 1388 6 1029 27 1145 19 26<br />

2202p2-7 Martin Lake 0.0922 0.0003 2.21 0.13 0.175 0.010 1.00 1471 5 1039 58 1183 42 29<br />

2202p2-8 Martin Lake 0.0891 0.0004 1.86 0.11 0.153 0.010 1.00 1407 8 915 54 1067 40 35<br />

2202p2-9 Martin Lake 0.0901 0.0002 2.34 0.15 0.190 0.012 1.00 1427 4 1119 67 1223 46 22<br />

2202p2-11 Martin Lake 0.0901 0.0004 2.26 0.15 0.183 0.012 1.00 1429 9 1083 67 1198 45 24<br />

2202p2-12 Martin Lake 0.0906 0.0006 2.1 0.2 0.167 0.012 1.00 1439 13 997 66 1141 53 31<br />

2202p2-13 Martin Lake 0.0890 0.0001 2.0 0.1 0.168 0.012 1.00 1404 3 999 64 1129 47 29<br />

2202p2-14 Martin Lake 0.0866 0.0004 2.0 0.1 0.170 0.011 1.00 1351 9 1012 61 1120 44 25<br />

2202p2-15 Martin Lake 0.0890 0.0007 2.21 0.16 0.181 0.012 1.00 1404 14 1075 65 1184 50 23<br />

2202p2-16 Martin Lake 0.0857 0.0005 2.0 0.2 0.170 0.016 1.00 1332 10 1012 88 1114 67 24<br />

2202p2-17 Martin Lake 0.0873 0.0005 2.1 0.1 0.178 0.013 1.00 1367 11 1054 69 1156 48 23<br />

2202p2-18 Martin Lake 0.0914 0.0006 2.43 0.19 0.194 0.015 1.00 1456 13 1144 81 1252 57 21<br />

2202p2-19 Martin Lake 0.0901 0.0002 2.25 0.11 0.182 0.009 1.00 1427 5 1080 51 1196 35 24<br />

2202p2-21 Martin Lake 0.0998 0.0002 3.1 0.2 0.229 0.017 1.00 1620 4 1327 91 1438 58 18<br />

2202p2-22 Martin Lake 0.0850 0.0003 1.74 0.11 0.149 0.010 1.00 1316 6 898 54 1023 40 32<br />

2202p2-23 Martin Lake 0.0983 0.0003 2.99 0.22 0.222 0.016 1.00 1593 5 1295 85 1406 56 19<br />

2202p2-24 Martin Lake 0.0855 0.0005 1.98 0.17 0.169 0.014 1.00 1326 12 1006 75 1108 58 24<br />

2202p2-25 Martin Lake 0.0993 0.0006 3.0 0.2 0.224 0.013 1.00 1611 12 1302 69 1419 43 19<br />

2202p2-26 Martin Lake 0.0894 0.0001 2.0 0.1 0.167 0.012 1.00 1413 2 993 64 1128 48 30<br />

2202p2-27 Martin Lake 0.0952 0.0012 2.35 0.11 0.180 0.010 0.98 1532 24 1068 56 1226 34 30<br />

2202p2-28 Martin Lake 0.0969 0.0008 2.85 0.10 0.215 0.008 0.98 1565 15 1255 44 1368 26 20<br />

2202p2-29 Martin Lake 0.0934 0.0023 2.64 0.36 0.206 0.023 1.00 1496 47 1208 123 1312 100 19<br />

2202p2-31 Martin Lake 0.0875 0.0005 1.76 0.12 0.147 0.010 1.00 1371 11 882 55 1030 45 36<br />

2202p2-32 Martin Lake 0.0872 0.0001 1.59 0.08 0.134 0.006 1.00 1364 2 808 37 968 30 41<br />

2202p2-33 Martin Lake 0.0870 0.0003 2.0 0.1 0.170 0.010 1.00 1361 6 1013 53 1124 39 26<br />

2202p1 Martin Lake 0.0880 0.0004 2.1 0.2 0.171 0.014 1.00 1383 8 1019 75 1136 52 26<br />

2202p1-2 Martin Lake 0.0881 0.0002 1.69 0.06 0.140 0.005 1.00 1384 5 845 29 1004 24 39<br />

2202p1-33 Martin Lake 0.0906 0.0002 1.88 0.08 0.151 0.006 1.00 1438 5 908 36 1073 27 37<br />

2202p1-34 Martin Lake 0.0851 0.0002 1.48 0.09 0.127 0.008 1.00 1317 5 772 45 923 38 41<br />

2202p1-35 Martin Lake 0.0884 0.0005 1.52 0.06 0.126 0.006 1.00 1392 10 764 33 940 25 45<br />

244


Sample<br />

Deposit<br />

207 Pb/ 206 Pb ±2σ<br />

207 Pb/ 235 U ±2σ<br />

206 Pb/ 238 U ±2σ R‡<br />

207 Pb/ 206 Pb ±<br />

206 Pb/ 238 U ±<br />

207 Pb/ 235 U ± Disc‡<br />

2202p1-36 Martin Lake 0.0880 0.0002 1.56 0.08 0.130 0.006 1.00 1382 5 785 37 954 32 43<br />

EA3010A Eagle-Ace 0.0540 0.0003 0.29 0.01 0.039 0.002 1.00 373 11 248 12 261 11 33<br />

EA3010A-1 Eagle-Ace 0.0539 0.0003 0.27 0.02 0.036 0.003 1.00 366 12 229 16 241 15 38<br />

EA3010A-2 Eagle-Ace 0.0539 0.0002 0.28 0.03 0.037 0.004 1.00 367 9 235 24 247 23 36<br />

EA3010A-3 Eagle-Ace 0.0531 0.0004 0.26 0.02 0.036 0.002 0.99 333 16 228 14 237 14 32<br />

EA3010A-4 Eagle-Ace 0.0543 0.0004 0.27 0.02 0.036 0.003 1.00 385 19 229 16 243 14 41<br />

EA3010A-5 Eagle-Ace 0.0524 0.0004 0.24 0.02 0.034 0.003 1.00 302 16 213 16 220 16 30<br />

EA3010A-6 Eagle-Ace 0.0537 0.0004 0.26 0.03 0.035 0.004 1.00 360 17 224 25 236 24 38<br />

EA3010A-7 Eagle-Ace 0.0516 0.0003 0.21 0.02 0.029 0.003 1.00 269 15 185 20 192 19 31<br />

EA3010A-8 Eagle-Ace 0.0528 0.0004 0.25 0.01 0.034 0.002 0.99 320 16 216 13 225 12 32<br />

EA3010A-9 Eagle-Ace 0.0546 0.0003 0.30 0.02 0.039 0.002 0.99 396 13 248 12 262 12 38<br />

245


APPENDIX B<br />

REE contents of various generation of uraninite from the deposits of the Beaverlodge area<br />

Sample Y Zr Cs Ba Th La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu<br />

6120-1 395.4 1124.4 0.3 1615.1 84.27 1502.3 2267.9 181.4 471.9 42.4 10.5 44.8 5.8 39.3 8.4 25.0 3.4 22.2 3.1<br />

6120-3 519.2 1150.5 0.3 848.9 40.99 1127.4 1478.6 112.0 310.7 34.2 8.6 46.6 6.2 43.0 9.7 27.9 3.7 24.3 3.7<br />

6120-4 394.4 1268.9 0.3 1068.9 69.55 1414.3 2016.8 154.9 391.0 33.9 7.9 35.9 4.8 33.3 7.1 20.7 2.8 18.6 2.8<br />

6120-5 452.7 1113.7 0.2 1208.2 63.73 1553.0 2260.4 186.0 519.3 51.4 11.9 52.9 7.5 50.2 10.5 29.2 3.9 24.5 3.4<br />

6120-8 552.4 1210.1 0.3 927.8 69.96 1713.6 2312.2 188.7 550.8 62.5 14.6 69.8 9.9 65.0 13.6 39.2 5.0 29.8 4.4<br />

6120-10 411.8 1085.0 0.3 892.3 56.26 1287.5 1866.2 151.3 393.7 37.6 9.5 41.6 5.6 38.8 8.1 23.2 3.1 20.6 3.0<br />

6120-11 469.4 1329.7 0.2 773.4 74.18 1833.3 2728.2 230.0 632.1 57.7 14.0 54.5 7.0 46.4 9.9 27.5 3.8 24.6 3.4<br />

3705-1 910.0 2002.0 9.1 1210.8 607.24 1459.7 4766.3 390.1 1181.7 248.0 41.6 152.1 29.1 198.6 35.6 92.2 15.3 87.6 10.9<br />

3705-2 634.6 1825.4 2.2 850.7 590.77 1175.1 4674.0 468.8 1617.6 288.7 49.1 172.4 31.2 197.3 35.5 100.5 14.9 91.1 10.9<br />

3705-3 765.9 1486.8 6.8 875.0 492.21 1775.0 6435.4 573.9 1869.6 312.8 53.4 214.5 36.0 233.2 41.4 121.2 16.3 110.0 14.4<br />

3705-4 989.8 2018.2 2.3 774.7 521.64 1948.2 6666.6 601.0 2047.4 347.8 58.3 220.0 38.2 244.7 43.8 125.7 18.4 117.8 14.4<br />

3705-5 318.6 1770.7 0.5 1031.2 650.85 893.9 2913.2 237.8 844.7 115.8 20.4 69.4 12.3 74.0 13.7 35.1 5.1 34.0 3.8<br />

3705-6 532.9 1821.9 1.8 776.4 382.13 1157.4 4863.5 442.2 1411.6 215.9 38.3 140.8 26.9 182.0 30.1 93.9 14.2 101.3 11.6<br />

3705-7 187.9 2732.4 1.8 1322.6 687.03 718.4 2384.4 208.9 670.4 93.3 16.9 52.4 9.8 64.3 10.4 27.6 4.3 26.7 3.6<br />

3705-8 130.5 4649.5 1.9 1276.3 1110.85 544.1 1627.9 138.4 432.0 60.9 9.9 36.5 6.0 42.0 6.7 18.8 2.8 19.2 2.2<br />

3705-10 148.5 8107.2 8.0 1621.4 1075.82 399.4 1224.4 105.2 360.6 58.6 7.7 39.4 6.7 44.4 7.6 23.5 4.1 27.2 3.0<br />

3705-12 465.0 2257.5 1.2 948.8 827.95 1571.3 5964.9 511.0 1625.1 258.8 41.3 145.7 26.8 178.6 29.6 80.7 12.6 86.7 9.8<br />

5812_1 5517.2 7031.7 0.1 69.8 803.7 1473.1 2587.5 345.7 1608.8 458.2 112.6 718.3 119.4 854.0 177.8 485.6 61.6 344.7 42.4<br />

5812_2 5467.8 7113.0 0.6 422.6 2202.3 2010.3 4375.0 616.7 2937.2 790.8 173.4 778.6 141.6 943.7 187.5 527.6 68.6 426.6 52.6<br />

5812_3 3309.7 8056.2 6.8 3289.2 7150.2 4789.0 7968.2 903.1 3369.1 866.5 174.9 732.5 138.8 972.8 187.4 540.7 72.6 419.7 49.9<br />

5812_5 2218.5 10919.2 0.3 2684.7 3117.8 1769.4 6915.6 919.6 3302.0 614.1 121.5 394.1 79.4 559.1 103.9 302.8 48.7 339.1 39.2<br />

5812_8 3190.0 9671.6 1.1 1690.4 2584.7 3536.8 7751.8 886.5 3322.5 683.1 160.7 566.2 104.4 714.0 129.0 368.3 56.0 370.9 43.5<br />

5812_9 8937.3 299758.8 7.2 2289.5 7459.0 3508.8 8452.6 1036.5 4487.9 1258.8 192.6 1199.0 263.1 2017.8 401.3 1249.2 246.5 1867.3 221.7<br />

5812_10 296.5 8372.7 0.7 2840.3 4543.5 1444.3 2214.2 174.0 487.0 85.1 16.5 61.1 12.0 86.5 14.8 39.8 6.8 43.3 5.2<br />

5812_11 1150.9 5126.7 0.1 289.3 2668.1 1585.3 2494.8 275.8 990.1 190.2 44.3 184.0 31.6 223.4 43.5 115.2 16.3 105.3 12.1<br />

90085-1 3006.9 2913.6 0.4 150.0 1441.4 1676.0 3607.3 476.3 2106.9 532.0 128.2 522.9 85.5 571.7 108.0 293.9 38.6 234.6 28.3<br />

90085-2 4783.0 3209.7 0.2 87.3 1901.3 2015.6 3993.8 542.6 2464.9 673.4 168.2 676.0 116.1 800.5 145.7 383.5 54.1 337.1 38.6<br />

90085-3 2407.3 4846.2 0.3 72.8 1420.0 1459.5 2831.5 356.2 1551.3 379.5 99.0 420.8 65.1 463.0 86.8 214.3 29.0 180.1 19.4<br />

246


Sample Y Zr Cs Ba Th La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu<br />

90085-4 2997.8 3900.8 0.3 69.1 1542.2 1678.9 3252.0 426.7 1843.8 506.2 120.4 501.3 79.0 508.7 100.7 256.3 34.4 213.3 24.3<br />

90085-5 4270.4 3266.4 0.2 66.3 1912.2 2220.0 4653.4 599.9 2661.6 720.6 166.4 702.8 119.5 793.6 148.0 386.3 53.4 344.4 38.5<br />

90085-6 2182.5 4199.7 0.2 78.6 1013.4 1251.7 2196.5 264.8 1147.7 304.8 74.7 321.1 55.2 384.5 73.9 199.9 27.0 169.7 19.7<br />

90085-7 5088.6 4145.2 0.3 174.1 1538.2 1888.5 3574.8 458.6 2139.1 593.9 158.7 691.8 115.8 791.9 157.3 420.7 56.1 358.1 41.2<br />

90085-8 2111.3 4817.6 0.4 79.8 1218.5 1397.3 2540.5 309.9 1326.8 345.9 81.6 339.6 56.9 383.6 72.8 190.8 26.8 165.1 18.0<br />

90085-9 1838.6 4395.7 0.2 63.2 991.0 1158.3 2097.4 256.2 1158.1 296.7 69.4 296.7 47.6 334.4 60.8 163.4 22.8 142.9 15.5<br />

90085-10 4913.5 2419.0 0.3 138.1 1418.1 1731.2 3981.7 514.2 2460.9 649.1 176.7 734.0 120.1 817.5 155.1 420.8 55.4 339.7 42.1<br />

90085-11 6560.4 2597.1 0.7 400.7 1009.7 2310.0 4095.9 550.8 2804.5 831.6 196.1 948.6 180.0 1319.4 257.1 726.6 104.3 669.1 81.6<br />

6134-12 2049.0 11910.2 0.1 11671.1 87.0 3729.8 1650.0 1505.6 7426.5 1744.4 66.4 1281.9 156.4 875.6 162.7 408.2 57.3 374.7 42.9<br />

6134-10 2661.0 390.6 0.1 9416.2 12.7 3526.3 1739.6 1491.9 7088.4 1601.7 62.4 1204.1 150.2 867.6 158.7 406.4 57.5 383.7 47.0<br />

6134-9 3430.1 186.1 0.1 10570.5 13.4 3031.1 1371.2 1162.3 5581.2 1342.3 52.1 973.2 123.3 728.4 131.3 339.9 48.7 312.2 37.6<br />

6134-8 829.5 1528.5 0.0 11317.2 73.1 2274.2 631.8 440.1 2224.2 578.3 25.6 564.9 69.1 400.7 74.3 190.3 28.9 193.3 22.7<br />

6134-11 3266.0 14.6 0.1 9888.2 1.7 1549.9 244.1 138.5 706.5 174.6 7.9 196.2 22.2 132.6 26.7 71.5 9.9 62.4 8.1<br />

6134-13 208.6 47.2 0.5 9233.4 0.2 795.5 113.9 44.4 222.2 33.7 1.4 34.2 3.4 17.7 4.2 10.4 1.4 7.8 1.1<br />

6134-14 179.8 84.4 0.7 10900.2 0.1 674.2 116.6 43.6 200.7 32.5 1.5 33.1 3.8 20.7 4.5 12.3 1.8 11.7 1.4<br />

6122-22 164.1 1208.6 5.6 5213.4 5.8 822.9 1028.4 119.2 605.6 77.9 15.6 87.3 11.0 73.1 14.7 40.1 5.3 28.3 5.4<br />

6122-21 276.2 2150.6 8.4 14778.3 6.3 680.9 867.5 95.9 391.4 66.9 13.6 67.4 7.7 59.9 10.5 32.3 3.8 27.8 3.7<br />

6122-19 157.9 1104.7 1.9 3467.8 2.9 675.6 863.8 95.6 408.3 65.3 11.9 57.4 7.9 52.1 12.7 34.8 5.4 31.9 4.1<br />

6122-17 265.0 2177.3 1.4 8225.1 6.8 630.9 835.5 92.8 382.0 64.0 13.3 64.0 8.7 58.9 11.8 32.8 4.3 27.5 3.6<br />

6122-18 234.0 1680.8 4.4 3870.5 2.7 640.2 736.2 87.0 342.2 66.9 11.5 64.0 8.9 60.4 12.8 36.9 5.0 30.7 4.5<br />

6122-20 160.6 1482.7 2.0 4759.1 2.7 616.9 682.8 75.0 312.6 57.4 15.8 50.1 7.8 53.4 10.0 32.4 5.0 21.7 3.8<br />

6122-3 178.3 1681.1 1.9 7814.0 2.7 366.9 481.2 39.2 132.8 21.6 4.7 21.7 2.9 20.0 4.4 15.4 2.3 14.8 2.2<br />

6122-11 180.9 1508.2 1.2 7845.6 15.0 317.8 454.6 39.3 133.0 20.3 4.5 17.4 2.3 15.3 3.3 9.5 1.5 9.3 1.7<br />

6122-12 183.7 2199.3 3.0 5415.1 3.6 302.3 376.5 40.4 123.6 14.1 2.4 17.5 2.2 17.8 3.8 12.1 1.9 11.4 2.0<br />

6122-9 267.3 3662.7 2.8 8829.1 6.7 274.8 381.0 35.1 118.2 17.9 4.1 16.6 2.4 16.1 3.3 9.9 1.5 9.9 1.5<br />

6122-2 208.7 1938.7 3.7 5962.3 4.1 231.0 358.1 33.0 120.8 21.0 4.8 23.0 3.4 23.0 4.3 11.7 1.7 14.4 2.0<br />

6122-13 207.8 1844.4 2.3 5888.9 5.1 263.2 342.9 33.7 105.6 17.5 3.6 14.9 2.4 19.1 4.0 11.0 2.0 12.2 1.6<br />

6122-4 473.7 2235.8 0.6 1371.1 86.5 225.8 325.5 30.4 103.1 16.5 4.4 21.6 3.1 23.5 5.4 14.2 2.4 15.6 2.0<br />

6122-5 530.7 2350.1 1.2 4080.8 73.0 285.9 300.8 30.5 89.9 15.0 3.5 19.9 2.3 12.7 4.0 11.3 1.7 12.6 2.1<br />

6122-15 487.5 2227.1 1.6 6451.9 99.1 238.8 292.3 28.5 99.7 17.0 3.4 16.1 2.2 15.5 3.5 10.3 1.5 9.6 1.6<br />

6122-8 443.3 3328.4 3.7 3264.3 78.4 213.5 290.2 29.0 98.0 14.7 3.2 13.4 1.9 14.0 3.1 9.4 1.5 9.8 1.5<br />

6122-6 454.3 2285.9 1.7 3551.7 79.3 214.1 273.0 25.9 77.7 11.7 3.0 16.5 2.1 10.8 2.6 8.6 1.3 6.7 1.2<br />

6122-7 619.7 2209.9 0.7 2175.5 120.8 148.4 224.3 21.0 72.8 10.7 2.2 9.6 1.4 10.1 2.5 7.3 1.2 7.5 1.2<br />

247


Sample Y Zr Cs Ba Th La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu<br />

6139-2 810.9 2096.5 0.3 1048.4 64.2 1384.1 1280.7 126.5 498.2 89.2 19.4 97.0 14.3 99.2 19.9 53.5 7.2 44.6 5.7<br />

6139-3 809.1 1613.8 0.2 510.0 24.6 1533.8 1271.3 122.0 460.2 82.7 18.3 94.7 14.4 101.7 20.7 55.4 7.9 49.4 6.0<br />

6139-4 639.2 1560.8 0.3 1377.8 36.9 1796.1 1485.6 129.3 469.2 72.8 16.6 78.9 12.0 84.2 17.3 46.2 6.5 43.9 4.8<br />

6139-5 749.0 1829.4 0.4 1815.1 45.8 1032.3 1127.3 115.5 480.0 89.9 19.1 91.8 13.9 92.5 19.5 49.8 6.9 43.4 5.3<br />

6139-6 856.0 1404.6 0.5 6402.1 46.9 1571.9 1978.3 172.3 586.1 99.7 24.3 106.2 17.7 129.8 25.9 69.5 9.9 61.0 8.1<br />

6139-7 854.4 2438.0 0.4 2212.6 17.5 1100.9 1179.8 112.0 472.2 88.7 20.6 104.2 14.4 96.6 19.3 49.9 6.4 39.8 5.2<br />

6139-8 776.6 1722.9 2.0 803.4 11.3 922.8 916.7 94.1 388.5 73.9 16.9 84.0 12.7 87.8 18.6 50.7 6.7 42.1 5.6<br />

6139-9 921.3 1978.3 0.8 1015.4 42.7 1197.1 1228.3 127.1 521.8 100.5 22.7 118.0 16.6 113.1 22.4 59.4 7.7 49.8 6.3<br />

6139-11 853.4 35639.6 0.5 7346.8 19.5 583.2 614.8 59.0 241.7 51.7 13.7 71.1 11.5 82.9 18.8 54.6 8.6 58.0 8.1<br />

248


APPENDIX C<br />

REE characteristic parameters of various generation of uraninite from deposits of the<br />

Beaverlodge area.<br />

Sample ΣREE TLREE THREE LREE/HREE Eu/Eu* (La/Sm)N (Tb/La)N (Tb/La)N Tb/Yb Sm/La (La/Yb)N<br />

6120-1 4628.5 4476.5 152.0 29.4 0.7 19.4 0.01 0.00 1.1 0.03 41.0<br />

6120-3 3236.6 3071.5 165.1 18.6 0.7 18.1 0.02 0.01 1.1 0.03 28.1<br />

6120-4 4144.8 4018.9 126.0 31.9 0.7 22.9 0.01 0.00 1.1 0.02 46.1<br />

6120-5 4764.1 4582.0 182.1 25.2 0.7 16.6 0.02 0.00 1.3 0.03 38.4<br />

6120-8 5079.1 4842.3 236.9 20.4 0.7 15.0 0.02 0.01 1.4 0.04 34.8<br />

6120-10 3889.7 3745.7 144.0 26.0 0.7 18.8 0.02 0.00 1.1 0.03 37.9<br />

6120-11 5672.4 5495.2 177.2 31.0 0.8 17.4 0.01 0.00 1.2 0.03 45.1<br />

3705-1 8708.6 8087.3 621.3 13.0 0.6 3.2 0.06 0.02 1.4 0.17 10.1<br />

3705-2 8927.3 8273.3 654.0 12.7 0.6 2.2 0.08 0.03 1.5 0.25 7.8<br />

3705-3 11807.0 11020.1 786.9 14.0 0.6 3.1 0.06 0.02 1.4 0.18 9.8<br />

3705-4 12492.5 11669.4 823.1 14.2 0.6 3.1 0.06 0.02 1.4 0.18 10.0<br />

3705-5 5273.3 5025.8 247.5 20.3 0.6 4.2 0.04 0.01 1.5 0.13 15.9<br />

3705-6 8729.9 8129.0 600.9 13.5 0.6 2.9 0.09 0.02 1.1 0.19 6.9<br />

3705-7 4291.4 4092.2 199.1 20.6 0.7 4.2 0.04 0.01 1.6 0.13 16.3<br />

3705-8 2947.5 2813.2 134.2 21.0 0.6 4.9 0.04 0.01 1.3 0.11 17.1<br />

3705-10 2311.8 2155.8 156.0 13.8 0.5 3.7 0.07 0.02 1.1 0.15 8.9<br />

3705-12 10542.9 9972.3 570.6 17.5 0.6 3.3 0.06 0.02 1.3 0.16 11.0<br />

5812_1 9389.7 6585.9 2803.8 2.3 0.6 1.8 0.23 0.08 1.5 0.31 2.6<br />

5812_2 14030.2 10903.4 3126.9 3.5 0.7 1.4 0.21 0.07 1.4 0.39 2.9<br />

5812_3 21185.2 18070.8 3114.4 5.8 0.7 3.0 0.09 0.03 1.4 0.18 6.9<br />

5812_5 15508.5 13642.2 1866.3 7.3 0.7 1.6 0.19 0.04 1.0 0.35 3.2<br />

5812_8 18693.8 16341.5 2352.3 6.9 0.8 2.8 0.10 0.03 1.2 0.19 5.8<br />

5812_9 26403.2 18937.3 7465.8 2.5 0.5 1.5 0.53 0.07 0.6 0.36 1.1<br />

5812_10 4690.6 4421.1 269.5 16.4 0.7 9.3 0.03 0.01 1.2 0.06 20.2<br />

5812_11 6312.0 5580.6 731.4 7.6 0.7 4.6 0.07 0.02 1.3 0.12 9.1<br />

90085-1 11334.7 8526.6 1883.5 4.5 0.7 1.6 0.14 0.05 1.6 0.32 4.3<br />

90085-2 14232.9 9858.4 2551.7 3.9 0.7 1.6 0.17 0.06 1.5 0.33 3.6<br />

90085-3 9697.7 6677.1 1478.5 4.5 0.7 1.9 0.12 0.04 1.5 0.26 4.9<br />

90085-4 10126.3 7828.1 1718.0 4.6 0.7 1.8 0.13 0.05 1.6 0.30 4.8<br />

90085-5 15865.5 11021.9 2586.6 4.3 0.7 1.6 0.16 0.05 1.5 0.32 3.9<br />

90085-6 7659.2 5240.2 1251.0 4.2 0.7 2.2 0.14 0.04 1.4 0.24 4.5<br />

90085-7 13572.8 8813.7 2632.8 3.3 0.8 1.8 0.19 0.06 1.4 0.31 3.2<br />

90085-8 7914.4 6002.1 1253.8 4.8 0.7 2.1 0.12 0.04 1.5 0.25 5.1<br />

90085-9 6868.9 5036.0 1084.0 4.6 0.7 2.2 0.12 0.04 1.4 0.26 4.9<br />

249


Sample ΣREE TLREE THREE LREE/HREE Eu/Eu* (La/Sm)N (Tb/La)N (Tb/La)N Tb/Yb Sm/La (La/Yb)N<br />

90085-10 14839.2 9513.8 2684.8 3.5 0.8 1.4 0.20 0.07 1.5 0.37 3.1<br />

90085-11 14381.9 10788.9 4286.8 2.5 0.7 1.6 0.29 0.08 1.1 0.36 2.1<br />

6134-12 19482.4 16122.7 3359.8 4.8 0.1 1.2 0.10 0.04 1.8 0.47 6.0<br />

6134-10 18785.4 15510.3 3275.1 4.7 0.1 1.2 0.11 0.04 1.7 0.45 5.6<br />

6134-9 15234.8 12540.1 2694.6 4.7 0.1 1.2 0.10 0.04 1.7 0.44 5.9<br />

6134-8 7718.3 6174.2 1544.0 4.0 0.1 2.2 0.08 0.03 1.5 0.25 7.1<br />

6134-11 3350.9 2821.4 529.5 5.3 0.1 4.9 0.04 0.01 1.5 0.11 15.1<br />

6134-13 1291.3 1211.1 80.2 15.1 0.1 13.0 0.01 0.00 1.9 0.04 61.7<br />

6134-14 1158.3 1069.1 89.3 12.0 0.1 11.4 0.02 0.01 1.4 0.05 34.9<br />

6122-22 2934.6 2669.5 265.1 10.1 0.6 5.8 0.03 0.01 1.7 0.09 17.6<br />

6122-21 2329.3 2116.4 212.9 9.9 0.6 5.6 0.04 0.01 1.2 0.10 14.9<br />

6122-19 2326.9 2120.5 206.4 10.3 0.6 5.7 0.05 0.01 1.1 0.10 12.8<br />

6122-17 2230.0 2018.5 211.5 9.5 0.6 5.4 0.04 0.01 1.3 0.10 13.9<br />

6122-18 2107.2 1884.0 223.2 8.4 0.5 5.2 0.05 0.01 1.2 0.10 12.6<br />

6122-20 1944.8 1760.5 184.2 9.6 0.9 5.9 0.04 0.01 1.5 0.09 17.3<br />

6122-3 1130.3 1046.5 83.8 12.5 0.7 9.3 0.04 0.01 0.9 0.06 15.1<br />

6122-11 1029.5 969.4 60.2 16.1 0.7 8.6 0.03 0.01 1.0 0.06 20.8<br />

6122-12 928.0 859.4 68.6 12.5 0.5 11.7 0.04 0.01 0.8 0.05 16.0<br />

6122-9 892.4 831.1 61.2 13.6 0.7 8.4 0.04 0.01 1.1 0.07 16.8<br />

6122-2 852.3 768.6 83.6 9.2 0.7 6.0 0.06 0.01 1.0 0.09 9.7<br />

6122-13 833.5 766.4 67.1 11.4 0.7 8.3 0.05 0.01 0.8 0.07 13.0<br />

6122-4 793.5 705.7 87.7 8.0 0.7 7.5 0.07 0.01 0.8 0.07 8.8<br />

6122-5 792.4 725.7 66.7 10.9 0.6 10.4 0.04 0.01 0.8 0.05 13.8<br />

6122-15 740.0 679.7 60.2 11.3 0.6 7.7 0.04 0.01 1.0 0.07 15.1<br />

6122-8 703.3 648.7 54.5 11.9 0.7 7.9 0.05 0.01 0.8 0.07 13.3<br />

6122-6 655.1 605.4 49.7 12.2 0.7 10.0 0.03 0.01 1.3 0.05 19.4<br />

6122-7 520.3 479.5 40.8 11.8 0.7 7.6 0.05 0.01 0.8 0.07 12.1<br />

6139-2 3739.3 3398.1 341.2 10.0 0.6 8.5 0.03 0.01 1.4 0.06 18.8<br />

6139-3 3838.3 3488.2 350.1 10.0 0.6 10.2 0.03 0.01 1.2 0.05 18.8<br />

6139-4 4263.4 3969.5 293.9 13.5 0.7 13.5 0.02 0.01 1.2 0.04 24.8<br />

6139-5 3187.3 2864.2 323.1 8.9 0.6 6.3 0.04 0.01 1.4 0.09 14.4<br />

6139-6 4860.8 4432.6 428.2 10.4 0.7 8.7 0.04 0.01 1.2 0.06 15.6<br />

6139-7 3309.8 2974.1 335.7 8.9 0.7 6.8 0.04 0.01 1.5 0.08 16.8<br />

6139-8 2721.1 2412.9 308.2 7.8 0.7 6.9 0.05 0.01 1.3 0.08 13.3<br />

6139-9 3590.9 3197.6 393.3 8.1 0.6 6.5 0.04 0.01 1.4 0.08 14.6<br />

6139-11 1877.7 1564.2 313.5 5.0 0.7 6.2 0.10 0.02 0.8 0.09 6.1<br />

250


APPENDIX D<br />

Electron microprobe analyses of various chlorite phases from deposits of the Beaverlodge area<br />

SAMPLE ID. SiO 2 TiO 2 AL 2O 3 CR 2O 3 FeO MnO MgO CaO NA 2O K 2O F CL H 2O O=F O=CL Total Temp ( o ) ±<br />

RETROGRADE LOWER GREENSCHIST CHLORITE (Cl1)<br />

Cl48-7 29.83 0.00 14.82 0.06 19.52 0.07 18.82 0.30 0.02 0.01 0.55 0.00 10.94 -0.23 0.00 94.71 197<br />

Cl48-3 30.10 0.00 15.68 0.02 19.23 0.15 19.74 0.15 0.00 0.00 0.34 0.00 11.30 -0.14 0.00 96.56 211<br />

Cl48-5 29.61 0.01 15.56 0.00 18.54 0.12 19.33 0.16 0.00 0.00 0.44 0.00 11.04 -0.19 0.00 94.63 210<br />

Cl48 30.92 0.00 13.81 0.00 19.72 0.13 20.51 0.12 0.04 0.02 0.51 0.00 11.20 -0.21 0.00 96.77 183<br />

Cl48-2-1 30.79 0.01 14.36 0.00 20.22 0.10 20.28 0.00 0.01 0.01 0.42 0.00 11.30 -0.18 0.00 97.32 192<br />

AVG 30.25 0.00 14.85 0.02 19.45 0.11 19.74 0.15 0.01 0.01 0.45 0.00 11.16 -0.19 0.00 96.00 199 14<br />

EARLY TENSIONAL VEINS URANIUM MINERALIZATION (Cl4)<br />

6122_pt1-2-Cl 29.99 0.02 25.80 0.00 12.16 0.15 18.28 0.28 0.46 0.11 0.17 0.12 12.23 -0.07 -0.03 100.12 287<br />

6122_pt2-1 27.23 -0.01 21.92 0.06 15.36 0.17 17.80 1.88 0.21 0.09 0.50 0.20 11.29 -0.21 -0.05 96.79 318<br />

6122_pt3-2 27.70 -0.01 22.82 0.07 16.71 0.07 19.24 0.37 0.10 0.03 0.16 0.07 11.83 -0.07 -0.02 99.34 329<br />

6122_pt4-1 25.53 0.00 19.50 0.04 11.47 0.22 14.11 10.29 0.44 0.57 0.87 0.10 10.55 -0.37 -0.02 93.71 329<br />

6122_pt4-2 27.34 0.03 19.66 0.09 15.16 0.16 15.72 4.54 0.19 0.73 0.32 0.14 11.07 -0.13 -0.03 95.44 288<br />

AVG 27.56 0.00 21.94 0.05 14.17 0.15 17.03 3.47 0.28 0.31 0.40 0.13 11.39 -0.17 -0.03 97.08 310 21<br />

METASOMATIC -TYPE URANIUM MINERALIZATION (Cl5 Cl6)<br />

Early Chlorite associated with the metasomatic type uranium mineralization (Cl 5 )<br />

Gn21-1 26.65 0.07 19.29 0.00 20.31 0.37 17.80 0.01 0.04 0.02 0.31 0.00 11.11 -0.13 0.00 95.85 312<br />

Gn21-2 26.97 0.05 19.13 0.00 20.39 0.41 18.56 0.00 0.01 0.00 0.23 0.00 11.28 -0.10 0.00 96.93 312<br />

Gn21-4 26.63 0.08 19.71 0.01 20.98 0.37 17.83 0.01 0.00 0.01 0.19 0.00 11.28 -0.08 0.00 97.02 321<br />

Gn21-5 27.24 0.04 19.64 0.00 20.61 0.43 18.17 0.02 0.01 0.00 0.26 0.00 11.35 -0.11 0.00 97.66 310<br />

Gn21-6 26.70 0.07 19.27 0.00 20.62 0.32 18.49 0.00 0.03 0.02 0.29 0.00 11.23 -0.12 0.00 96.92 319<br />

AVG 26.84 0.06 19.41 0.00 20.58 0.38 18.17 0.01 0.02 0.01 0.26 0.00 11.25 -0.11 0.00 96.88 315 6<br />

Late Chlorite vein injected during late stage of the metasomatic process (Cl 6 )<br />

GN03A-1 28.80 0.00 19.65 0.05 15.94 0.30 21.12 0.04 0.02 0.01 0.33 0.00 11.63 -0.14 0.00 97.75 282<br />

GN03A-2 28.96 0.00 19.17 0.13 15.75 0.23 22.08 0.03 0.00 0.01 0.30 0.00 11.70 -0.13 0.00 98.24 282<br />

GN03A-3 29.57 0.00 19.12 0.03 14.20 0.16 23.41 0.03 0.00 0.00 0.40 0.00 11.80 -0.17 0.00 98.55 273<br />

GN03A-4 29.04 0.01 19.17 0.04 13.61 0.21 23.66 0.03 0.01 0.00 0.39 0.00 11.71 -0.16 0.00 97.72 284<br />

251


SAMPLE ID. SiO 2 TiO 2 AL 2O 3 CR 2O 3 FeO MnO MgO CaO NA 2O K 2O F CL H 2O O=F O=CL Total Temp ( o ) ±<br />

GN03A-5 29.38 0.04 19.27 0.06 15.61 0.28 21.65 0.03 0.01 0.01 0.37 0.00 11.70 -0.16 0.00 98.25 270<br />

AVG 29.15 0.01 19.28 0.06 15.02 0.24 22.38 0.03 0.01 0.01 0.36 0.00 11.71 -0.15 0.00 98.10 278 7<br />

Variably Altered Early Chlorite associated with the metasomatic type uranium mineralization<br />

Gn12-2-1 28.49 0.02 18.10 0.04 21.32 0.32 17.40 0.06 0.00 0.01 0.24 0.00 11.29 -0.10 0.00 97.19 262<br />

Gn12-2-2 30.37 0.02 16.57 0.00 15.18 0.11 23.61 0.04 0.01 0.00 0.54 0.00 11.57 -0.23 0.00 97.80 235<br />

Gn12-4-1 28.75 0.02 17.17 0.03 19.96 0.35 18.47 0.09 0.02 0.01 0.32 0.00 11.20 -0.13 0.00 96.26 248<br />

Gn12-4-2 29.73 0.00 16.20 0.01 15.10 0.07 23.53 0.03 0.02 0.00 0.44 0.00 11.44 -0.19 0.00 96.38 240<br />

Gn12-6-1 28.45 0.01 18.10 0.02 21.14 0.25 17.19 0.04 0.01 0.02 0.41 0.00 11.16 -0.17 0.00 96.63 258<br />

Gn12-6-2 30.76 0.01 16.18 0.01 14.14 0.16 24.14 0.01 0.02 0.01 0.26 0.00 11.71 -0.11 0.00 97.30 222<br />

Gn12-8-1 28.47 0.02 18.13 0.01 20.59 0.28 17.35 0.05 0.02 0.01 0.44 0.00 11.14 -0.19 0.00 96.32 257<br />

Gn12-8-2 29.91 0.03 16.13 0.00 14.29 0.14 23.05 0.02 0.02 0.01 0.52 0.00 11.31 -0.22 0.00 95.21 226<br />

Gn12-101 28.49 0.00 17.60 0.02 21.33 0.34 17.90 0.08 0.06 0.03 0.43 0.00 11.20 -0.18 0.00 97.30 261<br />

Gn12-102 30.44 0.02 15.97 0.00 14.54 0.15 23.99 0.00 0.02 0.01 0.25 0.00 11.64 -0.11 0.00 96.92 226<br />

Gn12-111 29.03 0.01 17.49 0.03 19.76 0.34 19.08 0.05 0.08 0.04 0.57 0.00 11.25 -0.24 0.00 97.49 253<br />

GN12-112 30.63 0.05 16.13 0.02 14.03 0.15 24.71 0.01 0.05 0.01 0.73 0.00 11.53 -0.31 0.00 97.74 230<br />

GN-12-1 29.70 0.01 16.07 0.01 15.07 0.01 23.01 0.00 0.01 0.00 0.43 0.00 11.34 -0.18 0.00 95.48 233<br />

AVG 29.48 0.02 16.65 0.02 16.95 0.20 21.74 0.03 0.04 0.02 0.48 0.00 11.39 -0.20 0.00 96.99 242 20<br />

6140-1 29.88 0.00 15.97 0.04 18.10 0.05 20.83 0.03 0.01 0.01 0.27 0.00 11.38 -0.11 0.00 96.45 223<br />

6140-2 29.88 0.00 15.97 0.04 18.10 0.05 20.83 0.03 0.01 0.01 0.27 0.00 11.38 -0.11 0.00 96.45 223<br />

6140-3 29.29 0.01 15.94 0.06 19.97 0.04 20.34 0.01 0.01 0.02 0.38 0.00 11.29 -0.16 0.00 97.20 240<br />

6140-4 29.46 0.02 16.05 0.02 18.31 0.07 20.84 0.03 0.02 0.05 0.27 0.00 11.34 -0.11 0.00 96.37 234<br />

6140-5 29.18 0.01 15.56 0.01 19.32 0.05 20.19 0.03 0.01 0.01 0.34 0.00 11.17 -0.14 0.00 95.73 231<br />

AVR 29.54 0.01 15.90 0.03 18.76 0.05 20.61 0.03 0.01 0.02 0.31 0.00 11.31 -0.13 0.00 96.44 230 8<br />

6134_Pt2_Cl1 34.61 0.02 19.74 0.01 8.14 0.18 21.49 0.49 0.06 0.12 0.92 0.15 11.85 -0.39 -0.03 97.32 141<br />

6134_Pt2_Cl2 35.20 -0.01 19.46 0.01 2.91 0.32 22.27 1.74 0.05 0.13 2.05 0.14 11.22 -0.86 -0.03 94.59 114<br />

6134_Pt3_Cl1 36.06 0.01 20.00 0.03 3.53 0.30 21.07 0.97 0.06 0.17 1.01 0.11 11.78 -0.43 -0.02 94.62 92<br />

6134_Pt4_Cl1 36.14 0.02 21.88 -0.01 4.59 0.25 20.48 0.92 0.04 0.27 1.56 0.06 11.82 -0.66 -0.01 97.62 116<br />

AVG 35.50 0.01 20.27 0.01 4.79 0.26 21.33 1.03 0.05 0.17 1.38 0.11 11.67 -0.59 -0.02 96.04 116 24<br />

BRECCIA-TYPE URANIUM MINERALIZATION (Cl7)<br />

5812A-2 24.73 0.03 18.95 0.05 22.98 0.05 13.57 2.32 0.07 0.02 - 0.00 10.72 0.00 0.00 93.49 335<br />

5812A-3 24.63 0.00 18.86 0.03 18.70 0.07 15.01 2.14 0.06 0.00 - 0.00 10.54 0.00 0.00 90.04 324<br />

5812A-3-1 24.63 0.00 19.27 0.07 23.22 0.08 12.94 0.65 0.04 0.00 - 0.00 10.53 0.00 0.00 91.43 323<br />

5812A-5-2 25.72 0.03 20.40 0.06 27.38 0.08 11.92 0.11 0.04 0.00 - 0.00 11.01 0.00 0.00 96.75 324<br />

5812A-8-1 24.06 0.04 18.36 0.10 26.34 0.16 10.77 2.07 0.05 0.00 - 0.00 10.39 0.00 0.00 92.34 332<br />

5812A-8-2 25.34 0.05 19.66 0.07 26.42 0.11 11.87 0.40 0.08 0.00 - 0.00 10.79 0.00 0.00 94.79 319<br />

252


SAMPLE ID. SiO 2 TiO 2 AL 2O 3 CR 2O 3 FeO MnO MgO CaO NA 2O K 2O F CL H 2O O=F O=CL Total Temp ( o ) ±<br />

5812A-8-3 25.65 0.04 20.38 0.02 27.32 0.07 11.90 0.17 0.02 0.00 - 0.00 10.99 0.00 0.00 96.56 324<br />

5812A-9-1 25.68 0.03 19.84 0.08 27.38 0.08 11.78 0.24 0.03 0.00 - 0.00 10.91 0.00 0.00 96.05 317<br />

5812A-9-2 25.24 0.01 19.56 0.08 28.15 0.09 11.44 0.08 0.05 0.00 - 0.00 10.79 0.00 0.00 95.49 323<br />

5812A-10-1 25.83 0.02 20.21 0.10 27.24 0.05 12.54 0.20 0.03 0.00 - 0.00 11.08 0.00 0.00 97.30 325<br />

5812A-10-2 24.97 0.04 19.24 0.08 26.38 0.06 11.97 1.92 0.04 0.00 - 0.00 10.81 0.00 0.00 95.51 334<br />

5812-Pt1 25.93 0.01 21.15 0.05 27.87 0.02 12.65 0.77 0.04 0.03 0.28 0.04 11.20 -0.12 -0.01 100.18 343<br />

5812-Pt2-2 25.21 0.01 20.87 0.23 25.78 0.07 13.46 0.31 0.02 0.01 0.08 0.02 11.06 -0.03 0.00 97.21 350<br />

5812-Pt2-3 26.49 0.01 20.15 0.45 23.19 0.05 15.28 0.84 0.03 0.02 0.14 0.03 11.26 -0.01 -0.06 98.06 323<br />

5812-Pt3-1 25.97 0.01 21.24 0.03 28.34 0.11 11.84 0.53 0.05 0.03 0.17 0.04 11.20 -0.07 -0.03 99.62 340<br />

AVG 25.34 0.02 19.88 0.10 25.78 0.08 12.60 0.85 0.04 0.01 0.17 0.01 10.89 -0.02 -0.01 95.66 329 16<br />

Late Chlorite replacement<br />

C-27-221-1-1 30.08 0.06 16.42 0.00 15.04 0.14 22.66 0.10 0.00 0.00 0.52 0.00 11.39 -0.22 0.00 96.19 228<br />

C-27-221-1-2 31.72 0.02 15.16 0.01 11.24 0.23 24.86 0.13 0.03 0.01 0.67 0.00 11.43 -0.28 0.00 95.23 183<br />

C-27-221-1-3 31.62 0.00 15.04 0.00 11.23 0.14 24.82 0.12 0.01 0.01 0.48 0.00 11.46 -0.20 0.00 94.73 182<br />

C-27-221-2-1 32.13 0.02 15.42 0.00 11.89 0.11 25.28 0.15 0.02 0.01 0.44 0.00 11.74 -0.19 0.00 97.02 188<br />

C-27-221-3-1 30.84 0.03 15.16 0.00 11.33 0.13 24.02 0.15 0.01 0.01 0.49 0.00 11.26 -0.21 0.00 93.22 189<br />

C-27-221-3-2 31.20 0.04 15.53 0.00 12.04 0.21 23.88 0.19 0.04 0.01 0.47 0.00 11.43 -0.20 0.00 94.84 192<br />

AVG 31.27 0.03 15.46 0.00 12.13 0.16 24.25 0.14 0.02 0.01 0.51 0.00 11.45 -0.22 0.00 95.21 194 23<br />

VOLCANIC-TYPE URANIUM MINERALIZATION (Cl8)<br />

Chlorite associated with the volcanic-type uranium mineralization<br />

C-27-319-1 26.62 0.01 18.11 0.02 28.73 0.00 13.53 0.02 0.01 0.00 0.04 0.00 11.08 -0.02 0.00 98.15 300<br />

C-27-319-2 26.11 0.03 18.98 0.01 27.84 0.22 13.65 0.02 0.01 0.03 0.05 0.00 11.09 -0.02 0.00 98.02 319<br />

C-27-319-3 26.14 0.02 18.78 0.04 28.87 0.21 12.99 0.01 0.00 0.06 0.07 0.00 11.04 -0.03 0.00 98.20 315<br />

C-27-319-4 26.30 0.04 18.20 0.01 27.97 0.33 13.06 0.04 0.02 0.10 0.09 0.00 10.93 -0.04 0.00 97.05 301<br />

C-27-319-5 25.97 0.00 18.38 0.02 28.32 0.23 13.37 0.01 0.00 0.01 0.08 0.00 10.95 -0.03 0.00 97.31 314<br />

C-27-319-6-1 25.81 0.04 18.01 0.00 28.11 0.21 13.22 0.00 0.01 0.00 0.14 0.00 10.81 -0.06 0.00 96.30 309<br />

C-27-319-6-2 25.89 0.05 18.48 0.04 28.39 0.26 13.19 0.00 0.02 0.01 0.10 0.00 10.94 -0.04 0.00 97.32 316<br />

C-27-319-7 25.71 0.00 18.33 0.05 29.74 0.30 12.40 0.00 0.00 0.01 0.04 0.00 10.90 -0.02 0.00 97.47 317<br />

AVG 26.07 0.02 18.41 0.02 28.50 0.22 13.18 0.01 0.01 0.03 0.08 0.00 10.97 -0.03 0.00 97.48 311 9<br />

C-27-34-1 26.90 0.02 19.22 0.04 22.11 0.56 16.89 0.03 0.01 0.02 0.11 0.00 11.26 -0.05 0.00 97.12 308<br />

C-27-34-2 26.19 0.00 19.43 0.00 22.61 0.48 16.48 0.01 0.02 0.02 0.16 0.00 11.12 -0.07 0.00 96.45 323<br />

C-27-34-3 26.76 0.00 19.15 0.03 22.77 0.62 16.73 0.02 0.03 0.02 0.13 0.00 11.24 -0.05 0.00 97.45 312<br />

C-27-34-4-1 26.94 0.02 19.22 0.05 22.45 0.53 17.11 0.02 0.01 0.00 0.11 0.00 11.32 -0.05 0.00 97.73 311<br />

C-27-34-4-2 26.94 0.02 19.22 0.05 22.45 0.53 17.11 0.02 0.01 0.00 0.11 0.00 11.32 -0.05 0.00 97.73 311<br />

C-27-34-5 26.62 0.01 19.28 0.03 22.33 0.58 16.93 0.00 0.01 0.01 0.10 0.00 11.24 0.00 -0.04 97.10 315<br />

C-27-34-5-1 26.48 0.00 19.44 0.04 22.29 0.50 16.68 0.03 0.02 0.01 0.10 0.00 11.21 -0.04 0.00 96.75 317<br />

253


SAMPLE ID. SiO 2 TiO 2 AL 2O 3 CR 2O 3 FeO MnO MgO CaO NA 2O K 2O F CL H 2O O=F O=CL Total Temp ( o ) ±<br />

C-27-34-6 26.91 0.02 19.26 0.02 22.49 0.45 17.10 0.01 0.03 0.03 0.10 0.00 11.32 -0.04 0.00 97.70 312<br />

CL57-4 26.17 0.02 17.82 0.02 27.91 0.34 14.34 0.03 0.01 0.01 0.00 0.00 11.05 0.00 0.00 97.72 311<br />

AVG 26.66 0.01 19.12 0.03 23.05 0.51 16.60 0.02 0.02 0.01 0.10 0.00 11.23 -0.04 0.00 97.31 313 7<br />

CL29-7 25.35 0.02 20.07 0.01 25.65 0.30 14.51 0.01 0.03 0.02 0.13 0.00 11.04 -0.05 0.00 97.09 344<br />

CL29-8 25.98 0.00 19.20 0.00 24.85 0.24 15.10 0.03 0.03 0.02 0.20 0.00 11.00 -0.08 0.00 96.56 322<br />

CL29-2 25.02 0.05 20.14 0.03 25.75 0.24 14.62 0.02 0.03 0.02 0.09 0.00 11.04 -0.04 0.00 97.01 354<br />

CL29-4 25.69 0.04 19.48 0.02 26.21 0.26 14.58 0.00 0.03 0.05 0.11 0.11 11.04 -0.05 -0.02 97.55 334<br />

CL29-5 25.71 0.03 19.39 0.02 25.97 0.21 14.97 0.02 0.02 0.08 0.18 0.00 11.06 -0.08 0.00 97.58 335<br />

AVG 26.10 0.09 18.79 0.01 25.65 0.24 15.13 0.02 0.03 0.03 0.18 0.01 11.03 -0.07 0.00 97.22 338 16<br />

Variably altered chlorite associated with the volcanic type uranium mineralization<br />

CL57-1 29.61 0.00 15.65 0.03 22.37 0.30 18.39 0.12 0.06 0.02 - 0.00 11.44 0.00 0.00 97.99 226<br />

CL57-2 28.68 0.00 15.68 0.11 24.13 0.35 17.64 0.08 0.03 0.03 - 0.00 11.32 0.00 0.00 98.05 248<br />

CL57-3 29.09 0.02 15.85 0.02 23.57 0.27 18.20 0.19 0.02 0.02 - 0.00 11.44 0.00 0.00 98.69 244<br />

CL57-5 29.75 0.00 14.72 0.01 21.98 0.30 18.68 0.17 0.07 0.01 - 0.00 11.33 0.00 0.00 97.02 212<br />

CL57-6 29.95 0.00 14.99 0.10 20.00 0.23 18.76 0.17 0.04 0.01 - 0.00 11.28 0.00 0.00 95.53 200<br />

CL57-7 29.25 0.00 15.05 0.07 22.45 0.23 18.27 0.10 0.08 0.02 - 0.00 11.27 0.00 0.00 96.79 224<br />

CL29-6 27.98 0.08 16.00 0.02 26.42 0.19 15.18 0.04 0.03 0.01 0.19 0.00 10.99 -0.08 0.00 97.05 251<br />

CL29-9 29.84 0.04 17.25 0.02 25.35 0.20 15.35 0.04 0.04 0.02 0.36 0.00 11.36 -0.15 0.00 99.72 227<br />

AVG 29.27 0.02 15.65 0.05 23.28 0.26 17.56 0.11 0.05 0.02 0.28 0.00 11.30 -0.03 0.00 97.61 229 25<br />

6139-3 27.66 0.02 17.39 0.06 25.32 0.22 11.81 0.37 0.18 0.34 0.00 0.00 10.79 0.00 0.00 94.16 236<br />

6139-4 29.89 0.00 17.92 0.03 23.38 0.23 10.39 0.28 0.21 1.11 0.00 0.00 10.96 0.00 0.00 94.40 173<br />

6139-5 27.52 0.05 17.48 0.05 25.20 0.26 11.60 0.28 0.18 0.33 0.00 0.00 10.74 0.00 0.00 93.69 236<br />

6139-6 28.84 0.02 17.41 0.02 24.58 0.15 11.25 0.27 0.16 0.67 0.00 0.00 10.87 0.00 0.00 94.24 201<br />

AVR 30.16 0.02 17.88 0.04 23.31 0.19 10.79 0.30 0.19 1.09 0.00 0.00 11.05 0.00 0.00 95.01 212 32<br />

ATHABASCA-TYPE URANIUM MINERALIZATION Cl9)<br />

3705-1 27.68 0.01 15.09 0.15 28.69 0.04 14.04 0.04 0.07 0.00 0.25 0.00 10.79 -0.11 0.00 96.74 246<br />

3705-2 28.96 0.01 15.10 0.16 26.74 0.00 13.59 0.09 0.04 0.00 0.27 0.00 10.80 -0.11 0.00 95.65 203<br />

3705-3 27.90 0.02 14.84 0.26 26.54 0.03 14.47 0.10 0.24 0.02 0.64 0.00 10.53 -0.27 0.00 95.33 232<br />

3705-4 28.51 0.02 15.77 0.21 24.06 0.00 16.14 0.10 0.02 0.00 0.34 0.00 10.93 -0.14 0.00 95.96 234<br />

3705-5 28.62 0.02 15.77 0.21 24.06 0.00 16.14 0.10 0.02 0.00 0.34 0.00 10.95 -0.14 0.00 96.09 231<br />

3705-7 29.51 0.00 15.05 0.19 22.53 0.00 17.68 0.07 0.00 0.00 0.46 0.00 11.01 -0.19 0.00 96.31 211<br />

3507_Pt1_Cl 28.33 0.04 15.78 0.19 27.49 0.02 15.30 0.07 0.01 0.02 0.31 0.11 11.03 -0.13 -0.02 99.23 250<br />

3507_Pt2_Cl 28.43 0.02 15.55 0.11 26.61 -0.04 16.31 0.04 0.02 0.03 0.33 0.10 11.06 -0.14 -0.02 99.00 249<br />

3507_Pt3_Cl 27.90 0.03 15.45 0.11 27.33 0.02 14.83 0.10 0.04 0.01 0.41 0.08 10.79 -0.17 -0.02 97.61 247<br />

3507_Pt4_Cl 27.96 0.01 15.65 0.13 26.07 0.03 15.83 0.07 0.04 0.02 0.49 0.09 10.82 -0.21 -0.02 97.52 251<br />

AVG 28.38 0.02 15.40 0.17 26.01 0.01 15.43 0.08 0.05 0.01 0.38 0.04 10.87 -0.16 -0.01 96.94 235 24<br />

254


SAMPLE ID. SiO 2 TiO 2 AL 2O 3 CR 2O 3 FeO MnO MgO CaO NA 2O K 2O F CL H 2O O=F O=CL Total Temp ( o ) ±<br />

LATE VEINS (Cl10)<br />

6134_Pt2_Cl1 47.77 0.08 25.89 -0.02 11.16 0.01 2.21 0.69 0.15 5.90 0.13 0.08 4.25 -0.05 -0.02 99.08 161<br />

6134_Pt2_Cl2 48.55 0.03 29.89 -0.02 4.33 0.01 3.75 0.20 0.27 7.02 - 0.07 4.45 -0.01 -0.02 98.92 179<br />

6134_Pt3_Cl1 51.23 0.02 29.24 0.02 4.28 0.05 2.12 0.24 0.26 8.09<br />

0.02<br />

0.12 0.07 4.47 -0.05 -0.02 100.36 137<br />

6134_Pt4_Cl1 48.47 0.02 23.70 -0.02 8.70 0.05 4.44 0.40 0.18 6.48 0.23 0.15 4.15 -0.03 -0.10 97.27 136<br />

6134_Pt4_Cl2 48.14 0.20 21.84 0.01 10.41 0.03 2.42 0.75 0.18 6.20 0.30 0.03 4.01 -0.13 -0.01 94.99 108<br />

AVG 48.83 0.07 26.11 -0.01 7.78 0.03 2.99 0.45 0.21 6.74 0.15 0.08 4.27 -0.05 -0.03 98.12 144<br />

255


APPENDIX E<br />

Electron microprobe data and temperatures of various chlorite phases from deposits of the Beaverlodge area<br />

SAMPLE Si 4+ AL 4+ Total AL 6+ Ti 4+ Cr 3+ Fe 2+ Mn 2+ Mg 2+ Total Ca 2+ Na + K + Total F - CL - H + Total O 2- ∑Cat ∑ions<br />

RETROGRADE LOWER GREENSCHIST CHLORITE (Cl1)<br />

Cl48-7 3.20 0.81 4.00 1.87 0.00 0.01 1.75 0.01 3.01 6.64 0.03 0.00 0.00 0.04 0.19 0.00 7.81 8.00 17.81 9.87 18.00 197<br />

Cl48-3 3.15 0.85 4.00 1.93 0.00 0.00 1.68 0.01 3.08 6.71 0.02 0.00 0.00 0.02 0.11 0.00 7.89 8.00 17.89 9.88 18.00 211<br />

Cl48-5 3.16 0.84 4.00 1.96 0.00 0.00 1.65 0.01 3.07 6.69 0.02 0.00 0.00 0.02 0.15 0.00 7.85 8.00 17.85 9.87 18.00 210<br />

Cl48 3.24 0.76 4.00 1.71 0.00 0.00 1.73 0.01 3.20 6.65 0.01 0.01 0.00 0.02 0.17 0.00 7.83 8.00 17.83 9.91 18.00 183<br />

Cl48-2-1 3.21 0.79 4.00 1.77 0.00 0.00 1.76 0.01 3.15 6.69 0.00 0.00 0.00 0.00 0.14 0.00 7.86 8.00 17.86 9.91 18.00 192<br />

AVG 3.19 0.81 4.00 1.85 0.00 0.00 1.72 0.01 3.10 6.68 0.02 0.00 0.00 0.02 0.15 0.00 7.85 8.00 17.85 9.89 18.00 199 14<br />

EARLY TENSIONAL VEINS URANIUM MINERALIZATION (Cl4)<br />

6122_pt1-2- 2.92 1.08 4.00 2.96 0.00 0.00 0.99 0.01 2.65 6.61 0.03 0.09 0.01 0.13 0.05 0.02 7.93 8.00 17.93 9.65 18.00 287<br />

Cl<br />

6122_pt2-1 2.82 1.18 4.00 2.68 0.00 0.01 1.33 0.02 2.75 6.78 0.21 0.04 0.01 0.26 0.16 0.04 7.80 8.00 17.80 9.86 18.00 318<br />

6122_pt3-2 2.79 1.21 4.00 2.71 0.00 0.01 1.41 0.01 2.89 7.01 0.04 0.02 0.00 0.06 0.05 0.01 7.94 8.00 17.94 9.86 18.00 329<br />

6122_pt4-1 2.79 1.21 4.00 2.51 0.00 0.00 1.05 0.02 2.30 5.88 1.20 0.09 0.08 1.38 0.30 0.02 7.68 8.00 17.68 10.04 18.00 329<br />

6122_pt4-2 2.91 1.09 4.00 2.47 0.00 0.01 1.35 0.01 2.50 6.34 0.52 0.04 0.10 0.66 0.11 0.03 7.87 8.00 17.87 9.91 18.00 288<br />

AVG 2.85 1.16 4.00 2.66 0.00 0.00 1.22 0.01 2.62 6.52 0.40 0.06 0.04 0.50 0.14 0.02 7.84 8.00 17.84 9.87 18.00 310 21<br />

METASOMATIC -TYPE URANIUM MINERALIZATION (Cl5 Cl6)<br />

Early chlorite associated with the metasomatic type uranium mineralization (Cl5)<br />

Gn21-1 2.84 1.16 4.00 2.42 0.01 0.00 1.81 0.03 2.83 7.10 0.00 0.01 0.00 0.01 0.10 0.00 7.90 8.00 17.90 9.95 18.00 312<br />

Gn21-2 2.84 1.16 4.00 2.38 0.00 0.00 1.80 0.04 2.91 7.12 0.00 0.00 0.00 0.00 0.08 0.00 7.93 8.00 17.93 9.97 18.00 312<br />

Gn21-4 2.81 1.19 4.00 2.45 0.01 0.00 1.85 0.03 2.80 7.15 0.00 0.00 0.00 0.00 0.06 0.00 7.94 8.00 17.94 9.96 18.00 321<br />

Gn21-5 2.85 1.15 4.00 2.42 0.00 0.00 1.80 0.04 2.83 7.09 0.00 0.00 0.00 0.00 0.09 0.00 7.91 8.00 17.91 9.94 18.00 310<br />

Gn21-6 2.82 1.18 4.00 2.40 0.01 0.00 1.82 0.03 2.91 7.16 0.00 0.01 0.00 0.01 0.10 0.00 7.90 8.00 17.90 9.98 18.00 319<br />

AVG 2.83 1.17 4.00 2.41 0.01 0.00 1.82 0.03 2.86 7.12 0.00 0.00 0.00 0.01 0.09 0.00 7.92 8.00 17.92 9.96 18.00 315 6<br />

Late chlorite vein injected during late stage of the metasomatic process (Cl6)<br />

GN03A-1 2.93 1.07 4.00 2.36 0.00 0.00 1.36 0.03 3.21 6.95 0.00 0.00 0.00 0.01 0.11 0.00 7.89 8.00 17.89 9.89 18.00 282<br />

GN03A-2 2.93 1.07 4.00 2.29 0.00 0.01 1.33 0.02 3.33 6.98 0.00 0.00 0.00 0.00 0.10 0.00 7.90 8.00 17.90 9.92 18.00 282<br />

GN03A-3 2.96 1.04 4.00 2.26 0.00 0.00 1.19 0.01 3.49 6.95 0.00 0.00 0.00 0.00 0.13 0.00 7.87 8.00 17.87 9.91 18.00 273<br />

GN03A-4 2.93 1.07 4.00 2.28 0.00 0.00 1.15 0.02 3.56 7.00 0.00 0.00 0.00 0.01 0.12 0.00 7.88 8.00 17.88 9.93 18.00 284<br />

GN03A-5 2.97 1.03 4.00 2.29 0.00 0.01 1.32 0.02 3.26 6.91 0.00 0.00 0.00 0.01 0.12 0.00 7.88 8.00 17.88 9.88 18.00 270<br />

AVG 2.94 1.06 4.00 2.29 0.00 0.00 1.27 0.02 3.37 6.96 0.00 0.00 0.00 0.01 0.11 0.00 7.89 8.00 17.89 9.91 18.00 278 7<br />

Variably altered early chlorite associated with the metasomatic type uranium mineralization<br />

Temp<br />

( o )<br />

±<br />

256


SAMPLE Si 4+ AL 4+ Total AL 6+ Ti 4+ Cr 3+ Fe 2+ Mn 2+ Mg 2+ Total Ca 2+ Na + K + Total F - CL - H + Total O 2- ∑Cat ∑ions<br />

Gn12-2-1 3.00 1.01 4.00 2.24 0.00 0.00 1.87 0.03 2.73 6.88 0.01 0.00 0.00 0.01 0.08 0.00 7.92 8.00 17.92 9.88 18.00 262<br />

Gn12-2-2 3.08 0.92 4.00 1.98 0.00 0.00 1.29 0.01 3.57 6.85 0.00 0.00 0.00 0.01 0.17 0.00 7.83 8.00 17.83 9.93 18.00 235<br />

Gn12-4-1 3.04 0.96 4.00 2.14 0.00 0.00 1.76 0.03 2.91 6.84 0.01 0.00 0.00 0.02 0.11 0.00 7.89 8.00 17.89 9.90 18.00 248<br />

Gn12-4-2 3.06 0.94 4.00 1.97 0.00 0.00 1.30 0.01 3.61 6.89 0.00 0.00 0.00 0.01 0.14 0.00 7.86 8.00 17.86 9.96 18.00 240<br />

Gn12-6-1 3.01 0.99 4.00 2.25 0.00 0.00 1.87 0.02 2.71 6.85 0.01 0.00 0.00 0.01 0.14 0.00 7.86 8.00 17.86 9.87 18.00 258<br />

Gn12-6-2 3.12 0.88 4.00 1.93 0.00 0.00 1.20 0.01 3.65 6.79 0.00 0.00 0.00 0.01 0.08 0.00 7.92 8.00 17.92 9.92 18.00 222<br />

Gn12-8-1 3.01 0.99 4.00 2.26 0.00 0.00 1.82 0.03 2.73 6.84 0.01 0.00 0.00 0.01 0.15 0.00 7.85 8.00 17.85 9.86 18.00 257<br />

Gn12-8-2 3.11 0.90 4.00 1.97 0.00 0.00 1.24 0.01 3.57 6.80 0.00 0.00 0.00 0.01 0.17 0.00 7.83 8.00 17.82 9.91 18.00 226<br />

Gn12-101 3.00 1.00 4.00 2.18 0.00 0.00 1.88 0.03 2.81 6.90 0.01 0.01 0.00 0.03 0.14 0.00 7.86 8.00 17.86 9.92 18.00 261<br />

Gn12-102 3.11 0.89 4.00 1.92 0.00 0.00 1.24 0.01 3.65 6.83 0.00 0.00 0.00 0.01 0.08 0.00 7.92 8.00 17.92 9.94 18.00 226<br />

Gn12-111 3.02 0.98 4.00 2.15 0.00 0.00 1.72 0.03 2.96 6.86 0.01 0.02 0.01 0.03 0.19 0.00 7.81 8.00 17.81 9.91 18.00 253<br />

GN12-112 3.09 0.91 4.00 1.92 0.00 0.00 1.19 0.01 3.72 6.84 0.00 0.01 0.00 0.01 0.23 0.00 7.77 8.00 17.77 9.95 18.00 230<br />

GN-12-1 3.09 0.92 4.00 1.97 0.00 0.00 1.31 0.00 3.56 6.84 0.00 0.00 0.00 0.00 0.14 0.00 7.86 8.00 17.86 9.93 18.00 233<br />

AVG 3.06 0.94 4.00 2.03 0.00 0.00 1.47 0.02 3.34 6.85 0.00 0.01 0.00 0.01 0.16 0.00 7.84 8.00 17.84 9.93 18.00 242 20<br />

6140-1 3.11 0.89 4.00 1.96 0.00 0.00 1.58 0.00 3.24 6.78 0.00 0.00 0.00 0.01 0.09 0.00 7.91 8.00 17.91 9.91 18.00 223<br />

6140-2 3.11 0.89 4.00 1.96 0.00 0.00 1.58 0.00 3.24 6.78 0.00 0.00 0.00 0.01 0.09 0.00 7.91 8.00 17.91 9.91 18.00 223<br />

6140-3 3.06 0.94 4.00 1.96 0.00 0.01 1.75 0.00 3.17 6.89 0.00 0.00 0.00 0.01 0.13 0.00 7.87 8.00 17.87 9.96 18.00 240<br />

6140-4 3.08 0.92 4.00 1.98 0.00 0.00 1.60 0.01 3.25 6.84 0.00 0.00 0.01 0.01 0.09 0.00 7.91 8.00 17.91 9.93 18.00 234<br />

6140-5 3.09 0.91 4.00 1.94 0.00 0.00 1.71 0.00 3.19 6.84 0.00 0.00 0.00 0.01 0.11 0.00 7.89 8.00 17.89 9.94 18.00 231<br />

AVR 3.09 0.91 4.00 1.96 0.00 0.00 1.64 0.00 3.22 6.83 0.00 0.00 0.00 0.01 0.10 0.00 7.90 8.00 17.90 9.93 18.00 230 8<br />

6134_Pt2_Cl1 3.37 0.63 4.00 2.27 0.00 0.00 0.66 0.02 3.12 6.06 0.05 0.01 0.02 0.08 0.28 0.03 7.69 8.00 17.69 9.51 18.00 141<br />

6134_Pt2_Cl2 3.45 0.55 4.00 2.25 0.00 0.00 0.24 0.03 3.26 5.77 0.18 0.01 0.02 0.21 0.64 0.02 7.34 8.00 17.34 9.43 18.00 114<br />

6134_Pt3_Cl1 3.52 0.48 4.00 2.30 0.00 0.00 0.29 0.03 3.07 5.69 0.10 0.01 0.02 0.13 0.31 0.02 7.67 8.00 17.67 9.34 18.00 92<br />

6134_Pt4_Cl1 3.45 0.55 4.00 2.46 0.00 0.00 0.37 0.02 2.91 5.76 0.09 0.01 0.03 0.13 0.47 0.01 7.52 8.00 17.52 9.34 18.00 116<br />

AVG 3.45 0.55 4.00 2.32 0.00 0.00 0.39 0.02 3.09 5.82 0.11 0.01 0.02 0.14 0.43 0.02 7.56 8.00 17.56 9.41 18.00 116 24<br />

BRECCIA-TYPE URANIUM MINERALIZATION (Cl7)<br />

5812A-2 2.77 1.23 4.00 2.50 0.00 0.00 2.15 0.01 2.26 6.93 0.28 0.02 0.00 0.30 0.00 0.00 8.00 8.00 18.00 9.99 18.00 335<br />

5812A-3 2.80 1.20 4.00 2.53 0.00 0.00 1.78 0.01 2.55 6.86 0.26 0.01 0.00 0.27 0.00 0.00 8.00 8.00 18.00 9.94 18.00 324<br />

5812A-3-1 2.81 1.20 4.00 2.59 0.00 0.01 2.21 0.01 2.20 7.01 0.08 0.01 0.00 0.09 0.00 0.00 8.00 8.00 18.00 9.90 18.00 323<br />

5812A-5-2 2.80 1.20 4.00 2.62 0.00 0.01 2.49 0.01 1.94 7.06 0.01 0.01 0.00 0.02 0.00 0.00 8.00 8.00 18.00 9.89 18.00 324<br />

5812A-8-1 2.78 1.22 4.00 2.50 0.00 0.01 2.54 0.02 1.85 6.93 0.26 0.01 0.00 0.27 0.00 0.00 8.00 8.00 18.00 9.97 18.00 332<br />

5812A-8-2 2.82 1.18 4.00 2.58 0.00 0.01 2.46 0.01 1.97 7.02 0.05 0.02 0.00 0.07 0.00 0.00 8.00 8.00 18.00 9.90 18.00 319<br />

5812A-8-3 2.80 1.20 4.00 2.62 0.00 0.00 2.49 0.01 1.94 7.06 0.02 0.00 0.00 0.02 0.00 0.00 8.00 8.00 18.00 9.89 18.00 324<br />

5812A-9-1 2.82 1.18 4.00 2.57 0.00 0.01 2.52 0.01 1.93 7.03 0.03 0.01 0.00 0.03 0.00 0.00 8.00 8.00 18.00 9.89 18.00 317<br />

5812A-9-2 2.81 1.20 4.00 2.56 0.00 0.01 2.62 0.01 1.90 7.09 0.01 0.01 0.00 0.02 0.00 0.00 8.00 8.00 18.00 9.92 18.00 323<br />

5812A-10-1 2.80 1.20 4.00 2.58 0.00 0.01 2.47 0.01 2.02 7.09 0.02 0.01 0.00 0.03 0.00 0.00 8.00 8.00 18.00 9.91 18.00 325<br />

Temp<br />

( o )<br />

±<br />

257


SAMPLE Si 4+ AL 4+ Total AL 6+ Ti 4+ Cr 3+ Fe 2+ Mn 2+ Mg 2+ Total Ca 2+ Na + K + Total F - CL - H + Total O 2- ∑Cat ∑ions<br />

5812A-10-2 2.77 1.23 4.00 2.52 0.00 0.01 2.45 0.01 1.98 6.96 0.23 0.01 0.00 0.24 0.00 0.00 8.00 8.00 18.00 9.97 18.00 334<br />

5812-Pt1 2.74 1.26 4.00 2.64 0.00 0.00 2.46 0.00 1.99 7.10 0.09 0.01 0.00 0.10 0.09 0.01 7.90 8.00 17.90 9.94 18.00 343<br />

5812-Pt2-2 2.72 1.28 4.00 2.66 0.00 0.02 2.33 0.01 2.17 7.18 0.04 0.00 0.00 0.04 0.03 0.00 7.97 8.00 17.97 9.94 18.00 350<br />

5812-Pt2-3 2.80 1.20 4.00 2.51 0.00 0.04 2.05 0.00 2.41 7.02 0.10 0.01 0.00 0.10 0.05 0.01 7.95 8.00 17.95 9.93 18.00 323<br />

5812-Pt3-1 2.75 1.25 4.00 2.65 0.00 0.00 2.51 0.01 1.87 7.05 0.06 0.11 0.00 0.17 0.06 0.03 7.92 8.00 17.92 9.98 18.00 340<br />

AVG 2.79 1.21 4.00 2.57 0.00 0.01 2.37 0.01 2.06 7.03 0.10 0.02 0.00 0.12 0.06 0.00 7.98 8.00 17.98 9.93 18.00 329 16<br />

Late chlorite replacement<br />

C-27-221-1-1 3.10 0.90 4.00 1.99 0.01 0.00 1.30 0.01 3.48 6.79 0.01 0.00 0.00 0.01 0.17 0.00 7.83 8.00 17.83 9.90 18.00 228<br />

C-27-221-1-2 3.24 0.76 4.00 1.82 0.00 0.00 0.96 0.02 3.78 6.59 0.01 0.01 0.00 0.02 0.22 0.00 7.78 8.00 17.78 9.85 18.00 183<br />

C-27-221-1-3 3.24 0.76 4.00 1.82 0.00 0.00 0.96 0.01 3.80 6.59 0.01 0.00 0.00 0.02 0.16 0.00 7.84 8.00 17.84 9.85 18.00 182<br />

C-27-221-2-1 3.23 0.78 4.00 1.82 0.00 0.00 1.00 0.01 3.78 6.62 0.02 0.00 0.00 0.02 0.14 0.00 7.86 8.00 17.86 9.86 18.00 188<br />

C-27-221-3-1 3.22 0.78 4.00 1.87 0.00 0.00 0.99 0.01 3.74 6.61 0.02 0.00 0.00 0.02 0.16 0.00 7.84 8.00 17.84 9.85 18.00 189<br />

C-27-221-3-2 3.21 0.79 4.00 1.88 0.00 0.00 1.04 0.02 3.66 6.61 0.02 0.01 0.00 0.03 0.15 0.00 7.85 8.00 17.85 9.85 18.00 192<br />

AVG 3.21 0.79 4.00 1.87 0.00 0.00 1.04 0.01 3.71 6.63 0.02 0.00 0.00 0.02 0.17 0.00 7.83 8.00 17.83 9.86 18.00 194 23<br />

VOLCANIC-TYPE URANIUM MINERALIZATION (Cl8)<br />

Chlorite associated with the volcanic-type uranium mineralization<br />

C-27-319-1 2.88 1.12 4.00 2.31 0.00 0.00 2.60 0.00 2.18 7.09 0.00 0.00 0.00 0.00 0.01 0.00 7.99 8.00 17.99 9.97 18.00 300<br />

C-27-319-2 2.82 1.18 4.00 2.42 0.00 0.00 2.51 0.02 2.20 7.15 0.00 0.00 0.00 0.01 0.02 0.00 7.98 8.00 17.98 9.97 18.00 319<br />

C-27-319-3 2.83 1.17 4.00 2.40 0.00 0.00 2.61 0.02 2.10 7.13 0.00 0.00 0.01 0.01 0.02 0.00 7.98 8.00 17.98 9.97 18.00 315<br />

C-27-319-4 2.87 1.13 4.00 2.34 0.00 0.00 2.56 0.03 2.13 7.06 0.01 0.00 0.01 0.02 0.03 0.00 7.97 8.00 17.97 9.96 18.00 301<br />

C-27-319-5 2.83 1.17 4.00 2.36 0.00 0.00 2.59 0.02 2.18 7.15 0.00 0.00 0.00 0.00 0.03 0.00 7.97 8.00 17.97 9.98 18.00 314<br />

C-27-319-6-1 2.85 1.15 4.00 2.34 0.00 0.00 2.59 0.02 2.17 7.13 0.00 0.00 0.00 0.00 0.05 0.00 7.95 8.00 17.95 9.98 18.00 309<br />

C-27-319-6-2 2.83 1.17 4.00 2.38 0.00 0.00 2.59 0.02 2.15 7.15 0.00 0.00 0.00 0.01 0.04 0.00 7.97 8.00 17.97 9.98 18.00 316<br />

C-27-319-7 2.82 1.18 4.00 2.37 0.00 0.00 2.73 0.03 2.03 7.17 0.00 0.00 0.00 0.00 0.01 0.00 7.99 8.00 17.99 9.99 18.00 317<br />

AVG 2.84 1.16 4.00 2.36 0.00 0.00 2.60 0.02 2.14 7.13 0.00 0.00 0.00 0.01 0.03 0.00 7.97 8.00 17.97 9.98 18.00 311 9<br />

C-27-34-1 2.85 1.15 4.00 2.40 0.00 0.00 1.96 0.05 2.67 7.09 0.00 0.00 0.00 0.01 0.04 0.00 7.96 8.00 17.96 9.95 18.00 308<br />

C-27-34-2 2.81 1.19 4.00 2.45 0.00 0.00 2.03 0.04 2.63 7.16 0.00 0.00 0.00 0.01 0.05 0.00 7.95 8.00 17.95 9.97 18.00 323<br />

C-27-34-3 2.84 1.16 4.00 2.39 0.00 0.00 2.02 0.06 2.65 7.12 0.00 0.01 0.00 0.01 0.04 0.00 7.96 8.00 17.96 9.97 18.00 312<br />

C-27-34-4-1 2.84 1.16 4.00 2.39 0.00 0.00 1.98 0.05 2.69 7.12 0.00 0.00 0.00 0.00 0.04 0.00 7.96 8.00 17.96 9.96 18.00 311<br />

C-27-34-4-2 2.84 1.16 4.00 2.39 0.00 0.00 1.98 0.05 2.69 7.12 0.00 0.00 0.00 0.00 0.04 0.00 7.96 8.00 17.96 9.96 18.00 311<br />

C-27-34-5 2.83 1.17 4.00 2.41 0.00 0.00 1.98 0.05 2.68 7.14 0.00 0.00 0.00 0.00 0.00 - 7.97 7.93 17.97 9.97 18.00 315<br />

C-27-34-5-1 2.82 1.18 4.00 2.44 0.00 0.00 1.99 0.05 2.65 7.13 0.00 0.00 0.00 0.01 0.03<br />

0.03<br />

0.00 7.97 8.00 17.97 9.96 18.00 317<br />

C-27-34-6 2.84 1.16 4.00 2.40 0.00 0.00 1.99 0.04 2.69 7.11 0.00 0.01 0.00 0.01 0.03 0.00 7.97 8.00 17.97 9.97 18.00 312<br />

CL57-4 2.84 1.16 4.00 2.28 0.00 0.00 2.53 0.03 2.32 7.17 0.00 0.00 0.00 0.01 0.00 0.00 8.00 8.00 18.00 10.02 18.00 311<br />

AVG 2.83 1.17 4.00 2.40 0.00 0.00 2.05 0.05 2.63 7.13 0.00 0.00 0.00 0.01 0.03 0.00 7.97 7.99 17.97 9.97 18.00 313 7<br />

Temp<br />

( o )<br />

±<br />

258


SAMPLE Si 4+ AL 4+ Total AL 6+ Ti 4+ Cr 3+ Fe 2+ Mn 2+ Mg 2+ Total Ca 2+ Na + K + Total F - CL - H + Total O 2- ∑Cat ∑ions<br />

CL29-7 2.74 1.26 4.00 2.56 0.00 0.00 2.32 0.03 2.34 7.24 0.00 0.01 0.00 0.01 0.04 0.00 7.96 8.00 17.96 9.99 18.00 344<br />

CL29-8 2.81 1.19 4.00 2.45 0.00 0.00 2.25 0.02 2.43 7.15 0.00 0.01 0.00 0.01 0.07 0.00 7.93 8.00 17.93 9.97 18.00 322<br />

CL29-2 2.71 1.29 4.00 2.57 0.00 0.00 2.33 0.02 2.36 7.29 0.00 0.01 0.00 0.01 0.03 0.00 7.97 8.00 17.97 10.01 18.00 354<br />

CL29-4 2.77 1.23 4.00 2.48 0.00 0.00 2.36 0.02 2.34 7.21 0.00 0.01 0.01 0.01 0.04 - 7.94 7.96 17.94 10.00 18.00 334<br />

CL29-5 2.77 1.23 4.00 2.46 0.00 0.00 2.34 0.02 2.40 7.22 0.00 0.00 0.01 0.02 0.06<br />

0.02<br />

0.00 7.94 8.00 17.94 10.01 18.00 335<br />

AVG 2.81 1.19 4.00 2.39 0.01 0.00 2.31 0.02 2.43 7.16 0.00 0.01 0.00 0.01 0.06 0.00 7.94 8.00 17.94 9.99 18.00 338 16<br />

Variably altered chlorite associated with the volcanic type uranium mineralization<br />

CL57-1 3.11 0.90 4.00 1.93 0.00 0.00 1.96 0.03 2.88 6.80 0.01 0.01 0.00 0.03 0.00 0.00 8.00 8.00 18.00 9.93 18.00 226<br />

CL57-2 3.04 0.96 4.00 1.96 0.00 0.01 2.14 0.03 2.79 6.92 0.01 0.01 0.00 0.02 0.00 0.00 8.00 8.00 18.00 9.98 18.00 248<br />

CL57-3 3.05 0.95 4.00 1.96 0.00 0.00 2.07 0.02 2.84 6.90 0.02 0.00 0.00 0.03 0.00 0.00 8.00 8.00 18.00 9.97 18.00 244<br />

CL57-5 3.15 0.85 4.00 1.84 0.00 0.00 1.95 0.03 2.95 6.76 0.02 0.01 0.00 0.03 0.00 0.00 8.00 8.00 18.00 9.94 18.00 212<br />

CL57-6 3.19 0.82 4.00 1.88 0.00 0.01 1.78 0.02 2.97 6.66 0.02 0.01 0.00 0.03 0.00 0.00 8.00 8.00 18.00 9.88 18.00 200<br />

CL57-7 3.11 0.89 4.00 1.89 0.00 0.01 2.00 0.02 2.90 6.81 0.01 0.02 0.00 0.03 0.00 0.00 8.00 8.00 18.00 9.95 18.00 224<br />

CL29-6 3.03 0.97 4.00 2.04 0.01 0.00 2.39 0.02 2.45 6.91 0.01 0.01 0.00 0.01 0.07 0.00 7.94 8.00 17.94 9.95 18.00 251<br />

CL29-9 3.10 0.90 4.00 2.11 0.00 0.00 2.21 0.02 2.38 6.72 0.00 0.01 0.00 0.02 0.12 0.00 7.88 8.00 17.88 9.84 18.00 227<br />

AVG 3.10 0.90 4.00 1.95 0.00 0.00 2.06 0.02 2.77 6.81 0.01 0.01 0.00 0.02 0.02 0.00 7.98 8.00 17.98 9.93 18.00 229 25<br />

6139-3 3.08 0.93 4.00 2.28 0.00 0.01 2.35 0.02 1.96 6.62 0.04 0.04 0.05 0.13 0.00 0.00 8.00 8.00 18.00 9.83 18.00 236<br />

6139-4 3.27 0.73 4.00 2.31 0.00 0.00 2.14 0.02 1.70 6.17 0.03 0.05 0.16 0.23 0.00 0.00 8.00 8.00 18.00 9.67 18.00 173<br />

6139-5 3.07 0.93 4.00 2.30 0.00 0.00 2.35 0.03 1.93 6.62 0.03 0.04 0.05 0.12 0.00 0.00 8.00 8.00 18.00 9.81 18.00 236<br />

6139-6 3.18 0.82 4.00 2.27 0.00 0.00 2.27 0.01 1.85 6.40 0.03 0.03 0.09 0.16 0.00 0.00 8.00 8.00 18.00 9.75 18.00 201<br />

AVR 3.27 0.73 4.00 2.29 0.00 0.00 2.12 0.02 1.75 6.18 0.03 0.04 0.15 0.22 0.00 0.00 8.00 8.00 18.00 9.68 18.00 212 32<br />

ATHABASCA-TYPE URANIUM MINERALIZATION (Cl9)<br />

3705-1 3.04 0.96 4.00 1.96 0.00 0.01 2.64 0.00 2.30 6.92 0.01 0.02 0.00 0.02 0.09 0.00 7.91 8.00 17.91 9.98 18.00 246<br />

3705-2 3.18 0.82 4.00 1.95 0.00 0.01 2.45 0.00 2.22 6.65 0.01 0.01 0.00 0.02 0.09 0.00 7.91 8.00 17.91 9.84 18.00 203<br />

3705-3 3.09 0.91 4.00 1.94 0.00 0.02 2.46 0.00 2.39 6.81 0.01 0.05 0.00 0.07 0.22 0.00 7.78 8.00 17.78 9.96 18.00 232<br />

3705-4 3.08 0.92 4.00 2.01 0.00 0.02 2.18 0.00 2.60 6.81 0.01 0.00 0.00 0.02 0.12 0.00 7.88 8.00 17.88 9.90 18.00 234<br />

3705-5 3.09 0.91 4.00 2.01 0.00 0.02 2.17 0.00 2.60 6.80 0.01 0.00 0.00 0.02 0.12 0.00 7.88 8.00 17.88 9.90 18.00 231<br />

3705-7 3.15 0.85 4.00 1.89 0.00 0.02 2.01 0.00 2.81 6.74 0.01 0.00 0.00 0.01 0.16 0.00 7.85 8.00 17.85 9.89 18.00 211<br />

3507_Pt1_Cl 3.03 0.97 4.00 1.99 0.00 0.02 2.46 0.00 2.44 6.91 0.01 0.00 0.00 0.01 0.11 0.02 7.88 8.00 17.88 9.96 18.00 250<br />

3507_Pt2_Cl 3.03 0.97 4.00 1.96 0.00 0.01 2.37 0.00 2.59 6.94 0.01 0.00 0.00 0.01 0.11 0.02 7.87 8.00 17.87 9.99 18.00 249<br />

3507_Pt3_Cl 3.04 0.96 4.00 1.99 0.00 0.01 2.49 0.00 2.41 6.90 0.01 0.01 0.00 0.02 0.14 0.02 7.84 8.00 17.84 9.96 18.00 247<br />

3507_Pt4_Cl 3.03 0.97 4.00 2.00 0.00 0.01 2.36 0.00 2.56 6.93 0.00 0.01 0.00 0.01 0.17 0.02 7.82 8.00 17.82 9.97 18.00 251<br />

AVG 3.08 0.92 4.00 1.97 0.00 0.01 2.36 0.00 2.49 6.84 0.01 0.01 0.00 0.02 0.13 0.01 7.86 8.00 17.86 9.94 18.00 235 24<br />

LATE VEINS (Cl10)<br />

6134_Pt2_Cl1 3.31 0.69 4.00 2.11 0.00 0.01 0.65 0.00 0.23 3.00 0.05 0.05 0.52 0.62 0.03 0.01 1.96 2.00 11.96 6.90 12.00 161<br />

Temp<br />

( o )<br />

±<br />

259


SAMPLE Si 4+ AL 4+ Total AL 6+ Ti 4+ Cr 3+ Fe 2+ Mn 2+ Mg 2+ Total Ca 2+ Na + K + Total F - CL - H + Total O 2- ∑Cat ∑ions<br />

6134_Pt2_Cl2 3.25 0.75 4.00 2.36 0.00 0.00 0.24 0.00 0.37 2.98 0.01 0.04 0.60 0.65 0.00 1.99 1.99 11.99 6.88 12.00 179<br />

6134_Pt3_Cl1 3.38 0.62 4.00 2.27 0.00 0.00 0.24 0.00 0.21 2.72 0.02 0.03 0.68 0.73 0.03 0.01 1.97 2.00 11.97 6.84 12.00 137<br />

6134_Pt4_Cl1 3.38 0.62 4.00 1.95 0.00 0.00 0.51 0.00 0.46 2.93 0.03 0.02 0.58 0.63 0.05 0.02 1.93 2.00 11.93 6.94 12.00 136<br />

6134_Pt4_Cl2 3.47 0.53 4.00 1.86 0.01 0.00 0.63 0.00 0.26 2.76 0.06 0.03 0.57 0.65 0.07 0.00 1.93 2.00 11.93 6.89 12.00 108<br />

AVG 3.36 0.64 4.00 2.11 0.00 0.00 0.45 0.00 0.31 2.88 0.03 0.03 0.59 0.66 0.04 0.41 1.95 2.39 11.96 6.89 12.00 144<br />

Temp<br />

( o )<br />

±<br />

260


APPENDIX F<br />

Results of the electron microprobe analyses for different uraninite occurrences in the Beaverlodge area: average<br />

chemical composition and calculated chemical Pb age. Note: the composition is reported in weight percent and<br />

the age in Ma<br />

Sample ID. Deposit UO 2 SiO 2 CaO Fe 2O 3 TiO 2 Cr 2O 3 V 2O 5 PbO P 2O 5 K 2O ThO 2 SO 2 MnO Y 2O 3 Tb 2O 3 CuO Total<br />

Chemical Pb<br />

age (Ma)<br />

Early tensional vein type-uraninite<br />

6122_Pt2 1 Ace Fay 71.83 2.02 3.61 0.39 0.40 0.03 0.11 17.88 0.02 0.03 0.02 0.05 0.12 0.00 0.14 0.03 96.50 1544<br />

6122_Pt3 1 Ace Fay 73.07 3.05 3.45 0.91 0.38 0.05 0.03 14.52 0.04 0.10 0.02 0.02 0.15 0.07 0.11 0.07 95.90 1233<br />

6122_Pt4_2 Ace Fay 72.61 0.59 3.33 0.31 0.65 0.02 0.04 17.42 0.03 0.02 0.02 0.03 0.18 0.04 0.02 0.00 95.29 1488<br />

6122_Pt5_1 Ace Fay 71.65 0.46 2.32 0.11 0.38 0.04 0.06 19.91 0.02 0.05 0.01 0.01 0.07 0.09 0.01 0.02 95.10 1724<br />

6122_Pt10 1 Ace Fay 73.64 9.89 2.48 1.14 1.36 0.28 0.23 1.90 0.36 0.06 0.01 0.03 0.36 0.08 0.20 0.05 91.80 160<br />

Gunnar type-uraninite<br />

6134 pt2 1 Gunnar 77.59 3.01 5.35 0.15 0.06 0.01 0.04 0.07 0.12 0.14 0.01 0.01 0.03 0.02 0.07 0.04 86.61 5<br />

6134 pt2 2 Gunnar 80.25 3.04 5.60 0.23 0.03 0.01 0.09 0.12 0.00 0.08 0.03 0.00 0.08 0.04 0.06 0.04 89.46 9<br />

6134 pt2 3 Gunnar 78.63 3.65 5.19 1.65 0.33 0.01 0.06 0.00 0.06 0.07 0.02 0.02 0.06 0.00 0.07 0.12 89.78 0<br />

6134 pt2 4 Gunnar 78.36 3.72 5.28 1.82 0.44 0.05 0.02 0.03 0.06 0.06 0.05 0.02 0.06 0.01 0.05 0.02 89.85 2<br />

6134 pt3 Gunnar 77.88 4.95 5.57 0.19 0.37 0.01 0.01 0.12 0.05 0.07 0.03 0.01 0.09 0.01 0.08 0.01 89.33 9<br />

6134 pt3 1 Gunnar 79.27 3.95 5.52 0.15 0.01 0.03 0.04 0.11 0.08 0.08 0.04 0.01 0.03 0.00 0.04 0.02 89.22 9<br />

6134 pt3 2 Gunnar 81.64 3.39 4.56 0.16 0.00 0.12 0.07 0.03 0.05 0.06 0.04 0.00 0.07 0.03 0.08 0.05 90.13 2<br />

6134 pt3 3 Gunnar 79.50 3.78 5.54 0.11 0.06 0.04 0.02 0.06 0.09 0.06 0.02 0.00 0.04 0.00 0.06 0.01 89.23 4<br />

261


Sample ID. Deposit UO 2 SiO 2 CaO Fe 2O 3 TiO 2 Cr 2O 3 V 2O 5 PbO P 2O 5 K 2O ThO 2 SO 2 MnO Y 2O 3 Tb 2O 3 CuO Total<br />

Chemical Pb<br />

age (Ma)<br />

6134 pt4 1 Gunnar 80.77 3.52 5.67 0.23 0.01 0.01 0.00 0.13 0.01 0.07 0.03 0.01 0.09 0.04 0.01 0.04 90.58 10<br />

6134 pt4 2 Gunnar 79.52 3.13 5.90 0.26 0.13 0.01 0.03 0.09 0.07 0.05 0.00 0.03 0.07 0.01 0.03 0.01 89.31 7<br />

6134 pt4 3 Gunnar 81.29 2.79 5.67 0.20 0.03 0.00 0.02 0.16 0.01 0.05 0.02 0.00 0.07 0.03 0.04 0.02 90.29 12<br />

6134 pt5 1 Gunnar 81.39 2.70 5.41 0.13 0.00 0.04 0.00 0.11 0.04 0.06 0.07 0.00 0.05 0.06 0.02 0.07 89.88 8<br />

6134 pt5 2 Gunnar 74.27 3.20 4.97 0.22 0.08 0.04 0.02 0.04 0.11 0.23 0.02 0.01 0.10 0.02 0.05 0.04 83.27 3<br />

6134 pt5 3 Gunnar 80.12 4.95 4.54 0.22 0.41 0.01 0.01 0.10 0.12 0.12 0.05 0.01 0.02 0.16 0.01 0.01 90.75 8<br />

6134 pt6 1 Gunnar 81.12 3.04 5.23 0.01 0.01 0.04 0.01 0.03 0.00 0.04 0.02 0.01 0.01 0.01 0.02 0.01 89.49 2<br />

6134 pt6 2 Gunnar 81.92 3.06 5.25 0.04 0.04 0.00 0.00 0.10 0.01 0.04 0.02 0.00 0.08 0.04 0.04 0.04 90.45 7<br />

6134 pt6 3 Gunnar 80.49 3.09 5.36 0.02 0.02 0.01 0.09 0.08 0.04 0.06 0.01 0.01 0.01 0.04 0.09 0.01 89.37 6<br />

6134 pt6 4 Gunnar 81.96 3.12 4.98 0.05 0.04 0.01 0.02 0.10 0.02 0.06 0.04 0.00 0.07 0.02 0.01 0.01 90.44 8<br />

6134 pt8 1 Gunnar 79.17 2.87 4.43 0.01 0.02 0.01 0.57 1.40 0.09 0.07 0.02 0.10 0.03 0.16 0.07 0.01 88.96 110<br />

6134 pt8 2 Gunnar 79.67 2.90 4.69 0.02 0.07 0.03 0.35 1.44 0.06 0.00 0.03 0.07 0.02 0.08 0.10 0.05 89.42 112<br />

6134 pt8 3 Gunnar 80.29 3.14 3.87 0.03 0.78 0.01 0.05 0.11 0.08 0.03 0.04 0.00 0.04 0.12 0.00 0.00 88.53 9<br />

6134 pt8 4 Gunnar 77.08 2.76 5.44 0.05 0.02 0.02 0.53 0.61 0.09 0.01 0.01 0.04 0.06 0.21 0.02 0.04 86.86 49<br />

6134 pt8a 1 Gunnar 80.50 4.02 5.50 0.04 0.11 0.02 0.00 0.07 0.01 0.12 0.06 0.02 0.07 0.05 0.03 0.00 90.45 5<br />

6134 pt8a 2 Gunnar 82.92 2.92 5.30 0.07 0.04 0.02 0.09 0.11 0.01 0.07 0.01 0.04 0.10 0.01 0.07 0.02 91.62 8<br />

6134 pt8a 3 Gunnar 77.51 1.83 5.81 0.17 0.02 0.02 0.05 0.16 0.11 0.15 0.00 0.03 0.12 0.01 0.06 0.07 85.99 13<br />

6134 pt9 1 Gunnar 63.41 3.15 4.32 0.08 0.04 0.03 0.24 1.46 0.18 0.19 0.03 0.05 0.08 0.12 0.05 0.02 73.42 143<br />

6134 pt9 2 Gunnar 75.28 3.78 5.33 0.02 0.07 0.01 0.29 1.41 0.22 0.08 0.00 0.03 0.01 0.20 0.02 0.07 86.69 117<br />

6134 pt9 3 Gunnar 73.41 2.98 5.19 0.09 0.09 0.05 0.31 1.60 0.28 0.29 0.03 0.02 0.07 0.19 0.06 0.03 84.62 135<br />

6134 pt9a 1 Gunnar 81.55 3.36 4.26 0.18 0.69 0.00 0.08 0.08 0.15 0.10 0.01 0.01 0.06 0.07 0.02 0.00 90.57 6<br />

6134 pt9a 2 Gunnar 80.44 2.93 4.23 0.04 0.47 0.06 0.14 0.21 0.15 0.07 0.01 0.01 0.05 0.13 0.02 0.04 88.96 16<br />

6134 pt9a 3 Gunnar 78.82 3.02 4.69 0.03 0.60 0.03 0.15 0.05 0.14 0.05 0.01 0.00 0.03 0.15 0.04 0.05 87.79 4<br />

6134 pt9a 4 Gunnar 77.24 5.45 4.77 0.44 0.46 0.04 0.00 0.12 0.19 0.16 0.00 0.01 0.09 0.16 0.05 0.03 89.07 10<br />

6134 pt10 1 Gunnar 73.83 6.55 3.47 1.32 0.01 0.03 0.07 0.41 0.09 0.14 0.00 0.01 0.05 0.27 0.01 0.06 86.09 35<br />

6134 pt10 2 Gunnar 64.50 9.49 2.43 9.15 0.06 0.01 0.12 0.65 0.12 0.28 0.06 0.03 0.05 0.32 0.26 0.05 87.17 63<br />

6134 pt10 3 Gunnar 74.14 7.47 3.23 1.59 0.01 0.01 0.06 0.32 0.04 0.16 0.00 0.01 0.01 0.27 0.03 0.04 87.34 27<br />

6134 pt10 4 Gunnar 74.03 5.88 2.71 1.97 0.08 0.01 0.18 1.96 0.14 0.13 0.03 0.01 0.01 0.41 0.03 0.07 87.58 164<br />

262


Sample ID. Deposit UO 2 SiO 2 CaO Fe 2O 3 TiO 2 Cr 2O 3 V 2O 5 PbO P 2O 5 K 2O ThO 2 SO 2 MnO Y 2O 3 Tb 2O 3 CuO Total<br />

Chemical Pb<br />

age (Ma)<br />

6134 pt10 5 Gunnar 72.59 6.19 3.29 2.40 0.04 0.02 0.08 1.39 0.14 0.15 0.02 0.01 0.03 0.26 0.11 0.01 86.58 119<br />

Breccia type-uraninite<br />

5812 Pt1 1 Gunnar 75.59 0.50 4.51 0.62 0.46 0.03 0.18 12.07 0.02 0.04 0.03 0.01 0.42 0.45 0.08 0.05 94.92 991<br />

5812 Pt6 2 Ace Fay 34.12 48.31 1.48 1.21 0.18 0.02 0.01 3.86 0.65 0.08 0.03 0.59 0.24 0.14 0.09 0.05 90.96 702<br />

5812 Pt6 1 Ace Fay 74.88 0.54 4.43 0.44 0.44 0.01 0.16 15.88 0.02 0.03 0.02 0.01 0.22 0.15 0.04 0.00 97.16 1315<br />

5812 Pt1 2 Ace Fay 76.71 0.98 6.43 0.90 0.61 0.03 0.21 6.89 0.01 0.03 0.04 0.06 0.70 0.60 0.00 0.01 94.18 557<br />

5812 Pt8 1 Ace Fay 77.99 1.05 4.27 1.20 0.80 0.05 0.01 8.71 0.02 0.03 0.29 0.03 0.35 0.06 0.05 0.02 94.82 693<br />

5812 Pt2 2 Ace Fay 75.02 2.40 4.63 1.28 1.74 0.01 0.14 10.07 0.05 0.06 0.03 0.73 0.67 0.31 0.11 0.03 97.15 832<br />

Volcanic type-uraninite<br />

6120B_pt4 2 Ace Fay 74.34 1.13 4.30 0.95 0.43 0.02 0.26 14.17 0.05 0.03 0.01 0.01 0.23 0.04 0.02 0.00 95.92 1183<br />

6120B_pt3 1 Ace Fay 74.41 0.84 3.66 0.48 0.65 0.01 0.22 15.41 0.06 0.03 0.02 0.02 0.20 0.03 0.09 0.03 95.99 1285<br />

6120B_pt3 2 Ace Fay 74.38 1.68 2.57 0.54 0.58 0.03 0.13 15.68 0.03 0.03 0.00 0.02 0.10 0.09 0.00 0.03 95.82 1307<br />

6120B_pt2 2 Ace Fay 71.88 1.43 3.00 0.46 0.48 0.03 0.25 17.14 0.06 0.02 0.00 0.01 0.08 0.01 0.07 0.03 94.86 1479<br />

6120B_pt1 2 Ace Fay 73.42 1.05 2.73 0.45 0.52 0.01 0.48 17.56 0.06 0.03 0.07 0.04 0.12 0.01 0.04 0.07 96.46 1484<br />

6120B_pt3 3 Ace Fay 73.75 0.47 3.05 0.29 0.42 0.03 0.09 17.91 0.05 0.04 0.05 0.00 0.07 0.03 0.06 0.04 96.19 1506<br />

6120B_pt5 2 Ace Fay 73.23 0.46 2.58 0.43 0.37 0.03 0.04 19.04 0.03 0.03 0.01 0.01 0.07 0.06 0.03 0.03 96.37 1613<br />

6120B_pt6 1 Ace Fay 71.73 0.92 2.35 0.28 0.49 0.04 0.46 19.29 0.04 0.03 0.02 0.03 0.01 0.03 0.05 0.01 95.67 1668<br />

6120B_pt3 4 Ace Fay 74.04 0.50 2.50 0.32 0.30 0.03 0.13 20.15 0.04 0.04 0.02 0.03 0.01 0.02 0.03 0.04 98.05 1689<br />

6120B_pt5 1 Ace Fay 72.87 0.38 2.37 0.23 0.29 0.01 0.16 19.91 0.05 0.02 0.01 0.04 0.04 0.11 0.09 0.03 96.56 1695<br />

6120B_pt4 1 Ace Fay 70.14 0.67 2.65 0.15 0.37 0.01 0.33 19.62 0.04 0.02 0.05 0.02 0.08 0.04 0.08 0.01 94.13 1735<br />

6120B_pt4 1 Ace Fay 71.92 0.51 2.33 0.05 0.51 0.01 0.11 20.29 0.03 0.02 0.08 0.04 0.05 0.09 0.06 0.02 95.99 1750<br />

Athabasca type-uraninite<br />

3705 Pt4 5 Ace Fay 24.22 2.29 0.49 3.46 59.66 0.03 1.23 4.43 0.04 0.02 0.01 0.44 0.01 0.04 0.16 0.00 96.29 1135<br />

3705 Pt3 2 Ace Fay 38.66 4.78 1.74 3.34 36.72 0.06 0.86 5.48 0.01 0.02 0.10 0.40 0.04 0.01 0.22 0.02 92.19 880<br />

3705 Pt3 4 Ace Fay 39.64 6.95 1.09 4.31 36.08 0.04 0.62 3.14 0.30 0.04 0.07 0.00 0.02 0.02 0.07 0.06 92.29 492<br />

3705 Pt4 2 Ace Fay 29.41 9.42 1.69 4.03 36.11 0.08 0.38 1.68 2.70 0.11 0.05 0.01 0.03 0.20 0.11 0.04 85.79 354<br />

3705 Pt4 1 Ace Fay 48.08 10.87 2.67 3.29 16.60 0.00 0.33 5.69 0.84 0.13 0.15 0.86 0.04 0.44 0.20 0.07 89.96 735<br />

263


Sample ID. Deposit UO 2 SiO 2 CaO Fe 2O 3 TiO 2 Cr 2O 3 V 2O 5 PbO P 2O 5 K 2O ThO 2 SO 2 MnO Y 2O 3 Tb 2O 3 CuO Total<br />

Chemical Pb<br />

age (Ma)<br />

3705 Pt4 3 Ace Fay 28.39 8.87 2.09 6.23 44.41 0.02 0.62 2.17 0.18 0.10 0.02 0.01 0.04 0.03 0.26 0.00 93.18 473<br />

3705 Pt2 7 Ace Fay 36.89 10.39 1.29 6.22 33.91 0.01 0.45 0.58 0.74 0.10 0.14 0.01 0.00 0.09 0.18 0.00 90.80 98<br />

3705 Pt2 4 Ace Fay 34.12 11.57 1.16 5.91 33.49 0.01 0.32 0.71 0.77 0.11 0.10 0.01 0.01 0.06 0.10 0.04 88.37 130<br />

3705 Pt4 7 Ace Fay 34.71 11.31 1.27 6.26 34.74 0.01 0.53 0.84 0.64 0.14 0.08 0.02 0.02 0.01 0.13 0.08 90.57 149<br />

3705 Pt2 5 Ace Fay 35.07 11.45 1.29 6.67 36.99 0.01 0.57 0.76 0.61 0.08 0.04 0.00 0.06 0.04 0.15 0.02 93.68 135<br />

3705 Pt4 6 Ace Fay 29.87 12.08 1.98 6.51 36.63 0.22 0.46 1.09 0.58 0.09 0.21 0.00 0.04 0.02 0.20 0.03 89.80 227<br />

3705 Pt4 4 Ace Fay 41.88 16.19 0.63 3.07 28.28 0.01 0.97 0.78 0.30 0.01 0.14 0.00 0.02 0.08 0.12 0.05 92.38 116<br />

3705 Pt2 6 Ace Fay 33.11 13.43 1.46 5.84 36.83 0.02 0.21 1.19 0.62 0.10 0.12 0.02 0.05 0.01 0.20 0.02 93.00 223<br />

3705 Pt2 3 Ace Fay 39.04 16.30 0.64 3.39 28.73 0.07 1.15 0.74 0.30 0.02 0.04 0.01 0.02 0.06 0.10 0.03 90.50 117<br />

3705 Pt3 1 Ace Fay 45.91 17.68 2.01 2.59 16.32 0.01 0.23 0.74 0.95 0.01 0.15 0.00 0.03 0.20 0.09 0.01 86.83 100<br />

.<br />

264


APPENDIX G<br />

Isotopic data and apparent ages for various generations of uraninite from the South Alligator River area<br />

Corrected ratios<br />

Apparent ages ( ±1σ, Ma)**<br />

Sample<br />

Deposit<br />

206 Pb/ 204 Pb<br />

207 Pb/ 204 Pb<br />

207 Pb/ 206 Pb ±2σ<br />

206 Pb/ 238 U ±2σ<br />

207 Pb/ 235 U ±2σ R‡<br />

207 Pb/ 206 Pb ±<br />

206 Pb/ 238 U ±<br />

207 Pb/ 235 U ± Disc‡<br />

c29-217h Coronation Hill 6342 430 0.0678 0.001 0.0931 0.002 0.8695 0.023 0.92 862 15 574 14 635 13 26<br />

c29-217d Coronation Hill 5944 399 0.0673 0.001 0.0932 0.006 0.8633 0.050 0.93 846 33 574 37 632 27 25<br />

c29-217t Coronation Hill 7864 522 0.0665 0.001 0.0937 0.004 0.8598 0.039 0.92 823 29 578 26 630 21 23<br />

c29-217m Coronation Hill 7218 487 0.0674 0.000 0.0942 0.004 0.8759 0.036 0.95 852 11 580 22 639 19 25<br />

c29-217p Coronation Hill 4090 287 0.0701 0.001 0.0950 0.003 0.9185 0.025 0.85 931 28 585 16 662 13 29<br />

c29-217za Coronation Hill 6129 408 0.0671 0.001 0.0954 0.008 0.8805 0.057 0.95 840 43 587 45 641 31 24<br />

c29-217s Coronation Hill 3752 270 0.0722 0.002 0.0955 0.005 0.9487 0.030 0.87 990 49 588 28 677 16 32<br />

C29-217b Coronation Hill 3122 219 0.0703 0.001 0.0967 0.004 0.9367 0.030 0.93 936 23 595 22 671 16 28<br />

c29-217e Coronation Hill 6699 451 0.0675 0.001 0.0986 0.005 0.9178 0.052 0.80 854 42 606 32 661 27 23<br />

c29-217f Coronation Hill 6466 438 0.0678 0.001 0.1009 0.003 0.9440 0.034 0.92 863 21 620 18 675 18 22<br />

c29-217q Coronation Hill 7470 528 0.0707 0.001 0.1016 0.004 0.9900 0.045 0.92 948 17 624 26 699 23 26<br />

c29-217u Coronation Hill 10649 710 0.0668 0.000 0.1026 0.004 0.9441 0.032 0.94 830 14 629 23 675 17 19<br />

c29-217r Coronation Hill 3590 264 0.0735 0.001 0.1048 0.004 1.0621 0.040 0.93 1028 18 642 24 735 20 29<br />

c29-217n Coronation Hill 4666 340 0.0729 0.000 0.1107 0.003 1.1129 0.027 0.93 1011 13 677 17 760 13 25<br />

c29-217z Coronation Hill 9177 677 0.0740 0.002 0.1145 0.004 1.1687 0.054 0.83 1042 49 699 23 786 25 25<br />

c29-217w Coronation Hill 5453 412 0.0758 0.001 0.1147 0.005 1.1984 0.055 0.90 1089 31 700 28 800 25 27<br />

c29-217x Coronation Hill 3742 292 0.0782 0.001 0.1177 0.002 1.2695 0.034 0.87 1152 24 717 14 832 15 28<br />

C29-214Aa Coronation Hill 16126 1278 0.0796 0.0011 0.0838 0.004 0.9202 0.061 1.00 1188 27 519 26 662 33 56<br />

C29-214Ac Coronation Hill 34598 2819 0.0814 0.0012 0.1312 0.001 1.4713 0.021 0.97 1230 28 795 6 919 9 35<br />

C29-214Ae Coronation Hill 22206 1803 0.0811 0.0006 0.0652 0.006 0.7297 0.067 1.00 1223 15 407 34 556 39 67<br />

C29-214Af Coronation Hill 4306 294 0.0683 0.0005 0.0180 0.001 0.1690 0.010 0.99 877 14 115 6 159 8 87<br />

C29-214Ag Coronation Hill 17758 1444 0.0805 0.0030 0.1046 0.005 1.1602 0.067 0.76 1209 74 641 32 782 31 47<br />

C29-214Ah Coronation Hill 31182 2460 0.0798 0.0022 0.1103 0.006 1.2132 0.069 0.88 1193 54 674 35 807 32 43<br />

C29-214Al Coronation Hill 18264 1445 0.0793 0.0005 0.0924 0.007 1.0097 0.078 1.00 1179 13 570 44 709 40 52<br />

C29-214c Coronation Hill 12533 1052 0.0839 0.0002 0.0930 0.002 1.0759 0.019 0.26 1291 4 573 10 742 10 56<br />

C29-214d Coronation Hill 21315 1789 0.0840 0.0002 0.0935 0.006 1.0826 0.066 1.00 1291 4 576 34 745 32 55<br />

C29-214e Coronation Hill 22417 1881 0.0839 0.0002 0.0955 0.003 1.1048 0.029 1.00 1290 4 588 15 756 14 54<br />

C29-214f Coronation Hill 59232 4955 0.0837 0.0001 0.0958 0.003 1.1053 0.037 1.00 1285 3 590 19 756 18 54<br />

C29-214g Coronation Hill 20506 1723 0.0840 0.0002 0.0852 0.003 0.9862 0.030 1.00 1292 4 527 16 697 16 59<br />

265


Corrected ratios<br />

Apparent ages ( ±1σ, Ma)**<br />

Sample<br />

Deposit<br />

206 Pb/ 204 Pb<br />

207 Pb/ 204 Pb<br />

207 Pb/ 206 Pb ±2σ<br />

206 Pb/ 238 U ±2σ<br />

207 Pb/ 235 U ±2σ R‡<br />

207 Pb/ 206 Pb ±<br />

206 Pb/ 238 U ±<br />

207 Pb/ 235 U ± Disc‡<br />

C29-214h Coronation Hill 11979 1011 0.0845 0.0002 0.0781 0.003 0.9102 0.039 1.00 1303 5 485 20 657 20 63<br />

C29-214j Coronation Hill 15197 1274 0.0838 0.0001 0.0936 0.004 1.0815 0.042 1.00 1288 3 577 22 744 21 55<br />

C29-295k Coronation Hill 891 58 0.0650 0.004 0.0293 0.01 0.2595 0.06 0.89 774 126 186 50 234 45 76<br />

C29-295l Coronation Hill 855 58 0.0679 0.002 0.0299 0.00 0.2798 0.03 0.86 865 65 190 22 250 26 78<br />

C29-295h Coronation Hill 1330 87 0.0655 0.002 0.0299 0.01 0.2714 0.05 0.93 790 69 190 35 244 41 76<br />

C29-295g Coronation Hill 2587 154 0.0593 0.001 0.0397 0.00 0.3251 0.03 0.91 580 31 251 20 286 22 57<br />

C29-295d Coronation Hill 10794 605 0.0571 0.002 0.0392 0.00 0.3094 0.04 0.92 495 87 248 28 274 34 50<br />

C29-295f Coronation Hill 3370 175 0.0516 0.000 0.0381 0.00 0.2715 0.01 0.91 269 20 241 9 244 9 10<br />

C29-295j Coronation Hill 2906 160 0.0553 0.002 0.0430 0.00 0.3278 0.03 0.91 423 64 272 28 288 27 36<br />

C29-295a Coronation Hill 3104 175 0.0560 0.001 0.0455 0.00 0.3515 0.03 0.92 453 40 287 19 306 20 37<br />

C29-295b Coronation Hill 1217 88 0.0733 0.002 0.0426 0.00 0.4298 0.02 0.72 1021 64 269 13 363 16 74<br />

C29-295c Coronation Hill 7629 409 0.0535 0.000 0.0502 0.00 0.3703 0.03 0.94 349 19 316 22 320 20 10<br />

C29-295i Coronation Hill 5676 331 0.0583 0.001 0.0603 0.01 0.4851 0.07 0.94 540 38 377 49 402 50 30<br />

C29-295e Coronation Hill 8181 560 0.0681 0.002 0.1737 0.02 1.6303 0.22 0.92 871 47 1033 136 982 85 18<br />

C29-217Aa Coronation Hill 2840 214 0.0757 0.002 0.1052 0.004 1.1500 0.05 0.84 1088 45 645 25 777 25 41<br />

C29-217Ad Coronation Hill 1972 155 0.0787 0.001 0.0846 0.003 0.9181 0.03 0.89 1165 26 523 18 661 15 55<br />

C29-217Ae Coronation Hill 3082 229 0.0744 0.001 0.0967 0.003 1.0600 0.04 0.90 1053 27 595 18 734 18 43<br />

C29-217An Coronation Hill 5575 489 0.0876 0.001 0.1202 0.005 1.4525 0.08 0.93 1374 27 732 31 911 32 47<br />

C29-217Ap Coronation Hill 15919 1416 0.0889 0.001 0.1366 0.013 1.6767 0.18 0.90 1402 26 826 76 1000 69 41<br />

C29-217Aq Coronation Hill 7776 653 0.0838 0.001 0.1242 0.012 1.4370 0.15 0.95 1289 23 755 67 904 62 41<br />

C29-217Ar Coronation Hill 3736 259 0.0696 0.001 0.0585 0.005 0.5610 0.04 0.91 916 41 366 28 452 29 60<br />

C29-217At Coronation Hill 4486 361 0.0804 0.001 0.0877 0.008 0.9720 0.09 0.95 1206 19 542 45 689 48 55<br />

C29-217Au Coronation Hill 14240 1190 0.0838 0.002 0.1490 0.007 1.7900 0.07 0.85 1288 39 895 37 1042 24 30<br />

C29-217Ac Coronation Hill 2535 193 0.0761 0.001 0.0924 0.003 0.9695 0.03 0.89 1098 26 570 19 688 15 48<br />

C29-217Ab Coronation Hill 5057 349 0.0692 0.002 0.1011 0.006 0.9649 0.05 0.86 905 49 621 32 686 24 31<br />

C29-217Ag Coronation Hill 3781 265 0.0702 0.001 0.0984 0.005 0.9516 0.04 0.93 934 21 605 28 679 21 35<br />

C29-217Ai Coronation Hill 7467 494 0.0661 0.001 0.0954 0.004 0.8691 0.03 0.93 809 16 587 21 635 16 27<br />

C29-217Aj Coronation Hill 5061 343 0.0678 0.001 0.0942 0.003 0.8807 0.03 0.91 862 21 581 19 641 14 33<br />

C29-217Ak Coronation Hill 5124 350 0.0683 0.001 0.0947 0.004 0.8915 0.03 0.94 879 21 583 26 647 18 34<br />

C29-217Al Coronation Hill 5420 378 0.0698 0.001 0.1059 0.008 1.0196 0.08 0.94 923 16 649 45 714 38 30<br />

C29-217Am Coronation Hill 6716 479 0.0714 0.001 0.1078 0.003 1.0617 0.04 0.86 970 37 660 19 735 21 32<br />

C29-217Ao Coronation Hill 10150 802 0.0789 0.001 0.1244 0.009 1.3530 0.11 0.94 1169 33 756 52 869 47 35<br />

C29-217As Coronation Hill 3916 294 0.0751 0.001 0.1077 0.004 1.1158 0.04 0.93 1072 14 659 21 761 18 39<br />

C29-217Av Coronation Hill 7613 531 0.0698 0.001 0.0991 0.004 0.9535 0.04 0.93 922 22 609 22 680 21 34<br />

C29-217Ax Coronation Hill 6273 441 0.0704 0.001 0.1018 0.005 0.9873 0.05 0.92 939 23 625 29 697 23 33<br />

266


Corrected ratios<br />

Apparent ages ( ±1σ, Ma)**<br />

Sample<br />

Deposit<br />

206 Pb/ 204 Pb<br />

207 Pb/ 204 Pb<br />

207 Pb/ 206 Pb ±2σ<br />

206 Pb/ 238 U ±2σ<br />

207 Pb/ 235 U ±2σ R‡<br />

207 Pb/ 206 Pb ±<br />

206 Pb/ 238 U ±<br />

207 Pb/ 235 U ± Disc‡<br />

Cor29_205B Coronation Hill 4414 402 0.0916 - 0.1682 - 2.1244 - - 1459 39 1002 106 1157 83 -<br />

Cor29_205Ha Coronation Hill 4541 385 0.0848 - 0.0830 - 0.9709 - - 1311 23 514 39 689 39 -<br />

Cor29_205Ia Coronation Hill 1120 103 0.0919 - 0.1014 - 1.2850 - - 1465 25 623 50 839 50 -<br />

Cor29_205Ib Coronation Hill 1183 114 0.0966 - 0.1388 - 1.8489 - - 1560 17 838 33 1063 28 -<br />

Cor29_205I Coronation Hill 1339 123 0.0930 - 0.1283 - 1.6634 - - 1487 52 778 136 995 166 -<br />

Cor29_205Kb Coronation Hill 2253 181 0.0803 - 0.1119 - 1.2385 - - 1204 16 684 31 818 29 -<br />

Cor29_205L Coronation Hill 1248 127 0.1017 - 0.1643 - 2.3097 - - 1655 50 981 95 1215 93 -<br />

Cor29_201.6Ac Coronation Hill 1684 136 0.0807 - 0.1046 - 1.1679 - - 1214 58 641 81 786 89 -<br />

Cor29_205O Coronation Hill 1270 116 0.0913 - 0.1112 - 1.4001 - - 1452 44 678 52 889 53 -<br />

Cor29_201.6Aa Coronation Hill 1096 107 0.0975 - 0.1284 - 1.7258 - - 1577 53 779 59 1018 53 -<br />

Cor29_201.6Ab Coronation Hill 1322 119 0.0902 - 0.1093 - 1.3615 - - 1531 54 668 67 872 73 -<br />

Cor29_201.6Ad Coronation Hill 4108 293 0.0702 - 0.0793 - 0.7687 - - 935 86 492 29 580 44 -<br />

Cor29_201.6Bbc Coronation Hill 1508 127 0.0842 - 0.1182 - 1.3736 - - 1298 35 720 27 878 27 -<br />

Cor29_201.6aa Coronation Hill 1446 125 0.0864 - 0.0959 - 1.1432 - - 1348 16 790 13 774 12 -<br />

Cor29_201.6abc Coronation Hill 1234 112 0.0911 - 0.1089 - 1.3692 - - 1449 33 666 44 876 48 -<br />

Cor29_201.6D Coronation Hill 1086 114 0.1053 - 0.1967 - 2.8569 - - 1719 31 1157 44 1371 43 -<br />

Cor29_201.6Ga Coronation Hill 2825 214 0.0756 - 0.1012 - 1.0564 - - 1085 36 622 52 732 53 -<br />

Cor29_201.6Gb Coronation Hill 2121 171 0.0808 - 0.1180 - 1.3147 - - 1216 26 719 60 842 54 -<br />

El Sherana 1a El Sherana - - 0.0924 - 0.0564 - 0.8206 - - 1500 - 354 - 610 - -<br />

El Sherana 1b El Sherana - - 0.0935 - 0.0650 - 0.8695 - - 1498 - 406 - 636 - -<br />

El Sherana 1c El Sherana - - 0.0987 - 0.0675 - 0.9866 - - 1600 - 421 - 698 - -<br />

El Sherana 2a El Sherana - - 0.0999 - 0.0700 - 1.0588 - - 1625 - 436 - 756 - -<br />

El Sherana 2b El Sherana - - 0.0768 - 0.0571 - 0.6513 - - 1116 - 358 - 510 - -<br />

El Sherana 3b El Sherana - - 0.1105 - 0.0626 - 1.1142 - - 1810 - 392 - 762 - -<br />

El Sherana 4a El Sherana - - 0.0907 - 0.0622 - 0.9018 - - 1441 - 388 - 654 - -<br />

El Sherana 4b El Sherana - - 0.0793 - 0.0560 - 0.7712 - - 1180 - 352 - 582 - -<br />

El Sherana 4c El Sherana - - 0.1024 - 0.0826 - 1.4012 - - 1665 - 512 - 890 - -<br />

El Sherana 5c El Sherana - - 0.0938 - 0.2121 - 3.1739 - - 1505 - 1240 - 1452 - -<br />

El Sherana 5d El Sherana - - 0.0883 - 0.0585 - 0.8515 - - 1388 - 366 - 626 - -<br />

El Sherana 6b El Sherana - - 0.1010 - 0.0631 - 0.9921 - - 1640 - 395 - 700 - -<br />

El Sherana 7a El Sherana - - 0.0942 - 0.0728 - 1.0060 - - 1515 - 452 - 708 - -<br />

El Sherana 7b El Sherana - - 0.0892 - 0.0655 - 0.8338 - - 1408 - 409 - 616 - -<br />

El Sherana 2 El Sherana 1739 - 0.0916 0.0031 0.0705 0.0033 0.8054 0.0167 0.176 1460 62 439 20 600 9 70<br />

El Sherana 3 El Sherana 1439 - 0.0946 0.0032 0.0724 0.0038 0.8861 0.0181 0.103 1520 63 451 23 644 10 70<br />

El Sherana 4 El Sherana 1356 - 0.0959 0.0034 0.0747 0.0030 0.9551 0.0183 0.114 1545 66 464 18 681 9 70<br />

267


Corrected ratios<br />

Apparent ages ( ±1σ, Ma)**<br />

Sample<br />

Deposit<br />

206 Pb/ 204 Pb<br />

207 Pb/ 204 Pb<br />

207 Pb/ 206 Pb ±2σ<br />

206 Pb/ 238 U ±2σ<br />

207 Pb/ 235 U ±2σ R‡<br />

207 Pb/ 206 Pb ±<br />

206 Pb/ 238 U ±<br />

207 Pb/ 235 U ± Disc‡<br />

El Sherana 5 El Sherana 3605 - 0.0780 0.0023 0.0591 0.0021 0.6221 0.0110 0.134 1146 58 370 13 491 7 68<br />

El Sherana 7 El Sherana 1767 - 0.0935 0.0041 0.0706 0.0040 0.8149 0.0195 0.020 1498 80 440 24 605 11 71<br />

El Sherana 8 El Sherana 3975 - 0.0885 0.0043 0.0656 0.0043 0.7161 0.0155 0.230 1394 90 410 26 548 9 71<br />

El Sherana 9 El Sherana 1251 - 0.0989 0.0048 0.0893 0.0078 1.1072 0.0697 0.632 1604 87 551 46 757 33 66<br />

El Sherana 11 El Sherana 1944 - 0.1099 0.0068 0.0715 0.0052 0.7964 0.0207 0.035 1798 109 445 31 595 12 75<br />

El Sherana 12 El Sherana 1526 - 0.1116 0.0057 0.0754 0.0054 0.9074 0.0193 0.033 1825 90 469 32 656 10 74<br />

El Sherana 13 El Sherana 1476 - 0.0884 0.0022 0.0735 0.0021 0.8950 0.0135 0.204 1392 48 457 12 649 7 67<br />

El Sherana 14 El Sherana 1707 - 0.0843 0.0022 0.0657 0.0018 0.7582 0.0109 0.026 1300 50 410 11 573 6 68<br />

El Sherana 17 El Sherana 1087 - 0.0882 0.0015 0.0934 0.0044 1.1724 0.0593 0.924 1387 33 575 26 788 27 59<br />

El Sherana 18 El Sherana 1257 - 0.0920 0.0015 0.1394 0.0114 1.7701 0.1447 0.941 1467 32 841 64 1035 52 43<br />

El Sherana 19 El Sherana 1388 - 0.0886 0.0020 0.0808 0.0045 0.9891 0.0550 0.897 1395 42 501 27 698 28 64<br />

268


APPENDIX H<br />

Electron microprobe data and temperatures of various chlorite phases from deposits<br />

of the South Alligator River area<br />

Sample ID. Al 2O 3 CaO FeO K2O MgO MnO Na 2O SiO 2 TiO 2 Cl F Temp ( o )<br />

C29-217A-1 18.65 0.03 15.85 0.03 21.74 0.15 0.03 29.64 0.01 0.03 0.35 258<br />

C29-217A-2 18.79 0.05 15.68 0.00 22.59 0.13 0.05 29.48 0.02 0.02 0.26 271<br />

C29-217A-3 18.73 0.02 15.61 0.01 22.58 0.15 0.04 29.62 0.01 0.03 0.26 267<br />

C29-217A-4 18.85 0.05 15.23 0.02 22.26 0.15 0.00 30.21 0.00 0.03 0.14 252<br />

C29-217A-5 18.45 0.06 16.03 0.02 21.79 0.12 0.00 29.33 0.00 0.03 0.18 263<br />

C29-217A-6 19.26 0.06 14.05 0.08 21.52 0.15 0.04 31.08 0.02 0.04 0.59 227<br />

C29-217A-7 19.31 0.01 14.09 0.04 22.85 0.14 0.04 29.95 0.00 0.03 0.17 262<br />

C29-217A-8 19.03 0.05 16.66 0.02 20.88 0.11 0.00 29.37 0.01 0.03 0.15 263<br />

C29-217A-11 18.83 0.04 14.44 0.01 21.67 0.12 0.03 29.86 0.00 0.05 0.26 247<br />

C29-217A-12 19.06 0.10 14.01 0.17 20.48 0.08 0.04 30.59 0.00 0.06 0.34 258<br />

C29-217A-13 18.42 0.04 15.19 0.03 21.94 0.16 0.02 29.19 0.00 0.03 0.40 262<br />

C29-217A-14 19.11 0.02 16.48 0.01 21.28 0.19 0.05 29.70 0.00 0.02 0.52 262<br />

C29-217A-15 18.20 0.05 14.73 0.00 21.15 0.13 0.00 28.51 0.00 0.05 0.36 261<br />

C29-217A-16 19.07 0.05 15.05 0.00 22.23 0.07 0.00 29.61 0.00 0.04 0.25 264<br />

c29217a-27 20.84 0.09 3.28 0.18 26.41 0.04 0.03 32.89 0.02 0.08 0.31 203<br />

c29217a-25 20.69 0.09 3.46 0.16 25.68 0.01 0.02 33.08 0.04 0.07 0.39 191<br />

c29217a-24 20.06 0.09 3.43 0.20 26.21 0.04 0.05 33.06 0.03 0.06 0.35 190<br />

C29-217B-6 23.98 0.15 7.16 0.28 18.47 0.08 0.07 32.62 0.01 0.03 0.06 187<br />

c29217a-21 20.39 0.11 3.83 0.32 25.25 0.02 0.03 33.10 0.01 0.05 0.23 186<br />

C29-217B-15 22.15 0.22 8.63 0.15 18.95 0.13 0.03 32.26 0.00 0.02 0.21 184<br />

c29217a-29 20.42 0.08 3.21 0.27 25.31 0.02 0.06 33.23 0.00 0.06 0.45 180<br />

C29-217B-7 23.86 0.15 8.51 0.48 17.50 0.14 0.09 33.03 0.00 0.03 0.21 178<br />

c29217a-28 20.40 0.09 3.45 0.18 25.08 0.03 0.01 33.33 0.01 0.06 0.46 177<br />

C29-217B-5 24.52 0.15 6.59 0.31 17.57 0.08 0.10 33.14 0.00 0.05 0.18 173<br />

C29-214B-30 19.84 0.04 19.72 0.03 18.91 0.15 0.01 28.91 0.02 0.01 0.21 170<br />

C29-214B-50 19.25 0.05 16.08 0.05 20.68 0.12 0.04 29.00 0.00 0.02 0.50 167<br />

c29217a-31 20.21 0.12 3.83 0.37 24.89 0.03 0.05 33.91 0.00 0.06 0.40 166<br />

C29-217B-16 22.51 0.18 8.14 0.16 18.55 0.08 0.07 33.22 0.04 0.04 0.29 165<br />

C29-217B-13 21.30 5.87 5.82 0.78 14.38 0.31 0.01 31.62 0.01 0.03 0.05 164<br />

C29-214B-41 20.03 0.06 16.75 0.03 20.70 0.13 0.00 29.10 0.03 0.01 0.46 163<br />

C29-217B-2 25.05 0.16 6.91 0.49 16.01 0.07 0.08 33.33 0.00 0.04 0.00 162<br />

C29-217B-4 22.87 0.17 7.06 0.24 18.15 0.11 0.05 33.03 0.01 0.04 0.07 162<br />

C29-214B-40 19.27 0.03 17.64 0.00 20.68 0.14 0.03 29.19 0.02 0.02 0.37 160<br />

c29217a-22 20.81 0.11 3.71 0.52 23.73 0.00 0.04 34.34 0.02 0.05 0.49 154<br />

c29217a-23 20.77 0.12 3.75 0.63 23.34 0.05 0.07 34.34 0.02 0.05 0.43 150<br />

C29-214B-6 21.06 0.05 13.86 0.02 20.66 0.11 0.00 29.48 0.01 0.00 0.45 150<br />

C29-214B-42 20.16 0.02 17.24 0.02 20.59 0.14 0.03 29.46 0.00 0.01 0.34 150<br />

C29-214B-5 20.27 0.08 14.55 0.01 22.21 0.18 0.01 29.75 0.02 0.02 0.44 140<br />

C29-217B-1 24.45 0.18 6.74 0.48 16.59 0.11 0.03 34.52 0.00 0.05 0.12 139<br />

c29217a-17 19.45 0.10 5.15 0.58 23.36 0.09 0.01 34.63 0.01 0.05 0.05 137<br />

c29217a-26 19.62 0.13 4.19 0.41 23.26 0.09 0.04 34.30 0.00 0.05 0.26 137<br />

C29-214B-48 19.89 0.04 15.59 0.05 21.51 0.14 0.02 30.05 0.00 0.02 0.45 129<br />

C29-214B-11 24.61 0.10 2.82 0.13 21.40 0.00 0.04 30.22 0.01 0.12 0.46 123<br />

C29-214B-45 20.22 0.03 13.82 0.02 21.54 0.09 0.02 30.29 0.03 0.02 0.46 120<br />

C29-214B-34 22.62 0.11 11.91 0.12 18.25 0.08 0.00 30.31 0.02 0.03 0.41 119<br />

c29217a-30 20.73 0.12 3.31 0.63 22.33 0.05 0.06 35.47 0.00 0.06 0.34 117<br />

269


Sample ID. Al 2O 3 CaO FeO K2O MgO MnO Na 2O SiO 2 TiO 2 Cl F Temp ( o )<br />

c29217a-19 19.20 0.16 4.00 0.34 23.17 0.06 0.07 35.06 0.01 0.05 0.46 116<br />

c29217a-20 20.14 0.12 4.36 0.38 25.23 0.02 0.00 33.39 0.00 0.06 0.26 116<br />

C29-214B-36 20.21 0.04 14.01 0.03 23.34 0.13 0.03 30.46 0.01 0.01 0.37 114<br />

c29217a-32 18.81 0.16 5.04 0.81 22.33 0.07 0.05 34.92 0.02 0.05 0.23 112<br />

C29-214B-51 20.09 0.10 9.04 0.03 25.20 0.02 0.03 30.53 0.00 0.03 0.57 111<br />

C29-214B-19 23.93 0.10 4.44 0.10 23.79 0.01 0.01 30.58 0.00 0.03 0.37 110<br />

C29-217B-14 24.50 0.17 5.55 0.95 15.79 0.34 0.04 35.63 0.00 0.04 0.12 109<br />

C29-214B-25 21.13 0.08 10.77 0.03 23.90 0.03 0.00 30.64 0.00 0.04 0.44 107<br />

C29-217B-8 22.91 0.21 5.73 0.76 17.22 0.33 0.08 35.53 0.01 0.03 0.07 106<br />

C29-214B-21 23.38 0.09 6.70 0.04 24.40 0.07 0.04 30.73 0.03 0.01 0.64 104<br />

C29-217B-25 22.05 0.23 8.09 0.74 16.11 0.13 0.04 35.16 0.02 0.04 0.38 101<br />

C29-214B-32 23.83 0.04 4.15 0.04 27.15 0.00 0.00 30.81 0.02 0.01 0.50 101<br />

C29-214B-23 22.36 0.08 9.39 0.06 23.07 0.14 0.05 30.85 0.02 0.02 0.30 100<br />

C29-214B-33 23.93 0.11 3.35 0.03 26.38 0.01 0.01 30.84 0.01 0.02 0.29 100<br />

C29-217B-29 21.78 0.24 7.02 0.91 17.38 0.20 0.05 35.65 0.01 0.03 0.27 99<br />

C29-217B-10 23.73 0.20 6.10 0.47 17.93 0.40 0.03 37.36 0.02 0.03 0.13 98<br />

C29-214B-17 22.15 0.09 11.85 0.05 22.40 0.13 0.03 31.15 0.03 0.02 0.33 89<br />

C29-214B-2 24.44 0.05 3.11 0.06 25.97 0.02 0.03 31.21 0.00 0.02 0.42 86<br />

C29-214B-31 22.61 0.11 8.33 0.04 22.93 0.05 0.02 31.23 0.01 0.03 0.31 86<br />

C29-214B-3 22.38 0.05 11.05 0.07 20.89 0.11 0.04 31.26 0.01 0.03 0.46 85<br />

C29-214B-4 22.25 0.03 9.86 0.03 21.41 0.06 0.04 31.26 0.03 0.01 0.35 85<br />

C29-214B-38 24.82 0.08 5.67 0.03 24.72 0.01 0.03 31.24 0.03 0.02 0.51 85<br />

C29-214B-1 25.09 0.04 4.93 0.03 24.21 0.03 0.02 31.32 0.00 0.02 0.38 82<br />

C29-214B-18 22.83 0.09 8.82 0.06 23.27 0.08 0.01 31.33 0.05 0.04 0.26 82<br />

C29-214B-22 23.20 0.09 8.19 0.04 25.12 0.06 0.01 31.34 0.01 0.01 0.48 82<br />

C29-214B-26 21.69 0.13 9.97 0.16 21.85 0.09 0.06 31.34 0.00 0.03 0.40 82<br />

C29-217B-20 22.04 0.21 6.21 0.75 16.28 0.09 0.07 35.82 0.00 0.03 0.17 80<br />

C29-214B-46 22.80 0.10 11.25 0.03 19.49 0.07 0.03 31.45 0.01 0.02 0.56 78<br />

C29-214B-9 21.68 0.08 10.18 0.06 23.07 0.13 0.00 31.53 0.00 0.02 0.50 75<br />

C29-214B-7 25.18 0.07 4.17 0.07 24.13 0.06 0.02 31.55 0.01 0.02 0.47 74<br />

C29-214B-44 20.95 0.10 9.54 0.06 23.94 0.04 0.04 31.55 0.00 0.02 0.75 74<br />

C29-214B-12 25.44 0.08 6.46 0.09 22.83 0.02 0.00 31.63 0.04 0.04 0.30 71<br />

C29-214B-20 24.22 0.12 4.61 0.07 23.57 0.02 0.00 31.64 0.00 0.02 0.29 71<br />

C29-214B-27 24.97 0.06 7.96 0.10 20.13 0.07 0.01 31.66 0.06 0.02 0.26 70<br />

C29-214B-39 25.02 0.09 5.92 0.03 25.13 0.02 0.00 31.73 0.00 0.02 0.43 68<br />

C29-214B-29 22.24 0.12 10.06 0.03 21.59 0.03 0.05 31.87 0.01 0.05 0.32 62<br />

C29-217B-22 20.91 0.23 7.36 0.94 16.19 0.12 0.04 36.74 0.03 0.04 0.25 57<br />

C29-214B-35 25.48 0.05 6.75 0.12 21.31 0.04 0.02 32.02 0.03 0.03 0.51 57<br />

C29-214B-8 23.16 0.11 11.76 0.04 21.13 0.06 0.06 32.04 0.00 0.04 0.42 56<br />

C29-214B-43 22.98 0.10 8.96 0.03 20.63 0.05 0.04 32.13 0.01 0.03 0.46 53<br />

C29-214B-37 23.44 0.05 9.69 0.09 21.31 0.06 0.01 32.16 0.03 0.03 0.24 52<br />

C29-214B-15 24.29 0.08 8.58 0.10 20.62 0.07 0.01 32.18 0.02 0.04 0.45 51<br />

C29-214B-14 20.99 0.14 5.85 0.46 23.58 0.07 0.07 32.23 0.02 0.06 0.30 49<br />

C29-214B-28 25.71 0.03 3.48 0.06 23.72 0.02 0.00 32.29 0.02 0.03 0.34 47<br />

C29-214B-10 25.77 0.14 2.59 0.13 22.97 0.00 0.00 32.34 0.01 0.03 0.31 45<br />

C29-214B-13 24.98 0.12 5.71 0.08 21.56 0.03 0.06 32.35 0.05 0.04 0.48 45<br />

C29-214B-16 25.30 0.10 3.59 0.09 23.35 0.04 0.02 32.35 0.01 0.04 0.41 45<br />

C29-214B-24 21.06 0.19 6.42 0.30 24.07 0.07 0.05 32.96 0.01 0.04 0.75 23<br />

C29-217B-18 21.80 0.25 8.38 0.13 19.64 0.17 0.05 32.34 0.00 0.02 0.14<br />

E32-45B-46 19.68 0.03 33.71 0.01 9.27 0.01 0.04 27.53 0.01 0.01 0.24 285<br />

E32-45B-8 18.31 0.03 32.97 0.02 10.13 0.01 0.01 26.81 0.01 0.00 0.19 287<br />

E32-45B-23 18.49 0.02 34.32 0.06 9.31 0.00 0.02 26.92 0.04 0.01 0.13 287<br />

270


Sample ID. Al 2O 3 CaO FeO K2O MgO MnO Na 2O SiO 2 TiO 2 Cl F Temp ( o )<br />

E32-45B-41 18.48 0.02 36.09 0.03 7.92 0.05 0.01 26.69 0.01 0.01 0.19 287<br />

E32-45B-1 17.66 0.01 33.53 0.02 10.46 0.00 0.00 26.66 0.00 0.00 0.20 288<br />

E32-45B-10 18.31 0.02 32.89 0.02 10.14 0.00 0.01 26.72 0.01 0.00 0.07 288<br />

E32-45B-15 17.94 0.05 33.69 0.02 8.63 0.00 0.00 25.75 0.00 0.00 0.05 292<br />

E32-45B-40 18.01 0.02 33.95 0.00 10.26 0.03 0.04 26.70 0.00 0.00 0.15 292<br />

E32-45B-45 18.70 0.02 34.82 0.01 8.10 0.00 0.02 26.27 0.01 0.01 0.06 292<br />

E32-45B-20 18.61 0.05 34.33 0.06 9.10 0.01 0.00 26.50 0.00 0.01 0.02 294<br />

E32-45B-12 18.83 0.01 32.34 0.01 10.30 0.00 0.01 26.59 0.00 0.00 0.04 296<br />

E32-45B-21 18.06 0.02 33.84 0.03 9.81 0.02 0.02 26.14 0.02 0.01 0.19 299<br />

E32-45B-51 18.14 0.04 35.90 0.00 8.45 0.01 0.00 26.03 0.01 0.01 0.00 300<br />

E32-45B-47 18.62 0.04 36.62 0.02 7.47 0.03 0.01 25.94 0.03 0.02 0.00 302<br />

E32-45B-44 18.27 0.02 34.38 0.01 9.41 0.06 0.00 26.06 0.06 0.00 0.18 303<br />

E32-45B-48 17.87 0.03 34.18 0.05 10.09 0.00 0.00 26.07 0.01 0.01 0.25 303<br />

E32-45B-42 18.79 0.00 34.08 0.02 9.74 0.00 0.01 26.29 0.00 0.01 0.08 306<br />

E32-45B-43 19.16 0.00 33.31 0.01 8.95 0.02 0.06 25.91 0.01 0.01 0.16 306<br />

E32-45B-38 19.19 0.01 35.64 0.02 8.54 0.01 0.00 26.23 0.02 0.00 0.15 309<br />

E32-45B-37 18.74 0.00 33.30 0.00 9.75 0.00 0.00 25.68 0.01 0.01 0.10 313<br />

E32-45B-49 17.97 0.00 36.58 0.03 8.64 0.00 0.02 25.61 0.01 0.01 0.07 313<br />

E32-45B-19 16.96 0.04 35.29 0.05 9.59 0.02 0.00 24.93 0.03 0.01 0.11 318<br />

E32-45B-6 18.62 0.02 34.77 0.00 8.92 0.00 0.00 25.14 0.03 0.01 0.00 323<br />

E32-45B-50 17.41 0.03 35.75 0.00 8.94 0.01 0.02 24.67 0.00 0.01 0.00 324<br />

E32-41B-13 16.52 0.03 34.75 0.08 8.83 0.05 0.02 27.40 0.00 0.05 0.19 226<br />

E32-41B-42 16.89 0.05 35.98 0.03 8.84 0.01 0.00 27.18 0.03 0.03 0.15 234<br />

E32-41B-41 16.22 0.03 34.91 0.08 9.52 0.02 0.02 27.07 0.00 0.08 0.13 237<br />

E32-41B-25 18.82 0.04 36.50 0.05 7.57 0.00 0.00 27.07 0.02 0.01 0.00 238<br />

E32-41B-34 16.71 0.10 36.00 0.04 9.11 0.02 0.06 27.02 0.03 0.05 0.28 239<br />

E32-41B-44 16.26 0.02 34.18 0.05 10.01 0.00 0.09 27.03 0.03 0.06 0.04 239<br />

E32-41B-14 16.72 0.06 35.18 0.03 9.10 0.03 0.08 27.00 0.04 0.04 0.30 240<br />

E32-41B-17 16.32 0.05 35.27 0.04 9.54 0.00 0.00 27.00 0.03 0.03 0.01 240<br />

E32-41B-10 15.80 0.11 33.35 0.05 8.13 0.00 0.10 26.50 0.02 0.04 0.57 240<br />

E32-41B-37 16.93 0.02 35.20 0.02 9.47 0.01 0.03 26.82 0.01 0.03 0.14 247<br />

E32-41B-26 19.30 0.00 34.52 0.04 9.41 0.01 0.06 26.80 0.02 0.01 0.18 247<br />

E32-41B-5 16.20 0.05 35.29 0.01 8.57 0.00 0.00 27.21 0.04 0.05 0.19 248<br />

E32-41B 16.27 0.03 35.12 0.01 9.60 0.00 0.04 27.73 0.00 0.02 0.22 249<br />

E32-41B-19 17.49 0.00 34.08 0.02 9.64 0.00 0.03 26.75 0.03 0.02 0.03 249<br />

E32-41B-16 16.26 0.03 34.79 0.03 9.41 0.00 0.04 26.75 0.03 0.04 0.27 249<br />

E32-41B-12 16.39 0.02 34.82 0.07 9.36 0.03 0.04 26.72 0.00 0.03 0.05 250<br />

E32-41B-15 17.76 0.04 33.84 0.04 9.46 0.01 0.07 26.60 0.02 0.03 0.12 255<br />

E32-41B-43 17.13 0.01 34.63 0.03 9.17 0.03 0.05 26.55 0.00 0.08 0.05 256<br />

E32-41B-28 19.50 0.02 34.30 0.08 9.20 0.00 0.01 26.57 0.04 0.01 0.12 256<br />

E32-41B-18 16.90 0.00 33.96 0.03 9.79 0.01 0.04 26.51 0.01 0.02 0.27 258<br />

E32-41B-39 16.05 0.04 35.06 0.07 9.39 0.00 0.05 26.35 0.06 0.03 0.33 264<br />

E32-41B-3 16.96 0.04 35.19 0.02 9.23 0.00 0.01 27.10 0.03 0.02 0.18 267<br />

E32-41B-7 16.84 0.04 35.25 0.02 8.97 0.01 0.01 26.83 0.02 0.03 0.20 268<br />

E32-41B-1 16.75 0.03 35.11 0.02 8.69 0.00 0.00 26.49 0.00 0.02 0.10 270<br />

E32-41B-2 17.33 0.00 34.93 0.00 9.20 0.00 0.02 26.95 0.03 0.02 0.04 273<br />

E32-41B-8 17.21 0.00 34.82 0.00 8.62 0.02 0.03 26.50 0.01 0.02 0.04 273<br />

E32-41B-35 19.32 0.02 32.91 0.07 9.85 0.01 0.07 26.10 0.03 0.07 0.27 273<br />

E32-45B-27 15.69 0.02 27.03 0.04 15.25 0.01 0.03 28.64 0.00 0.02 0.22 236<br />

E32-41B 16.27 0.03 35.12 0.01 9.60 0.00 0.04 27.73 0.00 0.02 0.22 249<br />

E32-45B-26 17.28 0.01 31.92 0.07 11.25 0.06 0.00 28.01 0.01 0.00 0.15 255<br />

E32-45B-13 16.51 0.03 32.13 0.01 10.34 0.00 0.00 26.79 0.05 0.06 0.05 261<br />

271


Sample ID. Al 2O 3 CaO FeO K2O MgO MnO Na 2O SiO 2 TiO 2 Cl F Temp ( o )<br />

E32-45B-3 16.55 0.01 32.39 0.01 10.83 0.06 0.00 27.03 0.01 0.01 0.20 263<br />

E32-45B-30 17.12 0.01 33.93 0.01 10.28 0.01 0.01 27.49 0.00 0.01 0.07 265<br />

E32-45B-7 16.91 0.01 32.73 0.00 11.20 0.00 0.03 27.44 0.02 0.00 0.11 266<br />

E32-45B-5 16.17 0.00 36.08 0.02 9.32 0.00 0.00 26.90 0.05 0.00 0.20 267<br />

E32-45B-4 15.76 0.01 33.41 0.03 10.77 0.00 0.00 26.47 0.04 0.00 0.11 270<br />

E32-45B-11 17.46 0.05 31.79 0.01 11.66 0.01 0.00 27.59 0.01 0.01 0.27 270<br />

E32-45B-24 16.71 0.01 33.86 0.01 10.11 0.06 0.03 26.89 0.01 0.01 0.00 270<br />

E32-45B-32 17.45 0.02 29.84 0.05 12.83 0.00 0.00 27.59 0.01 0.02 0.28 270<br />

E32-41B-1 16.75 0.03 35.11 0.02 8.69 0.00 0.00 26.49 0.00 0.02 0.10 270<br />

E32-45B-25 17.54 0.05 30.62 0.02 12.91 0.00 0.00 27.88 0.00 0.02 0.33 271<br />

E32-45B-2 17.09 0.02 32.87 0.03 11.04 0.01 0.01 27.15 0.02 0.01 0.16 273<br />

E32-41B-2 17.33 0.00 34.93 0.00 9.20 0.00 0.02 26.95 0.03 0.02 0.04 273<br />

E32-45B-17 17.51 0.03 32.68 0.04 10.86 0.03 0.00 27.18 0.00 0.00 0.06 274<br />

E32-45B-9 17.75 0.03 33.68 0.01 10.19 0.00 0.00 27.24 0.00 0.00 0.07 275<br />

E32-41A-15 16.31 0.05 31.92 0.03 11.53 0.00 0.00 27.55 0.00 0.05 0.16 220<br />

E32-41A-22 16.31 0.05 36.41 0.02 9.52 0.02 0.07 27.53 0.02 0.02 0.08 221<br />

E32-41A-33 16.42 0.02 32.82 0.01 11.37 0.00 0.01 27.51 0.00 0.01 0.00 222<br />

E32-41A-29 16.77 0.00 33.43 0.01 10.71 0.05 0.03 27.45 0.00 0.01 0.08 224<br />

E32-41A-3 16.37 0.02 36.20 0.01 9.06 0.01 0.00 27.44 0.01 0.01 0.06 224<br />

E32-41A-21 16.17 0.09 35.82 0.02 9.22 0.03 0.03 27.43 0.00 0.04 0.02 225<br />

E32-41A-37 17.52 0.03 31.73 0.00 12.00 0.02 0.01 27.38 0.01 0.03 0.18 226<br />

E32-41A-23 16.39 0.05 36.20 0.02 9.78 0.00 0.02 27.39 0.01 0.03 0.32 226<br />

E32-41A-42 17.50 0.03 32.09 0.01 11.88 0.00 0.06 27.36 0.03 0.02 0.30 227<br />

E32-41A-41 17.00 0.02 31.84 0.00 11.59 0.00 0.04 27.31 0.03 0.01 0.23 229<br />

E32-41A-24 16.28 0.02 35.08 0.00 9.76 0.00 0.00 27.29 0.02 0.00 0.21 230<br />

E32-41A-10 16.95 0.02 32.66 0.02 11.11 0.00 0.04 27.26 0.01 0.06 0.18 231<br />

E32-41A-26 16.36 0.02 36.61 0.02 8.87 0.03 0.00 27.25 0.01 0.02 0.04 231<br />

E32-41A-30 16.87 0.06 31.45 0.01 11.75 0.00 0.02 27.12 0.01 0.03 0.07 236<br />

E32-41A-38 16.65 0.05 35.16 0.01 9.33 0.00 0.00 27.12 0.02 0.02 0.23 236<br />

E32-41A-14 16.79 0.03 35.31 0.02 9.38 0.00 0.03 27.11 0.00 0.02 0.15 236<br />

E32-41A-43 16.85 0.05 35.53 0.00 9.08 0.02 0.00 27.03 0.02 0.00 0.00 239<br />

E32-41A-57 16.51 0.02 36.01 0.00 9.09 0.02 0.02 27.00 0.03 0.00 0.00 240<br />

E32-41A-25 16.43 0.01 35.58 0.01 9.45 0.02 0.03 27.01 0.03 0.02 0.23 240<br />

E32-41A-19 16.95 0.00 35.96 0.00 9.15 0.00 0.03 26.98 0.03 0.01 0.10 241<br />

E32-41A-16 17.61 0.00 33.30 0.01 10.05 0.00 0.00 26.96 0.03 0.02 0.00 242<br />

E32-41A-20 16.63 0.02 35.59 0.00 9.48 0.03 0.00 26.89 0.02 0.01 0.10 244<br />

E32-41A-27 17.14 0.00 35.84 0.01 9.15 0.05 0.00 26.71 0.05 0.01 0.13 251<br />

E32-41A-53 16.69 0.02 35.95 0.01 8.92 0.04 0.03 26.67 0.02 0.01 0.14 252<br />

E32-41A-4 18.09 0.02 35.25 0.00 8.42 0.04 0.03 26.57 0.03 0.01 0.00 256<br />

E32-41A-56 17.51 0.01 35.76 0.00 8.82 0.00 0.00 26.52 0.07 0.01 0.14 258<br />

E32-41A-59 19.54 0.05 34.45 0.03 8.77 0.01 0.02 26.19 0.02 0.01 0.50 270<br />

E32-41A-54 16.02 0.08 34.84 0.01 8.64 0.00 0.00 26.13 0.01 0.02 0.22 272<br />

E32-41A-58 19.55 0.06 33.64 0.03 9.14 0.03 0.06 26.00 0.01 0.01 0.17 277<br />

E32-41A-52 19.61 0.02 34.76 0.01 8.14 0.02 0.00 25.95 0.00 0.01 0.11 278<br />

272


APPENDIX I<br />

Structural measurements (strike and dip) and stereoplot of different structures from<br />

the Cinch Lake deposit<br />

Mafic dykes<br />

Strike ( o ) Dip ( o )<br />

320 80<br />

240 80<br />

240 85<br />

245 80<br />

245 85<br />

320 85<br />

Mineralized veins<br />

Strike ( o ) Dip ( o )<br />

125 75<br />

320 78<br />

110 80<br />

130 85<br />

35 90<br />

335 85<br />

215 70<br />

20 60<br />

10 60<br />

15 80<br />

15 85<br />

65 80<br />

225 55<br />

280 90<br />

285 90<br />

270 90<br />

320 75<br />

270 80<br />

300 85<br />

310 90<br />

350 85<br />

280 75<br />

340 90<br />

310 75<br />

320 90<br />

270 85<br />

260 90<br />

305 80<br />

290 85<br />

280 90<br />

270 90<br />

310 90<br />

305 80<br />

315 90<br />

310 90<br />

318 90<br />

315 90<br />

320 90<br />

310 90<br />

310 90<br />

317 85<br />

316 90<br />

305 90<br />

270 90<br />

290 80<br />

280 55<br />

270 60<br />

272 60<br />

280 90<br />

280 70<br />

300 85<br />

270 80<br />

280 70<br />

278 75<br />

220 60<br />

320 90<br />

300 90<br />

305 85<br />

Foliation<br />

Strike ( o ) Dip ( o )<br />

245 40<br />

235 50<br />

240 55<br />

245 75<br />

250 60<br />

240 80<br />

240 80<br />

240 80<br />

245 75<br />

295 60<br />

290 35<br />

250 85<br />

Joints<br />

Strike ( o ) Dip ( o )<br />

315 80<br />

325 75<br />

345 75<br />

265 80<br />

235 80<br />

15 82<br />

295 75<br />

315 80<br />

255 90<br />

245 30<br />

275 80<br />

45 30<br />

20 30<br />

0 70<br />

80 85<br />

310 85<br />

125 80<br />

240 75<br />

110 75<br />

285 60<br />

285 60<br />

290 70<br />

290 75<br />

0 70<br />

65 75<br />

160 75<br />

125 50<br />

245 75<br />

295 60<br />

290 35<br />

350 60<br />

350 60<br />

70 80<br />

290 80<br />

10 80<br />

230 90<br />

10 75<br />

230 90<br />

10 75<br />

245 80<br />

200 80<br />

60 90<br />

273


250 85<br />

330 40<br />

145 70<br />

25 65<br />

30 30<br />

270 90<br />

290 60<br />

280 55<br />

270 60<br />

272 60<br />

280 90<br />

280 70<br />

300 85<br />

270 80<br />

270 80<br />

280 70<br />

278 75<br />

220 60<br />

320 90<br />

300 90<br />

305 75<br />

300 80<br />

325 70<br />

175 85<br />

295 70<br />

105 85<br />

285 69<br />

315 65<br />

310 70<br />

305 70<br />

305 85<br />

395 80<br />

250 80<br />

305 75<br />

250 75<br />

210 80<br />

310 70<br />

350 45<br />

305 75<br />

300 70<br />

240 85<br />

105 60<br />

215 60<br />

165 85<br />

150 60<br />

125 65<br />

110 65<br />

110 55<br />

100 85<br />

135 85<br />

40 65<br />

85 66<br />

320 70<br />

240 80<br />

105 60<br />

220 45<br />

Quartz veins<br />

Strike ( o ) Dip ( o )<br />

230 50<br />

240 50<br />

240 70<br />

240 40<br />

235 70<br />

250 60<br />

274


Foliations<br />

Mafic dykes<br />

275


Mineralized veins<br />

Quartz veins<br />

276


Shear zone<br />

Joints<br />

277

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!