07.01.2015 Views

Proposed Title 1: - Queen's University

Proposed Title 1: - Queen's University

Proposed Title 1: - Queen's University

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

FLUID EVOLUTION AND STRUCTURAL CONTROL ON URANIUM<br />

DEPOSITS IN SUCCESSOR BASINS IN NORTHERN CANADA AND<br />

NORTHERN AUSTRALIA<br />

by<br />

Serigne Dieng<br />

A thesis submitted to the Department of Geological Sciences and Geological<br />

Engineering in conformity with the requirements for<br />

the degree of Doctor of Philosophy<br />

QUEEN’S UNIVERSITY<br />

Kingston, Ontario, Canada<br />

(August, 2012)<br />

Copyright © Serigne Dieng, 2012<br />

i


Bolger open pit, Beaverlodge area, Northern Saskatchewan, Canada.<br />

ii


Abstract<br />

Uranium deposits associated with Paleoproterozoic successor basins were<br />

investigated using structural, petrographic, geochronological and geochemical relationships<br />

to understand the character and timing of ore-forming fluids and the structural control on<br />

uranium mineralization. The work focused on two successor basins that share similar<br />

geological characteristics: the Martin Lake Basin in the Beaverlodge area in Canada, and<br />

the El Sherana Basin in the South Alligator River area in Australia.<br />

The Beaverlodge area records six temporally distinct stages of U mineralization<br />

spatially associated with the Martin Lake successor basin. Early minor stages are hosted in<br />

cataclasite and veins at ca. 2.29 Ga and in albitized granite in the Gunnar deposit between<br />

ca. 2.3 Ga and 1.9 Ga, which predates the main stage of U mineralization of hydrothermal<br />

breccias that formed at ca. 1.85 Ga. Later stages of mineralization are related to minor veins<br />

at ca. 1.82 Ga linked to alkaline mafic dikes associated with the Martin Lake Basin and to<br />

minor veins at ca. 1.62 Ga corresponding to the timing of unconformity-type U<br />

mineralization in the overlying Athabasca Basin. The main breccia-type U mineralizing<br />

event that affected all deposits in the Beaverlodge area formed at ca. 1.85 Ma from<br />

metamorphic fluids at ca. 330 o C linked to metasomatism during regional metamorphism of<br />

the Trans-Hudson Orogen. The ore-forming fluids were likely derived from metamorphic<br />

remobilization of pre-existing U-rich basement rocks, and ascended upward along deep<br />

fracture systems that resulted from brittle reactivation of early ductile shear zones.<br />

The main event of U mineralization in the South Alligator River area formed at ca.<br />

1.82 Ma, subsequent to deposition of the El Sherana Group at 1.84-1.83 Ma. The formation<br />

iii


of these deposits is related to fluids derived from diagenetic processes in sandstone of the<br />

El Sherana Group. Mineralization formed when a 250 o C, low latitude, oxidizing, U-bearing<br />

basinal brine from diagenetic aquifers in the Coronation sandstone descended downward<br />

into the unconformity along fracture systems created by brittle reactivation of the El<br />

Sherana-Palette fault system.<br />

Uranium deposits associated with successor basins in the Beaverlodge and South<br />

Alligator River area are older than those in the U-rich Athabasca and Kombolgie basins.<br />

Rocks that host these deposits have been folded, and then exhumed during subsequent<br />

tectonic events. These older U deposits can be considered as a potential source for detrital<br />

uraninite that fed sediments of the Athabasca and Kombolgie basins and therefore<br />

contributed to the inventory of uranium that formed unconformity-related U mineralization<br />

in the younger basins. Therefore, the occurrence of older U mineralization associated with<br />

successor basins can be considered as positive criterion for exploration of unconformityrelated<br />

U mineralization in younger Paleoproterozoic basins.<br />

iv


Co-Authorship<br />

This thesis and the manuscripts contained herein are the work of Serigne Dieng.<br />

All chapters are co-authored by Kurt Kyser and Laurent Godin (thesis supervisors) who<br />

provided scientific guidance, discussion, and editorial assistance.<br />

v


Acknowledgements<br />

I would like to express my sincere and profound gratitude to my thesis supervisors<br />

Kurt Kyser and Laurent Godin for giving me this unexpected opportunity to be part of this<br />

excellent Ph.D. research project and to attend this world’s leading university. Your<br />

guidance, assistance, patience, and constant support will be always acknowledged. Merci.<br />

This project was made possible through the generous financial support by the Natural<br />

Sciences and Engineering Research Council of Canada (NSERC) and Cameco Corporation.<br />

The Geological Sciences Department at the <strong>University</strong> of Saskatchewan and the<br />

Northern Territory Geological Survey in Australia generously provided samples necessary<br />

for this research.<br />

Red Rock Energy and Paul Stewart are thanked for their generous field support.<br />

Special thanks to my Queen’s Facility for Isotope Research lab family, specifically<br />

April Vuletich, Don Chipley, Kerry Klassen, Allison Laidlow, Bill McFarlane, Kristin<br />

Feige, Evelyne Leduc, and Sandeep Banerjee who provided great assistance and guidance<br />

for isotopic analytical methods. Peter Jones at Carleton <strong>University</strong>, and Alan Grant and<br />

Brian Joy at Queen’s provided valuable assistance with electron microprobe and XRD<br />

analyses.<br />

Particular thanks are due to Steve Beyer, Dan Jiricka, Laurent Scanlan, and Don<br />

Chipley for their constructive editorial comments that greatly improved this thesis.<br />

I would like to extend my gratitude to the enthusiastic U research group specially, Ronald<br />

Ng, Yulia Uvarova, Steve Beyer, Paul Alexandre, Valeria and Alexy Li, Paul Stewart,<br />

vi


Sarah Rice and Jonathan Cloutier, and the tectonic research team, Carl Nagy and Borja<br />

Antolin Tomas. You are so willing to support one another and happy to share your<br />

acknowledge and experience and I have taken fully advantage of it.<br />

I gratefully acknowledge the administrative staffs, Kelly Smith, Linda Brown, Joan<br />

Charbonneau and Dianne Hyde. Thanks for your love, your support and your constant<br />

encouragement during the time I spent at Queen’s <strong>University</strong>.<br />

To my thesis committee members, Mostafa Fayek, John Peacey, Ron Peterson, and<br />

Herb Helmstaedt, thanks so much for the time you spent evaluating and improving this<br />

work.<br />

I would like to express my profound gratitude to Dennis Jones, former Vice-President<br />

Exploration of Iamgold and IAMGOLD Corporation for first giving me the great<br />

opportunity to complete the M.Sc. Mineral exploration program at Queen’s <strong>University</strong>.<br />

To my family, my wonderful wife Die Aissatou and my lovely children Seydina,<br />

Diarra, Cheikh and Rassoul, I hope you have spent great time in Canada, loving the winter<br />

and supporting dad through his research. Thanks so much for your patience while dad spent<br />

so much time at office. I love you so much and am very proud of you.<br />

I would like to honor through this thesis the memory of my Mom and my Dad.<br />

Thanks for your love and affection. You taught me to do the right things; I will always be<br />

grateful.<br />

vii


Statement of Originality<br />

I hereby certify that all of the work described within this thesis is the original work of the<br />

author. This research does not support previous degree requirements. Any published (or<br />

unpublished) ideas and/or techniques from the work of others are fully acknowledged in<br />

accordance with the standard referencing practices.<br />

(Serigne Dieng)<br />

(August, 2012)<br />

viii


TABLE OF CONTENTS<br />

Abstract………………………………………………………..……………………………iii<br />

Co-Authorship……………………………………………………………………………….v<br />

Acknowledgements………………………………..………………………….…………….vi<br />

Statement of Originality……………………………………..………..………...…………viii<br />

Table of Contents……………………………………………………..…………………….ix<br />

List of Figures……………………………………………………...…………………...….xv<br />

List of Tables………………………………………………………...…………..………xviii<br />

CHAPTER 1……………………………………………………………………..…………1<br />

INTRODUCTION……………………………………………………………………….....1<br />

1.1 Geological setting of the Beaverlodge area………………………..……..……...……2<br />

1.1.1. Regional geological and structural setting……………………..….……….….2<br />

1.1.2. Uranium mineralization…………………………………...…………….…….5<br />

1.2 Geological setting of the South Alligator Mineral Field area………………………...7<br />

1.2.1 Regional geological and structural setting………………………...………..…7<br />

1.2.2. Uranium mineralization……………………………...…………………..……9<br />

1.3 Uranium mineralized systems in the Athabasca and Kombolgie basins………………11<br />

1.4 Uranium mineralized systems in the successor basins…………………...……………14<br />

1.5 Purpose of this Thesis…………………...…………………………………………….15<br />

1.6 Thesis Structure………………………………………………..………………………17<br />

CHAPTER 2………………………………………………..……………………………..19<br />

TECTONIC HISTORY OF THE NORTH AMERICAN SHIELD RECORDED IN<br />

URANIUM DEPOSITS IN THE BEAVERLODGE AREA, NORTHERN<br />

SASKATCHEWAN, CANADA<br />

Abstract…………………………...…………………………………………………….….19<br />

2.1. Introduction……………………………………………………………………………20<br />

2.2. Geologic Setting…….…………………………………………………………………21<br />

2.2.1. General geology……………………………………………………….………21<br />

2.2.2. Previous models age for U mineralization in the Beaverlodge area……….…26<br />

2.3. Methodology…….……………………………………………………………….……28<br />

ix


2.3.1. U-Pb dating of uranium-rich minerals by LA-HR-ICP-MS…………….…….28<br />

2.3.2. Electron-microprobe procedure and calculations of chemical Pb age……..…29<br />

2.4. Results…………………………...……………………………………………….……30<br />

2.4.1. The Main Ore shear zone.……………………………………………….….…30<br />

2.4.1.1. Geology of the Cinch Lake deposit……………………………..……30<br />

2.4.1.2. Structural and metamorphic relationships in the Main Ore shear<br />

zone…………………………………………………………………..34<br />

2.4.2. The Saint Louis fault.…………………………………………………….……39<br />

2.4.2.1. Geology of the Ace-Fay-Verna deposits……………………….….…39<br />

2.4.2.2. Structural and metamorphic relationships in the Saint Louis fault….39<br />

2.4.3. Paragenesis of the alteration and ore minerals and type of U mineralization....45<br />

2.4.3.1. Stage 1. Mylonitization……………………………………...…….…45<br />

2.4.3.2. Stage 2. Cataclasite deformation…………………………...……...…47<br />

2.4.3.3. Stage 3. Early tensional ±U 2 veins formation…………….....…….…47<br />

2.4.3.4. Stage 4. Granite-related metasomatic alteration………………….….47<br />

2.4.3.5. Stage 5. Brecciation……………………………………...………..…48<br />

2.4.3.6. Stage 6. Mafic volcanism………………………………...………..…48<br />

2.4.3.7. Stage 7. Late U 6 uraninite veins………………………...……..…..…49<br />

2.4.4. Geochronology of uraninite and isotopic systematics…………...….…………51<br />

2.4.4.1. Geochronology of U-rich minerals by LA-HR-ICPMS...……..……..51<br />

2.4.4.1.1. Geochronology of the cataclasite-type ±U 1 ………………….…55<br />

2.4.4.1.2. Geochronology of the early tensional vein-type ±U 2 ……….…..56<br />

2.4.4.1.3. Geochronology of the granite-related metasomatic-type U 3 ……56<br />

2.4.4.1.4. Geochronology of the breccia-type U 4 …………...……..………56<br />

2.4.4.1.5. Geochronology of the volcanic-type ±U 5 ………...………….…56<br />

2.4.4.1.6. Geochronology of the Athabasca-related ±U 6 …...…………...…57<br />

2.4.4.1.7. Post-mineralization alteration events............................................57<br />

2.4.4.2. Chemical Pb age of the uranium mineralization…...…….………..…60<br />

2.5. Discussion……………………………………………………………………………..65<br />

2.5.1. Interpretation of the Main Ore shear zone and Saint Louis fault……………..65<br />

x


2.5.2. Temporal relationships of fault activities and U mineralization to regional<br />

tectonic events…………………………...…………...………..………………69<br />

2.6. Conclusions……………………………………………………………………..…..…78<br />

CHAPTER 3…………………………….……………………………………………..…80<br />

GENESIS OF MULTIFARIOUS URANIUM MINERALIZATION IN THE<br />

BEAVERLODGE AREA, NORTHERN SASKATCHEWAN, CANADA<br />

Abstract………………………………………………………………………….……...…80<br />

3.1. Introduction……………………………………….………………………..…..……82<br />

3.2. Geologic Setting………………………………….………….…………..….….……83<br />

3.2.1. General geology………………………….……………….…….……….….…83<br />

3.2.2. Uranium mineralization………………….………………..………………..…86<br />

3.3. Methodology………………….……………………………………………….…..…87<br />

3.4. Results………………….……………………………………………….……….…...90<br />

3.4.1. Paragenesis of the alteration minerals and types of U mineralization……...…90<br />

3.4.2. Crystal Chemistry………………………….……………….……………….…96<br />

3.4.2.1. Mineral chemistry of uraninite and brannerite…….……………...…96<br />

3.4.2.2. Chlorite Crystal Chemistry……….……………….……………..…100<br />

3.4.3. Isotopic compositions of minerals and fluids involved in the U<br />

mineralization…….………..…………………………………………….…...105<br />

3.4.3.1. Oxygen and carbon isotopes of calcite……………………….….…105<br />

3.4.3.2. Oxygen and hydrogen isotopic compositions of chlorite….……….109<br />

3.4.4. Rare earth elements geochemical characteristics of the U mineralization…..112<br />

3.5. Discussion………………….……………………….……………………………....117<br />

3.5.1. Early U mineralization…………………….……………….………...………118<br />

3.5.2. Formation of breccia-type U deposits, the major U mineralization…………124<br />

3.5.3. Later basin-related U mineralization…….……………….……………...…..127<br />

3.5.4. Late alteration events…….……………….……………………………….....129<br />

3.6. Conclusions…….……………….…………………………………………………..130<br />

xi


CHAPTER 4……………………………………………………………………….…….132<br />

FLUID EVOLUTION AND GENESIS OF URANIUM MINERALIZATION IN THE<br />

SOUTH ALLIGATOR VALLEY AREA, NORTHERN TERRITORIES,<br />

AUSTRALIA<br />

Abstract……………………………………………………………………………..….…132<br />

4.1. Introduction………………………………………………………………………..…133<br />

4.2. Geologic Setting…………………………………………………………………...…136<br />

4.2.1. General geology…………………………………………………………..…136<br />

4.2.2. Uranium mineralization………………………………………………………138<br />

4.3. Characteristics of selected uranium deposits…………………………………..….…140<br />

4.3.1. Coronation Hill uranium deposit……………………………………….….…140<br />

4.3.2. El-Sherana uranium deposit……………………………………………….…142<br />

4.4. Methodology…………………………………………………………………………144<br />

4.5. Results……………………………………………………………………………..…146<br />

4.5.1. Mineral Paragenesis…………………………………………………….……146<br />

4.5.1.1. Coronation Hill uranium deposit……………………………………146<br />

4.5.1.1.1. Pre-ore alteration……………………………………………….146<br />

4.5.1.1.2. Uranium and gold mineralization……………………………...150<br />

4.5.1.1.3. Post-ore alteration…………………………………..……….…152<br />

4.5.1.2. El-Sherana uranium deposit……………………………………..….153<br />

4.5.1.2.1. Pre-ore basement hydrothermal alteration…………………..…155<br />

4.5.1.2.2. Pre-ore diagenetic alteration of the Coronation sandstone….…155<br />

4.5.1.2.3. Uranium mineralization……………………………………..…157<br />

4.5.1.2.4. Post-Ore alteration………………………………………..……159<br />

4.5.2. Crystal chemistry of the alteration minerals…………………………………159<br />

4.5.2.1. Coronation Hill uranium deposit……………………………………159<br />

4.5.2.1.1. Uraninite Crystal Chemistry…………………………...………159<br />

4.5.2.1.2. Chlorite crystal chemistry………………………………...……162<br />

4.5.2.2. El-Sherana Uranium deposit…………………………………..……163<br />

xii


4.5.3. Isotopic compositions of minerals and fluids involved in the U<br />

mineralization……………………………………...…………..……………..164<br />

4.5.4. Geochronology of uraninite and isotopic systematics………………..………166<br />

4.5.4.1. U-Pb geochronology of U-rich minerals by LA-HR-ICP-MS…...…167<br />

4.5.4.2. Pb-Pb geochronology of galena and uraninite by LA-HR-ICP-MS..171<br />

4.5.4.3. Chemical Pb age of the uranium mineralization……………………173<br />

4.6. Discussion……………………………………………………………….…..……...174<br />

4.6.1. Basement metamorphism and basin diagenesis……………..……….………175<br />

4.6.2. Hydrothermal alteration and uranium mineralization….……………….……179<br />

4.6.3. Late stage alteration and resetting events……………………………….……182<br />

4.7. Conclusions…………………………………………………………………………185<br />

CHAPTER 5………………………………………………………………......…………188<br />

GENERAL DISCUSSION<br />

5.1. Introduction…………………………………………….………………………...…188<br />

5.2. U mineralizing system in Paleoproterozoic successor basins…………..…………189<br />

5.2.1. Early U mineralization………………………………………………….....…191<br />

5.2.1.1. Granite-related uranium mineralization…………...……………..…192<br />

5.2.1.2. Metamorphic-related uranium mineralization………………………194<br />

5.2.1.2.1. Early-vein and cataclasite-type uranium mineralization….194<br />

5.2.1.2.2. Breccia-type uranium mineralization………….……….…194<br />

5.2.2. Successor basin-related U mineralization……………………………………196<br />

5.2.2.1. Volcanic-related U mineralization……………………………….…196<br />

5.2.2.2. Unconformity-related U mineralization…………………..………...197<br />

5.2.3. Late alteration events……………………………………………………..….198<br />

5.3. Implication for uranium metallogeny in others Paleoproterozoic successor basins: the<br />

case of Finland and Guyana………………..…………………………………….…201<br />

5.3.1. Uranium metallogenic in Paleoproterozoic successor basins in Finland….…201<br />

5.3.2. Uranium metallogeny in Paleoproterozoic basins in Guyana………….…….205<br />

xiii


CHAPTER 6……………………………………………………………………………..209<br />

GENERAL CONCLUSION<br />

References……………………………...…………………………………………………212<br />

Appendix A. Isotopic data and apparent ages for various generations of uraninite in the<br />

Beaverlodge area……………….……………………………………..……………239<br />

Appendix B. REE contents of various generation of uraninite from deposits of the<br />

Beaverlodge area…………………………………………………...………………246<br />

Appendix C. REE characteristic parameters of various generation of uraninite from deposits<br />

of the Beaverlodge area……………………………………………...……………..248<br />

Appendix D. Electron microprobe analyses of various chlorite phases in deposits of the<br />

Beaverlodge area…………………….………………………………..……………250<br />

Appendix E. Electron microprobe data and temperatures of various chlorite phases from<br />

deposits of the Beaverlodge area...............................................................................255<br />

Appendix F. Results of the electron microprobe analyses for different uraninite occurrences<br />

in the Beaverlodge area…….……………………………………………..………..259<br />

Appendix G. Isotopic data and apparent ages for various generations of uraninite from the<br />

South Alligator River area…….………………………...………………………….263<br />

Appendix H. Electron microprobe data and temperatures of various chlorite phases from<br />

deposits of the South Alligator River area…………………………..………….…..267<br />

Appendix I. Structural measurements (strike and dip) and stereoplot of different structures<br />

from the Cinch Lake deposit………………………………………………………..271<br />

xiv


List of Figures<br />

Figure 1.1. Generalized geological map of the Western Churchill province, Canada………3<br />

Figure 1.2. Regional geology of the Pine Creek Inlier……………………………..……….8<br />

Figure 1.3. Genetic model for unconformity-type U deposit………………………………12<br />

Figure 1.4. Schematic representation of the location of various types of U deposits……...13<br />

Figure 1.5. Geological disciplines used in this study to evaluate the character and formation<br />

of uranium deposits in successor basins……………………………………….…….15<br />

Figure 2.1. Simplified geological map of the southwestern Churchill province, Canada…23<br />

Figure 2.2. Simplified geological map of the Beaverlodge area………………...…………25<br />

Figure 2.3. Detailed geologic map of the Cinch Lake area.………………...…………...…31<br />

Figure 2.4. Photographs of the three main lithostructural units at the Cinch Lake area…...33<br />

Figure 2.5. Various structural and textural relationships along the Main Ore shear zone at<br />

the Cinch Lake deposit.………………...………………….…………………………...…..37<br />

Figure 2.6. A. Detailed geologic map of the Ace-Fay-Verna deposits…………………….40<br />

Figure 2.7. Microphotograph of various structural and textural relationships along the Saint<br />

Louis fault at the Ace-Fay-Verna deposit. .…………………………………………....…..43<br />

Figure 2.8. Generalized paragenesis of the uranium mineralization, metamorphic<br />

relationships and deformation sequences in the Beaverlodge area……….…….46<br />

Figure 2.9. Microphotograph of typical mineral assemblages and crosscutting relationships<br />

from the Ace-Fay-Verna, Cinch Lake and Gunnar uranium deposits……….…50<br />

Figure 2.10. Backscattered Electron Microscope (BSEM) of U-rich minerals……………54<br />

Figure 2.11. U-Pb concordia diagrams from in situ isotopic analysis by LA-HR-ICP-MS of<br />

U from various deposits in the Beaverlodge area………………………………59<br />

Figure 2.12. Plot of element contents in uraninite as a function of chemical Pb<br />

ages…………………………………………………………………………...…64<br />

Figure 2.13. Schematic cross-sections illustrating the general tectonic evolution and timing<br />

of the uranium mineralization in the Beaverlodge area…………………………68<br />

Figure 2.14. Regional geological map of the North American shield……………………..71<br />

Figure 2.15. Distribution of 207 Pb/ 206 Pb ages for 260 uraninite grains along with the timing<br />

of various uranium mineralization and tectonic events…………………………77<br />

xv


Figure 3.1. Generalized geological map of the Western Churchill Province, Canada….….83<br />

Figure 3.2. Simplified geological map of the Beaverlodge area……….………………..…85<br />

Figure 3.3. Mineral paragenesis of the Beaverlodge U deposits……….…………….….…91<br />

Figure 3.4. Photomicrographs of typical mineral assemblages ……………………….…...94<br />

Figure 3.5. Content of substituting elements in U as function of the chemical Pb age……97<br />

Figure 3.6. Diagrams showing the compositional variation of chlorite phases.......….…..102<br />

Figure 3.7. Calculated δ 18 O and δ 13 C values of mineralizing fluids in equilibrium with<br />

carbonate minerals……….……………………………………………....…………106<br />

Figure 3.8. Calculated δ 18 O and δ 2 H values of mineralizing fluids in equilibrium with<br />

chlorite minerals……...…………………………………………………………….110<br />

Figure 3.9. Diagrams showing chondrite normalized REE compositions of uraninite…..113<br />

Figure 3.10. Chondrite-normalized REE patterns in uraninite ……….……………….…115<br />

Figure 3.11. Conceptual genetic model for U mineralization in the Beaverlodge area…..121<br />

Figure 4.1. Geological map of the South Alligator River area……………………….…..135<br />

Figure 4.2. Geological plan of the Coronation Hill deposit……………………….……..141<br />

Figure 4.3. Geological cross-section of El Sherana U deposits…………………………..143<br />

Figure 4.4. General mineral paragenesis of the Coronation Hill deposit……..……….…147<br />

Figure 4.5. Photomicrographs of typical mineral alteration phases of the pre-ore stage...149<br />

Figure 4.6. Photomicrographs of typical mineral alteration phases of the syn-ore stage...151<br />

Figure 4.7. Photomicrographs of typical mineral alteration phases of the post-ore stage..153<br />

Figure 4.8. General mineral paragenesis of the El Sherana deposit………………………154<br />

Figure 4.9. Microphotograph of typical mineral assemblages and crosscutting relationships<br />

of the pre-, syn, and post-ore stage in the El Sherana deposit…………………...…156<br />

Figure 4.10. Photomicrographs of mineral assemblages of the Coronation sandstones….158<br />

Figure 4.11. Calculated δ 2 H and δ 18 O values of fluids in equilibrium with clay minerals.165<br />

Figure 4.12. U-Pb concordia diagrams from in situ isotopic analysis by LA-HR-ICP-MS of<br />

U-rich minerals from the Coronation Hill and El Sherana deposits …………..…..170<br />

Figure 4.13. Pb-Pb isochron diagrams of galena and uraninite from Coronation Hill...…172<br />

Figure 4.14. Plot of element contents in uraninite as a function of chemical Pb ages……174<br />

Figure 4.15. Conceptual genetic model for U mineralization in the SAVMF……………178<br />

xvi


Figure 4.16. Distribution of 207 Pb/ 206 Pb ages and timing of various U mineralization and<br />

tectonic events that affected the South Alligator Valley area………………………184<br />

Figure 5.1. Generalized model for uranium mineralizing system in Paleoproterozoic<br />

successor basins.……………………………………………………………...…….189<br />

Figure 5.2. Geologic cross-section through the Gunnar deposit …………………………193<br />

Figure 5.3. Schematic illustration of the tectonic evolution of the Main Ore Shear Zone and<br />

the Saint Louis Fault.……………...…………………….……………..…………...195<br />

Figure 5.4. Bedrock of Finland……………………………………………………….…..202<br />

Figure 5.5. Schematic Karelian stratigraphy, lithology, and U occurrences in the Koli area,<br />

eastern Finland………..………………………………..……...…………..………..203<br />

Figure 5.6. Distribution of the Roraima Supergroup in northern South America………...206<br />

Figure 5.7. Geologic setting of the Aricheng U deposit ……………………....................208<br />

xvii


List of Tables<br />

Table 1.1. Uranium production of the Beaverlodge area………..………………..…………6<br />

Table 1.2. Production for U deposits in the Northern Territory……..…………..…………10<br />

Table 1.3. Amount of U resources and average grades………………………………….…13<br />

Table 1.4. Global U production and resources by deposit type……………………………14<br />

Table 2.1. Analytical data from the U/Pb LA-HR-ICP-MS analysis of various uraninite<br />

occurrences in the Beaverlodge area…………………………..…...………...…….53<br />

Table 2.2. Summary of the U-Pb concordia results of U-rich minerals for various events..55<br />

Table 2.3. Average chemical composition and calculated chemical Pb ages of different U<br />

occurrences in the Beaverlodge area……………………………………..………...63<br />

Table 3.1. Electron microprobe analysis and chemical composition of U and brannerite..100<br />

Table 3.2. Temperatures of formation, and average structural formulas…………………100<br />

Table 3.3. Representative electron microprobe analysis of syn-ore chlorite phases…..….104<br />

Table 3.4. Representative electron microprobe analysis of various chlorites affected by late<br />

low-temperature alteration phases…………………………………....………..….105<br />

Table 3.5. Measured δ 18 O and δ 13 C for calcite and calculated δ 18 O fluid and δ 13 C fluid values<br />

for fluids in equilibrium with carbonate minerals…………………..………….…108<br />

Table 3.6. Measured δ 18 O and δ 2 H for chlorite and calculated δ 18 O and δ 2 H values for<br />

fluids in equilibrium with chlorite minerals…………………………..…………..111<br />

Table 3.7. Characteristic of REE compositions uraninite………………………………...114<br />

Table 3.8. REE contents of uraninite from different generations of U deposits……….…117<br />

Table 3.9. Summary of the paragenetic mineral assemblages and timing of the U<br />

mineralization……….………………………………………...…………..…..…..118<br />

Table 4.1. Results of the electron microprobe analyses for uraninite occurrences in the<br />

Coronation Hill deposit…………………………………………………..……….162<br />

Table 4.2. Representative electron microprobe analyses of various chlorite phases from the<br />

Coronation Hill and El Sherana deposits………………………………….……...163<br />

Table 4.3. Measured δ 18 O and δ 2 H for muscovite and calculated δ 18 O and δ 2 H values for<br />

fluids in equilibrium with minerals……………………………………….………166<br />

xviii


Table 4.4. Isotopic data of the U-Pb LA-HR-ICP-MS analysis and apparent-ages for<br />

uraninite from the Coronation Hill and El Sherana deposits…………………….…168<br />

Table 4.5. Summary of the U-Pb concordia results of U-rich minerals for various events in<br />

the Coronation Hill and El Sherana deposits. ………………………………….…..170<br />

Table 4.6. Isotopic analyses data of the Pb-Pb LA-HR-ICP-MS analysis of galena from the<br />

Coronation Hill deposit………………………………………………………….….173<br />

Table 4.7. Summary of the major results presented in this Chapter..…………….…..…..175<br />

xix


CHAPTER 1<br />

INTRODUCTION<br />

The Athabasca Basin in Canada and the Kombolgie Basin in Australia are late<br />

Paleoproterozoic basins that host world-class unconformity-type uranium deposits that<br />

contribute to up to 35% of the global uranium market (e.g. Dahlkamp, 1993; Ghandi,<br />

2007). These deposits are spatially associated with an older uranium mineralizing system<br />

that occurs in Paleoproterozoic successor basins; the Martin Lake Basin in the Beaverlodge<br />

area, Northern Saskatchewan, Canada, and the El Sherana Basin in the South Alligator<br />

River area, Northern Territories, Australia. These successor basins formed synchronous or<br />

after major orogenic events (examples of such orogens are the Trans-Hudson Orogen in<br />

Canada and the Top-End Orogen in Australia; Needham, 1985; Hoffman, 1989) and<br />

therefore may be associated with local rifting and volcanism (Needham, 1985; Hartlaub et<br />

al., 1999; Moreilli et al., 2001).<br />

Unconformity-type uranium deposits associated with the younger Athabasca and<br />

Kombolgie basins have been intensively studied (e.g. Hoeve and Sibbald, 1978; Wilson and<br />

Kyser 1987; Kotzer and Kyser, 1995; Sweet et al., 1999; Kyser et al., 2000; Polito et al.,<br />

2004; Alexandre et al. 2007; Cuney and Kyser, 2008). Although deposits associated with<br />

successor basins in the Beaverlodge and South Alligator River areas were extensively<br />

explored in the 1950s, only limited research on their genesis has been published (e.g.<br />

Robinson, 1955; Koeppel, 1968; Beck, 1969; Sassano et al., 1972; Tremblay, 1972; Hoeve,<br />

1981; Johnston, 1984; Needham, 1985; Sibbalt, 1985; Rees, 1992). Therefore, the key<br />

1


processes by which these deposits formed remain a contentious issue. Their timing and<br />

genetic relationships with the unconformity-type deposits in the younger U-rich Athabasca<br />

and Kombolgie basins, and the successor basins themselves, are inconclusive. An<br />

understanding of the structural and geological setting, timing, origin, and nature of the<br />

fluids that formed them and altered them and their relationship with the younger<br />

unconformity-type uranium deposits are necessary to establish a more definitive genetic<br />

model for the formation of these deposits and to contribute to more effective exploration<br />

strategy in successor and associated basins in general.<br />

This thesis reflects results of a study on the fluid evolution and structural control on<br />

uranium deposits in the Martin Lake Basin in the Beaverlodge area, Northern<br />

Saskatchewan, Canada, and the El Sherana Basin in the South Alligator River area,<br />

Northern Territories, Australia, using modern geochemical techniques integrated with<br />

detailed structural analysis. Results are compared to existing models for uranium deposits<br />

in the younger Athabasca and Kombolgie basins.<br />

1.1 Geological setting of the Beaverlodge area<br />

1.1.1. Regional geological and structural setting<br />

The Beaverlodge area lies in the southwestern Rae province of the Churchill<br />

province, which is located in the northwest section of the North American shield (Fig. 1.1).<br />

The Churchill province is subdivided into the Rae and Hearne domains separated by the ca.<br />

1.91-1.90 Ga Snowbird Tectonic Zone (Hoffman, 1990; Hanmer et al., 1995) and bordered<br />

to the northwest by the ca. 1.99-1.92 Ga Taltson-Thelon Orogen (Thériault, 1992; McNicoll<br />

et al., 2000) and to the southeast by the ca. 1.9-1.8 Ga Trans-Hudson Orogen (Ansdell and<br />

2


Yang, 1995). The Beaverlodge area comprises Archean to late Paleoproterozoic rocks that<br />

can be broadly divided into four packages:<br />

3


Figure 1.1. Generalized geological map of the Western Churchill province, Canada showing<br />

the location of the Beaverlodge area (modified from Davidson and Gandhi, 1989).<br />

(1) Archean (ca. 3 Ga) basement granitoid and gneiss (Hartlaub et al., 2006);<br />

(2) Variably deformed and metamorphosed Neoarchean to Paleoproterozoic (ca. 2.33 Ga<br />

to 2.1 Ga) Murmac Bay Group rocks (Hartlaub and Ashton, 1998; Hartlaub et al.,<br />

2004a; Knox et al., 2007, 2008) that unconformably overlie the basement rocks. This<br />

Group contains quartzite, dolostone, psammite, iron formations, mafic rocks, and pelite<br />

(Hartlaub and Ashton, 1998; Ashton et al., 2000). Deposition of the Murmac Bay<br />

Group was synchronous with intrusion of the ca. 2.33 Ga to 2.29 Ga North Shore<br />

Pluton suite (Ashton and Hunter, 2003) including the 2321±3 Ma Gunnar granite<br />

(Hartlaub et al., 2004a), which hosts a major U deposit (Ahston et al., 2010; Dieng et<br />

al., 2011).<br />

(3) Paleoproterozoic ca. 1820 Ma siliciclastic red-bed sedimentary rocks and associated<br />

alkaline volcanic rocks of the Martin Lake Basin (Langford, 1981; Mazimhaka and<br />

Hendry, 1983; Hendry, 1985; Morelli et al., 2009), which unconformably overly the<br />

granitic basement and Murmac Bay Group rocks;<br />

(4) late Paleoproterozoic ca. 1750-1720 Ma sedimentary rocks of the Athabasca Group<br />

(Sibbald, 1983; Kyser et al., 2000; Rainbird et al., 2007) that unconformably overly<br />

Martin Lake Basin rocks.<br />

The basement granite and rocks of the Murmac Bay Group record the effects of<br />

at least four major Paleoproterozoic thermotectonic events:<br />

4


(1) the ca. 2.4-2.3 Ga Arrowsmith Orogen (Berman et al., 2005; Hartlaub et al., 2007;<br />

Ashton and Hartlaub, 2008), interpreted as an extensional orogen associated with the<br />

deposition of the Murmac Bay Group and the intrusion of the North Shore Plutons.<br />

(2) the ca. 1.99-1.93 Ga Thelon-Taltson Orogen (McDonough et al., 2000; McNicoll et al.,<br />

2000) produced NNE-directed recumbent folds (D 1/2 ) accompanied by ductile<br />

transposition and superseded by upright NNW-trending folds (D 3 /F 3 ) (Bethune et al.,<br />

2010). The deformation attained granulite-facies metamorphic conditions by ca. 1.93<br />

Ga (Ashton et al., 2006, 2007). The Thluicho Lake Group (Hunter, 2007), a<br />

greenschist-facies conglomerate-arkose-argillite succession basin located west of the<br />

Beaverlodge area, was deposited between ca. 1.92 Ga and 1.82 Ga (Ashton et al.,<br />

2009a) during the post-peak Taltson-Thelon Orogen.<br />

(3) the ca. 1.91-1.90 Ga Snowbird Tectonic Zone (Baldwin et al., 2003; Bethune et al.,<br />

2008; Ashton et al., 2009a) refolded D 1 to D 3 structures forming NE-trending,<br />

predominantly SW-plunging F 4 folds (Ashton et al., 2007).<br />

(4) the ca. 1.9-1.8 Ga east-west compressional regime of the Trans-Hudson Orogen formed<br />

gentle, open north-trending folds (F 5 ) that are transected by a set northeast-trending<br />

brittle fractures (Ashton et al., 2006, 2009b).<br />

1.1.2. Uranium mineralization<br />

The Beaverlodge area hosts numerous U deposits that are spatially associated with<br />

the Martin Lake Basin (Fig. 1.1). These deposits were actively mined between 1953 and<br />

1963. Ore grades were in the range of 0.15% U to 0.25% U but in places, up to 0.4% U<br />

(Robinson, 1955). About 28,500 t U 3 O 8 was mined (Table 1.1; Sibbald and Quirt, 1987),<br />

5


which is the equivalent of the Millennium deposit (Roy et al., 2005) in the Athabasca<br />

Basin. The Ace-Fay and Gunnar deposits produced up to 80% of the total U ore (Table<br />

1.1).<br />

Deposits<br />

Production (t U3O8)<br />

Eldorado-Ace-Fay 19,232<br />

Gunnar 6,892<br />

Eldorado Verna- Bolger 7 63<br />

Eldorado-Hab 436<br />

Rix Smitty 295<br />

Eldorado - Dubyna 251<br />

Cinch Lake 197<br />

Cayzor Athabasca 163<br />

Lorado 89<br />

Eldorado Eagle 77<br />

Rix Leonard 41<br />

Nicholson 41<br />

National Exploration 3 0<br />

Nesbitt Labine 23<br />

Eldorado Fishhook 15<br />

Eldorado Martin Lake 11<br />

Uranium Ridge 10<br />

Total Production 28,546<br />

Table 1.1. Uranium production of the Beaverlodge area (after Sibbald and Quirt, 1987)<br />

The uranium deposits were generally subdivided into pegmatite-type and vein-type<br />

deposits (Beck, 1969; Robinson, 1955; Tremblay, 1972). The latter are further divided into<br />

a small group of complex mineralogy and a larger group of simple mineralogy (Tremblay,<br />

1972; Hoeve, 1978; Kotzer et al., 1995). Deposits of simple mineralogy consist of<br />

pitchblende with lesser amount of pyrite, chalcopyrite, galena, ±nolanite and minor amount<br />

of bornite, covellite, chalcocite, digenite, and native copper (Robinson, 1955). Deposits of<br />

complex mineralogy consist of pitchblende with cobalt-nickel arsenides and sulfides,<br />

cobalt-nickel lead selenides, and native platinum, gold, silver and copper in addition to<br />

6


minerals found in deposits of simple mineralogy (Robinson, 1955). The ore is associated<br />

with high Si, Al, Fe, Ca, Na, Cu, Pb and V (Beck, 1969) and the ore mineralogy is similar<br />

to the complex-type unconformity-related U deposits in the Athabasca Basin (Hoeve et al.,<br />

1978; Fayek et al., 1997). The common gangue minerals in order of abundance are<br />

hematite, calcite, chlorite, quartz, feldspar and fluorite (Robinson, 1955).<br />

Hoeve et al. (1978) proposed two different periods of metallogenesis based on a<br />

correlation between deposit types and their timing. They argue that deposits of simple<br />

mineralogy formed at 1780 Ma (Koeppel, 1968) and are associated with Na-metasomatism<br />

during the peak Trans-Hudson Orogen, whereas those of complex mineralogy formed at ca.<br />

1500-1400 Ma and may be equated to the unconformity-type deposit of diagenetic origin in<br />

the Athabasca Basin (Peiris et al., 1988; Kotzer et al., 1990, 1993, 1995; Rees, 1992).<br />

1.2. Geological setting of the South Alligator Mineral Field area<br />

1.2.1. Regional geological and structural setting<br />

The South Alligator River area is located in the South Alligator Valley, in Northern<br />

Territories, Australia (Fig. 2.1). It comprises rocks aged from Neoarchean to late<br />

Paleoproterozoic, which are divided into four main sequences:<br />

(1) Neoarchean ca. 2.5 Ga basement granitic rocks (Needham and Stuart-Smith, 1985);<br />

(2) Paleoproterozoic (ca. 2.2 Ga to 1.87 Ga) metasedimentary and metavolcanic rocks of<br />

the Pine Creek Orogen sequence unconformably overlying basement rocks (Page et al.,<br />

1980; Needham et al., 1987). In the South Alligator River area, the upper part of the<br />

South Alligator Group, the Koolpin Formation is a succession of interbedded siltstone,<br />

7


dolostone and carbonaceous shale (Lally et al., 2006) that host most of the uranium<br />

mineralization (Valenta, 1989, 1991; Wyborn et al., 1991; Mernagh et al., 1994; Lally<br />

and Bajwah, 2006);<br />

8


Figure 1.2. Generalized regional geology of the Pine Creek Inlier, showing uranium fields,<br />

deposits, and prospects (modified from Needham et al., 1988).<br />

(3) Paleoproterozoic (ca. 1829 Ma to 1822 Ma) silisiclastic red beds and associated felsic<br />

and mafic volcanic rocks of the El Sherana-Edith River Group unconformably overlie<br />

Pine Creek Orogen sedimentary rocks (Jagodzinski, 1992; Kruse et al., 1994); and<br />

(4) Late Paleoproterozoic (ca. 1822 Ma to 1720 Ma) volcanic and sedimentary rocks of the<br />

Kombolgie Basin (Sweet et al., 1999) unconformably overlying older rocks and are<br />

intruded by the 1723±6 Ma Oenpelli dolerite (Kyser et al., 2000).<br />

Johnston (1984) and Valenta (1990) described three deformation phases in the South<br />

Alligator River area, which are related to the ca. 1.87-1.78 Ga Top End Orogen (Needham<br />

and DeRoss, 1990). D 1 deformation occurred during the ca. 1.87-1.96 Ga Barramundi<br />

Orogen (Page and Williams, 1988) and produced isoclinal folding and bedding-parallel<br />

cleavage, related to major low-angle reverse faulting, particularly at the base of the Koolpin<br />

Formation (Johnston, 1984). D 2 occurred during the 1.86-1.84 Ga Nimbuwah event<br />

(Ferguson and Needham, 1978; Lally and Worden, 2004) and formed regional-scale,<br />

northwest trending, upright, tight to isoclinal folds and a penetrative axial-plane cleavage.<br />

This event is associated with greenschist grade metamorphism in the South Alligator River<br />

area. Post-Nimbuwah D 3 deformation is characterized by open, upright northeast-trending<br />

folds and affected the El Sherana Basin rocks (Valenta, 1991).<br />

1.2.2. Uranium mineralization<br />

U mineralization occurs in three main areas of the Pine Creek Orogen: the Alligator<br />

Rivers Uranium Field, the South Alligator Rivers Uranium Field, and the Rum Jungle<br />

9


Mineral Field (Figure 1.2). Many deposits in these areas are classified as unconformity-type<br />

(Lally et al., 2006). In the South Alligator Rivers area, U deposits lie within a northwesttrending<br />

structural belt of Paleoproterozoic metasedimentary and metavolcanic rocks<br />

(Walpole et al. 1968; Crick et al. 1980; Needham et al. 1988; Valenta, 1991; Wyborn et al.<br />

1990a). Thirteen deposits (Table 1.2) and fifteen prospects were discovered by 1953<br />

(McKay and Miezitis, 2001). Between 1956 and 1964, a total of 875 t of U 3 O 8 from 146<br />

500 t of ore was produced (Table 1.2, Fisher, 1968). The bulk of the production was from<br />

underground operations, with a few small open-cut pits (Lally et al., 2006).<br />

Deposits Ore tonnage Grade t U 3 O 8 Au and PGE<br />

Coronation Hill (production and reserve) 0.363 Mt 0.52 1869 19.6t Au, 0.8t Pt, 2.1t Pd<br />

El Sherana (production) 41100t 0.55 226 Minor Au<br />

El Sherana West (production) 21658t 0.82 185 Minor Au<br />

Rockhole (production) 13155t 1.11 152 Minor Au<br />

Palette (production) 4850t 2.46 124<br />

Saddle Ridge (production) 30341t 0.24 78<br />

Scinto 5 (production) 5800t 0.37 22<br />

Scinto 6 (production) 1760t 0.16 3<br />

Koolpin Creek (production) 530t 0.13 3<br />

Skull (production) 630t 0.55 3<br />

Sleisbeck (production) 0.34 3<br />

Table 1.2. Production for U deposits in the Northern Territory, after Fisher, 1968.<br />

Most of the deposits lie on or near the El Sherana–Palette fault (Fig. 1.2), a<br />

northwest-striking dextral strike-slip fault system (Valenta, 1990), and were formed in<br />

dilatational zones at fault bends or intersections (Valenta, 1991). The deposits occur in<br />

greenschist facies host rocks and are surrounded by alteration zones that may extend for<br />

over 1 km (Mernagh et al., 1994). The mineralization is essentially uraninite associated<br />

with precious metals occurring as vein-type lodes in faults or shears, and occurs at the<br />

unconformity between sediments of the El Sherana Group and the underlying cherty<br />

10


ferruginous siltstone of the Koolpin Formation (Ayres et al., 1975). The U mineralization is<br />

accompanied by minor amount of galena, chalcopyrite, pyrite, native gold, and clausthatite<br />

(Ayres et al., 1975). The syn-ore alteration is characterized by muscovite-chlorite<br />

±hematite±kaolinite±biotite (Wyborn, 1992; Mernagh and Wyborn, 1994).<br />

1.3. Uranium mineralized systems in the Athabasca and Kombolgie basins<br />

Uranium deposits in the Athabasca and Kombolgie basins are major sources of high<br />

grade U ore (McGill et al., 1993; Bruneton, 1987). These deposits consist of massive pods,<br />

veins and disseminations of uraninite spatially associated with unconformities between<br />

basement Paleoproterozoic metasedimentary and Archean to Paleoproterozoic granitoid<br />

rocks and overlying relatively flat-lying, late Paleoproterozoic siliciclastic fluvial red-bed<br />

strata (Hoeve and Sibbald, 1978; Hoeve and Quirt, 1984; Wallis et al., 1986; Sibbald and<br />

Quirt, 1987).<br />

The uranium deposits can be hosted in structures in the basement (ingress type, Fig.<br />

1.3) or in the overlying siliciclastic strata and paleo-weathered basement rocks (egress type,<br />

Fig. 1.3) at the unconformity (Hoeve et al., 1984; Sibbald, 1985; Fayek and Kyser, 1997).<br />

The ore-forming fluids originate either from the overlying sandstone (e.g. Kotzer et al.,<br />

1995; Polito et al., 2005; Cuney and Kyser, 2008) or the underlying basement (e.g. Cuney<br />

et al., 2005). These deposits are associated with alteration zones around the mineralization<br />

(Hoeve et al., 1984; Quirt, 2003). In basement-hosted deposits, illitization is predominant in<br />

the distal alteration zone from the U mineralization, and chloritization is the typical<br />

alteration in the proximal zone (e.g. Wilde, 1989; 1992; Kotzer et al., 1995; Polito et al.,<br />

11


2005). U mineralization is controlled by structures that have been reactivated, which are<br />

favorable sites for fluid circulation (Schultz, 1991; Tourigny, 2002).<br />

Fracture-Controlled<br />

Mobilized U Mineralization<br />

(Perched)<br />

Lake<br />

U Mineralization<br />

at unconformity<br />

(Basin-hosted)<br />

Unconformity<br />

Pelitic<br />

Gneiss<br />

Vein & Breccia<br />

U mineralization<br />

basement-hosted<br />

Pelitic<br />

Gneiss<br />

Granitic<br />

Gneiss<br />

Graphitic<br />

Pelitic Gneiss<br />

Arkosic<br />

Gneiss<br />

Quartzite<br />

Figure 1.3. Genetic model for unconformity-type U deposit (modified from Cuney and<br />

Kyser, 2008).<br />

Unconformity-type U deposits in the Athabasca and Kombolgie basins formed at ca.<br />

1600 Ma and 1675 Ma, respectively, (Alexandre et al., 2006; Polito et al., 2012).<br />

Temperatures were 200 o C and involved the interaction of oxidizing, saline basinal fluids<br />

carrying U 6+ with either reducing basement rock types (basement-hosted, Fig. 1.3) or<br />

reducing fluids from the basement (sediment-hosted, Fig. 1.3), thereby precipitating U 4+ at<br />

the unconformity (e.g. Hoeve and Quirt, 1984; Kotzer and Kyser, 1995; Cuney et al.,<br />

2005). Unconformity-type U deposits in the Athabasca and Kombolgie basins have<br />

produced up to 35% of the world U production (e.g. Ruzicka, 1996; Ghandi, 2007),<br />

12


compared to the small percentage produced in successor basins (Table 1.3) (Sibbald and<br />

Quirt, 1987).<br />

ore (Kt) % U Tonnes U<br />

Olympic Dam (Australia) 2877610 0.03 863283<br />

Athabasca Basin (Canada) 28810 1.922 553778<br />

Kombolgie Basin (Australia) 87815 0.323 283304<br />

Thelon Basin (Canada) 11989 0.405 48510<br />

Beaverlodge District (Canada) 15717 0.165 25539<br />

Hornby Bay Basin (Canada) 900 0.3 2700<br />

South Alligator Valley U Field - 0.66 2668<br />

Paterson Terrane (Australia) 122200 0.25 30<br />

Table 1.3. Amount of U resources and average grades (modified from Jefferson et al., 2007).<br />

Uranium also occurs in other deposit types (Fig. 1.4) including: breccia complex,<br />

sandstone hosted, surficial, conglomeratic, volcanic, metasomatic, metamorphic, granitehosted,<br />

and vein-type deposits (Cuney and Kyser, 2008). So far, unconformity-related<br />

deposits have produced the majority of U (Table 1.4).<br />

13


Figure 1.4. Schematic representation of the location of various types of U deposits (modified<br />

from Cuney and Kyser, 2008)<br />

U deposit type Global U production (%) Global U resource (%)<br />

Unconformity-related 42 4<br />

Sandstone-hosted 30 10<br />

Metasomatic 9 4<br />

Volcanic 9 1<br />

Breccia Complex 8 6<br />

Quartz-pebble conglomerate 2 2<br />

Table 1.4. Global U production and resources by deposit type (after Cuney and Kyser 2008).<br />

1.4. Uranium mineralized systems in the successor basins<br />

In successor basin areas, there is no consensus regarding the origin of the fluids that<br />

carried the uranium, the timing of the deposits or their relationship with the younger U-rich<br />

Athabasca and Kombolgie basins primarily because they are wholly understudied. Previous<br />

results on deposits in successor basins are discussed in chapters 2 to 4. Diagenetic<br />

processes and fluid evolution in the Martin Lake and El Sherana basins have never been<br />

fully addressed, nor has basin versus basement sources for U and other metals in the<br />

deposits. More recent studies on U in successor basins focussed only on aspects of a few<br />

deposits and the older studies dating back to the 1950’s often lacked the necessary details<br />

and technologies needed to construct meaningful exploration models (e.g. Condon and<br />

Walpole, 1955; Tremblay, 1972). Indeed, there is a lack of basic knowledge on whether the<br />

successor basins could form or host an exploitable deposit and what their significance is to<br />

the overlying U-rich Athabasca and Kombolgie basins.<br />

14


1.5. Purpose of this Thesis<br />

The main objectives of this thesis are:<br />

(a) to re-evaluate the character and formation of uranium deposits in successor basins in<br />

Canada and Australia and compare them to those in the younger U-rich basins with<br />

which they are spatially associated, and<br />

(b) to identify key factors controlling U mineralization in successor basins by integrating<br />

aspects of structural geology, geochronology, petrography and geochemistry (Fig. 1.5)<br />

to detail the structural and fluid evolution of uranium deposits in successor basins and<br />

how they are related to unconformity-related U deposits in the younger basins.<br />

Figure 1.5. Geological disciplines used in this study to evaluate the character and formation of<br />

uranium deposits in successor basins including deformation that created fluid conduits,<br />

timing of the fluids events, the nature of the ore-forming fluid and the uranium source. All are<br />

necessary to construct a conceptual genetic model for uranium deposit.<br />

15


In particular, the key issues to be addressed include:<br />

(1) The geological and structural settings of these deposits. The goals are to define the<br />

deformation history and to analyze the geometry and kinematics of uranium-bearing<br />

structures that are necessary to understand key structural features that are favorable for<br />

fluid mobility and uranium mineralization (Fig. 1.5).<br />

(2) The paragenesis and crystal chemistry of the alteration assemblages and uranium<br />

mineralization in successor basins (Fig. 1.5), including ore and alteration mineral<br />

assemblages and their relative timing.<br />

(3) Determination of the age, origin, composition and timing of the fluids that produced<br />

the uranium mineralization in successor basins (Fig. 1.5). Results are compared with<br />

fluids that formed the younger unconformity-type U deposits.<br />

(4) Establish a conceptual genetic model for uranium mineralization in successor basins by<br />

integrating results from structural, geochronological, petrographic and geochemical<br />

data (Fig. 1.5) and predict sites of mineral deposition in analogous successor basins by<br />

identifying key fluid and deformation events in their evolutions that are linked to<br />

economic uranium mineralization.<br />

This study focuses on uranium deposits in the Beaverlodge (Fig.1.1) and South<br />

Alligator River areas (Fig. 1.2). These two areas share similar geological and structural<br />

setting. They host older U deposits in Paleoproterozoic successor basins that are spatially<br />

associated with unconformity-type U deposits in younger late Paleoproterozoic basins. In<br />

the Beaverlodge area (Fig. 1.1), the Gunnar, Ace-Fay, and Cinch Lake deposits are studied.<br />

These deposits represent the spectrum of deposit types and are the largest in the area (Table<br />

16


1.1). In the South Alligator Valley area, research is focused on the Coronation Hill and El<br />

Sherana deposits, the largest deposits of their type in the area (Fig. 1.2, Table 1.2).<br />

1.6. Thesis Structure<br />

The results of this research are presented in three manuscripts (Chapters 2 to 4).<br />

Chapter 2 (accepted pending moderate revisions in Precambrian Research) details<br />

the timing of deformation, fluid flow and uranium mineralization in the Beaverlodge area.<br />

U-Pb geochronology of uraninite from various uranium deposits, together with<br />

petrographic and structural analysis along the Main Ore shear zone at the Cinch Lake<br />

deposit and the Saint Louis fault at the Ace Fay deposit, are used to constrain the timing of<br />

deformation and fluid events and to clarify the relationship between fault activity and<br />

uranium mineralization. Ages of the uranium mineralization and late alteration events that<br />

affected them are used to correlate the chronology of fault activity and uranium<br />

mineralization to major thermotectonic events associated with the evolution of the North<br />

American shield.<br />

Chapter 3 (accepted pending moderate revisions to Economic Geology) evaluates the<br />

character and formation of the fluids that formed uranium deposits in the Beaverlodge area<br />

and determines key geochemical factors that control uranium mineralization. A mineral<br />

paragenesis that details the relative timing of alteration minerals is presented. Stable isotope<br />

geochemistry, rare earth element contents in uraninite and mineral crystal chemistry are<br />

used to constrain the nature and origin of fluids. These results are used to identify key<br />

factors controlling uranium mineralization in deposits of the Beaverlodge area, present a<br />

17


genetic model for the U mineralization, and compare the Beaverlodge U deposits to those<br />

in the younger, U-rich Athabasca Basin.<br />

Chapter 4 (submitted to Mineralium Deposita) focuses on U deposits in the South<br />

Alligator Valley area. In this chapter, we evaluate the character and formation of U<br />

mineralization of the El Sherana and Coronation Hill deposits using a mineral paragenesis<br />

that details the relative timing of alteration minerals. We also constrain the timing, nature<br />

and origin of the fluids in equilibrium with these minerals using stable isotope<br />

geochemistry, U-Pb geochronology of paragenetically well-characterized U-rich minerals,<br />

and mineral crystal chemistry. These results are used to identify key processes controlling<br />

U mineralization in the South Alligator Valley area, present a genetic model for the U<br />

mineralization, and compare the South Alligator River U deposits to those in the younger<br />

and U-rich Kombolgie Basin.<br />

18


CHAPTER 2<br />

TECTONIC HISTORY OF THE NORTH AMERICAN SHIELD<br />

RECORDED IN URANIUM DEPOSITS IN THE BEAVERLODGE<br />

AREA, NORTHERN SASKATCHEWAN, CANADA<br />

Abstract<br />

Paragenetic and structural relationships and geochronology of minerals in uranium<br />

deposits in the Beaverlodge area, Northwestern Saskatchewan, Canada, reveal six periods<br />

of uranium mineralization associated with multi-stage deformation during the Proterozoic.<br />

The Saint Louis fault and the Main Ore shear zone are northeast striking, southeast-dipping,<br />

oblique-normal and dextral fault systems that have mylonite-dominated footwalls. These<br />

faults display evidence of exhumation and episodic structural reactivation at progressively<br />

shallower crustal levels, accompanied by fluid flow, hydrothermal alteration, and uranium<br />

mineralization.<br />

New geochronologic data on uranium mineralization and alteration events record<br />

over 2.3 Gyrs of protracted tectonic evolution of the North American shield. 207 Pb/ 206 Pb<br />

ages of 2293±17 Ma and 2289±20 Ma date two minor uranium mineralization stages<br />

associated with cataclasite rocks and early tensional veins, respectively, coincident with<br />

late Arrowsmith orogenic exhumation. Following emplacement of the Gunnar granite at<br />

2321±3 Ma, albite metasomatic alteration of the granite is associated with a third moderate<br />

uranium mineralizing event. During the late Paleoproterozoic, exhumation along major<br />

faults caused the deformation style to change from dominantly brittle-ductile to brittle at<br />

shallower structural levels. Massive brecciation of pre-existing rocks is associated with the<br />

19


fourth and most significant uranium-mineralizing event at 1848±5 Ma, coincident with fault<br />

reactivation during tectonic shortening and regional metamorphism related to the Trans-<br />

Hudson Orogen or more likely post-peak compressional uplift during terminal collision of<br />

the Taltson-Thelon Orogen. Subsequently, formation of the Martin Lake Basin and<br />

intrusion of mafic dikes are related to the fifth minor uranium mineralizing event at<br />

1812±15 Ma reflecting rifting related to late stage Trans-Hudson Orogen. Late mineralized<br />

veins during the Mesoproterozoic crustal growth of the Nuna supercontinent are associated<br />

with the sixth mineralizing event at 1620±4 Ma, coincident with the Mazatzal Orogen and<br />

the formation of the unconformity-related uranium mineralization in the proximal<br />

Athabasca Basin.<br />

Post-mineralization alteration and resetting events of uraninite further record various<br />

major orogenic events that have affected the North American shield.<br />

2.1. Introduction<br />

Deeply exhumed fault zones can serve as vehicles to understand the complex timing<br />

relationships between deformational, hydrothermal and ore-forming processes. An<br />

important step in understanding the structural setting of uranium deposits associated with<br />

highly and multiply deformed and metamorphosed Paleoproterozoic terranes is establishing<br />

the timing relationships of fault activity and uranium mineralization to regional<br />

thermotectonic events.<br />

The Beaverlodge area in the central-southern Archean Rae province, Northwestern<br />

Saskatchewan, Canada (Fig. 2.1), hosts numerous fault-controlled uranium deposits. The<br />

Main Ore shear zone at the Cinch Lake deposit and the Saint Louis fault at the Ace-Fay-<br />

20


Verna deposits are two northeast-striking, southeast-dipping, oblique-normal and dextral<br />

fault systems that offer an excellent setting to understand the temporal relationship of fault<br />

activity and uranium mineralization to regional thermotectonic events (Fig. 2.2).<br />

The timing and tectonic setting of uranium mineralization in the Beaverlodge area has<br />

been a contentious issue. Although the spatial relationship between uranium mineralization<br />

and major structures has been well documented (e.g. Robinson, 1955; Tremblay, 1968;<br />

Beck, 1969; Beecham, 1969; Morton and Sassano, 1972; Sassano, 1972; Sibbald, 1982,<br />

Ashton et al., 2000, 2010), the timing of tectonic and fluid events in these deposits and their<br />

relationships with fault activity and regional thermotectonic events have never been fully<br />

elucidated.<br />

In this chaper, U-Pb dating by laser ablation-high resolution inductively-coupled<br />

plasma mass spectrometry (LA-HR-ICP-MS) on uraninite from uranium deposits, together<br />

with petrographic and structural analysis along the Main Ore shear zone and the Saint Louis<br />

fault, are used to constrain the timing of deformation and fluid events and to clarify the<br />

relationship between fault activity and uranium mineralization. Ultimately, ages of primary<br />

uranium mineralization and late alteration events that affected them are used to correlate<br />

the chronology of fault activity and uranium mineralization to major orogenic events<br />

associated with the evolution of the North American shield.<br />

2.2. Geologic Setting<br />

2.2.1. General geology<br />

21


The Beaverlodge area is part of the Churchill province, which is located in the<br />

northwest section of the North American shield (Fig. 2.1). The Churchill province is<br />

subdivided into the Rae and Hearne domains separated by the ca. 1.91-1.90 Ga Snowbird<br />

Tectonic Zone (Hoffman, 1990; Hanmer et al., 1995) and bordered to the northwest by the<br />

ca. 1.99-1.92 Ga Taltson-Thelon Orogen (Thériault, 1992; McNicoll et al., 2000) and to the<br />

southeast by the ca. 1.9-1.8 Ga Trans-Hudson Orogen (Ansdell and Yang, 1995). The<br />

Beaverlodge area lies within the southwestern Rae province (Fig. 2.1) and comprises<br />

Neoarchean to Mesoproterozoic rocks that can be broadly divided into four packages (Fig.<br />

2.2): (1) Neoarchean basement granitoid and gneiss (Hartlaub et al., 2006); (2) variably<br />

deformed and metamorphosed Neoarchean to Paleoproterozoic Murmac Bay Group rocks<br />

(Hartlaub and Ashton, 1998; Hartlaub et al., 2004a) that uncomformably overlie the<br />

basement rocks; (3) Paleoproterozoic siliciclastic red-bed sedimentary rocks and associated<br />

alkaline to sub-alkaline volcanic rocks known as the Martin Lake Basin (Hendry, 1983;<br />

Morelli et al., 2001, 2009). Martin Lake Group basal conglomerates directly overlie<br />

quartzites of the Murmac Bay Group and argillaceous rocks of the Thluicho Lake Group<br />

(Scott, 1978, Hunter et al., 2003, 2004; Yeo, 2005) at angular unconformities in the western<br />

Beaverlodge Domain and along the northern shore of Lake Athabasca, respectively (Ashton<br />

et al., 2009), and (4) Mesoproterozoic sedimentary rocks of the Athabasca Group (Rainbird<br />

et al., 2007) that uncomformably overlie Martin Lake Basin rocks.<br />

The basement complex comprises a number of granitoids including the Elliot Bay<br />

(3014±10 Ma; Persons, 1983), Lodge Bay (3060±40 Ma; O’Hanley, et al., 1991), and<br />

Cornwall Bay (2999±7 Ma; Hartlaub et al., 2004a) granites. The unconformity between the<br />

22


asement and the Murmac Bay Group is generally sheared but the basal polymictic<br />

conglomerate is locally preserved (MacDonald and Slimmon, 1985).<br />

Location Map<br />

Study area<br />

<br />

Uranium deposits<br />

Figure 2.1. Simplified geological map of the southwestern Churchill province, Canada,<br />

showing lithotectonic units, uranium deposits and the Beaverlodge location. (modified from<br />

Hoffman, 1988).<br />

The Murmac Bay Group is composed of metamorphosed and moderately to highly<br />

deformed basal quartzite, basalt, ultramafic to intermediate igneous rocks, psammite and<br />

pelite, with minor amounts of conglomerate, banded iron formation, and carbonates<br />

(Hartlaub and Ashton, 1998; Ashton et al., 2000). The Group is metamorphosed from<br />

lowermost amphibolite to granulite facies to lower greenschist facies (Ashton and Card,<br />

23


1998; Hartlaub and Ashton, 1998). Recent work indicates that the basal quartzo-feldspathic<br />

units have a maximum depositional age of 2330±3 Ma (Card et al., 2007). The Murmac<br />

Bay Group is intruded by a suite of ca. 2.33–2.30 Ga granites named ‘North Shore Plutons’<br />

(Macdonald et al., 1985) including the 2321±3 Ma Gunnar granite (Hartlaub et al., 2007),<br />

which hosts the Gunnar uranium deposit (Fig. 2.2). The timing of deposition of the<br />

Murmac Bay Group with respect to emplacement of the ‘North Shore Plutons’, thought to<br />

be related to the Arrowsmith Orogen (Hartlaub et al., 2007), remains contentious.<br />

The Paleoproterozoic Martin Lake Basin (Fig. 2.2) is estimated to be a ca. 5000 m-<br />

thick, molasse, red-bed succession (Langford, 1981; Mazimhaka and Hendry, 1984) of<br />

essentially unmetamorphosed arkose, conglomerates, and siltstone with mafic flows and<br />

sills of alkaline affinity (Morelli et al., 2009). The fault-controlled basin is confined to a<br />

broad open syncline centered about the Martin Lake (Ramaekers, 1981; Ashton et al.,<br />

2001). Suites of east to southeast striking mafic dikes, dated at 1818±4 Ma, are interpreted<br />

as feeders to the Martin Lake mafic flows (Morelli et al., 2009). The Martin Lake Basin<br />

formed during a late phase of the Trans-Hudson Orogen and can therefore be classified as<br />

a successor basin (Clendenin et al., 1988).<br />

Outliers of the Athabasca Formation lie above the Martin Lake Basin south of the<br />

Beaverlodge area (Fig. 2.2), where they generally comprise flat-lying and undeformed<br />

sandstone with minor mudstone, conglomerate and greywacke (Sibbald, 1983).<br />

24


Strike slip normal fault<br />

Figure 2.2. Simplified geological map of the Beaverlodge area and location of uranium<br />

deposits, including those in this study. (modified from Macdonald and Slimmon, 1985).<br />

Rocks within the Beaverlodge area have been affected by at least four episodes of<br />

deformation (Bethune et al., 2008; Ashton et al., 2009a). The first deformation episode<br />

25


(D 1 ) produced a regional migmatitic foliation (S 1 ). The second deformation episode (D 2 )<br />

produced tight to isoclinal folds of early S 1 fabric and associated shear zones (Ashton and<br />

Hartlaub, 2008). These two deformational events resulted in an east-southeast striking<br />

structural fabric coinciding with the 1.94-1.92 Ga peak metamorphism of the Taltson<br />

Magmatic Suite (McDonough et al., 2000). An overprinting northeast-striking regional<br />

fabric associated with tight to isoclinal foldind (D 3 ) is interpreted to be synchronous with<br />

the 1.91-1.90 Ga metamorphic event of the Snowbird Tectonic Zone (Bethune et al.,<br />

2008). Gentle upright folds with north-trending hinges represent the last phase of regional<br />

deformation (D 4 ) that affected the Martin Lake Basin and Murmac Bay Group rocks; these<br />

are likely associated with late stage of the Trans-Hudson Orogen (Ashton et al., 2009a).<br />

2.2.2. Previous models age for uranium mineralization in the Beaverlodge area<br />

The Beaverlodge area hosts a multitude of uranium deposits (Fig. 2.2), which were<br />

actively mined between 1953 and 1963. About 284 deposits were known by 1969 and ca.<br />

25000 tU was mined (Sibbald and Quirt, 1987). Ore grades were in the range of 0.15 to<br />

0.25% U, but in places, up to 0.4% U (Robinson, 1955).<br />

The age and evolution of the uranium mineralization in the Beaverlodge area are<br />

debated and different age models have been proposed. Collins et al. (1954) suggested that<br />

the first period of uranium mineralization lasted from 1860 to 1630 Ma with alteration<br />

occurring at 1100-900 Ma, 650-600 Ma, and 400-300 Ma. They interpreted this range of<br />

ages as related to alteration and resetting stages during successive tectonic events.<br />

Robinson (1955a) indicates that the earliest vein-type uranium mineralization occurred<br />

between 1600 Ma and 1500 Ma and followed, possibly transitionally, earlier deposition of<br />

26


U and Th in syngenetic deposits. He suggested that the vein-type deposits were followed<br />

by periods of mineralization in the intervals of 1500-1400 Ma, 950-850 Ma, and 350-250<br />

Ma and indicates that these deposits were reopened and reworked over a long period of<br />

time. Wasserburg and Hayden (1955) obtained an age of ca. 1.87 Ma in uraninite from<br />

Viking Lake deposit located east of the Ace-Fay deposits and interpreted this age as the<br />

earliest uranium mineralization in the Beaverlodge area. Aldrich and Wetherill (1956) and<br />

Eckelman and Kulp (1957) proposed that the uranium mineralization was deposited at<br />

1900 Ma with subsequent alteration and Pb loss occurring at 1200 Ma and 200 Ma. Russel<br />

et al. (1957) reported an age of 1800 Ma for the west orebodies of the Ace deposit (Fig.<br />

2.2) and a second generation of mineralization at ca. 940 Ma. Results from Koeppel (1969)<br />

support the formation and evolution of the uranium mineralization during five discrete<br />

periods that span a time of more than 2200 Myr. Koeppel (1969) reported an U-Pb<br />

concordia upper intercept age of 1930 Ma and a lower intercept of 1780 Ma with episodic<br />

Pb loss at 1110 Ma, 270 Ma, and 200-0 Ma. He interpreted the age of 1930 Ma was related<br />

to pegmatite-type mineralization and the 1780 Ma date as the age of the vein-type uranium<br />

mineralization. Bell (1981) proposed an age of 1740 Ma for initial uranium deposition and<br />

Dudar (1982) found apparent 207 Pb/ 206 Pb ages ranging from 1100 Ma to 430 Ma for<br />

brannerite in the Fay deposit (Fig. 2.2). Interpretation of fluid inclusions, stable isotope,<br />

and radiogenic isotope data from the veins and mine granites (Fig. 2.2) in the Goldfield<br />

area, led Rees (1992) to identify up to six fluid events occurring from ca. 2.0 Ga to 1.0 Ga<br />

that he interpreted to be related to major thermotectonic events.<br />

27


These previous age models do not take into account the various styles of uranium<br />

mineralization and associated deformation, and their spatial and relative temporal<br />

relationships (Collins et al., 1954; Robinson, 1955a; Koeppel, 1969). Most of these models<br />

have been limited to a single deposit (Russel et al., 1957; Bell, 1981; Dudar, 1982; Rees,<br />

1992) that cannot provide a regional picture of the timing of uranium mineralization and<br />

fluid events and their relationship to deformational history.<br />

In this chapter, structural, petrographic and metamorphic relationships along the<br />

Main Ore shear zone at the Cinch Lake deposit and the Saint Louis fault at the Ace-Fay-<br />

Verna deposits (Fig. 2.2) are used to constrain the timing of deformation and fluid events.<br />

Paragenetically constrained uraninite grains collected from five uranium deposits (Fig. 2.2)<br />

are dated to determine the timing of the uranium mineralization and alteration events.<br />

2.3. Methodology<br />

2.3.1. U-Pb dating of uranium-rich minerals by LA-HR-ICP-MS<br />

U-Pb isotope ratios were determined by laser ablation-high resolution inductivelycoupled<br />

plasma mass spectrometry (LA-HR-ICP-MS) (Chipley et al., 2007) using a<br />

Finnigan MAT ELEMENT XR HR-ICP-MS and a NEPTUNE HR-MC-ICP-MS, both<br />

equipped with a high-performance Nd:YAG New Wave UP-213 laser ablation system at<br />

the Queen’s Facility for Isotope Research. Ablation of uraninites was achieved on polished<br />

thin sections using a 30 to 40μm spot size with 35% to 40% laser power at a frequency of<br />

2Hz. The argon gas flows were as follows: cooling gas, 1.5l/min; auxiliary gas, 1.0l/min;<br />

and sample carrier gas, 1.0 l/min. A low resolution of 350 (defined as the ratio of mass<br />

over peak width mass at 5% of the signal height) was used. For each sample, 204 Pb, 206 Pb,<br />

28


207 Pb, 235 U and 238 U were measured and corrections for common Pb were made scan-byscan<br />

to each spot. No corrections were made to the 238 U/ 235 U ratios as they were near the<br />

137.8 natural ratios. The ages were verified using an in-house 1000 Ma uraninite standard.<br />

2.3.2. Electron-microprobe procedure and calculations of chemical Pb age of the<br />

uranium mineralization<br />

Polished thin sections were examined with reflected light optical microscopy and<br />

Scanning Electron Microscopy. A Cameca SX-100 Electron Microprobe equipped with 4<br />

wavelength-dispersive spectrometers, an EDS system, and Back-Scattered Electron and<br />

Secondary-Electron Detectors at the <strong>University</strong> of Manitoba, Winnipeg, Canada, was used<br />

to measure UO 2 , SiO 2 , CaO, Fe 2 O 3 , TiO 2 , Cr 2 O 3 , V 2 O 5 , PbO, P 2 O 5 , K 2 O ThO 2 , MnO,<br />

Y 2 O 3 , Tb 2 O 3 , and CuO. Analytical results are accurate to 2% relative for major elements<br />

and 5% relative for minor elements (


the age when the concentrations of the secondary elements (e.g. Ca, Fe and Si) were<br />

negligible (e.g. Alexandre and Kyser, 2005).<br />

Mineral name abbreviations used in this chapter are those from Kretz (1983). The<br />

superscript numerical value on mineral name abbreviations reflects mineral growth stages.<br />

2.4. Results<br />

2.4.1. The Main Ore shear zone<br />

2.4.1.1. Geology of the Cinch Lake deposit<br />

The Cinch Lake deposit is located 2.5 km south of Uranium City (Fig. 2.2). The<br />

uranium mineralization is hosted in quartzo-feldspathic gneiss (Turek, 1962; Tortosa,<br />

1983) and associated with a northeast-striking band of mylonite named the Main Ore shear<br />

zone, which parallels the Black Bay fault (Bergeron, 2001). Three main lithological units<br />

outcrop in the Cinch Lake area that generally strike northeast and dip southeast: a<br />

leucocratic porphyroclastic metagranitoid, a hornblende-feldspar gneiss, and a<br />

melanocratic porphyroclastic metagranitoid (Fig. 2.3).<br />

The leucocratic porphyroclastic metagranitoid unit is exposed in the southeastern<br />

part and occupies the hanging wall of the shear zone (Figs. 2.3A and 2.3B). The rock is<br />

cataclasite-dominated (Fig. 2.4A) weakly foliated and comprises broken fragments of<br />

plagioclase, quartz and feldspar embedded in a matrix composed of hematite, quartz,<br />

chlorite, calcite, sericite, and pyrite (Fig. 2.4B).<br />

30


A<br />

A’<br />

B<br />

31


Figure 2.3. A: Detailed geologic map of the Cinch Lake area showing main lithological units<br />

and structural elements and B: Northwest-southeast geological cross-sections (line AA’)<br />

across the Main Ore shear zone illustrating the listric oblique-normal and dextral sense of the<br />

fault movement, location of the mylonitic and cataclasite portions of the fault zone and the<br />

uranium mineralization intercepted in drill hole (see Appendix I for detailed structural<br />

measurements and steroplots).<br />

The leucocratic metagranitoid unit has a coarse-grained cataclasite texture in the<br />

southeast part passing gradually into a fine-grained ultracataclasite texture toward the<br />

northwest (Fig. 2.3).<br />

The hornblende-feldspar gneiss outcrops within the fault zone (Fig. 2.3). The rock is<br />

foliated, generally boudinaged, parallel to the dominant foliation (N240 o ) (Fig. 2.4C) and<br />

composed of hornblende and feldspar porphyroclasts (Fig. 2.4D), which are locally<br />

associated with biotite, chlorite, sericite, epidote and titanite.<br />

The melanocratic porphyroclastic metagranitoid rocks are exposed northwest in the<br />

footwall (Fig. 2.3). The unit is mylonite-dominated and consists of a mélange of<br />

mylonitized metavolcano-sedimentary rocks (Figs. 2.4E and 2.4F), quartz-feldspar<br />

mylonite (Figs. 2.4G and 2.4H) and boudinaged and foliated hornblende-feldspar gneiss.<br />

32


Figure 2.4. Photographs of the three main lithostructural units: A: Field photo of the<br />

cataclasite-dominated leucocratic porphyroclastic metagranitoid in the hanging wall of the<br />

fault zone. B: Microphotograph of the cataclasite-dominated leucocratic metagranitoid<br />

showing mylonite fragments and broken Kfs 1 and Qtz 1 grains embedded in a matrix of<br />

crushed Kfs 1 , recrystallized Qtz 1 , and Src 2 and Py 2 . C: Field photo of the hornblende-feldspar<br />

gneiss boudinaged and parallel to the foliation (N240 o ). D: Microphotograph of the<br />

33


hornblende-feldspar gneiss showing Hbl 1 and Kfs 1 porphyroclasts. E: Field photo of the<br />

mylonitized metavolcano-sedimentary rocks of the melanocratic metagranitoid unit. F:<br />

Microphotograph of the mylonitized metavolcano-sedimentary rocks showing a mylonitic<br />

fabric that consists of flattened and preferentially oriented trails of Bt 1 , Chl 1 , Src 1 ,<br />

dynamically recrystallized Qtz 1 and rotated Kfs 1 porphyroclasts. G: Field photo of the<br />

mylonitized quartz-feldspar rocks showing rotated δ- and σ-type winged Kfs 1 porphyroclasts.<br />

H: Microphotograph of the mylonitized quartz-feldspar rocks showing σ-Kfs 1 , recrystallized<br />

Qtz 1 and Src 1 . Pen indicates north. Bt: biotite, Chl: chlorite, Kfs: potassium feldspar, Hbl:<br />

hornblende, Py: Pyrite, Qtz: quartz, Src: sericite.<br />

2.4.1.2. Structural and metamorphic relationships in the Main Ore shear zone<br />

The Main Ore shear zone records a complex history of ductile, brittle-ductile and<br />

brittle deformation. The shear zone strikes N240 o and is steeply southeast dipping at the<br />

surface (75 o to 85 o ) but becomes shallow at depth (30 o to 40 o ) (Fig. 2.3B). Southeast of the<br />

shear zone, cataclasite and ultracataclasite dominate the hanging wall. The intensity of the<br />

cataclasitic deformation increases from southeast to northwest toward the ductile shear<br />

zone where the footwall is mylonite-dominated and overprinted by a mélange of<br />

cataclasite, breccias and veins that host the uranium mineralization (Fig. 2.3B).<br />

The ductile component of the shear zone defines the oldest deformation observed.<br />

The shear zone displays a southeast dipping foliation and northeast trending elongation<br />

lineation (Fig. 2.3) defined by elongate Kfs 1 feldspars and recrystallized Qtz 1 quartz (Fig.<br />

2.4F). The mylonitic fabric is heterogeneously developed due to contrasting rheology of<br />

the melanocratic metagranitoid rocks. The strain is more localized into relatively weak<br />

rock types such as the metavolcano-sedimentary rocks (Fig. 2.4E), which have a mylonitic<br />

fabric and foliation consisting of preferentially oriented trails of Bt 1 biotite, Chl 1 chlorite,<br />

34


Ms 1 muscovite, Src 1 sericite, and dynamically recrystallized Qtz 1 quartz (Fig. 2.4F). The<br />

quartzo-feldspathic mylonite exhibits recrystallized Qtz 1<br />

quartz and Kfs 1 feldspars<br />

porphyroclasts (Fig. 2.4H). Shear sense indicators such as δ and σ-type winged Kfs 1<br />

feldspars porphyroclasts (Figs. 2.4G and 2.5A) and deflection foliation (Fig. 2.5B)<br />

consistently display a dextral lateral sense of displacement.<br />

The mylonitic foliation and lineation in the hornblende-feldspar gneiss contains the<br />

higher metamorphic assemblage Kfs 1 +Pl 1 +Hbl 1 (Fig. 2.4D), compatible with amphibolite<br />

facies metamorphism. Retrogression is indicated by partial replacement of Hbl 1 hornblende<br />

by Bt 1 biotite along shear surfaces (Fig. 2.5C) and by replacement of Kfs 1 feldspars by Src 1<br />

sericite (Fig. 2.5C). Bt 1 biotite is locally retrogressed into Chl 1 chlorite (Fig. 2.5D)<br />

resulting in the mineral assemblage Bt 1 +Chl 1 + Src 1 +Qtz 1 typical of the greenschist<br />

metamorphic facies. In places, Kfs 1 feldspars are completely sericitized and Chl 1 chlorite<br />

completely replaced Bt 1<br />

biotite, defining a lower greenschist metamorphic facies<br />

(Qtz 1 +Src 1 +Hem 1 + Chl 1 ) (Fig. 2.5E). Late Chl 2 chlorite, Qtz 2 quartz, Ab 1 albite, Cal 1<br />

calcite, and Ep 1 epidote veinlets cut the foliation. The mylonite is overprinted by a network<br />

of ductile-brittle and brittle features.<br />

Cataclasites occur in the hanging wall and in association with mylonites in the<br />

footwall and are sub-parallel to the mylonitic fabric (Fig. 2.3). The cataclasite contains<br />

variable-sized (0.2 to 0.5 mm) clasts of broken Qtz 1 quartz, Kfs 1 feldspars, and mylonite<br />

fragments. The matrix is weakly foliated and contains recrystallized and milled Qtz 1<br />

quartz, Cal 2 calcite, Chl 3 chlorite, Hem 3 hematite and Src 2 sericite (Fig. 2.5F). Sub-vertical<br />

35


east-west striking en-échelon quartz-filled tension gashes indicate dextral lateral sense of<br />

motion (Fig. 2.5G).<br />

36


Figure 2.5. Various structural and textural relationships along the Main Ore shear zone at the<br />

Cinch Lake deposit. A: Lateral dextrally rotated δ-type winged Kfs 1 porphyroclast in<br />

melanocratic metagranitoid mylonite. B: Foliation deflection showing a dextral lateral sense<br />

of shear. C: Hornblende-feldspar gneiss showing partial replacement of Hbl 1 by Bt 1 and Kfs 1<br />

by Src 1 . D: Hornblende-feldspar gneiss showing partial replacement of Bt 1 by Chl 1 and Kfs 1<br />

by Src 1 associated with Ttn 1 . E: Hornblende-feldspar gneiss in which Kfs 1 are completely<br />

replaced by Src 1 and Bt 1 by Chl 1 . F: Cataclasite rock showing crushed mylonite fragments<br />

37


and broken Kfs 1 and Qtz 1 embedded in a matrix of crushed and dynamically recrystallized<br />

Qtz 1 . G: Sub-vertical northeast trending en-échelon Qtz-filled tension gashes showing dextral<br />

lateral sense of displacement. H: Breccias with Cal 8 -filled matrix embedding angular<br />

fragments of mylonite. I: Northeast-striking pegmatite dikes in the footwall of the shear zone.<br />

J: Northeast-striking mafic dikes with chilled margin cross cutting the shear zone. K:<br />

Northwest-striking breccia dikes comprising fragments of the host rock embedded in a Chlrich<br />

matrix. L: Qtz veins Stockworks showing evidence of hydraulic fracturing. Pen indicates<br />

north. Bt: biotite, Chl: chlorite, Hbl: hornblende, Kfs: Potassium feldspar, Qtz: quartz, Src:<br />

sericite, U: uraninite.<br />

Calcite-filled breccias overprint the mylonite and cataclasite rocks in the footwall of<br />

the shear zone. Breccia fragments comprise angular mylonite and cataclasite clasts derived<br />

from the host rock (Fig. 2.5H). The fragments vary in size from 0.2 mm to more than 2 cm.<br />

The matrix is composed of Cal 8 calcite, Chl 7 chlorite and Hem 6 hematite (Fig. 2.5H).<br />

Late brittle deformation features that overprint the shear zone include veins, dikes, joints,<br />

and fractures. Field measurements indicate three set of steeply dipping joints striking<br />

N320 o , N020 o , and N280 o .<br />

Pegmatite dikes cut across the footwall of the shear zone. They strike northeast and<br />

form a series of sheared elongate lenses of varying size (1 to 2m in length) and are<br />

disrupted along the shear zone (Fig. 2.5I).<br />

Diabase dikes form a swarm crosscutting all previous rocks. They are sub-vertical, weakly<br />

deformed with chilled margins (Fig. 2.5J) and strike along two preferential directions:<br />

parallel to the foliation and along the northwest striking pre-existing joints and fractures.<br />

Breccia-dikes outcrop in the footwall of the shear zone (Fig. 2.5K) in three structural<br />

sets of direction: N020 o , N090 o , and N320 o . The breccia-dikes vary in width from less than<br />

38


1 cm to 10’s of cm. Fragments of the breccia are highly variable-sized (1 mm to 5 cm) and<br />

consist of angular country-rock clasts embedded in a chlorite-rich matrix (Fig. 2.5K). The<br />

contact between breccia-dikes and the host rock is sharp. A close spatial relationship is<br />

observed between mafic dikes and breccia-dikes.<br />

Late Chl 10 chlorite, Cal 11 calcite veins, and Qtz 5 quartz (Fig. 2.5L) crosscut all rock<br />

types and are parallel to the set of joints.<br />

2.4.2. The Saint Louis fault<br />

2.4.2.1. Geology of the Ace-Fay-Verna deposits<br />

The deposits are located along the Saint Louis fault (Fig. 2.2), which strikes<br />

northeast and dips 50 o southeast (Fig. 2.6). The Ace and Fay ore bodies are located in the<br />

footwall, whereas Verna is in the hanging wall. Sassano (1972) described four units that<br />

host the uranium mineralization named the Fay Mine Complex comprising from oldest to<br />

youngest: quartzite and conglomerates, phyllonite amphibolite, albite paragneiss and<br />

granitic gneiss. These rocks overlie the Donaldson Lake and Foot Bay gneisses and are<br />

uncomformably overlain by the Martin Lake basal conglomerates in the hanging wall of<br />

the Saint Louis fault (Fig. 2.6).<br />

2.4.2.2. Structural and metamorphic relationships in the Saint Louis fault<br />

The Foot Bay gneiss, which occurs in the footwall and hanging wall of the fault (Fig.<br />

2.6B) has a mylonitic texture characterized by rotated augen-shaped Kfs 1 feldspars<br />

porphyroclasts (Fig. 2.7A) surrounded by recrystallized Qtz 1 quartz and layers of Chl 1<br />

chlorite, Bt 1 biotite and Hbl 1 hornblende.<br />

39


A<br />

Meters<br />

LEGEND<br />

B<br />

Figure 2.6. A: Detailed geologic map of the Ace-Fay-Verna deposits showing main lithological<br />

units, structural elements and location of the uranium deposits (modified from Macdonald<br />

40


and Slimmon, 1985) and B: NW-SE geological cross-sections across the Saint Louis fault (line<br />

AA’) showing the geology, the trace of the Saint Louis Fault and the location of the uranium<br />

mineralization (modified from Sassano, 1972).<br />

The Donaldson Lake gneiss outcrops in the hanging wall and footwall of the fault<br />

(Fig. 2.6B) and Sassano (1972) suggested that the Donaldson Lake gneiss is the cataclasite<br />

equivalent of the underlying Foot Bay gneiss. The rock has a porphyroclastic texture<br />

composed of Kfs 1 feldspars, Pl 1 plagioclase and Qtz 1 quartz scattered in a matrix of<br />

recrystallized Qtz 1 quartz, crushed Kfs 1 feldspars and trails of Ms 1 muscovite and Chl 1<br />

chlorite.<br />

The quartzite occurs in the footwall (Fig. 2.6B) where it is mylonitized with strained<br />

and recrystallized Qtz 1 quartz (Fig. 2.7B). Qtz 1 quartz grains are elongated and locally<br />

wrapped by Src 1 sericite and Chl 1 chlorite. The mylonite is cut by Chl 2 chlorite and Src 1<br />

sericite veinlets and overprinted by cataclasite with angular fragments of the mylonitized<br />

quartzite occurring into the matrix (Fig. 2.7E).<br />

The phyllonite amphibolite outcrops in the footwall, north of the Ace-Fay deposits.<br />

In thin section, the rock shows symmetric crenulations that overprint the mylonitic fabric<br />

(Fig. 2.7C). It is composed of alternating dark and light bands of Hbl 1 hornblende, Bt 1<br />

biotite, Chl 1 chlorite, and Qtz 1 quartz, Kfs 1 feldspars and Src 1 sericite. In the amphibolite,<br />

three fold phases (F1, F2 and F3) have been identified (Fig. 2.7D). F1 and F2 are isoclinal<br />

recumbent folds having a dominant east-southeast axial plane foliation. Both F1 and F2 are<br />

refolded by a north-northwest-trending open upright fold F3 producing a type 2<br />

interference pattern (Ramsay, 1967). The amphibolite locally displays a breccia fabric with<br />

mylonite fragments embedded in the matrix (Fig. 2.7H).<br />

41


Figure 2.7. Microphotograph of various structural and textural relationships along the Saint<br />

Louis fault at the Ace-Fay-Verna deposit. A: Rotated δ-type winged Kfs 1 porphyroclast in the<br />

Foot Bay gneiss (sample is not oriented). The foliation is marked by train of Ms 1 , Src 1 , Chl 1 ,<br />

recrystallized Qtz 1 and Cal 1 . B: Quartzite mylonite containing dynamically recrystallized<br />

Qtz 1 with recrystallization at grain boundaries. C: Crenulations cleavage overprinting<br />

mylonitized amphibolite. D: Isoclinal recumbent F1 and F2 folds with a dominant ESE axial<br />

plane foliation, and overprinted by an NNW trending open upright F3 fold producing a type<br />

2 interference structure in amphibolite rock. E: Albite paragneiss containing lenticular mica<br />

fish, Chl 1 and Bt 1 alternating with recrystallized Qtz 1 . F: Cataclasite of the granite gneiss<br />

showing fragmented mylonite rock and broken Qtz 1 and Kfs 1 embedded in a matrix made of<br />

milled Qtz 1 , Src 2 , Hem 3 , Cal 2 and Chl 3 . G: Breccias of granite gneiss with Cal 8 -filled matrix<br />

embedding fragments of cataclasite. H: Breccias with matrix embedding amphibolite<br />

fragments. I: Field photo of the Martin Lake basal conglomerate composed of granite,<br />

quartzite and amphibolite fragments embedded in a hematized matrix. J: Late Cal 11 , Qtz 5<br />

43


and Hem 9 veins cutting the amphibolite. Pen indicates north. Chl: chlorite, Hem: hematite,<br />

Kfs: potassium feldspar, Ms: muscovite, Qtz: quartz, Src: sericite, U: uraninite.<br />

The albite paragneiss occurs in the footwall of the fault. It is mylonitized and<br />

composed of Bt 1 biotite, Chl 1 chlorite, Ms 1 muscovite, and Ab 1 albite. In thin section, the<br />

rocks display a mylonitic fabric with strained Ab 1 albite and Kfs 1 feldspars porphyroclasts<br />

and recrystallized Qtz 1 quartz (Fig. 2.7E). The Ab 1 albite porphyroclasts are wrapped by<br />

Chl 1 chlorite and Src 1 sericite.<br />

The granite gneiss occurs along zones of brecciation and mylonitization in the<br />

footwall (Fig. 2.6B). The rock is fractured and veined and displays a mylonitic fabric with<br />

foliation parallel to the Saint Louis fault. It is generally cataclastic or brecciated. The<br />

cataclasite is composed of broken Qtz 1 quartz and Kfs 1 feldspars clasts, and fragments of<br />

mylonite rocks embedded in a matrix of Qtz 1 quartz, Cal 2 calcite, Src 2 sericite, and Chl 3<br />

chlorite (Fig. 2.7F). The breccia consists of angular mylonite and cataclasite fragments<br />

embedded in a Cal 8 calcite and Chl 7 chlorite-dominated matrix (Fig. 2.7G).<br />

The Martin Lake basal conglomerates uncomformably overlie the granitic gneiss in<br />

the hanging wall of the fault (Fig. 2.6). The conglomerate contains angular fragments of<br />

granite, quartzite and amphibolite embedded in a sandy to silty, medium-grained matrix<br />

(Fig. 2.7H).<br />

The Foot Bay gneiss contains a mylonitic foliation and a NE-trending lineation<br />

defined by a mineral assemblage Hbl 1 +Kfs 1 +Pl 1 +Bt 1 +Qtz 1<br />

consistent with shear<br />

deformation at amphibolite grade metamorphism. Locally, Bt 1 biotite replaces Hbl 1<br />

hornblende. Chl 1 chlorite is common as a retrograde product of Bt 1 biotite. Src 1 sericite<br />

44


eplaces Kfs 1<br />

feldspars (Fig. 2.7A). The overlying Donaldson Lake gneiss has a<br />

metamorphic assemblage Bt 1 +Pl 1 +Src 1 +Chl 1 +Qtz 1 typical of greenschist grade<br />

metamorphism. The Fay Mine Complex is more deformed than the underlying Foot Bay<br />

and Donaldson Lake gneisses with a mineral assemblage Chl 1 +Src 1 +Ab 1 +Qtz 1 consistent<br />

with lower greenschist facies metamorphism. In the cataclasite and breccia rocks, calcite,<br />

chlorite, quartz, hematite and sericite are the dominant alteration minerals (Figs. 2.7F and<br />

2.7G).<br />

Late Chl 9 chlorite, Cal 11 calcite, Qtz 5 quartz, and Hem 9 hematite veins (Fig. 2.7J) and<br />

mafic dikes cut across the Saint Louis fault.<br />

2.4.3. Paragenesis of the alteration and ore minerals and type of U mineralization<br />

The sequence of deformation and alteration is divided into seven events including six<br />

stages of uranium mineralization, based on petrographic, structural, and age relationships<br />

(Figs. 2.8 and 2.9).<br />

2.4.3.1. Stage 1: Mylonitization<br />

Mylonitization is the earliest deformation observed. The quartzo-feldspathic<br />

mylonite at Cinch Lake and the Foot Bay gneiss at Ace-Fay exhibit recrystallized Qtz 1<br />

quartz around rotated Kfs 1 feldspars. The hornblende-feldspar gneiss at Cinch Lake and the<br />

Foot Bay gneiss at Ace-Fay define an amphibolite metamorphic assemblage<br />

Kfs 1 +Pl 1 +Hbl 1 (Fig. 2.4D). Retrogression to greenschist metamorphic grade is indicated by<br />

the assemblage Bt 1 +Chl 1 +Src 1 +Hem 1 +Qtz 1 . Early Py 1 pyrite, Cpy 1 chalcopyrite and Nl 1<br />

nolanite are stretched along the foliation (Fig. 2.8).<br />

45


Figure 2.8. Generalized paragenesis of the uranium mineralization, metamorphic<br />

relationships and deformation sequences in the Beaverlodge area. The paragenesis is based on<br />

petrographic, metamorphic and structural observations, style of uranium mineralization and<br />

associated deformation, and geochronology data of various paragenetically constrained<br />

uranium grains. Note: The thickness of the horizontal line is proportional to the abundance of<br />

the mineral. The main uranium mineralization event is associated with the brecciation stage.<br />

The mylonitic foliation is cut by Chl 2 chlorite, Qtz 2 quartz, Ab 1 albite, Cal 1 calcite,<br />

and Ep 1 epidote veinlets (Fig. 2.8).<br />

2.4.3.2. Stage 2: Cataclasite deformation:<br />

Cataclasite resulted from a ductile-brittle reactivation of the mylonite. The cataclasite<br />

rocks are composed of Qtz 1 quartz and Kfs 1 feldspars clasts, and crushed Cal 1 calcite and<br />

Qtz 2<br />

quartz veinlets embedded in a matrix composed of disseminated ±U 1 uraninite<br />

associated with Cal 2 calcite, Hem 3 hematite, Chl 3 chlorite, Src 2 sericite, Cpy 2 chalcopyrite,<br />

and Py 2 pyrite (Figs. 2.8 and 2.9A).<br />

2.4.3.3. Stage 3: Early tensional ±U 2 veins formation<br />

Cataclasite rocks are cut by early tensional Qtz 3 +Cal 3 -±U 2 veins. U 2 uraninite is<br />

associated with Cal 4 calcite, Chl 4 chlorite, Hem 4 hematite, and Py 3 pyrite (Fig. 2.9B). Qtz 3<br />

quartz and Cal 3 calcite veins display evidence of tensional fractures that contain syntaxial<br />

fibers growth perpendicular to the wall of the vein (Fig. 2.9B). Syntaxial Cal 3 calcite vein<br />

fill the core of the Qtz 3 quartz vein.<br />

2.4.3.4. Stage 4: Granite-related metasomatic alteration in the Gunnar deposit<br />

Ab 2 albite alteration of the Gunnar granite is pervasive and results in the<br />

“dequartzification” of the granite. Replacement of Kfs 1 feldspars is complete and precedes<br />

47


the Qtz 1 quartz dissolution resulting in a rock composed of Ab 2 albite (Fig. 2.9C), which is<br />

further Cal 5 carbonatized. Cal 5 calcite occupies voids left after Qtz 1 quartz dissolution. The<br />

U 3 mineralization is introduced during late stage albitization and occupies space between<br />

Ab 2 albite grains likely derived from Cal 5 calcite and Qtz 1 quartz dissolution. U 3 uraninite<br />

is associated with Chl 5 chlorite, Src 3 sericite, Hem 5 hematite, Cal 6 calcite, Mnz 1 monazite<br />

and Ttn 2 titanite (Figs. 2.8 and 2.9C). Late alteration associated with Cal 7 calcite, Qtz 4<br />

quartz and Chl 6 chlorite veins cut the albitized and U 3 -mineralized granite.<br />

2.4.3.5. Stage 5: Brecciation<br />

The breccia is composed of angular fragments of cataclasite and mylonite rocks<br />

embedded in a Cal 8 calcite-rich matrix. The matrix also contains broken Qtz 1 quartz and<br />

Kfs 1 feldspar fragments of variable size (0.1 to 2 mm). U 4 uraninite typically surrounds<br />

hematized fragments and occurs as grains disseminated into the matrix (Fig. 2.9D).<br />

Locally, massive U 4 uraninite associated with minor Cal 8 calcite makes up the bulk of the<br />

matrix. U 4 uraninite is commonly associated with brannerite Br 1 , Chl 7 chlorite, Src 3<br />

sericite, Hem 6 hematite, Py 5 pyrite, and Cpy 4 chalcopyrite and is the major uranium<br />

mineralizing event (Figs. 2.8 and 2.9D).<br />

2.4.3.6. Stage 6: Mafic volcanism<br />

U mineralization associated with mafic dikes is in the form of massive ±U 5 uraninite<br />

veins and as grains disseminated into breccia-dikes (Figs. 5K and 9E) that cut across the<br />

shear zone at the Cinch Lake deposit. U 5 uraninite is associated with Cal 9 calcite, Chl 8<br />

chlorite, Hem 7 hematite, Ap 1 apatite, Src 4 sericite, Ttn 3 titanite, Mnz 2 monazite, Py 6 pyrite,<br />

and Cpy 5 chalcopyrite (Fig. 2.8).<br />

48


2.4.3.7. Stage 7: Late U 6 uraninite veins<br />

U 6 uraninite veins (Fig. 2.9F) cut all previous rocks and are the youngest observed<br />

mineralized phase. These veins cut the Martin Lake basal conglomerates and the mafic<br />

dikes and contain ±U 6 uraninite, Cal 10 calcite, Chl 9 chlorite, Hem 8 hematite and Py 7 pyrite<br />

(Fig. 2.8).<br />

49


Figure 2.9. Microphotograph of typical mineral assemblages and crosscutting relationships<br />

from the Ace-Fay-Verna, Cinch Lake and Gunnar uranium deposits: A: Cataclasite with<br />

mylonitized fragments, Qtz 1 , Kfs 1 in a matrix composed of ±U 1 , Qtz 1 , Cal 2 , Hem 3 , Chl 3 , Src 2 ,<br />

Cpy 2 and Py 2 (Sample 6122-Cat, Ace deposit). B: U 2 -Hem 4 -Cl 4 -Cal 4 -Py 3 vein cutting<br />

cataclasite rock and filled by tensional vein of Qtz 3 and Cal 3 (Sample 6122BV-Cat, Ace<br />

deposit). C: Mineralized metasomatic granite in Gunnar: U 3 fills voids felt after Qtz 1<br />

dissolution and is associated with Chl 5 , Src 3 , Hem 5 , Mnz 1 , Cal 5 and Ttn 2 (Sample GN-05,<br />

Gunnar). D: Breccia with fragments of cataclasite rock in a Cal 8 -rich matrix. U 4 surrounds<br />

breccia fragments and is disseminated in matrix associated with Chl 7 , Src 3 , and Hem 6 (Sample<br />

B5812, Ace-Fay deposit). E: Mafic volcanic-type ±U 5 : hydro-breccia vein composed of crushed<br />

Qtz 1 and Kfs 1 fragments and Cal 9 embedded in a Chl 8 -rich matrix. U 5 is associated with Hem 7 ,<br />

Ap 1 , Src 4 , Ttn 3 , Mnz 2 , Py 6 , and Cpy 5 (Sample Cl-45, Cinch Lake deposit). F: Late mineralized<br />

veins containing U 6 , Cal 10 , Chl 9 , Hem 8 . G: Late Cal 11 , Chl 10 and Qtz 5 veins (Sample 2202,<br />

Martin Lake deposit). H: Late sulphide minerals composed of Gn 1 , Cpy 5 and Py 8 and Sp 1<br />

(Sample B5800, Ace-Fay deposit). Ap: apatite, Cal: calcite, Chl: chlorite, Cpy: chalcopyrite,<br />

50


Hem: hematite, Kfs: potassium feldspar, Ms: muscovite, Mnz: monazite, Py: pyrite, Qtz:<br />

quartz, Src: sericite, Ttn: titanite, U: uraninite.<br />

2.4.4. Geochronology of uraninite and isotopic systematics<br />

The various generations of uraninite that formed during different stages of<br />

deformation have been paragenetically constrained (see previous section), and analyzed.<br />

For example the cataclasite-type ±U 1 and early-vein type ±U 2 uraninites observed at the<br />

Ace-Fay deposits formed at depth different from the breccia-type U 4<br />

uraninite. The<br />

granite-related metasomatic-type U 3 uraninite is observed at Gunnar wherein moderate<br />

uranium mineralization is derived from Na-metasomatism of the Gunnar granite prior to<br />

brecciation. The volcanic-type ±U 5 uraninite cuts across the ductile-brittle shear zones at<br />

Cinch Lake and Ace-Fay deposits and is spatially related to the Martin Lake mafic dikes.<br />

Late ±U 6 uraninite veins interpreted as related to the Athabasca Basin, cross cut all types<br />

and have a distinct alteration assemblage.<br />

2.4.4.1. U-Pb and Pb-Pb geochronology of U-rich minerals by LA-HR-ICP-MS<br />

Paragenetically constrained uraninite grains from the six stages of uranium<br />

mineralization have been dated by LA-HR-ICP-MS (Table 2.1). Results of the U-Pb<br />

concordia are summarized in Table 2.2a. The oldest 207 Pb/ 206 Pb ages are likely to be closer<br />

to the initial formation age because Pb/Pb ratios in uraninite are less susceptible to<br />

resetting by younger fluid events than are the U/Pb ratios (Collins et al., 1954). The<br />

relatively high error margins for U/Pb isotopic ratios reflect uraninite heterogeneity<br />

(Kotzer and Kyser, 1993; Chipley et al., 2007), which is indicated by the mottled and<br />

pitted texture observed in Back-Scattered Electron Microscopy (BSEM) images of<br />

51


uraninite (Fig. 2.10). The errors observed in the U-Pb systems are in large part a function<br />

of the uraninite age; older uraninite is more likely to have been affected by multiple<br />

alteration events so that errors obtained in the U-Pb system are greater. The youngest<br />

uraninites, which are recrystallized forms of older uraninites, have the lowest error and are<br />

least altered.<br />

52


Sample I.D Mineralization-type Deposit n<br />

207 Pb/ 206 Pb ±2σ<br />

207 Pb/ 235 U ±2σ<br />

206 Pb/ 238 U ±2σ R‡<br />

207 Pb/ 206 Pb ±<br />

Oldest<br />

207 Pb/ 206 Pb<br />

±<br />

206 Pb/ 238 U ±<br />

207 Pb/ 235 U ± Disc‡<br />

a. Primary uranium mineralization<br />

Cat Cataclasite-type U 1 Ace Fay 15 0.1170 0.0024 3.7511 0.6756 0.2442 0.0655 0.54 1896 37 2272 27 1403 340 1572 147 25<br />

6122a Cataclasite-type U 1 Ace Fay 11 0.1241 0.0018 3.9547 0.3658 0.2477 0.0273 0.56 2002 26 2293 17 1425 373 1615 111 28<br />

6122b Early vein-type U 2 Ace Fay 16 0.1041 0.0020 3.3142 0.4428 0.2452 0.0529 0.50 1674 36 2289 20 1409 272 1470 103 14<br />

V-Cat Early vein-type U 2 Ace Fay 11 0.1189 0.0021 3.6762 0.5656 0.2563 0.0629 0.52 1915 34 2276 29 1469 323 1562 123 21<br />

B5812a Breccia-type U 4 Ace Fay 8 0.1098 0.0026 2.7659 0.1271 0.1710 0.0133 0.44 1796 43 1848 5 1016 74 1339 31 43<br />

6120 Volcanic-type U 5 Ace Fay 12 0.1076 0.0005 3.4210 0.1909 0.2314 0.0136 0.95 1760 9 1800 37 1340 71 1505 44 24<br />

6139 Volcanic-type U 5 Gunnar 22 0.1096 0.0003 4.1894 0.307 0.2795 0.0207 1.00 1793 4 1812 15 1587 104 1669 61 11<br />

2202 Athabasca-type U 6 Martin Lake 37 0.0897 0.0004 2.1196 0.138 0.1717 0.0111 1.00 1418 9 1620 4 1020 61 1147 44 28<br />

3705 Athabasca-type U 6 Ace Fay 22 0.0914 0.0090 2.2412 0.391 0.1924 0.0412 0.63 1453 188 1616 174 1125 220 1158 123 24<br />

b. Post-mineralization alteration events recorded in the U/Pb system<br />

VRC Breccia-type U 4 Gunnar 14 0.0857 0.0004 1.6237 0.0676 0.1374 0.0057 0.99 1331 10 1380 34 828 32 973 26 38<br />

6134 Metasomatic-type U 3 Gunnar 7 0.0832 0.0019 0.2582 0.0268 0.0224 0.0024 0.74 1268 48 1372 4 142 15 227 20 89<br />

GN-42 Metasomatic-type U 3 Gunnar 11 0.0806 0.0011 0.3779 0.0275 0.0340 0.0025 0.98 1210 26 1284 22 215 15 325 20 82<br />

C23-116 Breccia-type U 4 Cinch Lake 29 0.0705 0.0014 0.4164 0.0526 0.0427 0.0055 0.96 930 41 1164 24 268 34 340 38 69<br />

VR69190 Metasomatic-type U 3 Gunnar 10 0.0653 0.0006 0.6351 0.0451 0.0705 0.0050 0.99 786 19 796 15 439 30 499 28 44<br />

6037b Metasomatic-type U 3 Gunnar 10 0.0536 0.0014 0.2358 0.0473 0.0318 0.0059 0.977 352 61 497 26 201 36 213 37 43<br />

EA3010A Athabasca-type U 6 Eagle-Ace 10 0.0534 0.0003 0.2626 0.0198 0.0356 0.0027 1.00 347 14 396 13 225 17 237 16 35<br />

EA3011 Volcanic-type U 5 Eagle-Ace 15 0.0529 0.0006 0.2389 0.0170 0.0327 0.0023 0.98 325 28 419 21 207 14 217 14 36<br />

Table 2.1. Analytical data from the U/Pb LA-HR-ICP-MS analysis of various uraninite occurrences in the Beaverlodge area. The<br />

paragenesis of each type of uraninite analyzed is shown in Figures 2.8 and 2.9 and described in Section 4.3., R: error correlation<br />

coefficient, Disc‡: percentage discordance. n: number of grains. 206 Pb/ 238 U, 207 Pb/ 235 U, and 207 Pb/ 206 Pb ages are calculated using equations<br />

reported by Ludwig (2000) and expressed in Ma.<br />

53


Figure 2.10. Backscattered Electron Microscope (BSEM) of U-rich minerals. A: Mottled and<br />

speckled U 1 grain disseminated in cataclasite rock (Sample 6122, Ace). B: Speckled and pitted<br />

U 2 grain in early tensional vein showing ablation pits created by LA-HR-ICPMS (Sample<br />

6122, Ace). C: Fractured and altered U 3 (Sample 6134, Gunnar). D: Recrystallized U 3 coating<br />

vugs in altered metasomatic granite (Sample 6134, Gunnar). E: Speckled and pitted U 4<br />

54


(Sample 6137, Gunnar). F: Pitted, mottled and heterogeneous U 4 from breccia-type (Sample<br />

B5812, Fay).<br />

Uraninite -type<br />

Deposit<br />

a. Primary uranium mineralization.<br />

Upper<br />

intercept age<br />

(Ma)<br />

Lower<br />

intercept<br />

age (Ma)<br />

207 Pb/ 206 Pb<br />

age (Ma)<br />

MSWD<br />

Figure<br />

Cataclasite-type U 1 Fay 2306±360 907±330 2293±17 0.13 11A<br />

Early vein-type U 2 Fay 1594±95 89±670 2289±20 0.089 11B<br />

Breccia-type U 4 Ace-Fay 1857±170 42±350 1848±5 0.5 11C<br />

Volcanic-type U 5 Ace-Fay 1783±7 71±79 1812±15 6.2 11D<br />

Volcanic-type U 5 Gunnar 1774±25 109±110 1800±37 1.14 11E<br />

Athabasca-type U 6 Martin Lake 1601±64 441±92 1620±4 10 11F<br />

b. Post-mineralization alteration events recorded in altered uraninite<br />

Metasomatic-type U 3 Gunnar 1549±78 75±13 1210±25 1.02 11G<br />

Breccia-type U 4 Fay 1355±40 54±87 1330±10 0.59 11H<br />

Metasomatic-type U 3 Gunnar 1219±230 13±53 352±31 3.5 11I<br />

Breccia-type U 4 Cinch Lake 1094±66 28±31 1019±44 0.57 11J<br />

Metasomatic-type U 3 Gunnar 818±47 47±61 786±19 0.13 11K<br />

Athabasca-type U 6 Eagle 635±170 166±30 347±14 0.42 11L<br />

Volcanic-type U 5 Eagle-Ace 439±56 103±29 325±28 1.4 11M<br />

Metasomatic-type U 3 Gunnar 391±40 31±150 352±61 0.18 11N<br />

Table 2.2. Summary of the U-Pb concordia results of U-rich minerals for various events of: a)<br />

primary uranium mineralization and b) post-mineralization alteration and resetting events in<br />

the Beaverlodge area. Figure refers to figure in text that shows the mode of occurrence of the<br />

uraninite.<br />

2.4.4.1.1. Geochronology of the cataclasite-type ±U 1<br />

U 1 uraninite has U-Pb isotopic compositions that define a discordia line and groups<br />

of 207 Pb/ 206 Pb ages (Fig. 2.11A, Table 2.1). The discordia line has an upper intercept age of<br />

2306±360 Ma and a lower intercept of 907±330 Ma (2σ, MSWD: 0.13). The oldest<br />

207 Pb/ 206 Pb age is 2293±17 Ma, which overlaps the upper intercept age and is interpreted as<br />

the minimum formation age. The 207 Pb/ 206 Pb system displays five groups of age that reflect<br />

55


post-mineralization alteration during the intervals of 2.2-2.1 Ga, 2.1-2.0 Ga, 2.0-1.9 Ga,<br />

1.9-1.8 Ga, and 1.6 Ga (Table 2.1 and Appendix 1).<br />

2.4.4.1.2. Geochronology of the early tensional vein-type ±U 2<br />

U 2 uraninite gives a discordant U-Pb upper-intercept age of 1594±95 Ma and a lower<br />

intercept of 89±670 Ma (Fig. 2.11B). The oldest 207 Pb/ 206 Pb age of 2289±20 Ma is<br />

interpreted as a minimum crystallization age. The 207 Pb/ 206 Pb system shows alteration<br />

events at ca. 2.2-2.1 Ga, 2.1-2.0 Ga, 2.0-1.9 Ga, 1.9-1.8 Ga, and 1.6 Ga (Table 2.1, Fig.<br />

2.11, and Appendix 1).<br />

2.4.4.1.3. Geochronology of the granite-related metasomatic-type U 3 in Gunnar<br />

U/Pb isotopic ratios of U 3 are discordant with very low Pb/U ratios that indicate<br />

significant Pb loss. Ages obtained in the U/Pb system range between 1550 to 10 Ma<br />

(Tables 2.1b and 2.2b) and do not reflect the formation age of the granite-related<br />

metasomatic-type U mineralization because of substantial Pb loss. Rather they reflect<br />

periods of alteration that have significantly affected U 3 subsequent to its formation.<br />

2.4.4.1.4. Geochronology of the breccia-type U 4<br />

U/Pb isotopic ratios of U 4 , which reflect the major uranium mineralizing event, are<br />

discordant and yield a U-Pb upper-intercept age of 1857±170 Ma (2σ, MSWD: 0.5) and a<br />

lower intercept of 42±350 (Fig. 2.11C). The oldest 207 Pb/ 206 Pb age of 1848±5 Ma records<br />

the minimum crystallization age. Post-mineralization alteration recorded in the 207 Pb/ 206 Pb<br />

ratios occur at ca. 1.8 Ga, 1.4-1.3 Ga, 1.2-0.9 Ga, 0.8 Ga and 0.5 Ga (Table 2.1).<br />

2.4.4.1.5. Geochronology of the volcanic-type ±U 5<br />

56


U 5 uraninite yields two discordia lines. The concordia in Figure 2.11D has an upper<br />

intercept age of 1783±7 Ma and a lower intercept of 71±79 Ma, with an oldest 207 Pb/ 206 Pb<br />

age of 1812±15 Ma (2σ, MSWD: 6.2). The concordia in Figure 2.11E has an upper<br />

intercept age of 1774±25 Ma and a lower intercept of 109±110 Ma (2σ, MSWD: 1.14).<br />

The oldest 207 Pb/ 206 Pb age is 1800±37 Ma. The 207 Pb/ 206 Pb system records periods of<br />

alteration at ca. 0.8-0.7 Ga and 0.4-0.3 Ga (Table 2.1).<br />

2.4.4.1.6. Geochronology of the Athabasca-related ±U 6 :<br />

U 6 uraninite gives a U-Pb concordia upper-intercept age of 1601±64 Ma and a lower<br />

intercept of 441±92 Ma (2σ, MSWD: 10) (Fig. 2.11F). The oldest 207 Pb/ 206 Pb age of<br />

1620±4 Ma is interpreted as the formation age. Post-mineralization alterations recorded in<br />

the 207 Pb/ 206 Pb system occur at ca. 1.4-1.3 Ga and 0.4-0.3 Ga (Table 2.1).<br />

2.4.4.1.7. Post-mineralization alteration events recorded in the U/Pb system<br />

The U/Pb system records various episodes of post-mineralization alteration that have<br />

affected all stages of the uranium mineralization. Results are presented in Figures 2.11G to<br />

2.11N and summarized in Table 2.2b.<br />

U/Pb age of the primary uranium mineralization<br />

57


Post-mineralization alteration events recorded in the U/Pb system<br />

58


Figure 2.11. U-Pb concordia diagrams from in situ isotopic analysis by LA-HR-ICP-MS of U<br />

from various deposits in the Beaverlodge area. A: Cataclasite-type ±U 1 (Sample 6122-Cat, Ace<br />

deposit). B: Early tensional vein-type ±U 2 (Sample 6122BV-Cat, Ace deposit). C: Breccia-type<br />

U 4 (Sample B5812, Ace-Fay deposit). D: Volcanic-type ±U 5 (Sample 6120, Ace-Fay deposit). E:<br />

59


Volcanic-type ±U 5 (Sample 6139, Gunnar deposit). F: Athabasca-related ±U 6 (Sample 2202,<br />

Martin Lake deposit). G: Altered metasomatic-type U 3 (Sample GN-42, Gunnar deposit). H:<br />

Altered breccia-type U 4 at Gunnar (Sample VR, Gunnar deposit). I: Altered breccia-type U 4<br />

(Sample C23-116, Cinch Lake deposit). J: Altered metasomatic-type U 3 (Sample 6134,<br />

Gunnar deposit). K: Altered Athabasca-related ±U 6 (Sample EA3011, Eagle-Ace). L: Altered<br />

volcanic-type ±U 5 (Sample AE3010, Eagle-Ace deposit). M: Altered metasomatic-type U 3<br />

(Sample VR69190, Gunnar deposit). Note: Data-point error ellipses are 2σ. Plots were<br />

constructed using ISOPLOT ver. 3.2 (Ludwig 2000) from the isotope ratios and their<br />

respective errors are presented in Table 2.1. 207 Pb/ 206 Pb ages are reported along discordia line,<br />

the oldest 207 Pb/ 206 Pb age is shown in bold character for concordia of the primary U<br />

mineralization.<br />

2.4.4.2. Chemical Pb age of the uranium mineralization<br />

Regression of the sum SiO 2 , Fe 2 O 3 , CaO and MnO contents to zero in the early veintype<br />

±U 2<br />

uraninite corresponds to 2290 Ma (Fig. 2.12A), which is identical to the<br />

207 Pb/ 206 Pb formation age of 2293±17 Ma (Fig. 2.11B). Chemical Pb ages show alteration<br />

events at ca. 1800 Ma, 1600 Ma, 1200 Ma, and 170 Ma (Table 2.3).<br />

Chemical Pb ages derived from the composition of the breccia-type U 4 uraninite vary<br />

from 1315 Ma to 557 Ma. The intercept at zero content of elements other than uraninite<br />

gives an age of 1830 Ma (Fig. 2.12B), which is close to the 207 Pb/ 206 Pb formation age of<br />

1848±5 Ma (Fig. 2.11D).<br />

The zero intercept of the Chemical Pb age of the volcanic-type ±U 5<br />

uraninite<br />

corresponds to 1827 Ma (Fig. 2.12C), which overlaps the 207 Pb/ 206 Pb ages of 1812±15 Ma<br />

and 1800±37 Ma (Figs. 11D and 11E, respectively). The concordance of these ages is<br />

interpreted as the crystallization age of ±U 5 uraninite. Chemical Pb ages display alteration<br />

events at ca. 1800-1700 Ma, 1500-1400 Ma, and 1300-1200 Ma (Table 2.3).<br />

60


Sample I.D Deposit UO 2 SiO 2 CaO Fe 2O 3 TiO 2 Cr 2O 3 V 2O 5 PbO P 2O 5 K 2O ThO 2 SO 2 MnO Y 2O 3 Tb 2O 3 CuO Total<br />

Chemical<br />

Pb age<br />

(Ma)<br />

Early vein-type U 2 uraninite<br />

6122_Pt2 1 Ace Fay 71.83 2.02 3.61 0.39 0.40 0.03 0.11 17.88 0.02 0.03 0.02 0.05 0.12 0.00 0.14 0.03 96.50 1544<br />

6122_Pt3 1 Ace Fay 73.07 3.05 3.45 0.91 0.38 0.05 0.03 14.52 0.04 0.10 0.02 0.02 0.15 0.07 0.11 0.07 95.90 1233<br />

6122_Pt4_2 Ace Fay 72.61 0.59 3.33 0.31 0.65 0.02 0.04 17.42 0.03 0.02 0.02 0.03 0.18 0.04 0.02 0.00 95.29 1488<br />

6122_Pt5_1 Ace Fay 71.65 0.46 2.32 0.11 0.38 0.04 0.06 19.91 0.02 0.05 0.01 0.01 0.07 0.09 0.01 0.02 95.10 1724<br />

6122_Pt10 1 Ace Fay 73.64 9.89 2.48 1.14 1.36 0.28 0.23 1.90 0.36 0.06 0.01 0.03 0.36 0.08 0.20 0.05 91.80 160<br />

Metasomatic-type U 3 uraninite<br />

6134 pt2 1 Gunnar 77.59 3.01 5.35 0.15 0.06 0.01 0.04 0.07 0.12 0.14 0.01 0.01 0.03 0.02 0.07 0.04 86.61 5<br />

6134 pt2 2 Gunnar 80.25 3.04 5.60 0.23 0.03 0.01 0.09 0.12 0.00 0.08 0.03 0.00 0.08 0.04 0.06 0.04 89.46 9<br />

6134 pt2 3 Gunnar 78.63 3.65 5.19 1.65 0.33 0.01 0.06 0.00 0.06 0.07 0.02 0.02 0.06 0.00 0.07 0.12 89.78 0<br />

6134 pt2 4 Gunnar 78.36 3.72 5.28 1.82 0.44 0.05 0.02 0.03 0.06 0.06 0.05 0.02 0.06 0.01 0.05 0.02 89.85 2<br />

6134 pt3 Gunnar 77.88 4.95 5.57 0.19 0.37 0.01 0.01 0.12 0.05 0.07 0.03 0.01 0.09 0.01 0.08 0.01 89.33 9<br />

6134 pt3 1 Gunnar 79.27 3.95 5.52 0.15 0.01 0.03 0.04 0.11 0.08 0.08 0.04 0.01 0.03 0.00 0.04 0.02 89.22 9<br />

6134 pt3 2 Gunnar 81.64 3.39 4.56 0.16 0.00 0.12 0.07 0.03 0.05 0.06 0.04 0.00 0.07 0.03 0.08 0.05 90.13 2<br />

6134 pt3 3 Gunnar 79.50 3.78 5.54 0.11 0.06 0.04 0.02 0.06 0.09 0.06 0.02 0.00 0.04 0.00 0.06 0.01 89.23 4<br />

6134 pt4 1 Gunnar 80.77 3.52 5.67 0.23 0.01 0.01 0.00 0.13 0.01 0.07 0.03 0.01 0.09 0.04 0.01 0.04 90.58 10<br />

6134 pt4 2 Gunnar 79.52 3.13 5.90 0.26 0.13 0.01 0.03 0.09 0.07 0.05 0.00 0.03 0.07 0.01 0.03 0.01 89.31 7<br />

6134 pt4 3 Gunnar 81.29 2.79 5.67 0.20 0.03 0.00 0.02 0.16 0.01 0.05 0.02 0.00 0.07 0.03 0.04 0.02 90.29 12<br />

6134 pt5 1 Gunnar 81.39 2.70 5.41 0.13 0.00 0.04 0.00 0.11 0.04 0.06 0.07 0.00 0.05 0.06 0.02 0.07 89.88 8<br />

6134 pt5 2 Gunnar 74.27 3.20 4.97 0.22 0.08 0.04 0.02 0.04 0.11 0.23 0.02 0.01 0.10 0.02 0.05 0.04 83.27 3<br />

6134 pt5 3 Gunnar 80.12 4.95 4.54 0.22 0.41 0.01 0.01 0.10 0.12 0.12 0.05 0.01 0.02 0.16 0.01 0.01 90.75 8<br />

6134 pt6 1 Gunnar 81.12 3.04 5.23 0.01 0.01 0.04 0.01 0.03 0.00 0.04 0.02 0.01 0.01 0.01 0.02 0.01 89.49 2<br />

6134 pt6 2 Gunnar 81.92 3.06 5.25 0.04 0.04 0.00 0.00 0.10 0.01 0.04 0.02 0.00 0.08 0.04 0.04 0.04 90.45 7<br />

6134 pt6 3 Gunnar 80.49 3.09 5.36 0.02 0.02 0.01 0.09 0.08 0.04 0.06 0.01 0.01 0.01 0.04 0.09 0.01 89.37 6<br />

6134 pt6 4 Gunnar 81.96 3.12 4.98 0.05 0.04 0.01 0.02 0.10 0.02 0.06 0.04 0.00 0.07 0.02 0.01 0.01 90.44 8<br />

6134 pt8 1 Gunnar 79.17 2.87 4.43 0.01 0.02 0.01 0.57 1.40 0.09 0.07 0.02 0.10 0.03 0.16 0.07 0.01 88.96 110<br />

6134 pt8 2 Gunnar 79.67 2.90 4.69 0.02 0.07 0.03 0.35 1.44 0.06 0.00 0.03 0.07 0.02 0.08 0.10 0.05 89.42 112<br />

6134 pt8 3 Gunnar 80.29 3.14 3.87 0.03 0.78 0.01 0.05 0.11 0.08 0.03 0.04 0.00 0.04 0.12 0.00 0.00 88.53 9<br />

6134 pt8 4 Gunnar 77.08 2.76 5.44 0.05 0.02 0.02 0.53 0.61 0.09 0.01 0.01 0.04 0.06 0.21 0.02 0.04 86.86 49<br />

6134 pt8a 1 Gunnar 80.50 4.02 5.50 0.04 0.11 0.02 0.00 0.07 0.01 0.12 0.06 0.02 0.07 0.05 0.03 0.00 90.45 5<br />

61


6134 pt8a 2 Gunnar 82.92 2.92 5.30 0.07 0.04 0.02 0.09 0.11 0.01 0.07 0.01 0.04 0.10 0.01 0.07 0.02 91.62 8<br />

6134 pt8a 3 Gunnar 77.51 1.83 5.81 0.17 0.02 0.02 0.05 0.16 0.11 0.15 0.00 0.03 0.12 0.01 0.06 0.07 85.99 13<br />

6134 pt9 1 Gunnar 63.41 3.15 4.32 0.08 0.04 0.03 0.24 1.46 0.18 0.19 0.03 0.05 0.08 0.12 0.05 0.02 73.42 143<br />

6134 pt9 2 Gunnar 75.28 3.78 5.33 0.02 0.07 0.01 0.29 1.41 0.22 0.08 0.00 0.03 0.01 0.20 0.02 0.07 86.69 117<br />

6134 pt9 3 Gunnar 73.41 2.98 5.19 0.09 0.09 0.05 0.31 1.60 0.28 0.29 0.03 0.02 0.07 0.19 0.06 0.03 84.62 135<br />

6134 pt9a 1 Gunnar 81.55 3.36 4.26 0.18 0.69 0.00 0.08 0.08 0.15 0.10 0.01 0.01 0.06 0.07 0.02 0.00 90.57 6<br />

6134 pt9a 2 Gunnar 80.44 2.93 4.23 0.04 0.47 0.06 0.14 0.21 0.15 0.07 0.01 0.01 0.05 0.13 0.02 0.04 88.96 16<br />

6134 pt9a 3 Gunnar 78.82 3.02 4.69 0.03 0.60 0.03 0.15 0.05 0.14 0.05 0.01 0.00 0.03 0.15 0.04 0.05 87.79 4<br />

6134 pt9a 4 Gunnar 77.24 5.45 4.77 0.44 0.46 0.04 0.00 0.12 0.19 0.16 0.00 0.01 0.09 0.16 0.05 0.03 89.07 10<br />

6134 pt10 1 Gunnar 73.83 6.55 3.47 1.32 0.01 0.03 0.07 0.41 0.09 0.14 0.00 0.01 0.05 0.27 0.01 0.06 86.09 35<br />

6134 pt10 2 Gunnar 64.50 9.49 2.43 9.15 0.06 0.01 0.12 0.65 0.12 0.28 0.06 0.03 0.05 0.32 0.26 0.05 87.17 63<br />

6134 pt10 3 Gunnar 74.14 7.47 3.23 1.59 0.01 0.01 0.06 0.32 0.04 0.16 0.00 0.01 0.01 0.27 0.03 0.04 87.34 27<br />

6134 pt10 4 Gunnar 74.03 5.88 2.71 1.97 0.08 0.01 0.18 1.96 0.14 0.13 0.03 0.01 0.01 0.41 0.03 0.07 87.58 164<br />

6134 pt10 5 Gunnar 72.59 6.19 3.29 2.40 0.04 0.02 0.08 1.39 0.14 0.15 0.02 0.01 0.03 0.26 0.11 0.01 86.58 119<br />

Breccia-type U 4 uraninite<br />

5812 Pt1 1 Gunnar 75.59 0.50 4.51 0.62 0.46 0.03 0.18 12.07 0.02 0.04 0.03 0.01 0.42 0.45 0.08 0.05 94.92 991<br />

5812 Pt6 2 Ace Fay 34.12 48.31 1.48 1.21 0.18 0.02 0.01 3.86 0.65 0.08 0.03 0.59 0.24 0.14 0.09 0.05 90.96 702<br />

5812 Pt6 1 Ace Fay 74.88 0.54 4.43 0.44 0.44 0.01 0.16 15.88 0.02 0.03 0.02 0.01 0.22 0.15 0.04 0.00 97.16 1315<br />

5812 Pt1 2 Ace Fay 76.71 0.98 6.43 0.90 0.61 0.03 0.21 6.89 0.01 0.03 0.04 0.06 0.70 0.60 0.00 0.01 94.18 557<br />

5812 Pt8 1 Ace Fay 77.99 1.05 4.27 1.20 0.80 0.05 0.01 8.71 0.02 0.03 0.29 0.03 0.35 0.06 0.05 0.02 94.82 693<br />

5812 Pt2 2 Ace Fay 75.02 2.40 4.63 1.28 1.74 0.01 0.14 10.07 0.05 0.06 0.03 0.73 0.67 0.31 0.11 0.03 97.15 832<br />

Volcanic-type U 5 uraninite<br />

6120B_pt4 2 Ace Fay 74.34 1.13 4.30 0.95 0.43 0.02 0.26 14.17 0.05 0.03 0.01 0.01 0.23 0.04 0.02 0.00 95.92 1183<br />

6120B_pt3 1 Ace Fay 74.41 0.84 3.66 0.48 0.65 0.01 0.22 15.41 0.06 0.03 0.02 0.02 0.20 0.03 0.09 0.03 95.99 1285<br />

6120B_pt3 2 Ace Fay 74.38 1.68 2.57 0.54 0.58 0.03 0.13 15.68 0.03 0.03 0.00 0.02 0.10 0.09 0.00 0.03 95.82 1307<br />

6120B_pt2 2 Ace Fay 71.88 1.43 3.00 0.46 0.48 0.03 0.25 17.14 0.06 0.02 0.00 0.01 0.08 0.01 0.07 0.03 94.86 1479<br />

6120B_pt1 2 Ace Fay 73.42 1.05 2.73 0.45 0.52 0.01 0.48 17.56 0.06 0.03 0.07 0.04 0.12 0.01 0.04 0.07 96.46 1484<br />

6120B_pt3 3 Ace Fay 73.75 0.47 3.05 0.29 0.42 0.03 0.09 17.91 0.05 0.04 0.05 0.00 0.07 0.03 0.06 0.04 96.19 1506<br />

6120B_pt5 2 Ace Fay 73.23 0.46 2.58 0.43 0.37 0.03 0.04 19.04 0.03 0.03 0.01 0.01 0.07 0.06 0.03 0.03 96.37 1613<br />

6120B_pt6 1 Ace Fay 71.73 0.92 2.35 0.28 0.49 0.04 0.46 19.29 0.04 0.03 0.02 0.03 0.01 0.03 0.05 0.01 95.67 1668<br />

6120B_pt3 4 Ace Fay 74.04 0.50 2.50 0.32 0.30 0.03 0.13 20.15 0.04 0.04 0.02 0.03 0.01 0.02 0.03 0.04 98.05 1689<br />

6120B_pt5 1 Ace Fay 72.87 0.38 2.37 0.23 0.29 0.01 0.16 19.91 0.05 0.02 0.01 0.04 0.04 0.11 0.09 0.03 96.56 1695<br />

62


6120B_pt4 1 Ace Fay 70.14 0.67 2.65 0.15 0.37 0.01 0.33 19.62 0.04 0.02 0.05 0.02 0.08 0.04 0.08 0.01 94.13 1735<br />

6120B_pt4 1 Ace Fay 71.92 0.51 2.33 0.05 0.51 0.01 0.11 20.29 0.03 0.02 0.08 0.04 0.05 0.09 0.06 0.02 95.99 1750<br />

Athabasca-type U 6 uraninite<br />

3705 Pt4 5 Ace Fay 24.22 2.29 0.49 3.46 59.66 0.03 1.23 4.43 0.04 0.02 0.01 0.44 0.01 0.04 0.16 0.00 96.29 1135<br />

3705 Pt3 2 Ace Fay 38.66 4.78 1.74 3.34 36.72 0.06 0.86 5.48 0.01 0.02 0.10 0.40 0.04 0.01 0.22 0.02 92.19 880<br />

3705 Pt3 4 Ace Fay 39.64 6.95 1.09 4.31 36.08 0.04 0.62 3.14 0.30 0.04 0.07 0.00 0.02 0.02 0.07 0.06 92.29 492<br />

3705 Pt4 2 Ace Fay 29.41 9.42 1.69 4.03 36.11 0.08 0.38 1.68 2.70 0.11 0.05 0.01 0.03 0.20 0.11 0.04 85.79 354<br />

3705 Pt4 1 Ace Fay 48.08 10.87 2.67 3.29 16.60 0.00 0.33 5.69 0.84 0.13 0.15 0.86 0.04 0.44 0.20 0.07 89.96 735<br />

3705 Pt4 3 Ace Fay 28.39 8.87 2.09 6.23 44.41 0.02 0.62 2.17 0.18 0.10 0.02 0.01 0.04 0.03 0.26 0.00 93.18 473<br />

3705 Pt2 7 Ace Fay 36.89 10.39 1.29 6.22 33.91 0.01 0.45 0.58 0.74 0.10 0.14 0.01 0.00 0.09 0.18 0.00 90.80 98<br />

3705 Pt2 4 Ace Fay 34.12 11.57 1.16 5.91 33.49 0.01 0.32 0.71 0.77 0.11 0.10 0.01 0.01 0.06 0.10 0.04 88.37 130<br />

3705 Pt4 7 Ace Fay 34.71 11.31 1.27 6.26 34.74 0.01 0.53 0.84 0.64 0.14 0.08 0.02 0.02 0.01 0.13 0.08 90.57 149<br />

3705 Pt2 5 Ace Fay 35.07 11.45 1.29 6.67 36.99 0.01 0.57 0.76 0.61 0.08 0.04 0.00 0.06 0.04 0.15 0.02 93.68 135<br />

3705 Pt4 6 Ace Fay 29.87 12.08 1.98 6.51 36.63 0.22 0.46 1.09 0.58 0.09 0.21 0.00 0.04 0.02 0.20 0.03 89.80 227<br />

3705 Pt4 4 Ace Fay 41.88 16.19 0.63 3.07 28.28 0.01 0.97 0.78 0.30 0.01 0.14 0.00 0.02 0.08 0.12 0.05 92.38 116<br />

3705 Pt2 6 Ace Fay 33.11 13.43 1.46 5.84 36.83 0.02 0.21 1.19 0.62 0.10 0.12 0.02 0.05 0.01 0.20 0.02 93.00 223<br />

3705 Pt2 3 Ace Fay 39.04 16.30 0.64 3.39 28.73 0.07 1.15 0.74 0.30 0.02 0.04 0.01 0.02 0.06 0.10 0.03 90.50 117<br />

3705 Pt3 1 Ace Fay 45.91 17.68 2.01 2.59 16.32 0.01 0.23 0.74 0.95 0.01 0.15 0.00 0.03 0.20 0.09 0.01 86.83 100<br />

Table 2.3. Average chemical composition and calculated chemical Pb ages from electron microprobe analyses of different uraninite<br />

occurrences in the Beaverlodge area. The composition is reported in weight percent and the age in Ma. The paragenesis of each type of<br />

uraninite analyzed is shown in Figures 2.8 and 2.9 and described in Section 4.3.<br />

63


Regression to zero content of the sum SiO 2 and Fe 2 O 3 in the Athabasca-related U 6<br />

uraninite gives a Chemical Pb age of 1619 Ma (Fig. 2.12D). This age overlaps the upper<br />

intercept age of 1601±64 Ma and the 207 Pb/ 206 Pb age of 1620±4 Ma (Fig. 2.11F) and is<br />

interpreted as the formation age of ±U 6 uraninite.<br />

The higher degree of alteration of U 3 uraninite associated with the granite-related<br />

metasomatic-type mineralization in Gunnar, as indicated by the much lower Pb contents<br />

and the higher total silicate elements, is reflected by much lower Chemical Pb ages (Table<br />

2.3). These ages range from 164 Ma to 0 and reflect recent alteration of U 3 uraninite in<br />

Gunnar, which is also reflected by the low Pb/Pb and U-Pb ages (Tables 2.1 and 2.2).<br />

64


Figure 2.12. Plot of element contents in uraninite as a function of chemical Pb ages. A: Early<br />

tensional vein type ±U 2 uraninite (Sample 6122BV-Cat, Ace deposit) . B: Breccia-type U 4<br />

uraninite (Sample B5812, Ace-Fay deposit). C: Volcanic-type ±U 5 uraninite (Sample B6120,<br />

Ace-Fay deposit). D: Athabasca-related ±U 6 uraninite (Sample B3705, Ace-Fay deposit).<br />

2.5. DISCUSSION<br />

2.5.1. Interpretation of the Main Ore shear zone and Saint Louis fault<br />

Structural and textural relationships along the Main Ore shear zone and the Saint<br />

Louis fault indicate a sequential development of early ductile and ductile-brittle, to late<br />

brittle episodes of movement (Fig. 2.13). The Main Ore shear zone and the Saint Louis fault<br />

display a spatial distribution of deformed rocks that is consistent with a dominant<br />

extensional normal sense of movement (Sibson, 1977). Therefore, the Main Ore shear zone<br />

is interpreted as an oblique-normal and dextral listric fault. The sense of movement along<br />

the Saint Louis fault is contentious due to paucity of shear sense indicators. Allen (1963)<br />

described the Saint Louis fault as a dextral normal fault with multiple slip events. However,<br />

the footwall-dominated mylonite and the hanging wall-dominated cataclasite, which is<br />

capped by the Martin Lake basal conglomerate, suggest a significant normal sense of<br />

movement.<br />

Metamorphic relationships indicate that mylonitization was initiated in the ductile<br />

environment (Fig. 2.13B) at amphibolite metamorphic conditions and that retrogression to<br />

lower greenschist facies is concomitant with exhumation to shallower crustal depths. The<br />

host mylonites are overprinted by ductile-brittle and brittle faults, reflecting progressive<br />

unroofing of the shear zones to shallower crustal levels. The ductile shear zones<br />

experienced reactivated slip movement in the ductile-brittle zone associated with cataclasite<br />

65


faults (Fig. 2.13C). The breccias were generated later at a shallow level in the brittle<br />

environment (Fig. 2.13E). The shear zone is further cut by more brittle features associated<br />

with veins and dikes (Figs. 2.13F and 2.13G).<br />

The Main Ore shear zone and the Saint Louis fault display evidence for hydration<br />

and fluid flow. Retrograde metamorphism following mylonitization involved exothermic<br />

hydration reactions evidenced by the presence of en-échelon quartz-filled tension gashes<br />

(Fig. 2.5G), tensional veins (Fig. 2.9B), hydraulic breccia (Fig. 2.5L) and chlorite, calcite<br />

and albite veins (Fig. 2.7H) that occur within these shear zones. All the evidence suggests<br />

that hydration associated with fluid circulation prevailed during the development of the<br />

shear zones and played a key role in the alteration and ore-forming processes.<br />

Petrographic, paragenetic mineral and ore alteration relationships, together with<br />

geochronological data and the various deformation features within the Main Ore shear zone<br />

and Saint Louis fault indicate six events of uranium mineralization. These are related to<br />

episodic brittle reactivation of the fault zones (Fig. 2.8) that create dilatant areas, which are<br />

favorable structural sites for fluid flow, hydrothermal alteration, and uranium<br />

mineralization.<br />

Sediments of the Murmac Bay Group were deposited in a tectonically active<br />

extensional fault-bounded Paleoproterozoic Basin (Ashton et al., 2009b) (Fig. 2.13A). Slip<br />

activity along fault zones was likely initiated shortly after deposition of the Murmac Bay<br />

sediments at ca. 2.33 Ga (Hartlaub et al., 2004; Ashton and Hartlaub, 2008). The Group is<br />

intruded by the ca. 2.33–2.30 Ga ‘North Shore Plutons’ (Macdonald et al., 1985) likely<br />

related to tectonic extension during the Arrowsmith Orogen (Hartlaub et al., 2007). The<br />

66


plutons include the 2321±3 Ma Gunnar granite (Fig. 2.13B) (Hartlaub et al., 2007), which<br />

hosts the granite-related metasomatic-type U 3<br />

uranium mineralization. Crosscutting<br />

relationships suggest that the metasomatic-type mineralization pre-dates the breccia event.<br />

The timing of U 3 -mineralization is therefore constrained between the age of the Gunnar<br />

granite and the age of the breccia that has overprinted the U 3 -mineralized granite.<br />

Deposition of the Murmac Bay Group, Mylonitization and Granitization<br />

Various periods of tectonic reactivation, basin formation, volcanism and uranium mineralization<br />

67


Figure 2.13. Schematic cross-sections illustrating the general tectonic evolution and timing of<br />

the uranium mineralization in the Beaverlodge area. A: ≈2.33 Ga: Deposition of the Murmac<br />

Bay Group rocks in a tectonically active fault-bounded Paleoproterozoic basin. B: ≈2.33-2.3<br />

Ga: mylonitization with oblique-normal and dextral sense of shear along fault zones,<br />

concomitant with emplacement of the Gunnar granite. C: 2.29 Ga: Reactivation during late<br />

Arrowsmith orogenic exhumation. Cataclasite fault overprinted the mylonite. ±U1 is<br />

68


associated with cataclasite rocks. Hydraulic fracturing in response to fluid generation via<br />

decompression and hydration reactions was probably the mechanism of the early tensional<br />

±U2 veins formation. D: 2.0-1.9: 1.94-1.92 Ga peak metamorphism of the Taltson-Thelon<br />

Orogen produced a regional migmatitic foliation (S1) and tight to isoclinal folds of early S1<br />

fabric. 1.91-1.90 Ga metamorphic event of the Snowbird Tectonic Zone produced an<br />

overprinting northeast-striking regional fabric associated with tight to isoclinal folds. E: 1850<br />

Ma: U4-rich brecciation of pre-existing rocks along reactivated faults during regional<br />

metamorphism of the Trans-Hudson Orogen or most likely post-peak compressional uplift<br />

during terminal collision of the Taltson-Thelon Orogen. F: 1820 Ma: Formation of the<br />

successor Martin Lake Basin, which developed along lines of pre-existing tectonic weakness<br />

during late stage of the Trans-Hudson Orogen. The Martin Lake Basin is associated with<br />

extrusion of mantle-affinity alkaline to sub-alkaline mafic dikes around 1818±4 Ma. The<br />

volcanic-type ±U5 is spatially associated with the mafic dikes. G: 1620 Ma: Deposition of the<br />

Athabasca Basin at ca. 1750 Ma and formation of Athabasca-related ±U6 veins coincident<br />

with the age of the unconformity-related U-mineralizing event in the Athabasca Basin that<br />

records tectonic reactivation during the 1.65-1.60 Ga Mazatzal Orogen. H: Late alteration<br />

events: From the Mesoproterozoic to recent time, far field tectonic events of several orogenic<br />

episodes during the thermotectonic evolution of the Laurentian plate caused minor brittle<br />

fault reactivation in the Beaverlodge area.<br />

2.5.2. Temporal relationships of fault activities and uranium mineralization to<br />

regional tectonic events<br />

The oldest observed deformation event corresponds to mylonitization with obliquenormal<br />

and dextral sense of shearing in the ductile environment at amphibolite facies<br />

metamorphism (Fig. 2.13B). Mylonitization along these faults likely occurred during the<br />

Arrowsmith Orogen at ca. 2.33 Ga (Berman, 2005; Hartlaub et al., 2007), concomitant with<br />

initial deposition of the Murmac Bay Group sediments. Metamorphic retrogression took<br />

place during exhumation to shallower crustal depths, resulting in greenschist facies<br />

conditions, probably subsequent to a period of tectonic quiescence and regional erosion.<br />

69


Mylonites were then reactivated at shallower structural levels where brittle-ductile<br />

fracturing under hydrated conditions associated with cataclasite faulting became the<br />

dominant failure process (Fig. 2.13C).<br />

The formation age of the cataclasite ±U 1 and early tensional veins-type ±U 2<br />

mineralization, suggests that these two mineralizing events were coeval and their timing is<br />

consistent with fault reactivation during late stage Arrowsmith Orogen that affected the<br />

Beaverlodge area (Fig. 2.13C). Post-orogenic exhumation and erosion may have led to the<br />

development of fluid-related features (Miller et al., 2002) as deformation occurred under<br />

hydrated conditions in the ductile-brittle environment. Hydraulic tensile fracturing in<br />

response to fluid generation via decompression and hydration reactions (Miller and<br />

Cartwright, 2006) was probably the mechanism of the early tensional ±U 2 -veins formation.<br />

The vein-forming fluid was likely driven into these fractures by suction pump processes<br />

(Sibson, 1987). Interaction between the hydrothermal brine and the metamorphic host rocks<br />

likely promoted the deposition of the ±U 2 uranium mineralization and the Cal 2 -Hem 3 -Chl 3 -<br />

Src 2 -Cpy 2 -Py 2 mineral assemblage (Fig. 2.8).<br />

The 207 Pb/ 206 Pb system of U 1 and U 2 uraninites displays five groups of ages reflecting<br />

post-mineralization alteration by later fluid events that are related to fault reactivation (Fig.<br />

2.15). The intervals 2.2-2.1 Ga and 2.1-2.0 Ga correspond to a period of global extension<br />

and rifting related to the protracted breakup of the Kenorland supercontinent (Williams et<br />

al., 1991; LeCheminant et al., 1997) (Fig. 2.15). For example, the 2.2-2.1 Ga mafic swarms<br />

in the Slave, Churchill, Superior and Nain provinces (LeCheminant et al., 1996; Bleeker et<br />

al., 2007) and the 2.2-2.0 Ga intrusive complexes in the Slave province (Buchan and Ernst,<br />

70


2004) are all interpreted as related to Kenorland breakup. The 2.0-1.9 Ga period is<br />

consistent with the compressional Taltson-Thelon Orogen (Henderson et al., 1990; Chacko<br />

et al., 2000) and Snowbird Tectonic Zone (Baldwin et al., 2003, Berman et al., 2007a), in<br />

the west and east of the Beaverlodge area, respectively (Fig. 2.14).<br />

Figure 2.14. Regional geological map of the North American shield showing lithotectonic<br />

units, the major orogenic phases and the Beaverlodge location. The map also show the Trans-<br />

Hudson orogen surrounded by the Wyoming, Slave, Hearne, Rae and Superior cratons that<br />

constitute the central core of the North American craton (Laurentia) (modified from<br />

Hoffman, 1988).<br />

The Thluicho Lake Group, a fining-upwards, conglomerate–arkose–argillite<br />

succession located west of the Beaverlodge area, deposited in an intermontane setting<br />

towards the end of the Taltson Orogen (Ashton et al., 2009a). Bethune et al. (2010)<br />

interpreted the first stage of folding as associated with a north-northeast-directed folding<br />

71


and thrusting during the 1.94-1.92 Taltson-Thelon Orogen, producing tight to isoclinal<br />

folds, ductile transposition and development of east-southeast-trending foliation superseded<br />

by north-northwest-trending upright folds. This is consistent with F1, F2 and F3 type 2<br />

interference fold pattern observed at the Ace-fay deposits (Fig. 2.7D). Ashton et al. (2007)<br />

interpreted overprinting tight to isoclinal northeast-trending, predominantly southwestplunging<br />

folds that formed during the 1.91-1.90 Ga metamorphic event of the Snowbird<br />

Tectonic Zone (Fig. 2.15). These two major compressional orogens (Fig. 2.13D) likely<br />

overprinted and obscured early ductile and brittle-ductile fabric associated with the<br />

Arrowsmith Orogen.<br />

Subsequent to a period of erosion that exposed the fault zones at shallower crustal<br />

levels immediately after the Snowbird Tectonic Zone (Bethune et al., 2010), fault activity<br />

changed from dominantly ductile-brittle to brittle deformation causing widespread U 4<br />

uranium-rich brecciation along reactivated fault zones (Fig. 2.13E). The 1848±5 Ma U 4<br />

uranium-brecciation stage is consistent with fault reactivation during tectonic shortening<br />

and regional metamorphism of the Trans-Hudson Orogen or more likely post-peak<br />

compressional uplift during terminal collision of the Taltson-Thelon Orogen. Reactivated<br />

fault zones would have acted as high-permeability conduits that focus fluid flow into the<br />

breccia system leading to hydrothermal alteration and deposition of the U 4 uranium<br />

mineralization and Br 1 -Chl 7 -Src 3 -Hem 6 -Py 5 -Cpy 4<br />

mineral assemblage (Fig. 2.8). The<br />

Trans-Hudson Orogen, located east of the Beaverlodge area (Fig. 2.14), marks the<br />

amalgation involving Wyoming, Slave, Churchill, Superior and Sask provinces into the<br />

cratonic core of Laurentia (Hoffman, 1989; Ansdell, 2005). Ansdell et al. (1999) identified<br />

72


a ca. 1.85-1.83 Ga event associated with a northwest subduction that reactivated an earlier<br />

northwest-dipping suture beneath the La Ronge-Lynn Lake arc. The 1848±5 Ma main<br />

breccia-related U 4 uranium mineralization could be related to fault reactivation during the<br />

ca. 1.85-1.83 Ga event in the Trans-Hudson Orogen.<br />

Southeastward underthrusting of the Rae-Hearne foreland under the Superior<br />

hinterland during the ca. 1.83-1.81 Ma terminal collision of the Trans-Hudson Orogen<br />

(Ansdell and Yang 1995; Ansdell et al., 1999) is interpreted to have caused intracratonic<br />

deformation and significant extension in the Rae back-arc and formation of the 1820 Ma<br />

successor Martin Lake Basin (Mazimhaka and Hendry, 1985), which developed along lines<br />

of pre-existing tectonic weakness (Fig. 2.13F). The plate-scale tectonic setting of this basin<br />

is more compatible with an extensional rift regime, which is consistent with geodynamic<br />

models that suggest subduction initiation followed by rapid back-arc extension and basin<br />

formation (McKenzie, 1978; Clendenin et al., 1988). Ashton et al. (2009b) suggested that<br />

brittle–ductile to brittle trans-tensional faulting at the junction of the Black Bay (Bergeron,<br />

2001, 2002) and Saint Louis faults (Fig. 2.2) created a small pull-apart basin into which the<br />

Martin Lake Basin was deposited. The Martin Lake Basin is associated with extrusion of<br />

mantle-affinity alkaline to sub-alkaline mafic dikes at 1818±4 Ma (Morelli et al., 2009).<br />

Magma ascended during extensional reactivation of deep fault zones, which act as conduit<br />

for intrusion of the mafic dikes (Fig. 2.13F). Magmatic-hydrothermal degassing through<br />

preexisting fractures and joints is likely related to the volcanic-related U 5 uranium<br />

mineralization and associated mineral assemblage (Fig. 2.8). The 1812±15 Ma U 5 -<br />

mineralization coincides with the 1818±4 Ma Martin Lake mafic volcanism in the<br />

73


Beaverlodge area (Morelli et al., 2009) (Fig. 2.15). These ages are identical to an 1827±4<br />

Ma age (Bostock and Breemen, 1992) obtained for the southeast-east-southeast-striking<br />

Sparrow diabase dike swarms, which span the boundary between the Taltson Magmatic<br />

Zone and the western Churchill province (Fig. 2.14). These dates are also similar to the<br />

1800 Ma age that Russel and Ahren (1957) reported for the west orebody of the Ace<br />

deposit (Fig. 2.2). The U-Pb upper intercept ages of 1783±7 Ma and 1774±25 Ma (Figs.<br />

11D and 11E) are identical to the 1780±20 Ma date that Koeppel (1969) originally<br />

interpreted as the age of vein-type uranium deposits in the Beaverlodge area. However,<br />

these ages are likely related to a post-mineralization alteration and resetting event<br />

associated with fault reactivation during the emplacement of the 1788±3 Ma (Ashton et al.,<br />

2009b) northeast-striking, post-orogenic, lamprophyre and granitic dikes (Sassano et al.,<br />

1974; Ashton et al., 2006) that cut the Uranium City mafic dikes (Tremblay, 1972).<br />

Sassano et al. (1974) suggested that the lamprophyre dikes are associated with the latekinematic<br />

phase of the Trans-Hudson Orogen, at which time the uplift of the northwest<br />

Churchill province took place.<br />

Late east-west compressional regime associated with tectonic readjustments during<br />

terminal ca. 1.81-1.69 Ga post-collisional convergence in the Trans-Hudson Orogen (e.g.<br />

Hajnal et al., 1996; Chiarenzelli et al., 1998) caused folding of the Murmac Bay Group and<br />

Martin Lake Basin rocks (Ashton et al., 2009a), followed by uplift, erosion, thermal<br />

relaxation, subsidence, and deposition of the Athabasca Basin at ca. 1750 Ma (Kyser et al.,<br />

2000) (Fig. 2.13G). Late brittle reactivation along fault zones during the Mesoproterozoic<br />

caused minor fracturing and deposition of U 6 uranium mineralization related to fluids likely<br />

74


originating from the Athabasca Basin and descended downward along reactivated fracture<br />

systems in the basement rocks. Interaction between the hydrothermal brine and the<br />

metamorphic basement lithologies may have led to the deposition of the ±U 6 uranium<br />

mineralization and Cal 10 -Chl 9 -Hem 8 -Py 7 mineral assemblage (Fig. 2.8). The 1620±4 Ma<br />

Athabasca-related ±U 6 uranium mineralization is coincident with the age of the major<br />

unconformity-related uranium mineralizing event in the Athabasca Basin (Alexandre et al.,<br />

2007) and records tectonic reactivation during the 1.65-1.60 Ga Mazatzal Orogen in<br />

southern Laurentia (Fig. 2.14) (Labrenze and Karlstrom, 1991; Eisele and Isachsen, 2001).<br />

The Athabasca-related U 6 uranium mineralization age is also within the 1700-1500 Ma<br />

intervals that Robinson (1955) originally suggested as the earliest uranium mineralization<br />

in the Beaverlodge area.<br />

From the Mesoproterozoic to recent time (Fig. 2.13H), far field tectonic events of<br />

several orogenic episodes during the thermotectonic evolution of the Laurentian plate (e.g.<br />

Hoffman, 1989; Evans and Pisarevsky, 2008) caused minor brittle fault reactivation in the<br />

Beaverlodge area (Fig. 2.15). Post-mineralization alteration for all stages of uraninite<br />

record a Mesoproterozoic tectonic event at ca. 1.4 Ga (Fig. 2.15), which corresponds to the<br />

Granite Pluton event (1.55-1.35 Ga) along the southeastern margin of Laurentia (Fig. 2.14)<br />

(Barinek et al., 1999; Thompson and Barnes, 1999). This event is subsequent to the final<br />

breakup of the Nuna supercontinent (Hou et al., 2008; Evans et al., 2010) that culminated<br />

at ca. 1.3 to 1.2 Ga (Ernst et al., 2008). The metasomatic-type U 3 uraninite in Gunnar<br />

records this breakup event at ca. 1.27 Ga (Fig. 2.15), similar to the 1.27 Ga Mackenzie<br />

75


dikes (Ernst and Buchan, 2001b) and the 1.24 Ga Sudbury mafic dikes (Dudás et al., 1994)<br />

that are associated with the Nuna supercontinent breakup (Rogers and Santos, 2002).<br />

The breccia-type U 4 and metasomatic-type U 3 uraninites record 400 Myr of alteration<br />

extending from 1.3 to 0.9 Ga (Fig. 2.15), which likely corresponds to the protracted period<br />

of Rodinia supercontinent assembly (Piper, 2000, 2004, Li et al., 2008) through the<br />

Grenville Orogen (Rivers, 1997; Carr et al., 2004). This orogenic activity along the<br />

southern margin of Laurentia (Fig. 2.14) culminated into continent-continent collision that<br />

led to the final Rodinia assembly (Moores, 1991; Bogdanova et al., 2009).<br />

The metasomatic-type U 3 and breccia-type U 4 uraninites show intense alteration at<br />

800-780 Ma and 550-500 Ma (Fig. 2.15). These ages are consistent with diachronous<br />

breakup models of Rodinia (Dalziel, 1991; Moores, 1991; Li et al., 2008), comprised of an<br />

early rifting stage along the western margin of Laurentia at ca. 780-755 Ma (Harlan,<br />

2003b) followed by the main pulse of rifting along the eastern margin at ca. 600-550 Ma<br />

(Ernst and Buchan, 2001b). Mafic intrusions associated with this major extensional event<br />

occur along the western margin of Laurentia (Fig. 2.14) and include the ca. 780-770 Ma<br />

Gunbarrel mafic event (Harlan et al., 2003b). The ca. 570-550 Ma central-Iapetus mafic<br />

intrusion along the eastern margin of Laurentia occurred during Rodinia eastern breakup<br />

(Kamo et al., 1989; Li et al., 2008).<br />

All uraninite types have been affected by alteration between 460 Ma and 280 Ma,<br />

with peaks at ca. 350 Ma (Fig. 2.15) recording the thermotectonic event of the protracted<br />

Appalachian Orogen that affected the eastern margin of Laurentia (Fig. 2.14) during<br />

Pangea assembly (Cocks and Torsvik, 2002; Hatcher, 2002).<br />

76


U-Pb isotopic systems have lower intercept ages reflecting post-Appalachian tectonic<br />

history of the North American shield. These ages range from 166±30 Ma to 54±87 Ma<br />

(Tables 2.1b and 2.2b) and likely reflect tectonic activity during the Cretaceous and<br />

Paleocene Cordilleran orogenic belt of North America (Molnar and Atwater, 1978). The<br />

belt marked by a zone of strong folding and thrust faulting is located further east of the<br />

Beaverlodge area, along the western active margin of Laurentia (Fig. 2.14).<br />

77


Figure 2.15: Distribution of 207 Pb/ 206 Pb ages for 260 uraninite grains along with the timing of<br />

various uranium mineralization and tectonic events that affected the Beaverlodge area. The<br />

ages are from analysis of grains from different styles of uranium mineralization. Also shown<br />

are the area distribution of supercontinents and major magmatic events in North America.<br />

(e.g Hoffman, 1989; Ernst and Buchan, 2001b; Li et al., 2008)<br />

Lower U-Pb intercept and chemical Pb ages close to 0 Ma (Tables 2.1, 2.2, and 2.3)<br />

are interpreted to record recent fault reactivation and resetting events likely during the<br />

Pleistocene glaciations-related stress fluctuation that caused continental-scale isostatic<br />

readjustments as the upper crust deformed in response to deglaciation and lithospheric<br />

unloading (Adams, 1989; Karlstrom, 2000; Fullerton et al., 2003). Similar ages are also<br />

recorded in uranium deposits in the Athabasca Basin (Alexandre et al., 2005).<br />

These alteration and resetting stages of uraninites and the late Chl 9 , Cal 11 , Qtz 5 and<br />

Hem 9 veins that cut across the fault zones record the effect of late fluid events that have<br />

affected the deposits subsequent to their formation. The late fluid events may represent<br />

incursion and circulation of hydrothermal and meteoric water through the structurally<br />

reactivated fault zones (Kotzer and Kyser, 1995), suggesting that the fault zones were<br />

active after deposition of the uranium mineralization and remain zones of preferential fluid<br />

circulation (Fayek and Kyser, 1997).<br />

2.6. CONCLUSIONS<br />

Structural and metamorphic relationships within the Main Ore shear zone and the<br />

Saint Louis fault, and petrographic analysis and geochronological data from various<br />

uranium deposits indicate that the Beaverlodge area records ore-forming systems that<br />

result from a complex history of multiple reactivation and hydrothermal alteration<br />

78


processes during continent-scale protracted tectonic evolution. Stages of uranium<br />

mineralization and alteration events record over 2.3 Gyrs of tectonic history of the North<br />

American shield. Results presented indicate that uraninite in major structures is greatly<br />

sensitive to fluid events stimulated by both near- and far-field tectonic events. Therefore, it<br />

can serve as vehicle to understand the complex timing relationships between fault<br />

activities, hydrothermal and ore-forming processes, to regional thermotectonic events.<br />

Six distinct stages of uranium mineralization associated with multiple postmineralization<br />

alteration events are identified. The main event that hosts most of the<br />

uranium mineralization occurred during the Trans-Hudson Orogen or more likely postpeak<br />

Taltson-Thelon Orogen and is associated with far-field fault reactivation. This<br />

deformational event produced widespread uranium-rich breccia zones that overprinted<br />

early ductile and brittle-ductile shear zones and are the primary structural control for<br />

uranium mineralization. Exploration activities should therefore be focused in areas of fault<br />

zones that demonstrate evidence of tectonic reactivation that create dilatant areas, which<br />

are favorable structural sites for fluid flow, hydrothermal alteration, and uranium<br />

mineralization.<br />

79


CHAPTER 3<br />

GENESIS OF MULTIFARIOUS URANIUM MINERALIZATION IN<br />

THE BEAVERLODGE AREA, NORTHERN<br />

SASKATCHEWAN, CANADA<br />

Abstract<br />

The Beaverlodge area in northwestern Saskatchewan, Canada, hosts numerous faultcontrolled<br />

U deposits that are geochemically and structurally complex because of multiple<br />

deformation, hydrothermal alteration and U mineralization events. Field and petrographic<br />

studies combined with electron microprobe analysis, stable isotope geochemistry of H, C,<br />

O, as well as geochronological data have identified up to six temporally distinct stages of<br />

U mineralization. Early minor stages are hosted in cataclasite and veins at ca. 2.29 Ga and<br />

in albitized granite in the Gunnar deposit between ca. 2.3 Ga and 1.9 Ga, which predate<br />

the main stage of U mineralization as hydrothermal breccias that formed at ca. 1.85 Ga.<br />

Later stages of U mineralization are related to minor veins at ca. 1.82 Ga linked to alkaline<br />

mafic dikes associated with the Martin Lake Basin and to minor veins at ca. 1.62 Ga<br />

corresponding to the timing of unconformity-type uranium mineralization in the<br />

Athabasca Basin.<br />

Early vein and cataclasite-type mineralization formed during late stages of the early<br />

Paleoproterozoic Arrowsmith Orogen and represent the earliest recorded fluid events.<br />

Stable isotope geochemistry of C and O of syn-ore calcite and syn-ore chlorite crystal<br />

chemistry indicate that the early veins formed from fluids derived from retrograde<br />

metamorphic processes at 310 o C. Granite-related metasomatic-type mineralization at<br />

80


Gunnar formed from reducing hydrothermal brines that exsolved from magmatic fluid at<br />

315 o C. However, uranium associated with this metasomatic style of mineralization is<br />

overprinted by the more significant breccia-vein and later, minor volcanic-type<br />

mineralizations. The Gunnar deposit contains all three styles of mineralization.<br />

During the Paleoproterozoic, reactivation of major fault zones is related to the<br />

dominant breccia-type mineralizing event. Syn-ore chlorite crystal chemistry and stable<br />

isotope geochemistry of H, C, and O of syn-ore minerals indicate that the main U-<br />

mineralizing event at 1.85 Ga in all deposits in the Beaverlodge area, formed from Ca-Na-<br />

F-rich fluids at 330 o C associated with regional metamorphism coincident with the postpeak<br />

Thelon-Taltson Orogen or, more likely, early stages of the Trans-Hudson Orogen.<br />

During the late Paleoproterozoic, formation of the Martin Lake Basin and associated<br />

volcanic rocks is related to the volcanic-type mineralization at 1.82 Ga. Syn-ore chlorite<br />

crystal chemistry and stable isotope geochemistry of H, C, and O of syn-ore minerals<br />

indicate that this mineralization formed at 320 o C from magmatic fluids originating from<br />

the alkaline mafic dikes. The last stage of mineralization formed at ca. 1.62 Ga from<br />

oxidizing basinal brines at 235 o C originating from the Athabasca Basin. Subsequent<br />

erosion of the Athabasca and Martin Lake Basin rocks and weathering of the deposit<br />

resulted in the formation of secondary uranium minerals and late veins.<br />

These results improve the current genetic model for uranium mineralization in the<br />

Beaverlodge area to a level that takes into account the multiple stages of deformation and<br />

fluid overprinting that occurred over a period of at least 2.3 Gyrs. Although the<br />

Beaverlodge area represents several distinct mineralizing events, the major event is the<br />

81


eccia-type. The other styles of mineralization are minor, and their presence complicates<br />

both exploration and our understanding of deposit genesis in the area.<br />

3.1. Introduction<br />

The Martin Lake successor basin (Hendry, 1983; Mazimhaka and Hendry, 1985), in<br />

the Beaverlodge district, Saskatchewan, Canada, was affected by a protracted history of<br />

deformation, hydrothermal alteration and uranium mineralization during the Proterozoic<br />

(Dieng et al., 2011). Despite several decades of intense exploration and mining activities,<br />

only limited studies of the fluid characteristics of a few deposits have been reported (e.g.<br />

Robinson, 1955; Beck, 1969; Sassano et al., 1972; Hoeve, 1980, 1982; Sibbald, 1982;<br />

Rees, 1992; Kotzer and Kyser, 1995). Therefore, the key processes by which these<br />

deposits formed remain largely unknown. The U mineralization occurs in basement rocks<br />

beneath, and within, the Paleoproterozoic Martin Lake Basin (e.g. Tremblay, 1968;<br />

Sassano, 1972; Slater, 1983) that is stratigraphically older than, but spatially related to the<br />

U-rich Athabasca Basin (Kyser et al., 2000; Alexandre et al., 2009). However, whether or<br />

not these deposits are unconformity-related and how they are related to those in the<br />

Athabasca Basin is moot.<br />

In this chapter, we evaluate the character and formation of uranium deposits in the<br />

Beaverlodge area using mineral paragenesis that details the relative timing of alteration<br />

minerals. We also constrain the nature and origin of fluids in equilibrium with these<br />

minerals by using stable isotope geochemistry, rare earth element contents in uraninite,<br />

and chlorite and uraninite crystal chemistry. These results are used to identify key factors<br />

controlling U mineralization in the Martin Lake successor basin, present a conceptual<br />

82


genetic model for the different styles of U mineralization in the Beaverlodge area, and<br />

compare the Beaverlodge U deposits to those in the younger, U-rich Athabasca Basin.<br />

3.2. Geologic Setting<br />

3.2.1. General geology<br />

The Beaverlodge area lies within the southwestern Rae province (Fig. 3.1) and<br />

comprises Neoarchean to Mesoproterozoic rocks that can be broadly divided into four<br />

packages (Fig. 3.2).<br />

Location Map<br />

Study area<br />

<br />

Uranium deposits<br />

Figure 3.1. Generalized geological map of the Western Churchill Province, Canada, showing<br />

lithotectonic units, uranium deposits and location of the Beaverlodge area. (modified from<br />

Hoffman, 1988).<br />

83


The basement consist of Neoarchean granitoids (Ashton et al., 2004) including the<br />

Elliot Bay (3014 Ma; Persons, 1983), Lodge Bay (3060 Ma; O’Hanley, et al., 1991) and<br />

Cornwall Bay (2999 Ma; Hartlaub et al., 2004a) granites. The overlying Neoarchean to<br />

Paleoproterozoic supracrustal Murmac Bay Group (Hartlaub and Ashton, 1998; Hartlaub<br />

et al., 2004a) is composed of metamorphosed and moderately to highly deformed<br />

supracrustal rocks consisting of a basal quartzite, basalt, ultramafic to intermediate<br />

igneous rocks, and psammite and pelite with minor amounts of conglomerate, banded iron<br />

formation, and carbonates rocks (Hartlaub and Ashton, 1998; Ashton et al., 2004). The<br />

Murmac Bay Group was variably metamorphosed from granulite facies to lower<br />

greenschist facies (Hartlaub and Ashton, 1998). Recent work indicates that the basal<br />

quartzo-feldpathic units of the Murmac Bay Group have a maximum depositional age of<br />

2.33 Ga (Hartlaub et al., 2004a). The Murmac Bay Group is intruded by a suite of ca.<br />

2.33–2.30 Ga granites known as ‘North Shore Plutons’ (Macdonald et al., 1985) including<br />

the 2321±3 Ma Gunnar granite (Hartlaub et al., 2004a) that is associated with a major U<br />

deposit in the Beaverlodge area (Fig. 3.2). The tectonic environment of the plutonic suite<br />

and the depositional setting of the Murmac Bay Group and their timing relationships to<br />

deformation are still poorly understood.<br />

84


Figure 3.2. Simplified geological map of the Beaverlodge area showing the location of the<br />

studied uranium deposits. (modified from Macdonald and Slimmon, 1985).<br />

The Paleoproterozoic Martin Lake Basin (Fig. 3.2) is a ca. 5000 m-thick, molasse,<br />

red-bed succession (Langford, 1981; Mazimhaka and Hendry, 1985; Morelli et al., 2001)<br />

85


of essentially unmetamorphosed arkose, conglomerates and siltstone with mafic flows and<br />

sills of alkaline affinity (Morelli et al., 2009). The fault-controlled basin is confined to a<br />

broad open syncline centered on Martin Lake (Ramaekers, 1981; Ashton et al., 2001).<br />

Locally, extensive suites of east- to southeast striking mafic dikes, dated at 1818±4 Ma,<br />

are interpreted as feeders to the Martin Lake Basin mafic flows and sills (Morelli et al.,<br />

2009). The Martin Lake Basin formed during a period of active tectonism related to backarc<br />

extension (Dieng et al., 2011) following the peak Trans-Hudson Orogeny (Hoffman,<br />

1989, 1990; Corrigan, 2009) and can be therefore classified as a successor basin<br />

(Clendenin et al., 1988).<br />

Overlying the Martin Lake Basin are outliers of the Paleoproterozoic to<br />

Mesoproterozoic Athabasca Formation (Rainbird et al., 2007). These occur south of the<br />

Beaverlodge area and consist of generally flat-lying, undeformed quartz sandstone with<br />

minor shale, conglomerate, and greywacke (Sibbald, 1983).<br />

3.2.2. Uranium mineralization<br />

The Beaverlodge area hosts a multitude of U deposits (Fig. 3.2), which were<br />

actively mined between 1953 and 1963 from 284 deposits. Ore grades were generally in<br />

the range of 0.15 to 0.25 per cent U but in places, up to 0.4 per cent U (Robinson, 1955;<br />

Beck, 1969). About 25,000 t U was mined (Sibbald and Quirt, 1987), which is the<br />

equivalent of the Millennium deposit in the Athabasca Basin (Roy et al., 2005). Some<br />

previous investigators of the Beaverlodge U deposits reported a single event of U<br />

mineralization (Dudar, 1960; Sassano, 1972), but others described two mineralizing<br />

events (Turek, 1962). However, Tortosa (1983) identified five stages of U mineralization<br />

86


separated by fracturing events in the Cenex deposit that is located east of the Cinch Lake<br />

deposit. Joubin (1955) and Johns (1970) proposed a surficial origin for U mineralization<br />

and suggested that most of the pitchblende occurrences formed near the unconformity<br />

between the Tarzin and Martin Lake groups. Sassano et al. (1972) proposed a<br />

metamorphic hydrothermal source for the fluids and U based on studies of the Eldorado<br />

mine, wherein the deposits were generated by pore fluids in the supracrustal rocks and<br />

remobilized during metamorphism. Tortosa (1983) proposed a groundwater source for the<br />

mineralizing fluids that circulated through fracture zones near the surface and leached U<br />

from rocks to form the orebody at temperatures near 250 o C. Isotopic and<br />

microthermometric studies on silicate, carbonate, and oxide gangue minerals associated<br />

with U-oxide minerals from the Athabasca Basin and Beaverlodge area indicate that fluids<br />

involved with formation of unconformity-type and complex vein-type U mineralization<br />

were saline (10-40 wt % NaCl) having δ 18 O values ranging from -27 to -3 per mil and<br />

temperatures between 150 o C and 220 o C, but variably overprinted by relatively modern<br />

meteoric fluid processes (Peiris and Parslow, 1988; Kotzer and Kyser, 1995).<br />

3.3. Methodology<br />

Polished thin sections were prepared for 550 samples from outcrop and core of most<br />

of the major deposits (Fig. 3.2) and were examined using transmitted and reflected-light<br />

microscopy to determine mineral crosscutting relationships and develop a detail<br />

paragenesis for the Beaverlodge district (Fig. 3.3).<br />

Electron microprobe analysis of syn-ore chlorite and uraninite were accomplished<br />

on polished thin sections using a Cambax MBX electron microprobe equipped with 4<br />

87


WDX X-ray spectrometers at Carleton <strong>University</strong>, Ottawa, Canada. A suite of natural and<br />

synthetic minerals were used as calibration standards. The Cameca PAP matrix correction<br />

program was used to convert the raw X-ray data into elemental weight percent. The<br />

detection limit for the majority of the elements is ca. 0.05 percent and the accuracy of the<br />

measurements is 2% relative for major elements and 5% relative for minor elements. The<br />

crystal chemistry of paragenetically distinct chlorites was used to estimate their formation<br />

temperatures using the chlorite geothermometry of Cathelineau (1988). For uraninite,<br />

UO 2 , SiO 2 , CaO, Fe 2 O 3 , TiO 2 , Cr 2 O 3 , V 2 O 5 , PbO, P 2 O 5 , K 2 O ThO 2 , MnO, Y 2 O 3 , Tb 2 O 3 ,<br />

and CuO were measured to determine their chemical compositions.<br />

Clay minerals were extracted by ultrasound disintegration and centrifugation and<br />

analyzed by X-ray diffraction (XRD) using a Siemens X-pert instrument at Queen’s<br />

<strong>University</strong>, Canada. Monomineralic fractions, typically > 95 percent pure, were used for<br />

stable isotope analysis at the Queen’s Facility for Isotope Research (QFIR). Oxygen<br />

isotopic compositions of chlorite were measured using the BrF 5 method of Clayton and<br />

Mayeda (1963) and a dual inlet Finnigan MAT252 isotope ratio mass spectrometer.<br />

Hydrogen isotopic compositions were determined using a Thermo Finnigan TC/EA in-line<br />

with a DeltaPlus XP Finnigan Mat mass spectrometer. Isotopic compositions are reported<br />

in the δ notation in units of per mil relative to V-SMOW. Analyses of δ 18 O were<br />

reproducible to ±0.2 per mil and δ 2 H values were reproducible to ±3 per mil. The isotopic<br />

composition of fluid was calculated using the chlorite–water fractionation factor of<br />

Wenner and Taylor (1971) for oxygen and the chlorite–water fractionation factor of<br />

Marumo et al. (1980) for hydrogen.<br />

88


Stable isotopic compositions of C and O in calcite and dolomite were made using a<br />

Gas Bench coupled to a ThermoFinnigan Delta plus XP mass spectrometer and are reported<br />

in the δ notation in units of per mil relative to V-PDB and V-SMOW, respectively. The<br />

isotopic compositions of C and O in the fluid were calculated from the fractionation factor<br />

of Ohmoto and Rye (1979) and Hu and Clayton (2003), respectively.<br />

The content of REEs in uraninite was determined by LA-ICPMS using a<br />

ThermoFisher X-Series II. This instrument is equipped with a New Wave UP-213<br />

Nd:YAG laser-ablation system using a small volume (2.5 cm 3 ) and laminar-flow<br />

SuperCell ablation cell. Ablation was performed in an atmosphere of pure He (0.6<br />

l/min), with the ablated aerosol mixed with Ar (0.8 l/min) immediately after the ablation<br />

cell and prior to direct introduction into the torch. Pre-defined areas of the polished thin<br />

sections were ablated using a spot size of 30μm in diameter. Instrument drift was<br />

performed using NIST 612 and calibration was performed using zircon standard 91500<br />

(Wiedenbeck et al., 1995). The REE abundances are normalized to the abundances in<br />

chondrite meteorites reported by McDonough and Sun (1995). Heavy and light REE<br />

variations are reflected by chondrite normalized (La/Yb) N , (La/Sm) N and (Tb/Yb) N ratios,<br />

whereas redox conditions are recorded by Eu/Eu* and Ce/Ce* anomalies (DeBaar, 1991;<br />

Gao and Wedepohl, 1995).<br />

Mineral name abbreviations used in this chapter are those from Kretz (1983). The<br />

superscript numerical value on mineral name abbreviations reflects the mineral growth<br />

stage.<br />

89


3.4. Results<br />

3.4.1. Paragenesis of the alteration minerals and types of U mineralization<br />

The paragenetic mineral assemblage is based on detailed petrographic analysis of<br />

550 samples collected from the Ace-Fay, Gunnar and Cinch Lake deposits and on field<br />

relationships. These deposits are the largest in the Beaverlodge area (Fig. 3.2). There are<br />

six mineralogically, temporally, and structurally distinct U ore and related alteration<br />

assemblages within the U deposits in the Beaverlodge area (Figs. 3.3 and 3.4).<br />

Mylonitization is the earliest deformation observed (Dieng et al., 2011). The<br />

hornblende-feldspar gneiss at Cinch Lake and the Foot Bay gneiss at Ace-Fay define an<br />

amphibolite metamorphic assemblage of Kfs 1 +Pl 1 +Hbl 1 . Retrogression to greenschist<br />

metamorphic grade is indicated by the assemblage Bt 1 +Chl 1 +Src 1 +Hem 1 (Fig. 3.3). The<br />

mylonitic foliation is cut by Chl 2 chlorite, Qtz 2 quartz, Ab 1 albite, Cal 1 calcite, and Ep 1<br />

epidote veinlets (Fig. 3.3). The mylonites are further overprinted by a network of ductilebrittle<br />

and brittle features that host the U mineralization (Dieng et al., 2011). The<br />

cataclasite comprises mylonite fragments (Fig. 3.4A), Qtz 1 quartz and Kfs 1 feldspar clasts,<br />

and disrupted Cal 1 calcite and Qtz 2 quartz veinlets embedded in a matrix composed of<br />

recrystallized Qtz 1 quartz, Cal 2 calcite, Hem 3 hematite, Chl 3 chlorite, Src 2 sericite, and<br />

disseminated U 1 uraninite (Fig. 3.4B). Cataclasite rocks are occasionally cut by tensional<br />

Qtz 3 quartz-Cal 3 calcite and U 2 uraninite veins (Fig. 3.4C). Fine-grained Cal 4 calcite, Chl 4<br />

chlorite, Hem 4 hematite, and Py 3 pyrite are intergrown with U 2 uraninite (Fig. 3.4D). Qtz 3<br />

and Cal 3 display evidence of tensional opening (Sibson et al., 1975) and a syntaxial<br />

growth with fibers perpendicular to vein wall (Fig. 3.4C).<br />

90


Figure 3.3. Mineral paragenesis of the Beaverlodge U deposits showing regional greenschist<br />

metamorphism during exhumation of the fault zones to shallow crustal levels subsequent to<br />

mylonitization. Shown are six distinct stages of U mineralization that result from episodic<br />

tectonic reactivation of fault zones at shallower crustal levels. The main event of U<br />

mineralization occurs during the brecciation stage. The thickness of the lines indicates the<br />

relative mineral abundance. Temperatures associated with the different alteration minerals<br />

91


are derived from their chlorite crystal chemistry. The fluid composition is derived from the<br />

crystal chemistry of chlorite and U and from REE abundance of uraninite. The origin of the<br />

fluid is obtained from stable isotope geochemistry of chlorite and calcite in textural<br />

equilibrium with the U mineralization. The age of each event of U mineralization corresponds<br />

to the 207 Pb/ 206 Pb age obtained from LA-HR-ICPMS on uraninite (Dieng et al., 2011).<br />

Cl=chlorite crystal chemistry, U=Uraninite crystal chemistry, SI=Stable isotope,<br />

Pg=Paragenesis assemblage.<br />

Granite-related metasomatic-type alteration affected the Gunnar granite (Figs. 3.4E<br />

and 3.4F) and involved pervasive Ab 2 albite metasomatism. Replacement of Kfs 1 K-<br />

feldspar is complete and precedes Qtz 1 quartz dissolution resulting in a rock exclusively<br />

composed of Ab 2 albite (Fig. 3.4E), which is further carbonatized by Cal 5 . This calcite<br />

occupies voids left after Qtz 1 quartz dissolution. Petrographic evidence shows that the U 3<br />

mineralization was introduced subsequent to the albitization process and occupied space<br />

between Ab 2 albite grains probably left after Cal 5 calcite and Qtz 1 quartz dissolution. U 3<br />

uraninite is intergrown with Chl 5 chlorite, Src 3 sericite, Hem 5 hematite, Cal 6 calcite, Mz 1<br />

monazite, and Ttn 2 titanite (Fig. 3.4F). Late alteration associated with Cal 7 calcite, Qtz 4<br />

quartz and Chl 6 chlorite veins locally crosscut the mineralized albitized granite (Fig. 3.3).<br />

Breccias are associated with the main U-mineralizing event throughout the<br />

Beaverlodge area and result from a brittle reactivation of shear zones (Dieng et al., 2011).<br />

The breccia is composed of variable-sized (3-4 cm), locally albitized cataclasite and<br />

mylonite rock fragments, embedded in a Cal 8 calcite matrix (Fig. 3.4G). The matrix also<br />

contains broken fragments of Qtz 1 quartz and Kfs 1 feldspar. U 4 uraninite is associated with<br />

minor fine-grained (


fragments or as dissemination in the Cal 8 calcite matrix associated with Chl 7 chlorite<br />

(Figs. 3.4G and 3.4H).<br />

93


Figure 3.4. Photomicrographs of typical mineral assemblages and crosscutting relationship in<br />

the Beaverlodge area illustrating the mineral paragenesis in Figure 3: A: Transmitted light<br />

photomicrograph of a cataclasite granite gneiss with mylonitized fragments, Qtz 1 and Kfs 1<br />

embedded in a matrix of ±U 1 , Cal 2 , Hem 3 , Chl 3 , Src 2 , Cpy 2 , and Py 2 . B: Reflected light<br />

photomicrograph showing U 1 associated with Hem 3 and Py 2 . C: Transmitted light<br />

photomicrograph of U 2 -Hem 4 -Chl 4 -Cal 4 -Cpy 3 -Py 3 vein cutting cataclasite rock and filled by<br />

94


tensional mode I vein of Qtz 3 and Cal 3 . D: Reflected light photomicrograph of U 2 replacing<br />

Py 3 in vein. E: Transmitted light photomicrograph of mineralized albite-metasomatized<br />

granite showing U 3 associated with Hem 5 and Ttn 2 in void left after Cal 5 and Qtz 1 dissolution.<br />

F: Reflected light photomicrograph of mineralized albite-metasomatized granite. G:<br />

Transmitted light photomicrograph of mineralized breccia with albitized fragments of<br />

cataclasite rock in Cal 8 matrix. U 4 rims breccia fragments and disseminated in Cal 8 matrix<br />

associated with Chl 7 , and Hem 6 . H: Reflected light photomicrograph of a highly U-<br />

mineralized breccia. U 4 with Cal 8 and Chl 7 forming the matrix. I: Transmitted light<br />

photomicrograph of breccia vein composed of crushed Qtz 1 , Kfs 1 and Cal 1 embedded in a<br />

chlorite-rich matrix. U 5 is disseminated in the matrix associated with Hem 7 , Chl 8 and Ap 1 . J:<br />

Reflected light photomicrograph of breccia vein. K: Transmitted light photomicrograph of<br />

late mineralized veins containing U 6 , Chl 9 and Hem 8 . L: Reflected light photomicrograph of<br />

the late mineralized veins.<br />

Locally, U 4 uraninite displays a colloform texture with concentric banding indicating<br />

effects of late fluid alteration events. Chl 7 chlorite generally forms radiating aggregates<br />

enveloping U 4 uraninite. The size and texture of Chl 7 chlorite indicate growth into open<br />

pore spaces that were possibly created by brittle deformation. U 4 is associated with Src 3<br />

sericite, Hem 6 hematite, Py 5 pyrite, and Cpy 4 chalcopyrite. In places, U 4 replaces Py 4<br />

pyrite.<br />

U 5 uranium mineralization associated with mafic dikes occurs as veinlets or<br />

millimetric to metric breccia-dikes crosscutting the shear zone at Cinch Lake (Dieng et al.,<br />

2011). Field observations indicate a spatial relationship between breccia-dikes and mafic<br />

dikes. Breccia-dikes are composed of angular country rock fragments, Qtz 1 quartz, Kfs 1<br />

feldspar and Cal 1 calcite grains embedded in a chlorite matrix (Fig. 3.4I). U 5 occurs as<br />

disseminated grains cementing altered fragments (Fig. 3.4J) and is intergrown with Chl 8<br />

chlorite, Cal 9 calcite, Src 4 sericite, Hem 7 hematite, Mzn 2 monazite, and Ttn 3 titanite (Fig.<br />

95


3.4J). Py 6 Pyrite and Cpy 5 chalcopyrite are disseminated in the matrix. Ap 1 apatite as<br />

tabular crystals is intergrown with U 5 (Fig. 3.4J).<br />

Athabasca-type U mineralization fills late fractures and consists of U 6 uraninite<br />

associated with Cal 10 calcite, Chl 9 chlorite, Hem 8 hematite, and minor Py 7 pyrite (Fig.<br />

3.4L). These late veins (Fig. 3.4K) crosscut the Murmac Bay Group, the basal<br />

conglomerates of the Martin Lake Group and the mafic dikes and are the youngest<br />

mineralized phase. U 6 uraninite is typically massive and generally rims Cal 10 calcite veins.<br />

Late veins of Cal 11 calcite, Chl 10 chlorite, Qtz 5 quartz and sulfide occur as fracture-filling<br />

minerals cutting primary ore assemblages. The sulfides are Gn 1 galena, Cpy 6 chalcopyrite,<br />

Py 8 pyrite, Sph 1 sphalerite, and copper minerals. Gn 1 galena forms inclusions or fracturefilling<br />

in uraninite and Py 8 pyrite or thin films along Cal 8 calcite cleavage in the breccia<br />

rock. Sph 1<br />

sphalerite occurs as irregular masses or fine blebs in Py 8 pyrite. Copper<br />

mineralization is present as disseminated aggregates of Bn 1 bornite, Dg 1 digenite, and Cv 1<br />

covellite at the Ace-Fay and Gunnar deposits and appears to postdate the main event of U<br />

mineralization.<br />

3.4.2. Crystal Chemistry<br />

3.4.2.1. Mineral chemistry of uraninite and brannerite<br />

Electron microprobe and backscattered images reveal that uraninite from all stages of<br />

mineralization has been variably altered to different forms of uranyl-silicates (Table 3.1,<br />

Fig. 3.5). These uraninites demonstrate evidence of considerable variation in reflectance,<br />

suggesting significant heterogeneity in their chemical composition as a result of variable<br />

alteration by later fluids (Kotzer and Kyser, 1993; Alexandre et al., 2005).<br />

96


Chemical Pb Age (Ma)<br />

Figure 3.5. Content of substituting elements in uraninite as function of the chemical Pb age of<br />

different generations of uraninite in U deposits in the Beaverlodge area. Arrow indicates the<br />

effect of alteration by later fluids.<br />

The most altered samples are those of the granite-related metasomatic-type U 3<br />

uraninite from the Gunnar deposit (Fig. 3.5). In U 3 uraninite, the concentration of PbO is<br />

the lowest and the total Ca+Fe+Si the highest, reflecting a higher degree of postmineralization<br />

alteration that has affected U 3 uraninite subsequent to its formation. U 3<br />

uraninite has high P 2 O 5 and Y 2 O 3 contents. In contrast, U 4 uraninite from the breccia-type<br />

mineralization is less altered than U 3 uraninite. The concentration of UO 2 in U 4 uraninite<br />

varies from 73.23 to 78.93 weight percent and PbO contents range from 8.71 to 19.45<br />

weight percent (Table 3.1). The chemical composition of well-preserved breccia-type U 4<br />

uraninite indicates elevated MnO, Y 2 O 3 , SO 3 , and ThO contents (Table 3.1). Other<br />

elements present within the U 4 uraninite structure include CaO, SiO 2 , FeO, and TiO 2<br />

(Table 3.1). The concentration of UO 2 in Br 1<br />

brannerite from the breccia-type<br />

97


mineralization varies from 25.70 to 42.40 weight percent and TiO 2 contents vary<br />

inversely, from 52.90 to 13.36 weight percent. Br 1 brannerite contains also several weight<br />

percent of CaO, FeO, SiO 2, PbO (Table 3.1), and anomalous levels of V 2 O 3, MnO, P 2 O 5 ,<br />

SO 3 , ThO, and Y 2 O 3 (Table 3.1) . The presence of these elements in Br 1 brannerite is likely<br />

a result of post-precipitation alteration involving oxidation and partial hydration of the<br />

mineral (Smith, 1984).<br />

Volcanic-type U 5 uraninite has high contents of MnO, V 2 O 3 , and TiO 2 (Table 3.1).<br />

The high TiO 2 content is consistent with the presence of Ttn 3 titanite intergrown with U 5<br />

uraninite. The concentration of UO 2 varies from 70.31 to 76.1 weight percent (Table 3.1).<br />

The Pb contents are variable ranging from 0.85 to 20.40 weight percent. There are high<br />

Ca, Si, and Fe contents within the U 5 uraninite structure. Athabasca-type U 6 uraninite<br />

contains the highest concentrations of P 2 O 5 (Table 3.1). V 2 O 3 and MnO also are present in<br />

variable amounts.<br />

Sample ID UO 2 SiO 2 CaO Fe 2O 3 TiO 2 Cr 2O 3 V 2O 5 PbO P 2O 5 K 2O ThO 2 SO 2 MnO Y 2O 3 Tb 2O 3 CuO Total<br />

Early tensional vein-type U 2 mineralization<br />

6122_Pt21 71.83 2.02 3.61 0.39 0.40 0.02 0.11 17.88 0.02 0.03 0.02 0.05 0.12 0.00 0.14 0.03 96.50<br />

6122_Pt22 54.29 0.64 11.73 1.29 0.39 0.04 0.16 15.31 0.01 0.00 0.04 0.04 0.10 0.03 0.06 0.01 83.99<br />

6122_Pt31 73.07 3.05 3.44 0.91 0.38 0.05 0.03 14.52 0.04 0.09 0.01 0.02 0.15 0.07 0.11 0.07 95.90<br />

6122_Pt4_1 37.29 0.69 39.21 0.44 0.13 0.01 0.04 7.66 0.11 0.04 0.04 0.09 0.50 0.00 0.08 0.02 86.03<br />

6122_Pt4_2 72.61 0.59 3.33 0.31 0.65 0.02 0.04 17.42 0.03 0.02 0.02 0.03 0.18 0.04 0.02 0.00 95.29<br />

6122_Pt5_1 71.65 0.46 2.32 0.11 0.38 0.04 0.05 19.91 0.02 0.05 0.00 0.01 0.07 0.09 0.01 0.02 95.09<br />

6122_Pt92 78.10 1.92 3.38 0.95 2.58 0.03 0.17 7.11 0.05 0.05 0.00 0.02 0.43 0.02 0.00 0.04 94.74<br />

6122_Pt101 73.63 9.89 2.48 1.14 1.35 0.28 0.23 1.90 0.36 0.05 0.01 0.03 0.36 0.08 0.20 0.05 91.80<br />

Granite related metasomatic-type U 3 mineralization at the Gunnar deposit<br />

6134pt21 77.59 3.01 5.35 0.15 0.06 0.01 0.04 0.07 0.12 0.14 0.01 0.01 0.02 0.02 0.07 0.04 86.61<br />

6134pt22 80.25 3.04 5.60 0.22 0.03 0.01 0.09 0.12 0.00 0.08 0.03 0.00 0.08 0.04 0.06 0.04 89.46<br />

6134pt23 78.63 3.65 5.19 1.65 0.33 0.01 0.06 0.00 0.06 0.07 0.02 0.02 0.06 0.00 0.07 0.12 89.78<br />

6134pt24 78.36 3.72 5.28 1.82 0.44 0.05 0.02 0.03 0.06 0.06 0.05 0.02 0.05 0.01 0.05 0.02 89.84<br />

6134pt3 77.88 4.95 5.57 0.19 0.37 0.01 0.01 0.11 0.05 0.07 0.03 0.01 0.09 0.01 0.08 0.01 89.33<br />

6134pt31 79.27 3.95 5.52 0.15 0.01 0.03 0.04 0.11 0.08 0.08 0.04 0.01 0.03 0.00 0.04 0.02 89.22<br />

6134pt32 81.64 3.39 4.56 0.16 0.00 0.12 0.07 0.03 0.05 0.06 0.04 0.00 0.07 0.03 0.08 0.05 90.13<br />

6134pt33 79.50 3.78 5.54 0.11 0.06 0.04 0.02 0.06 0.09 0.06 0.02 0.00 0.04 0.00 0.06 0.01 89.23<br />

6134pt41 80.77 3.52 5.67 0.23 0.01 0.01 0.00 0.13 0.01 0.07 0.03 0.01 0.09 0.04 0.01 0.04 90.57<br />

6134pt42 79.52 3.13 5.90 0.26 0.13 0.01 0.03 0.09 0.07 0.05 0.00 0.03 0.07 0.00 0.03 0.01 89.31<br />

6134pt43 81.29 2.79 5.67 0.20 0.03 0.00 0.02 0.16 0.01 0.05 0.02 0.00 0.07 0.03 0.04 0.02 90.28<br />

6134pt51 81.39 2.70 5.41 0.13 0.00 0.04 0.00 0.11 0.04 0.06 0.07 0.00 0.04 0.06 0.02 0.07 89.88<br />

6134pt52 74.27 3.20 4.97 0.22 0.08 0.04 0.02 0.04 0.11 0.23 0.02 0.01 0.10 0.02 0.05 0.04 83.27<br />

98


6134pt53 80.12 4.95 4.53 0.22 0.41 0.01 0.01 0.10 0.12 0.11 0.05 0.01 0.02 0.16 0.00 0.01 90.75<br />

6134pt61 81.12 3.04 5.23 0.01 0.01 0.03 0.01 0.03 0.00 0.04 0.02 0.01 0.01 0.01 0.02 0.01 89.49<br />

6134pt62 81.92 3.06 5.24 0.04 0.04 0.00 0.00 0.10 0.01 0.04 0.02 0.00 0.08 0.04 0.04 0.04 90.45<br />

6134pt63 80.49 3.09 5.36 0.01 0.02 0.01 0.09 0.08 0.04 0.06 0.01 0.01 0.01 0.04 0.09 0.01 89.37<br />

6134pt64 81.96 3.12 4.98 0.05 0.04 0.01 0.02 0.10 0.02 0.06 0.04 0.00 0.07 0.02 0.01 0.01 90.44<br />

6134pt81 79.17 2.87 4.43 0.01 0.02 0.01 0.56 1.40 0.09 0.07 0.02 0.10 0.03 0.16 0.07 0.01 88.96<br />

6134pt82 79.67 2.90 4.69 0.02 0.07 0.03 0.35 1.44 0.06 0.00 0.03 0.07 0.02 0.08 0.10 0.05 89.42<br />

6134pt83 80.29 3.14 3.87 0.03 0.78 0.01 0.05 0.11 0.08 0.03 0.04 0.00 0.04 0.12 0.00 0.00 88.53<br />

6134pt84 77.08 2.76 5.44 0.04 0.02 0.02 0.52 0.61 0.09 0.01 0.00 0.04 0.06 0.21 0.02 0.04 86.86<br />

6134pt8a1 80.50 4.02 5.50 0.04 0.11 0.02 0.00 0.07 0.01 0.12 0.06 0.02 0.07 0.05 0.03 0.00 90.45<br />

6134pt8a2 82.92 2.92 5.30 0.07 0.04 0.02 0.09 0.11 0.01 0.07 0.01 0.04 0.09 0.01 0.07 0.02 91.62<br />

6134pt8a3 77.51 1.83 5.81 0.17 0.02 0.02 0.05 0.16 0.11 0.15 0.00 0.03 0.12 0.01 0.05 0.06 85.99<br />

6134pt91 63.41 3.15 4.32 0.08 0.04 0.03 0.24 1.46 0.18 0.19 0.03 0.05 0.08 0.12 0.05 0.02 73.42<br />

6134pt92 75.28 3.78 5.33 0.02 0.07 0.01 0.29 1.41 0.22 0.08 0.00 0.03 0.01 0.20 0.02 0.07 86.69<br />

6134pt93 73.41 2.98 5.18 0.09 0.09 0.05 0.31 1.60 0.28 0.29 0.03 0.02 0.07 0.19 0.06 0.03 84.62<br />

6134pt9a1 81.55 3.36 4.25 0.18 0.69 0.00 0.08 0.07 0.15 0.10 0.01 0.01 0.06 0.07 0.02 0.00 90.57<br />

6134pt9a2 80.44 2.93 4.23 0.04 0.47 0.06 0.14 0.20 0.15 0.07 0.01 0.01 0.05 0.13 0.02 0.04 88.96<br />

6134pt9a3 78.82 3.02 4.69 0.02 0.60 0.03 0.15 0.05 0.14 0.05 0.01 0.00 0.03 0.15 0.04 0.05 87.79<br />

6134pt9a4 77.24 5.45 4.77 0.44 0.46 0.04 0.00 0.12 0.19 0.16 0.00 0.01 0.09 0.16 0.05 0.03 89.07<br />

6134pt101 73.83 6.55 3.47 1.32 0.00 0.03 0.07 0.41 0.09 0.14 0.00 0.01 0.05 0.27 0.01 0.06 86.09<br />

6134pt102 64.50 9.49 2.43 9.15 0.06 0.01 0.12 0.65 0.12 0.28 0.06 0.03 0.05 0.32 0.26 0.05 87.17<br />

6134pt103 74.14 7.47 3.23 1.59 0.01 0.01 0.06 0.32 0.04 0.16 0.00 0.01 0.01 0.27 0.03 0.04 87.34<br />

6134pt104 74.03 5.88 2.71 1.97 0.08 0.01 0.18 1.96 0.14 0.13 0.03 0.01 0.01 0.41 0.03 0.07 87.58<br />

6134pt105 72.59 6.19 3.29 2.40 0.04 0.02 0.08 1.39 0.14 0.15 0.02 0.01 0.03 0.26 0.11 0.01 86.58<br />

Breccia-type U 4 mineralization<br />

Uraninite<br />

VRB_pt41 74.17 0.45 2.70 0.76 0.41 0.01 0.18 19.22 0.00 0.05 0.08 0.02 0.14 0.13 0.03 0.05 98.29<br />

5812Pt21 73.23 0.47 3.24 0.53 0.43 0.04 0.04 18.45 0.01 0.02 0.14 0.01 0.16 0.16 0.04 0.01 96.91<br />

5812Pt61 74.88 0.54 4.43 0.44 0.44 0.01 0.16 15.88 0.02 0.03 0.02 0.01 0.22 0.15 0.04 0.00 97.16<br />

5812Pt11 75.58 0.50 4.51 0.62 0.46 0.03 0.18 12.07 0.02 0.04 0.03 0.01 0.42 0.45 0.08 0.05 94.92<br />

5812Pt82 78.94 0.69 4.43 0.99 0.55 0.06 0.08 9.52 0.01 0.03 0.17 0.01 0.27 0.08 0.06 0.02 95.72<br />

5812Pt12 76.71 0.98 6.43 0.90 0.61 0.03 0.21 6.89 0.01 0.03 0.04 0.06 0.70 0.60 0.00 0.01 94.18<br />

5812Pt81 77.99 1.05 4.27 1.20 0.80 0.05 0.01 8.71 0.02 0.03 0.29 0.03 0.35 0.06 0.05 0.02 94.82<br />

5812Pt22 75.02 2.40 4.63 1.28 1.74 0.01 0.14 10.07 0.05 0.05 0.03 0.73 0.67 0.31 0.11 0.03 97.15<br />

Brannerite<br />

5812Pt41 42.40 14.29 1.51 2.09 13.36 0.02 0.18 12.43 0.55 0.07 0.56 2.15 0.04 0.14 0.08 0.08 89.88<br />

5812Pt31 27.03 4.83 19.26 3.17 26.60 0.11 0.20 0.81 0.03 0.05 0.04 0.01 0.17 0.01 0.08 0.04 82.29<br />

5812Pt71 36.98 8.11 2.27 2.98 34.85 0.16 0.64 2.89 0.03 0.05 0.10 0.23 0.27 0.03 0.05 0.05 89.61<br />

5812Pt42 34.57 3.88 9.83 2.11 36.31 0.23 0.35 1.47 0.02 0.01 0.13 0.01 0.32 0.01 0.01 0.01 89.25<br />

5812Pt51 37.19 5.75 2.29 2.64 41.70 0.14 0.41 1.87 0.02 0.01 0.11 0.15 0.16 0.02 0.01 0.04 92.48<br />

5812Pt72 34.34 5.10 2.06 3.13 44.54 0.13 0.46 1.91 0.01 0.02 0.06 0.09 0.23 0.01 0.11 0.04 92.09<br />

5812Pt52 32.87 4.46 2.05 3.10 47.65 0.17 0.37 1.74 0.02 0.00 0.13 0.10 0.17 0.00 0.04 0.01 92.84<br />

5812Pt32 25.70 4.77 4.33 4.16 52.90 0.18 0.26 1.42 0.01 0.03 0.09 0.05 0.15 0.01 0.09 0.01 94.04<br />

Volcanic-type U 5 mineralization<br />

6120B_pt1 76.10 0.89 3.71 0.62 0.58 0.03 0.16 13.77 0.00 0.03 0.04 0.02 0.22 0.01 0.04 0.05 96.13<br />

6120B_pt12 73.42 1.05 2.73 0.45 0.52 0.01 0.48 17.56 0.06 0.03 0.07 0.04 0.12 0.01 0.03 0.07 96.46<br />

6120B_pt22 71.88 1.43 3.00 0.46 0.48 0.03 0.25 17.14 0.06 0.02 0.00 0.01 0.08 0.01 0.07 0.03 94.86<br />

6120B_pt31 74.41 0.84 3.66 0.48 0.64 0.01 0.22 15.41 0.06 0.03 0.02 0.02 0.20 0.03 0.09 0.03 95.99<br />

6120B_pt32 74.38 1.68 2.57 0.54 0.58 0.03 0.13 15.68 0.03 0.03 0.00 0.02 0.10 0.09 0.00 0.03 95.82<br />

6120B_pt33 73.75 0.47 3.05 0.28 0.42 0.03 0.09 17.91 0.05 0.04 0.05 0.00 0.07 0.03 0.06 0.04 96.19<br />

6120B_pt34 74.03 0.50 2.50 0.32 0.30 0.03 0.13 20.15 0.04 0.03 0.02 0.03 0.00 0.02 0.03 0.04 98.05<br />

6120B_pt41 71.92 0.51 2.33 0.05 0.51 0.01 0.11 20.29 0.03 0.02 0.08 0.04 0.04 0.09 0.06 0.02 95.99<br />

6120B_pt35 74.17 9.32 1.73 2.09 1.11 0.02 0.22 0.85 0.07 0.05 0.04 0.01 0.23 0.00 0.03 0.00 89.82<br />

6120B_pt36 74.44 9.51 1.67 1.36 1.14 0.05 0.23 1.78 0.07 0.03 0.02 0.29 0.20 0.01 0.05 0.02 90.72<br />

6120B_pt41 70.14 0.67 2.65 0.15 0.37 0.01 0.33 19.62 0.04 0.02 0.05 0.02 0.08 0.04 0.08 0.01 94.13<br />

6120B_pt42 74.34 1.12 4.30 0.95 0.43 0.02 0.26 14.17 0.05 0.03 0.01 0.01 0.23 0.04 0.02 0.00 95.92<br />

6120B_pt51 72.87 0.38 2.37 0.23 0.29 0.01 0.16 19.91 0.05 0.02 0.01 0.04 0.04 0.11 0.09 0.03 96.56<br />

6120B_pt52 73.23 0.46 2.58 0.43 0.36 0.03 0.04 19.04 0.03 0.03 0.01 0.01 0.07 0.06 0.03 0.03 96.37<br />

6120B_pt61 71.72 0.92 2.35 0.28 0.49 0.04 0.46 19.28 0.04 0.02 0.02 0.03 0.01 0.03 0.05 0.01 95.67<br />

6120B_pt62 70.31 0.64 2.65 0.39 0.40 0.05 0.22 20.24 0.07 0.01 0.06 0.04 0.06 0.06 0.04 0.02 95.15<br />

Athabasca-type U 6 mineralization<br />

6137APt42 63.93 6.67 12.03 2.91 0.04 0.01 0.17 0.67 0.07 0.01 0.03 0.03 0.54 0.00 0.06 0.05 87.13<br />

6137APt51 35.55 9.15 24.28 7.30 0.00 0.03 0.10 0.80 0.04 0.05 0.02 0.01 0.47 0.00 0.12 0.03 77.73<br />

6137APt52 24.60 20.95 1.53 22.12 0.02 0.00 0.22 0.31 0.01 0.01 0.01 0.00 0.35 0.00 0.53 0.00 70.12<br />

6137APt61 61.82 4.25 16.19 2.40 0.08 0.01 0.20 2.04 0.04 0.05 0.03 0.03 0.57 0.01 0.03 0.03 87.68<br />

99


6137APt71 60.67 13.73 4.59 6.48 0.05 0.01 0.23 0.48 0.03 0.04 0.02 0.00 0.53 0.01 0.18 0.01 86.84<br />

6137APt72 48.70 10.57 6.69 9.26 0.04 0.01 0.03 0.54 0.05 0.08 0.03 0.02 0.45 0.02 0.25 0.02 76.46<br />

6137APt81 26.87 21.78 13.43 4.68 0.05 0.31 0.21 0.24 0.07 0.15 0.02 0.00 0.30 0.07 0.17 0.02 68.18<br />

6137APt82 60.21 16.36 3.11 4.97 0.11 0.04 0.13 0.17 0.16 0.14 0.02 0.00 0.51 0.08 0.02 0.04 86.00<br />

6137APt9 60.59 9.42 13.24 2.45 0.15 0.03 0.37 0.97 0.83 0.02 0.04 0.02 0.47 0.42 0.03 0.01 88.98<br />

Table 3.1. Electron microprobe analysis and chemical composition of uraninite and<br />

brannerite from different generations of U mineralization in the Beaverlodge area.<br />

3.4.2.2. Chlorite Crystal Chemistry<br />

Chlorite is associated with all stages of U mineralization and is used here to estimate<br />

temperatures and compositions of the mineralizing fluids. The chemical formulas and<br />

formation temperatures of chlorite from different types of U mineralization are<br />

summarized in Table 3.2.<br />

Average Structural Formulae of various generations of Chlorites<br />

Temperature of<br />

Formation ( o C)<br />

1 Mg 3.185Fe 1.72Al 1.Ca 0.02 (Si 3.19Al 0.81) O 10 (F 0.15 (OH) 7.85) 200<br />

2 Mg 2.62Fe 1.22Al 2.66Ca 0.4 (Si 2.85Al 1.16) O 10 (F 0.14CL 0.02 (OH) 7.84) 310<br />

3.a Mg 2.86Fe 1.82Al 2.41Ca 0.02Mn 0.03Ti 0.01 (Si 2.83Al 1.17) O 10 (F 0.09 (OH) 7.91) 315<br />

3.b Mg 3.37Fe 1.27Al 2.29 (Si 2.94Al 1.06) O 10 (F 0.11 (OH) 7.89) 278<br />

3.c Mg 3.34Fe 1.47Al 2.03 (Si 3.06Al 0.94) O 10 (F 0.16 (OH) 7.84) 242<br />

3.c Mg 3.22Fe 1.64Al 1.96 (Si 3.09Al 0.91) O 10 (F 0.1 (OH) 7.90) 230<br />

3.c Mg 3.09Fe 0.39Al 2.32 (Si 3.45Al 0.55) O 10 (F 0.43CL 0.02 (OH) 7.56) 116<br />

4 Mg 2.06Fe 2.37Al 2.57Ca 0.1 (Si 2.79Al 1.21) O 10 (F 0.06 (OH) 7.94) 330<br />

4.a Mg 3.71Fe 1.04Al 1.87 (Si 3.21Al 0.79) O 10 (F 0.17 (OH) 7.83) 194<br />

5a Mg 2.40Fe 2.32Al 2.38Mn 0.03Ti 0.01 (Si 2.83Al 1.17) O 10 (F 0.04 (OH) 7.96) 320<br />

5.b Mg 2.77Fe 2.06Al 1.95Mn 0.02 (Si 3.10Al 0.90) O 10 (F 0.02 (OH) 7.98) 229<br />

5.b Mg 2.49Fe 2.12Al 2.29Ca 0.03Mn 0.02 (Si 3.08Al 0.92) O 10 (OH) 8 212<br />

6 Mg 2.49Fe 2.36Al 1.97Ca 0.01 (Si 3.08Al 0.92) O 10 (F 0.13 Cl 0.01(OH) 7.86) 235<br />

Table 3.2. Temperatures of formation, and average structural formulas of different<br />

generations of chlorite phases from U deposits in the Beaverlodge area. Calculated<br />

temperatures are accurate to within 25-30°C based on replicate analyses.<br />

100


Textural evidence suggests that retrograde Chl 1<br />

chlorite predominantly replaced<br />

earlier metamorphic Bt 1 biotite and Hbl 1 amphibole in altered metasedimentary and<br />

feldspar-amphibole rocks at Cinch Lake (Dieng et al., 2011). Chl 1 chlorite has high Mg<br />

and Fe contents (19.45 and 19.74 wt. % respectively, Table 3.3), which supports<br />

inheritance of the chemistry of Bt 1 biotite into the Chl 1 chlorite. Chl 1 chlorites have a<br />

composition typical of Fe-clinochlore with a calculated formation temperature of ca.<br />

200°C (Table 3.3). They have high SiO 2 contents (30.25 wt. %), uniform Fe/Al and Mg/Al<br />

ratios and an average Fe/(Mg + Fe) ratio of 0.36, similar to the composition of retrograde<br />

metamorphic chlorite reported by Tortosa (1983) at the Cenex mine. The chemical<br />

composition of Chl 1 chlorite indicates that the fluid from which it formed contained Ca<br />

and F (Table 3.3).<br />

Chl 4 chlorite in early tensional vein-type U 2 mineralization has high Mg contents<br />

(17.03 wt.%) and the lowest Fe contents (14.17 wt.%). These chlorites have the lowest but<br />

relatively uniform Fe/Al, Mg/Al and Fe/Mg ratios and a calculated formation temperature<br />

of ca. 310°C (Table 3.3). Chl 4 chlorites are Ca-F-rich and have an average Fe/(Mg+Fe)<br />

ratio of 0.32 that is indistinguishable from retrograde Chl 1 chlorite.<br />

Syn-ore Chl 5 chlorite in granite-related metasomatic-type U 3 at the Gunnar deposit<br />

has high Mg and Al contents (18.17 wt.% and 19.41 wt.%, respectively) and low Fe<br />

contents (20.58 wt.%, Table 3.3, Fig. 3.6C) with a calculated formation temperature of ca.<br />

315°C. They have relatively uniform Fe/Al, Mg/Fe, and Mg/Al ratios and their low Fe/(Fe<br />

+ Mg) ratios (0.37 to 0.43) attest to the Mg-rich and Fe-poor composition of the fluid.<br />

Fluids in equilibrium with Chl 5 chlorite were relatively enriched in Ca, and F (Table 3.3;<br />

101


Fig. 3.6A). The Ca may result from the dissolution of Cal 5 calcite. Ttn 2 titanite and Mzn 1<br />

monazite are intergrown with Chl 5 chlorite and U 3 uraninite in the ore assemblage and are<br />

therefore coeval. Syn-ore Chl 5 chlorite was subsequently altered by later fluids resulting in<br />

local Mg-enrichment and Fe-depletion that form a mosaic texture. Calculated average<br />

formation temperatures of altered Chl 5 chlorites range from 115 o C to 240 o C (Table 3.4).<br />

Later Chl 6 chlorite veins crosscut the mineralized granite and have higher Mg and lower<br />

Fe contents and formation temperatures of ca. 275 o (Table 3.4).<br />

A) B)<br />

Ti<br />

Early vein-type<br />

Cl<br />

Ca<br />

C)<br />

D)<br />

Figure 3.6. Ternary and binary diagrams showing the compositional variation of chlorite<br />

phases (in wt %) from different types of U mineralization in the Beaverlodge area.<br />

102


Syn-ore Chl 7 chlorite in breccia-type U 4 mineralization yields the relatively highest<br />

Fe contents of 25.78 weight percent (Table 3.3; Fig. 3.6C) and high Fe/(Fe+Mg) ratios of<br />

0.53, indicating that the U-bearing fluid was Fe-rich. The average Fe/(Mg+Fe) ratio is<br />

similar to values reported by Tortosa (1983) for Fe-chlorite associated with the<br />

mineralized zone at the Cenex mine. Chl 7 chlorite has a composition typical for chamosite<br />

corresponding to formation temperatures near 330°C (Table 3.3). Cal 8 calcite and U 4<br />

uraninite intergrowths with Chl 7 chlorite in conjunction with high F contents in Chl 7<br />

chlorite, suggest that the U-bearing fluid contained Ca and F (Table 3.3; Figs..3.6A and<br />

3.6B). Electron microprobe and backscattered images show that Chl 7 chlorite was<br />

subsequently altered by fluids that were Mg-rich. These altered chlorites have average<br />

formation temperatures near 195 o C (Table 3.4).<br />

Syn-ore Chl 8 chlorite in volcanic-type U 5 mineralization is an Mg-Fe-chlorite with a<br />

formation temperature of ca. 320°C (Table 3.3). Chl 8 chlorite has the highest Mn and Ti<br />

contents (Table 3.3; Figs. 3.6A and 3.6B), although the presence of Ti and Ca reflects Ttn 3<br />

titanite and Ap 1 apatite grains respectively, intergrown with Chl 8 chlorite and U 5 uraninite<br />

(Fig. 3.4I). Chl 8 chlorites were subsequently altered by later Mg-rich fluids, resulting in<br />

altered chlorites with formation temperatures near 210 o C (Table 3.4). Chl 9<br />

chlorite<br />

associated with the Athabasca-type U 6 mineralization has high Mg and Fe contents (15.43<br />

wt.% and 26.01 wt.%, respectively) and is typically F-Cl-rich (Table 3.3; Figs. 3.6A and<br />

3.6B), with formation temperatures of ca. 235°C (Table 3.3). The Fe/(Fe+Mg) ratio of<br />

Chl 9 chlorite ranges from 0.56 to 0.67 and indicates that the U-mineralizing fluid was<br />

likely Mg-rich.<br />

103


Sample ID 1 ± 2 ± 3.a ± 4 ± 5.a ± 5.a ± 5.a ± 6 ±<br />

n= 5 5 5 15 8 9 8 10<br />

Oxides (Wt %)<br />

SiO2 30.25 0.66 27.56 2.23 26.84 0.31 25.34 1.21 26.07 0.46 26.66 0.39 26.10 0.48 28.38 0.92<br />

TiO2 0.00 - 0.00 - 0.06 0.02 0.02 - 0.02 - 0.01 - 0.09 0.03 0.02 -<br />

AL2O3 14.85 0.94 21.94 3.15 19.41 0.29 19.88 1.44 18.41 0.48 19.12 0.81 18.79 0.47 15.40 0.47<br />

CR2O3 0.02 - 0.05 - 0.00 - 0.10 - 0.02 - 0.03 - 0.01 - 0.17 0.07<br />

FeO 19.45 0.49 14.17 1.94 20.58 0.34 25.78 4.82 28.50 0.95 23.05 2.90 25.65 0.68 26.01 3.08<br />

MnO 0.11 0.03 0.15 0.07 0.38 0.06 0.08 0.07 0.22 0.17 0.51 0.14 0.24 0.05 0.01 -<br />

MgO 19.74 0.85 17.03 2.56 18.17 0.38 12.60 2.26 13.18 0.63 16.60 1.39 15.13 0.30 15.43 2.05<br />

CaO 0.15 0.09 3.47 5.00 0.01 - 0.85 1.12 0.01 - 0.02 - 0.02 - 0.08 -<br />

NA2O 0.01 - 0.28 0.17 0.02 - 0.04 - 0.01 - 0.02 - 0.03 - 0.05 -<br />

K2O 0.01 - 0.31 0.35 0.01 - 0.01 - 0.03 - 0.01 - 0.03 - 0.01 -<br />

F 0.45 0.11 0.40 0.36 0.26 0.06 0.17 0.10 0.08 0.05 0.10 0.08 0.18 0.06 0.38 0.20<br />

CL 0.00 - 0.13 0.05 0.00 - 0.01 - 0.00 - 0.00 - 0.01 - 0.04 -<br />

H2O 11.16 0.18 11.39 11.25 0.12 10.89 0.44 10.97 0.14 11.23 0.14 11.03 0.03 10.87 0.27<br />

O=F -0.19 - -0.17 - -0.11 - -0.02 - -0.03 - -0.04 - -0.07 - -0.16 -<br />

O=CL 0.00 - -0.03 - 0.00 - -0.01 - 0.00 - 0.00 - 0.00 - -0.01 -<br />

Total 96.01 1.35 97.08 3.21 96.88 0.91 95.66 5.07 97.48 0.95 97.31 0.64 97.22 0.51 96.94 1.95<br />

Atomic proportion<br />

Number of O 28 28 28 28 28 28 28 28<br />

Tetrahedral sites<br />

Si 4+ 3.19 0.04 2.85 0.06 2.83 0.02 2.79 0.05 2.84 0.03 2.83 0.02 2.81 0.05 3.08 0.08<br />

AL 4+ 0.81 0.04 1.16 0.06 1.17 0.02 1.21 0.05 1.16 0.03 1.17 0.02 1.19 0.05 0.92 0.08<br />

Total 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00<br />

Octahedral sites<br />

AL 6+ 1.85 0.11 2.66 0.24 2.41 0.04 2.57 0.08 2.36 0.05 2.40 0.09 2.39 0.06 1.97 0.06<br />

Ti 4+ 0.00 - 0.00 - 0.01 - 0.00 - 0.00 - 0.00 - 0.01 - 0.00 -<br />

Cr 3+ 0.00 - 0.00 - 0.00 - 0.01 - 0.00 - 0.00 - 0.00 - 0.01 -<br />

Fe 2+ 1.72 0.06 1.22 0.21 1.82 0.03 2.37 0.42 2.60 0.11 2.05 0.29 2.31 0.06 2.36 0.31<br />

Mn 2+ 0.01 - 0.01 - 0.03 0.00 0.01 - 0.02 - 0.05 - 0.02 - 0.00 -<br />

Mg 2+ 3.10 0.10 2.62 0.29 2.86 0.05 2.06 0.35 2.14 0.08 2.63 0.01 2.43 0.05 2.49 0.30<br />

Total 6.68 0.04 6.52 0.57 7.12 0.03 7.03 0.16 7.13 0.05 7.13 0.04 7.16 0.07 6.84 0.15<br />

Interlayers sites<br />

Ca 2+ 0.02 - 0.40 0.59 0.00 - 0.10 0.13 0.00 - 0.00 - 0.00 - 0.01 -<br />

Na + 0.00 - 0.06 0.04 0.00 - 0.02 - 0.00 - 0.00 - 0.01 - 0.01 -<br />

K + 0.00 - 0.04 0.04 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 -<br />

Total 0.02 - 0.50 0.66 0.01 - 0.12 0.07 0.01 - 0.01 - 0.01 - 0.02<br />

Anions<br />

F - 0.15 0.04 0.14 0.12 0.09 0.02 0.06 0.03 0.03 0.02 0.03 0.03 0.06 0.02 0.13 0.07<br />

CL - 0.00 - 0.02 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.01 -<br />

H + 7.85 0.04 7.84 0.12 7.91 0.02 7.94 0.05 7.97 0.02 7.97 0.03 7.94 0.02 7.86 0.07<br />

Total 8.00 0.00 8.00 0.00 8.00 0.00 8.00 0.00 8.00 0.00 8.00 0.00 8.00 0.00 8.00 0.00<br />

O 2- 17.85 0.04 17.84 0.12 17.92 0.02 17.98 0.05 17.97 0.02 17.97 0.03 17.94 0.02 17.86 0.07<br />

∑Cat 9.89 0.02 9.87 0.19 9.96 0.02 9.93 0.05 9.98 0.02 9.97 0.04 9.99 0.02 9.94 0.07<br />

∑ions 18.00 0.00 18.00 0.00 18.00 0.02 18.00 0.00 18.00 0.00 18.00 0.00 18.00 0.00 18.00 0.00<br />

Temperatures ( o C)<br />

200 14 310 20 315 6 330 16 311 9 313 7 338 16 235 24<br />

Table 3.3. Representative electron microprobe analysis of different generations of syn-ore<br />

chlorite phases from U deposits in the Beaverlodge area, including formation temperatures<br />

calculated using the method of Cathelineau (1988). 1=Retrograde metamorphic Chl 1 ; 2=Chl 4<br />

in early tensional vein type U 2 mineralization; 3a=Chl 5 in metasomatic-type U 3<br />

mineralization at Gunnar; 4=Chl 7 in breccia-type main U 4<br />

mineralization; 5a=Chl 8 in<br />

volcanic-type U 5 mineralization; 6=Chl 9 in Athabasca-type U 5 mineralization. One sigma<br />

variations are also shown. Paragenesis of all phases analyzed is shown in Figures 3 and 4 (see<br />

the text for more details). n= number of analyses<br />

104


Sample ID 3.b ± 3.c ± 3.d ± 3.e ± 4.a ± 5.b ± 5.c ±<br />

n= 5 13 5 4 6 8 6<br />

Oxides (Wt %)<br />

SiO2 29.15 0.39 29.48 1.16 29.54 0.39 35.50 0.77 31.27 1.03 29.27 0.98 30.16 1.19<br />

TiO2 0.01 - 0.02 - 0.01 - 0.01 - 0.03 - 0.02 - 0.02 -<br />

AL2O3 19.28 0.26 16.65 1.08 15.90 0.26 20.27 1.21 15.46 1.21 15.65 1.27 17.88 0.27<br />

CR2O3 0.06 - 0.02 - 0.03 - 0.01 - 0.00 - 0.05 - 0.04 -<br />

FeO 15.02 1.17 16.95 3.65 18.76 1.17 4.79 2.61 12.13 1.91 23.28 3.21 23.31 0.97<br />

MnO 0.24 0.07 0.20 - 0.05 0.02 0.26 0.07 0.16 0.06 0.26 0.08 0.19 0.06<br />

MgO 22.38 1.27 21.74 3.76 20.61 0.32 21.33 0.90 24.25 1.31 17.56 1.79 10.79 0.71<br />

CaO 0.03 0.01 0.03 0.03 0.01 1.03 0.62 0.14 0.05 0.11 0.08 0.30 0.05<br />

NA2O 0.01 - 0.04 0.04 0.01 - 0.05 - 0.02 - 0.05 - 0.19 -<br />

K2O 0.01 - 0.02 - 0.02 - 0.17 - 0.01 - 0.02 - 1.09 -<br />

F 0.36 0.05 0.48 0.25 0.31 0.06 1.38 0.57 0.51 0.12 0.28 0.09 0.00 -<br />

CL 0.00 - 0.00 - 0.00 - 0.11 0.04 0.00 - 0.00 - 0.00 -<br />

H2O 11.71 0.09 11.39 0.29 11.31 0.11 11.67 0.32 11.45 0.24 11.30 0.23 11.05 0.11<br />

O=F -0.15 - -0.20 - -0.13 - -0.59 - -0.22 - -0.03 - 0.00 -<br />

O=CL 0.00 - 0.00 - 0.00 - -0.02 - 0.00 - 0.00 - 0.00 -<br />

Total 98.10 0.41 96.99 1.30 96.44 0.73 96.04 1.51 95.21 1.90 97.61 2.10 95.01 0.36<br />

Atomic proportion<br />

Number of O 28 28 28 28 28 28 28<br />

Tetrahedral sites<br />

Si 4+ 2.94 0.02 3.06 0.06 3.09 0.03 3.45 0.08 3.21 0.07 3.10 0.08 3.27 0.10<br />

AL 4+ 1.06 0.02 0.94 0.06 0.91 0.03 0.55 0.08 0.79 0.07 0.90 0.08 0.73 0.10<br />

Total 4.00 4.00 4.00 4.00 4.00 4.00 4.00<br />

Octahedral sites<br />

AL 6+ 2.29 0.05 2.03 0.17 1.96 0.02 2.32 0.10 1.87 0.09 1.95 0.14 2.29 0.02<br />

Ti 4+ 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 -<br />

Cr 3+ 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 -<br />

Fe 2+ 1.27 0.11 1.47 0.35 1.64 0.08 0.39 0.21 1.04 0.17 2.06 0.31 2.12 0.11<br />

Mn 2+ 0.02 0.01 0.02 0.02 0.00 - 0.02 - 0.01 - 0.02 - 0.02 -<br />

Mg 2+ 3.37 0.18 3.34 0.51 3.22 0.04 3.09 0.17 3.71 0.16 2.77 0.30 1.75 0.13<br />

Total 6.96 6.85 0.05 6.83 0.05 5.82 0.19 6.63 0.10 6.81 0.13 6.18 0.22<br />

Interlayers sites<br />

Ca 2+ 0.00 - 0.00 - 0.00 - 0.11 0.07 0.02 - 0.01 - 0.03 0.01<br />

Na + 0.00 - 0.01 - 0.00 - 0.01 - 0.00 - 0.01 - 0.04 -<br />

K + 0.00 - 0.00 - 0.00 - 0.02 - 0.00 - 0.00 - 0.15 -<br />

Total 0.01 - 0.01 - 0.01 - 0.14 0.07 0.02 - 0.02 - 0.22 0.06<br />

Anions<br />

F - 0.11 0.02 0.16 0.08 0.10 0.02 0.43 0.18 0.17 0.04 0.02 - 0.00 -<br />

CL - 0.00 - 0.00 - 0.00 - 0.02 - 0.00 - 0.00 - 0.00 -<br />

H + 7.89 0.02 7.84 0.08 7.90 0.02 7.56 0.18 7.83 0.04 7.98 0.06 8.00 0.06<br />

Total 8.00 0.00 8.00 0.00 8.00 0.00 8.00 0.00 8.00 0.00 8.00 0.00 8.00 0.00<br />

O 2- 17.89 0.02 17.84 0.08 17.90 0.02 17.56 0.18 17.83 0.04 17.98 0.06 18.00 0.00<br />

∑Cat 9.91 0.03 9.93 0.05 9.93 0.03 9.41 0.08 9.86 0.03 9.93 0.07 9.68 0.08<br />

∑ions 18.00 0.00 18.00 0.00 18.00 0.00 18.00 0.00 18.00 0.00 18.00 0.00 18.00 0.00<br />

Temperatures ( o C)<br />

278 7 242 20 230 8 116 24 194 23 229 25 212 32<br />

Table 3.4. Representative electron microprobe analysis of various chlorites affected by late<br />

low-temperature alteration phases from U deposits in the Beaverlodge area, including<br />

formation temperatures (Cathelineau, 1988). 3a, 3b, 3c, 3d=altered Chl 5 in metasomatic-type<br />

U 3 mineralization at Gunnar; 4a=altered Chl 7 in breccia-type U 4 mineralization; 5b,<br />

5c=altered Chl 8 in volcanic-type U 5 mineralization. n= number of analyses<br />

3.4.3. Isotopic compositions of minerals and fluids involved in the U mineralization<br />

3.4.3.1. Oxygen and carbon isotopes of Calcite<br />

105


Stable isotopic O and C compositions were determined for calcite in textural<br />

equilibrium with uraninite for each of the U mineralization events in the Beaverlodge area<br />

(Fig. 3.7; Table 3.5).<br />

Figure 3.7. Calculated δ 18 O and δ 13 C values of mineralizing fluids in equilibrium with<br />

carbonate minerals. (Legend as in Fig. 3.8)<br />

Syn-ore Cal 6 calcite in the granite-related metasomatic-type U 3 at the Gunnar<br />

deposit has a wide range of δ 18 O values from 7.5 per mil to 22.6 per mil, but a narrow<br />

range of δ 13 C values comprising between -4.9 per mil and -3.4 per mil (Fig. 3.7; Table<br />

3.5). Using a formation temperature of 315°C based on coeval Chl 5 chlorite, Cal 6 calcite<br />

precipitated from a CO 2 -bearing fluid having δ 18 O fluid and δ 13 C fluid values between 2.5 per<br />

mil and 17.6 per mil, and -7.1 per mil and -5.5 per mil, respectively (Fig. 3.7; Table 3.5).<br />

Syn-ore Cal 4 calcite in the early tensional vein-type U 2 mineralization has δ 18 O values<br />

106


anging between 15.5 per mil and 24.1 per mil and δ 13 C values ranging from -2.4 per mil<br />

to -2.1 per mil (Fig. 3.7; Table 3.5). Assuming a formation temperature of 300°C based on<br />

coeval Chl 4 chlorite (Table 3.3), Cal 4 formed from fluids with δ 18 O fluid values varying<br />

between 10.2 and 18.8 per mil and δ 13 C fluid values between -4.6 per mil and -4.2 per mil<br />

(Fig. 3.7; Table 3.5).<br />

Sample ID Deposit Mineral<br />

Mineral values Temperatures Fluid values<br />

δ 18 O<br />

V-SMOW<br />

per mil<br />

δ 13 C<br />

V-PDB<br />

per mil<br />

o C<br />

δ 18 O fluid<br />

V-SMOW<br />

per mil<br />

δ 13 C fluid<br />

V-PDB<br />

per mil<br />

Metasomatic-type U 3 mineralization<br />

6134 Gunnar Dolomite-Calcite 22.6 -4.9 315 17.6 -7<br />

6134D Gunnar Dolomite-Calcite 22.5 -4.9 315 17.5 -7.1<br />

GN-03 Gunnar Calcite 7.5 -3.9 315 2.5 -6<br />

GN-03D Gunnar Calcite 7.6 -3.8 315 2.6 -5.9<br />

VR-190 Gunnar Calcite 12.5 -3.4 315 7.5 -5.5<br />

VR-190D Gunnar Calcite 12.6 -3.4 315 7.6 -5.6<br />

Early tensional vein-type U 2 mineralization<br />

6120 Ace-Fay MG-Calcite 15.5 -2.2 310 10.2 -4.3<br />

6120 DUP Ace-Fay MG-Calcite 15.6 -2.1 310 10.3 -4.2<br />

6120D Ace-Fay MG-Calcite 15.5 -2.2 310 10.3 -4.3<br />

C-22-111 Cinch Lake Dolomite-Calcite 21.3 -2.2 310 16 -4.3<br />

C-22-93 Cinch Lake Dolomite 24.1 -2.4 310 18.8 -4.5<br />

M51-5996-VEIN Cinch Lake Dolomite 16.9 -2.5 310 11.7 -4.6<br />

Breccia-type U 4 mineralization<br />

5799 Ace-Fay Calcite 10.9 -2.4 330 6.2 -4.9<br />

5810 Ace-Fay Calcite 10.8 -4.5 330 6 -6.9<br />

5812 Ace-Fay Dolomite-Calcite 12.1 -2.5 330 7.3 -4.9<br />

5812D Ace-Fay Dolomite-Calcite 12.2 -2.3 330 7.4 -4.8<br />

5812-1 Ace-Fay Dolomite 11.9 -1.6 330 7.1 -4<br />

5800A Ace-Fay Dolomite-Calcite 12.3 -2.9 330 7.6 -5.3<br />

5800B Ace-Fay Dolomite-Calcite 12.2 -2.9 330 7.5 -5.4<br />

C-16-285 Cinch Lake MG-Calcite 10.6 -2.2 330 5.9 -4.6<br />

C-22-128 Cinch Lake Calcite 13.3 -2.6 330 8.5 -5<br />

C-22-128D Cinch Lake Calcite 13.3 -2.3 330 8.5 -4.8<br />

C-27-198 Cinch Lake Calcite 13.3 -1.8 330 8.5 -4.2<br />

C-27-200 Cinch Lake MG-Calcite 10.6 -2.5 330 5.9 -4.9<br />

C-27-200D Cinch Lake Calcite 10.9 -2.4 330 6.1 -4.8<br />

C-27-373 Cinch Lake Calcite 9.8 -2.2 330 5.1 -4.6<br />

C-27-379 Cinch Lake Calcite 12.3 -3.8 330 7.6 -6.2<br />

C-42-167 Cinch Lake MG-Calcite 12 -2.6 330 7.2 -5<br />

C-42-167D Cinch Lake MG-Calcite 11.9 -2.4 330 7.2 -4.9<br />

C-42-191 Cinch Lake Calcite 14.4 -2.1 330 9.6 -4.6<br />

C-42-191D Cinch Lake Calcite 14.5 -2.3 330 9.7 -4.7<br />

M51-5996-MAT Cinch Lake Dolomite 22.2 -1.8 330 17.4 -4.2<br />

M51-5996-MAT-D Cinch Lake Dolomite 22.1 -1.7 330 17.4 -4.2<br />

VR Ace-Fay Calcite 12.9 -3.2 330 8.1 -5.6<br />

VR_D Ace-Fay Calcite 12.9 -3.4 330 8.2 -5.8<br />

VR-211 Ace-Fay Calcite 7.6 -4 330 2.8 -6.4<br />

VR79 Ace-Fay Calcite 10.7 -5.8 330 5.9 -8.3<br />

VR79D Ace-Fay Calcite 10.6 -5.8 330 5.9 -8.2<br />

Volcanic-type U 5 mineralization<br />

6122 Ace-Fay Dolomite 13.2 -1.1 320 8.1 -3.2<br />

6122D Ace-Fay Dolomite 13.4 -1.1 320 8.2 -3.3<br />

6139 Ace-Fay Dolomite 13.9 -1.2 320 8.7 -3.4<br />

6139D Ace-Fay Dolomite 13.9 -1.2 320 8.7 -3.4<br />

C-27-23 Cinch Lake Dolomite 20.8 -2.6 320 15.7 -4.7<br />

C-27-262 Cinch Lake Calcite 9.8 -2.4 320 4.7 -4.6<br />

C-27-319 Cinch Lake MG-Calcite 11.6 -2.7 320 6.4 -4.9<br />

107


Sample ID Deposit Mineral<br />

Mineral values Temperatures Fluid values<br />

δ 18 O<br />

V-SMOW<br />

per mil<br />

δ 13 C<br />

V-PDB<br />

per mil<br />

o C<br />

δ 18 O fluid<br />

V-SMOW<br />

per mil<br />

δ 13 C fluid<br />

V-PDB<br />

per mil<br />

C-27-319D Cinch Lake MG-Calcite 11.4 -2.6 320 6.3 -4.7<br />

C-37-28 Cinch Lake Calcite 12.7 -1.7 320 7.5 -3.8<br />

C-42-180 Cinch Lake Calcite 12.8 -2.1 320 7.6 -4.2<br />

C-42-180D Cinch Lake Calcite 12.6 -1.9 320 7.5 -4.1<br />

C-42-244-1 Cinch Lake Calcite 10.5 -1.9 320 5.4 -4.1<br />

Athabasca-type U 6 mineralization<br />

3705 Ace-Fay Dolomite 11.2 -1 235 3.3 -1.9<br />

3705-D Ace-Fay Dolomite 11.2 -0.9 235 3.3 -1.9<br />

Late calcite veins<br />

C-09-181 Cinch Lake Calcite 14.6 -2.5 140 1.2 -0.5<br />

C-16-220 Cinch Lake Calcite 12.8 -2.8 140 -0.6 -0.8<br />

C-42-244 Cinch Lake Calcite 13.4 -6.4 140 0.02 -4.5<br />

C-42-244D Cinch Lake Calcite 13.3 -6.5 140 -0.1 -4.6<br />

Table 3.5. Measured δ 18 O and δ 13 C for calcite and calculated δ 18 O fluid and δ 13 C fluid values for<br />

fluids in equilibrium with carbonate minerals for different generations of U mineralization in<br />

the Beaverlodge area. Paragenesis of all phases analyzed is shown in Figures 3.3 and 3.4 and<br />

data are plotted in Figure 3.8 (see the text for more details).<br />

Syn-ore Cal 8 calcite in the major breccia-type U 4 yields a wide range of δ 18 O values<br />

between 7.6 per mil and 22.2 per mil and δ 13 C values between -5.8 per mil and -1.6 per<br />

mil (Table 3.5). These values are similar to O and C isotopic compositions of calcite<br />

matrix from mineralized breccia reported by Tortosa (1983) at the Cenex deposit and to<br />

values reported by Sassano (1972) for the type-C calcite in the Ace-Fay deposit that he<br />

interpreted as syn-ore calcite-filling breccia. A formation temperature of 330°C was used<br />

to calculate δ 18 O fluid and δ 13 C fluid values, which range from 2.8 per mil to 17.4 per mil and<br />

-8.3 per mil to -4 per mil, respectively (Fig. 3.7; Table 3.5). The lowest δ 13 C fluid values<br />

(Fig. 3.7) likely reflect the influence of a reduced C source probably originating from the<br />

country rock with which the fluid has interacted (Fig. 3.7).<br />

Syn-ore Cal 9 calcite sampled from the volcanic-type U 5 mineralization has δ 18 O<br />

values ranging from 9.8 per mil to 20.8 per mil and δ 13 C values between -2.7 per mil and -<br />

1.1 per mil (Table 3.5). Using a formation temperature of 320°C (Table 3.3), the<br />

108


calculated δ 18 O fluid and δ 13 C fluid values of the fluid from which Cal 9 formed range from 4.7<br />

per mil to 15.7 per mil and -4.9 per mil to -3.1 per mil, respectively (Fig. 3.7; Table 3.5),<br />

with most of the δ 18 O fluid values between 5 per mil and 10 per mil. Syn-ore Cal 10 calcite<br />

from the Athabasca-type U 6 mineralization yields δ 18 O values of 11.2 per mil and δ 13 C<br />

values ranging from -1 per mil to -0.9 per mil (Table 3.5). Using a formation temperature<br />

of ca. 235°C (Table 3.3), the calculated δ 18 O fluid and δ 13 C fluid values of the fluid are 3.3 per<br />

mil and -1.9 per mil, respectively (Fig. 3.7; Table 3.5). Late Cal 11 calcite veins<br />

crosscutting all rocks within the Beaverlodge area have δ 18 O values that range from 12.8<br />

per mil to 14.7 per mil and δ 13 C values between -6.4 per mil and -2.5 per mil (Fig. 3.7;<br />

Table 3.5). Using a formation temperature of 140°C, the calculated δ 18 O fluid and δ 13 C fluid<br />

values are the lowest and give two components (Fig. 3.7). One has δ 18 O fluid and δ 13 C fluid<br />

values ranging from -0.6 per mil to 1.2 per mil and -0.9 per mil to -0.5 per mil,<br />

respectively, similar to isotopic compositions of seawater (Fig. 3.7). The second<br />

component has much lower δ 13 C fluid and slightly higher δ 18 O fluid values, near -4.5 per mil<br />

and 0 per mil, respectively.<br />

3.4.3.2. Oxygen and hydrogen isotopic compositions of chlorite<br />

Stable isotopic O and H compositions were determined for chlorite in textural<br />

equilibrium with U for the granite-metasomatic, breccia, volcanic, and Athabasca-type U<br />

mineralizations (Fig. 3.8; Table 3.6).<br />

Syn-ore Chl 5 chlorite in the Gunnar deposit has δ 18 O values that range from 5.8 per<br />

mil to 11.1 per mil and δ 2 H values between -75 per mil and -71 per mil (Fig. 3.8; Table<br />

3.6). Assuming a formation temperature of 315°C (Table 3.3), Chl 5 chlorite formed in<br />

109


equilibrium with a fluid having δ 18 O fluid values ranging from 6.1 per mil to 11.4 per mil<br />

and δ 2 H fluid values from -48 per mil to -44 per mil (Fig. 3.8; Table 3.6).<br />

Figure 3.8. Calculated δ 18 O and δ 2 H values of mineralizing fluids in equilibrium with chlorite<br />

minerals. Samples of breccia and Gunnar-type have preferentially exchanged H-isotopes with<br />

2 H-depleted, relatively modern meteoric water; their high δ 18 O values indicate alteration at<br />

low fluid/rock ratios. The fields of various fluid reservoirs participating in hydrothermal ore<br />

formation are also shown (e.g. Taylor, 1974; Faure, 1989; Cuney and Kyser, 2008).<br />

Syn-ore Chl 7 chlorite in the breccia-type U 4 uraninite has a wide range of δ 18 O<br />

values varying between 8.6 per mil and 17.1 per mil and δ 2 H values from -86 per mil to -<br />

131 per mil (Table 3.6). The δ 18 O values are the highest compared to other types of<br />

mineralization. Using a formation temperature of 330°C (Table 3.3), the calculated<br />

δ 18 O fluid and δ 2 H fluid values for the fluid that formed Chl 7 chlorite range from 8.2 per mil to<br />

110


16.6 per mil and -103 per mil to-59 per mil, respectively (Fig. 3.8; Table 3.6). The lowest<br />

δ 2 H fluid values likely reflect the influence of modern meteoric water with which Chl 7<br />

chlorite has reacted (Wilson and Kyser, 1987; Kyser and Kerrick, 1991).<br />

Sample ID<br />

Deposits<br />

Metasomatic-type U3 mineralization<br />

Mineral values Temperature Fluid values<br />

δ 18 O<br />

V-SMOW per<br />

mil<br />

δ 2 H<br />

V-SMOW per<br />

mil<br />

o C<br />

δ 18 O fluid<br />

V-SMOW per<br />

mil<br />

δ 2 H fluid<br />

V-SMOW per<br />

mil<br />

GN-06 Gunnar 9.2 -75 315 9.4 -48<br />

GN-06B Gunnar 7.9 -71 315 8.1 -44<br />

GN-36 Gunnar 5.8 -75 315 6.1 -48<br />

GN-01 Gunnar 11.1 -71 315 11.4 -44<br />

Breccia-type U4 mineralization<br />

5810 Ace-Fay 8.6 -90 330 8.2 -63<br />

5812 Ace-Fay 17.1 -104 330 16.6 -77<br />

5812-Dup Ace-Fay 17.1 -104 330 16.6 -77<br />

VR Ace-Fay 15 -108 330 14.6 -81<br />

VR-2 Ace-Fay 14.2 -88 330 13.8 -61<br />

CL47 Cinch Lake 15.4 -99 330 14.9 -72<br />

6124 Cinch Lake 13.3 -130 330 12.8 -103<br />

C-09-21 Cinch Lake 12.5 -86 330 12.1 -59<br />

C-09-21S Cinch Lake 12.5 -99 330 12.1 -72<br />

C-37-128 Cinch Lake 9.9 -109 330 9.5 -82<br />

Volcanic-type U5 mineralization<br />

CL Cinch Lake 10.4 -126 320 10.2 -99<br />

CL-19 Cinch Lake 9.2 -101 320 9 -74<br />

CL-19S Cinch Lake 9.2 -113 320 9 -86<br />

CL-25 Cinch Lake 6.8 -104 320 6.6 -77<br />

CL-25B Cinch Lake 8.9 -94 320 8.7 -67<br />

CL-48 Cinch Lake 6.4 -71 320 6.2 -44<br />

CL-48b Cinch Lake 7.3 -75 320 7.1 -48<br />

CL-49 Cinch Lake 7.3 -99 320 7.1 -72<br />

CL-55 Cinch Lake 7.3 -79 320 7.1 -52<br />

CL-55S Cinch Lake 7.3 -93 320 7.1 -66<br />

CL-64 Cinch Lake 6 -82 320 5.8 -55<br />

Cl-64B Cinch Lake 10.4 -97 320 10.2 -70<br />

F19-08 Ace-Fay 6.9 -100 320 7.1 -73<br />

F230-30 Ace-Fay 8.3 -72 320 8.5 -45<br />

F230-24 Ace-Fay 9.2 -79 320 9.4 -52<br />

F19-09 Ace-Fay 9.3 -98 320 9.5 -71<br />

Athabasca-type U6 mineralization<br />

F230-14a Ace-Fay 3.5 -67 235 2.2 -40<br />

F230-14b Ace-Fay 2.8 -65 235 1.5 -38<br />

F230-14c Ace-Fay 5.2 -71 235 3.8 -44<br />

F230-25 Ace-Fay 3.5 -63 235 2.2 -36<br />

F230-25 Dup Ace-Fay 3.5 -68 235 2.2 -41<br />

F230-46 Ace-Fay 7.7 -87 235 6.3 -60<br />

F230-31 Ace-Fay 4.1 -68 235 2.8 -41<br />

Table 3.6. Measured δ 18 O and δ 2 H for chlorite and calculated δ 18 O and δ 2 H values for fluids<br />

in equilibrium with chlorite minerals from different generations of U mineralizing events in<br />

the Beaverlodge area. Temperatures used to calculate the fluid values are derived from the<br />

chlorite chemistry (see Table 3.3).<br />

111


Syn-ore Chl 8<br />

chlorite sampled from the volcanic-type U 6 mineralization has a<br />

narrow range of δ 18 O values between 6 per mil and 10.4 per mil and a wide range of δ 2 H<br />

values comprising between -126 per mil and -71 per mil (Table 3.6). Using a formation<br />

temperature of 320°C (Table 3.3), δ 18 O fluid and δ 2 H fluid values for the equilibrium fluid<br />

range from 5.8 per mil to 10.2 per mil and -99 per mil to -44 per mil, respectively (Fig.<br />

3.8; Table 3.6). Chl 8 chlorite also records late alteration associated with the influence of<br />

modern meteoric water (Fig. 3.8). In contrast, Syn-ore Chl 9 chlorite in Athabasca-type U 6<br />

mineralization has the lowest δ 18 O values that range from 2.8 per mil to 7.7 per mil and<br />

δ 2 H values comprising between -87 per mil and -63 per mil (Table 3.6). These values<br />

indicate formation in equilibrium with brines having δ 18 O fluid values of 1.5 per mil to 6.3<br />

per mil and δ 2 H fluid values of -60 per mil to -38 per mil based on a formation temperature<br />

of 235°C (Fig. 3.8; Table 3.6). The calculated values of δ 18 O fluid and δ 2 H fluid are similar to<br />

those from unconformity-type U mineralization in the proximal Athabasca Basin (Wilson<br />

and Kyser, 1987; Kotzer and Kyser, 1995).<br />

3.4.4. Rare earth elements (REE) geochemical characteristics of the U mineralization<br />

REE contents of uraninite can constrain the origin and evolution of mineralizing<br />

fluids (Alexander et al., 2010; Mercadier et al., 2011). Based on REE patterns, several<br />

distinctions can be made between different types of U-mineralizing events. For example,<br />

the REE contents in the granite-related metasomatic-type U 3 uraninite at Gunnar are high<br />

(17834 ppm, Tables 3.7 and 3.8; Fig. 3.9B) and chondrite-normalized REE patterns<br />

indicate a slight LREE enrichment (La/Yb) N =5.8, Figs. 3.9A and 3.10A) and pronounced<br />

negative Eu and Ce anomalies (Eu/Eu*=0.1 and Ce/Ce*=0.1, Fig. 3.10A). In contrast, U 2<br />

112


uraninite from the early tensional vein-type has LREE enrichment (La N /Yb N =14.4) but<br />

low total REE contents (2386 ppm, Tables 3.7 and 3.8, Fig. 3.10B). The slope of the<br />

chondrite-normalized pattern is steep (LREE/HREE=9.7), with slight negative Eu<br />

(Eu/Eu*=0.6) and Ce (Ce/Ce*=0.7) anomalies (Fig. 3.10B). The total REE content in the<br />

breccia-type U 4<br />

uraninite, the most significant uranium mineralization, is the highest<br />

(15848 ppm, Tables 3.7 and 3.8, Figs. 3.9B and 3.10C) with chondrite-normalized REE<br />

patterns with a gentle slope (LREE/HREE=4.4), LREE fractionation (La/Yb) N =3.7; Figs.<br />

3.10C and 3.10D), a negative Eu anomaly (Eu/Eu*=0.7), and a poorly defined Ce anomaly<br />

(Ce/Ce*=0.9).<br />

A<br />

B<br />

C<br />

D<br />

113


Figure 3.9. Binary diagrams showing chondrite normalized REE compositions of different<br />

generation of uraninite A. Plot of (Yb) N vs (La/Yb) N , B. Plot of ΣREE vs LREE, C. Plot of<br />

(La/Sm) N vs (La/Yb) N , D. Plot of ΣREE vs LREE/HREE.<br />

The average total REE concentration in mafic dikes in the Martin Lake Basin is low<br />

(ΣREE=378 ppm, Tables 3.7 and 3.8; Figs. 3.9B and 3.9D), with a pronounced LREE<br />

enrichment (La N /Yb N =33.6) and slight negative Ce (Ce/Ce*=0.9) and Eu (Eu/Eu*=0.8)<br />

anomalies (Fig. 3.10G). The U 5 uraninite from the volcanic-type has low REE contents<br />

(ΣREE=4158 ppm) (Tables 3.7 and 3.8; Figs. 3.9B and 3.D) with pronounced LREE<br />

enrichment (La N /Yb N =28.2) and negative Ce (Ce/Ce*=0.7) and Eu (Eu/Eu*=0.7)<br />

anomalies (Table 3.7, Figs 10E and 10F). Chondrite-normalized REE patterns have a high<br />

LREE/HREE ratio of 18, which is similar to patterns in mafic dikes (Fig. 3.10G).<br />

Chondrite-normalized (La/Sm) N and (Tb/Yb) N and the ratio LREE/HREE are similar in<br />

both mafic dikes and U 5 uraninite (Table 3.7), suggesting a genetic relationship.<br />

Mineralisation Type n ΣREE ΣLREE ΣHREE LREE/HREE Eu/Eu* (La/Yb)N (La/Sm)N (Tb/Yb)N (Yb)N<br />

Metasomatic 3 17834 2162 1653 7.2 0.1 19.5 5.0 1.6 192.2<br />

Early Tensional vein 5 2386 2162 125 11.1 0.6 14.3 7.4 1.1 16.8<br />

Breccia-type 12 15848 12021 2493 4.5 0.7 4.2 2.0 1.3 372.2<br />

Volcanic-type 14 4158 3897 267 16.6 0.7 25.9 12.6 1.2 23.5<br />

Mafic dyke 10 378 359 19 18.6 0.8 33.6 4.7 2.1 1.7<br />

Athabasca-type 7 9497 8882 479 16.0 0.6 11.4 3.5 1.4 70.2<br />

Table 3.7: Characteristic of REE compositions uraninite for different generations of U<br />

mineralization in the Beaverlodge area. (LREE/HREE)=chondrite-normalized<br />

(La+Ce+Nd)/(Dy+Er+Yb); Eu*=theoretical value for no chondrite-normalized anomaly. n=<br />

number of analyses.<br />

114


A<br />

B<br />

C<br />

D<br />

E<br />

F<br />

G<br />

H<br />

115


Figure 3.10. Chondrite-normalized REE patterns in uraninite from U deposits of the<br />

Beaverlodge area. A: Metasomatic-type U 3 (Sample 6134, Gunnar Deposit), B: Early veintype<br />

U 2 (Sample 6122, Ace Deposit), C: Breccia-type U 4 (Sample 5812, Ace-Fay deposit), D:<br />

Breccia-type U 4 (Sample 90085, Ace-Fay deposit), E: Volcanic-type U 5 (Sample 6120, Ace Fay<br />

deposit), F: Volcanic-type U 5 (Sample 6137, Gunnar deposit), G: Mafic dike, H: Athabascatype<br />

U 6 (Sample 3705, Ace deposit).<br />

The U 6 uraninite that has the same timing as the Athabasca-type mineralization is<br />

LREE enriched (La N /Yb N =10.2) with a moderate total REE content (9497 ppm; Tables 3.7<br />

and 3.8). Chondrite-normalized REE patterns have a negative Eu anomaly (Eu/Eu*=0.6)<br />

and a positive Ce anomaly (Ce/Ce*=1.5) (Fig. 3.10H). This pattern differs from that of<br />

uraninite from high-grade mineralization in the eastern Athabasca Basin (Mercadier et al.,<br />

2011), indicating that fluids in the northern part of the basin had different REE<br />

geochemistry.<br />

Type Sample ID La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu<br />

Metasomatic 6134-12 3729.8 1650.0 1505.6 7426.5 1744.4 66.4 1281.9 156.4 875.6 162.7 408.2 57.3 374.7 42.9<br />

Metasomatic 6134-10 3526.3 1739.6 1491.9 7088.4 1601.7 62.4 1204.1 150.2 867.6 158.7 406.4 57.5 383.7 47.0<br />

Metasomatic 6134-9 3031.1 1371.2 1162.3 5581.2 1342.3 52.1 973.2 123.3 728.4 131.3 339.9 48.7 312.2 37.6<br />

Early vein 6122-18 640.2 736.2 87.0 342.2 66.9 11.5 64.0 8.9 60.4 12.8 36.9 5.0 30.7 4.5<br />

Early vein 6122-17 630.9 835.5 92.8 382.0 64.0 13.3 64.0 8.7 58.9 11.8 32.8 4.3 27.5 3.6<br />

Early vein 6122-19 675.6 863.8 95.6 408.3 65.3 11.9 57.4 7.9 52.1 12.7 34.8 5.4 31.9 4.1<br />

Early vein 6122-21 680.9 867.5 95.9 391.4 66.9 13.6 67.4 7.7 59.9 10.5 32.3 3.8 27.8 3.7<br />

Early vein 6122-22 822.9 1028.4 119.2 605.6 77.9 15.6 87.3 11.0 73.1 14.7 40.1 5.3 28.3 5.4<br />

Breccia 5812_9 3508.8 8452.6 1036.5 4487.9 1258.8 192.6 1199.0 263.1 2017.8 401.3 1249.2 246.5 1867.3 221.7<br />

Breccia 5812_3 4789.0 7968.2 903.1 3369.1 866.5 174.9 732.5 138.8 972.8 187.4 540.7 72.6 419.7 49.9<br />

Breccia 5812_8 3536.8 7751.8 886.5 3322.5 683.1 160.7 566.2 104.4 714.0 129.0 368.3 56.0 370.9 43.5<br />

Breccia 90085-5 2220.0 4653.4 599.9 2661.6 720.6 166.4 702.8 119.5 793.6 148.0 386.3 53.4 344.4 38.5<br />

Breccia 5812_5 1769.4 6915.6 919.6 3302.0 614.1 121.5 394.1 79.4 559.1 103.9 302.8 48.7 339.1 39.2<br />

Breccia 90085-10 1731.2 3981.7 514.2 2460.9 649.1 176.7 734.0 120.1 817.5 155.1 420.8 55.4 339.7 42.1<br />

Breccia 90085-11 2310.0 4095.9 550.8 2804.5 831.6 196.1 948.6 180.0 1319.4 257.1 726.6 104.3 669.1 81.6<br />

Breccia 90085-2 2015.6 3993.8 542.6 2464.9 673.4 168.2 676.0 116.1 800.5 145.7 383.5 54.1 337.1 38.6<br />

Breccia 5812_2 2010.3 4375.0 616.7 2937.2 790.8 173.4 778.6 141.6 943.7 187.5 527.6 68.6 426.6 52.6<br />

Breccia 90085-7 1888.5 3574.8 458.6 2139.1 593.9 158.7 691.8 115.8 791.9 157.3 420.7 56.1 358.1 41.2<br />

Breccia 90085-1 1676.0 3607.3 476.3 2106.9 532.0 128.2 522.9 85.5 571.7 108.0 293.9 38.6 234.6 28.3<br />

Breccia 90085-4 1678.9 3252.0 426.7 1843.8 506.2 120.4 501.3 79.0 508.7 100.7 256.3 34.4 213.3 24.3<br />

Volcanic 6120-11 1833.3 2728.2 230.0 632.1 57.7 14.0 54.5 7.0 46.4 9.9 27.5 3.8 24.6 3.4<br />

Volcanic 6120-8 1713.6 2312.2 188.7 550.8 62.5 14.6 69.8 9.9 65.0 13.6 39.2 5.0 29.8 4.4<br />

Volcanic 6139-6 1571.9 1978.3 172.3 586.1 99.7 24.3 106.2 17.7 129.8 25.9 69.5 9.9 61.0 8.1<br />

116


Volcanic 6120-5 1553.0 2260.4 186.0 519.3 51.4 11.9 52.9 7.5 50.2 10.5 29.2 3.9 24.5 3.4<br />

Volcanic 6120-1 1502.3 2267.9 181.4 471.9 42.4 10.5 44.8 5.8 39.3 8.4 25.0 3.4 22.2 3.1<br />

Volcanic 6139-4 1796.1 1485.6 129.3 469.2 72.8 16.6 78.9 12.0 84.2 17.3 46.2 6.5 43.9 4.8<br />

Volcanic 6120-4 1414.3 2016.8 154.9 391.0 33.9 7.9 35.9 4.8 33.3 7.1 20.7 2.8 18.6 2.8<br />

Volcanic 6120-10 1287.5 1866.2 151.3 393.7 37.6 9.5 41.6 5.6 38.8 8.1 23.2 3.1 20.6 3.0<br />

Volcanic 6139-3 1533.8 1271.3 122.0 460.2 82.7 18.3 94.7 14.4 101.7 20.7 55.4 7.9 49.4 6.0<br />

Volcanic 6139-2 1384.1 1280.7 126.5 498.2 89.2 19.4 97.0 14.3 99.2 19.9 53.5 7.2 44.6 5.7<br />

Volcanic 6139-9 1197.1 1228.3 127.1 521.8 100.5 22.7 118.0 16.6 113.1 22.4 59.4 7.7 49.8 6.3<br />

Volcanic 6139-7 1100.9 1179.8 112.0 472.2 88.7 20.6 104.2 14.4 96.6 19.3 49.9 6.4 39.8 5.2<br />

Volcanic 6120-3 1127.4 1478.6 112.0 310.7 34.2 8.6 46.6 6.2 43.0 9.7 27.9 3.7 24.3 3.7<br />

Volcanic 6139-5 1032.3 1127.3 115.5 480.0 89.9 19.1 91.8 13.9 92.5 19.5 49.8 6.9 43.4 5.3<br />

Athabasca 3705-4 1948.2 6666.6 601.0 2047.4 347.8 58.3 220.0 38.2 244.7 43.8 125.7 18.4 117.8 14.4<br />

Athabasca 3705-3 1775.0 6435.4 573.9 1869.6 312.8 53.4 214.5 36.0 233.2 41.4 121.2 16.3 110.0 14.4<br />

Athabasca 3705-12 1571.3 5964.9 511.0 1625.1 258.8 41.3 145.7 26.8 178.6 29.6 80.7 12.6 86.7 9.8<br />

Athabasca 3705-2 1175.1 4674.0 468.8 1617.6 288.7 49.1 172.4 31.2 197.3 35.5 100.5 14.9 91.1 10.9<br />

Athabasca 3705-6 1157.4 4863.5 442.2 1411.6 215.9 38.3 140.8 26.9 182.0 30.1 93.9 14.2 101.3 11.6<br />

Athabasca 3705-1 1459.7 4766.3 390.1 1181.7 248.0 41.6 152.1 29.1 198.6 35.6 92.2 15.3 87.6 10.9<br />

Athabasca 3705-5 893.9 2913.2 237.8 844.7 115.8 20.4 69.4 12.3 74.0 13.7 35.1 5.1 34.0 3.8<br />

Mafic dike RM-18 197.55 381.58 41.57 148.96 20.63 4.57 12.12 1.07 5.05 0.8 1.99 0.25 1.48 0.28<br />

Mafic dike RM-17 108.28 219.98 24.84 90.07 14.25 3.37 9.64 1.03 5.33 0.9 2.32 0.3 1.87 0.37<br />

Mafic dike RM-21 93.24 194.96 22.8 86.25 13.31 3.08 8.87 0.92 4.75 0.83 2.09 0.29 1.65 0.3<br />

Mafic dike RM-32 93.16 186.32 21.36 79.32 12.77 2.93 9.15 1 5.38 0.94 2.4 0.32 1.98 0.39<br />

Mafic dike RM-35 71.47 150.81 17.32 65.26 11.27 2.27 8.46 1.03 5.75 1.09 2.97 0.43 2.67 0.52<br />

Mafic dike RM-23 70.17 136.46 15.08 56.4 8.79 2.14 6.32 0.71 4.01 0.72 1.97 0.27 1.59 0.32<br />

Mafic dike RM-34 56.31 110.7 12.49 46.47 7.7 1.97 6.12 0.72 4.16 0.74 2.06 0.27 1.68 0.33<br />

Mafic dike RM-36 55.95 109.47 12.28 45.24 7.71 1.96 5.98 0.73 4.14 0.76 2.06 0.29 1.72 0.34<br />

Mafic dike RM-26 54.5 105.53 11.89 43.91 7.33 1.79 5.79 0.69 3.95 0.7 1.89 0.26 1.6 0.31<br />

Mafic dike RM-33 53.57 105.07 11.87 44.59 7.25 1.91 5.79 0.7 4.01 0.75 1.99 0.28 1.67 0.34<br />

Table 3.8. REE contents of uraninite from different generations of U deposits in the<br />

Beaverlodge area. Values for the mafic dike are from Moreilli et al. (2009). Data are plotted<br />

in Figure 3.10.<br />

3.5. Discussion<br />

Synthesis of the petrographic, structural, geochronologic, and geochemical data<br />

reveals the nature and sequence of alteration and mineralization leading to the formation<br />

of U deposits in the Beaverlodge area (Table 3.9). This sequence is geochemically and<br />

structurally complex, involving multiple overprinting events of deformation, hydrothermal<br />

alteration, and U mineralization occupying structurally disturbed zones created by ductilebrittle<br />

and brittle deformation that reactivated early ductile shear zones (Fig. 3.11).<br />

117


Retrograde<br />

metamorphism<br />

Early vein<br />

-type<br />

Metasomatic<br />

-type<br />

Breccia-type<br />

Volcanic<br />

-type<br />

Athabasca<br />

-type<br />

Deposits All deposits Ace-Fay Gunnar All deposits<br />

Ace-Fay-Cinch<br />

Lake-Gunnar<br />

Ace Fay,<br />

Martin Lake<br />

Mineral and ore<br />

assemblage<br />

Chl 1 -Hem 1 -Src 1 U2 -Chl 4 -Cal 4 - U 3 -Chl 5 -Cal 5 -Ttn 2<br />

U 5 -Chl 8 -Cal 9 -<br />

U 4 -Br 1 -Chl 7 -Cal 8 - Hem 7 -Ap 1 -Ttn 3 - U 6 -Chl 9 -Cal 10 -<br />

Hem 4 -Mnz 1 -Hem 5 Hem 6 Hem 8<br />

Mnz 2<br />

Age of formation


of the Arrowsmith Orogen at ca. 2.35 Ga (Berman et al., 2005, Dieng et al., 2011).<br />

Metamorphic retrogression continued during exhumation to shallower crustal depths<br />

resulting in greenschist facies conditions wherein retrograde Chl 1<br />

chlorite replaced<br />

regional metamorphic Bt 1 biotite down to ca. 200°C. Chl 1 chlorite reflects exhumation and<br />

retrograde metamorphism to lower greenschist facies in the basement rocks during the late<br />

stages of the Arrowsmith Orogen (Hartlaub et al., 2007; Berman et al., 2010).<br />

Metamorphic-hydrothermal fluids associated with Chl 1<br />

chlorite are relatively Ca-rich,<br />

have high F and Mg contents and likely result from interaction with, or metamorphic<br />

hydration of, Ca-Mg-F-rich rocks of the basement rocks.<br />

Shear zones were reactivated at shallower levels resulting in overprinting of<br />

mylonite by cataclasite and early tensional veins at ca. 2.29 Ga (Dieng et al., 2011).<br />

Petrographic observations indicate that U 1<br />

uranium mineralization occurs as fine<br />

disseminations in the cataclasite matrix and is cut by early tensional Qtz 3 +Cal 3 -±U 2 veins<br />

(Fig. 3.11B). Syn-ore Cal 4 calcite associated with U 2 uraninite at the Ace deposit has δ 13 C<br />

and δ 18 O values that are consistent with fluids derived from retrograde metamorphic<br />

processes. Syn-ore Chl 4 chlorite chemistry indicates that fluids associated with U 2<br />

mineralization formed at ca. 310 o C and were Ca-F-Mg-rich. The compositional similarity<br />

between syn-ore Chl 4 chlorite and retrograde Chl 1 chlorite indicates that U-bearing fluids<br />

derived from retrograde metamorphic processes during exhumation and erosion during the<br />

post-Arrowsmith Orogen may have been involved in the formation of U 2 mineralization.<br />

Hydraulic fracturing in response to fluid generation via decompression and hydration was<br />

probably the main mechanism of the early tensional vein formation. The high F and Ca<br />

119


contents in syn-ore Chl 4 chlorite indicate that uranyl-carbonate-fluoride complexes were<br />

the most likely form of U 2 complexes into solutions. The vein-forming fluid may have<br />

been driven into these fractures by suction pump processes (Sibson, 1987). The associated<br />

pressure decrease and fluid decompression during fracturing were sufficient to change the<br />

stability of the carbonate complexes, decrease the temperature of the fluids and likely<br />

promoted U 2 uraninite precipitation into the fracture systems (Fig. 3.11B).<br />

120


Figure 3.11. Conceptual genetic model for U mineralization in the Beaverlodge area. A:<br />

Deposition of the Murmac Bay Group sediments in a tectonically active fault-bounded basin is<br />

followed by mylonitization during the Arrowsmith Orogen. B: Mylonites reactivated during<br />

late stages of the Arrowsmith Orogen resulting in formation of cataclasite and early tensional<br />

vein-type U 2 mineralization. Hydraulic fracturing in response to fluid generation via<br />

121


decompression and hydration reactions was the mechanism of veins formation. U was<br />

transported as uranyl-carbonate-fluoride complexes. C: At Gunnar, U 3 was derived from<br />

magmatic fluids from the Gunnar granite. PO -3 4 and F - were important ore transporting<br />

complexes. D: Reactivation of fault zones during early regional metamorphism of the Trans-<br />

Hudson or post-peak Thelon-Taltson Orogen resulted in massive brecciation at shallow<br />

structural levels. Metamorphic-hydrothermal U-mineralizing fluids derived from dehydration<br />

of hydrous minerals during metamorphism ascended upward along deep fractures and<br />

decompression caused decrease in the solubility of the carbonate complexes promoting U<br />

deposition. E: During the Paleoproterozoic, the Martin Lake Basin and associated alkaline<br />

mafic dikes formed and hydrothermal U 5 -mineralizing solutions resulted in magmatichydrothermal<br />

degassing along pre-existing fractures. F: Ore-forming brines from the<br />

Athabasca Basin descended along fractures in the basement rocks and U 6 deposition was via<br />

reduction through interaction between oxidizing basinal brines and reduced metamorphic<br />

basement lithologies. G: Post-ore incursion and circulation of meteoric water through<br />

structurally reactivated fault zones that remain a zone of preferential fluid circulation. H:<br />

Erosion of the Athabasca and part of Martin Lake basin rocks and weathering of the deposit<br />

resulted in the recent formation of secondary uranium minerals and late alteration veins.<br />

Deposition of the 2.33 Ga Murmac Bay Group sediments (Hartlaub and Ashton,<br />

1998) was followed by intrusion of the ca. 2321±3 Ma Gunnar granite (Evoy, 1969;<br />

Hartlaub et al., 2004a), which hosts the granite-related metasomatic-type U 3 uranium<br />

mineralization (Fig. 3.11C). The timing of this mineralization is constrained between the<br />

age of the granite (ca. 2321±3 Ma) and the brecciation event (1850 Ma; Dieng et al., 2011)<br />

that overprinted the granite-related U-mineralization at Gunnar. δ 18 O, δ 13 C and δ 2 H<br />

isotopic compositions of syn-ore Cal 5 calcite and Chl 5 chlorite (Figs. 3.7 and 3.8) indicate<br />

that U 3 mineralization has ore-forming components consistent with derivation from<br />

magmatic fluids (Fig. 3.11C). The strong negative Eu anomaly in U 3 uraninite indicates<br />

retention of plagioclase during albitization of the granite. Collectively, these results<br />

demonstrate that fluids involved in the metasomatic alteration of the Gunnar granite could<br />

122


e the same as the U 3 -mineralizing fluid. Therefore, the source of U 3 uraninite in the<br />

granite-related mineralization was likely the Gunnar granitic rock itself. U 3 uraninite could<br />

have been transported by cooling exsolved residual magmatic hydrothermal fluid at ca.<br />

315 o C during magmatic-hydrothermal degassing and deposited in voids left after Qtz 1<br />

quartz and Cal 5 calcite dissolution. The negative chondrite normalized Ce anomaly could<br />

be related to Ce-absorption in Mnz 1 monazite during U 3 uranium precipitation. The high<br />

REE content in the metasomatizing brine is likely related to trace element fractionation<br />

into the fluid during its separation from the granitic melt (e.g. Giere, 1986). Abundant F<br />

within the syn-ore minerals and the presence of Mnz 1 monazite intergrown with U 3<br />

uraninite, suggest that P and F were important ore transporting complexes and that U 3<br />

uranium transfer into the exsolved magmatic-hydrothermal solutions was as uranylfluorine-phosphate<br />

complexes (e.g. U(HPO 4 ) 2 and UF 4 ). The negative chondrite<br />

normalized Eu anomaly (Fig. 3.10A) indicates that the hydrothermal mineralizing fluid<br />

was reduced and that magmatic-fluid degassing processes may have caused the loss of a<br />

large volume of CO 2 that destabilized U and REE complexes, thereby promoting the<br />

deposition of U 3 mineralization.<br />

The style of the granite autometasomatism and the mechanism of ore-forming<br />

processes are similar to deposits in the Xiazhuang district (e.g. Zhushanxia, and Xiwang<br />

deposits), southern China (Du Letian, 1986), the albitized granite-hosted U mineralization<br />

in Brazil (Porto da Silveira et al., 1991) and France (Leroy, 1978). At the Gunnar deposit,<br />

U 3 mineralization is later overprinted by the breccia- (U 4 ) and volcanic-type (U 5 )<br />

123


mineralizations, which upgraded the deposit significantly. The breccia-type U 4<br />

mineralization accounts for the majority of the U in the Gunnar deposit.<br />

3.5.2. Formation of breccia-type U deposits, the major U mineralization<br />

Massive brecciation and formation of the breccia-type main U 4 -mineralizing event at<br />

1850 Ma is linked to reactivation of the fault zones during the post-peak Thelon-Taltson<br />

Orogen or, more likely, early stages of the Trans-Hudson Orogen (Dieng et al., 2011)<br />

(Fig. 3.11D). δ 18 O, δ 13 C and δ 2 H values of syn-ore Chl 7 chlorite and Cal 8 calcite are<br />

consistent with the ore-forming fluid as predominantly metamorphic in origin (Figs. 7 and<br />

8). Syn-ore Chl 7 Chlorite crystal chemistry indicates that the fluid formed from Ca-Na-Fcontaining<br />

metamorphic brine at ca. 330 o C also had relatively high Fe contents. These<br />

fluids were likely derived from dehydration of hydrous minerals and ascended upward<br />

along deep and large fracture systems and dilatant jogs that resulted from brittle<br />

reactivation of early ductile shear zones, thus providing pathways for metamorphichydrothermal<br />

mineralizing solutions (Fig. 3.11D). REE enrichment in U 4 uraninite,<br />

abundant Cal 8 calcite in textural equilibrium with U 4 uraninite, and F in Chl 7 chlorite<br />

indicate that U 4<br />

uraninite transfer into the metasomatizing solutions was possibly as<br />

uranyl-carbonate-fluoride complexes. Experimental results of Bilal and Koss (1980a)<br />

demonstrate that both F - and CO 2- 3 can be effective ligands for complexing REE and U in<br />

metasomatic fluids. The association of U 4 uraninite and Cal 8 calcite in the ore assemblage<br />

(Fig. 3.4G) suggests that the fluids were likely alkaline (Cuney and Kyser, 2008). The<br />

occurrence of both Br 1 brannerite and U 4 uraninite in the ore assemblage is similar to<br />

others metamorphic-related U systems such as Valhalla (Polito et al., 2007) and the<br />

124


Ukraine (Cuney and Kyser, 2008) wherein both U and Ti are mobilized in F-rich and CO 2 -<br />

rich fluids (Hynes, 1980; Gieré, 1990). U 4 uranium precipitation in the breccia system is<br />

likely caused by a decrease in the solubility of the carbonate complexes resulting from a<br />

loss of CO 2 and a decrease in temperature caused by fluid decompression during<br />

brecciation so that pressure and temperature conditions may have been the most dominant<br />

factors controlling U 4 uranium mineralization. However, U transported by F-rich oxidized<br />

fluids in metamorphic-related U-systems may be deposited via reduction reactions<br />

(Skirrow et al., 2009) as the U 4 -mineralizing fluid reacted with reducing Ca-Fe-rich<br />

metamorphic host rocks, resulting in the following reaction (Langmuir, 1978):<br />

2Ca 2+ + UO 2 (CO 3 ) 3<br />

4-<br />

+ 2Fe 2+ +4HCO 3<br />

-<br />

= UO 2+ ↓ + Fe 2 O 3 ↓ + 2CaCO 3 ↓ + 2H 2 O + 5CO 2 ↑.<br />

This process may explain the abundance of Hem 6 hematite associated with U 4 uraninite,<br />

the Cal 8 calcite alteration in the breccia matrix, and the Fe-rich Chl 7 chlorite. In hightemperature,<br />

reduced F-rich metamorphic-related U-systems, the activity of calcium and<br />

pH may be more important than redox in controlling U deposition due to the low<br />

solubility of fluorite (Skirrow et al., 2009).<br />

These results corroborate the findings of Hoeve (1982) who proposed that the<br />

Beaverlodge U deposits may represent a Na-Ti-U style mineralization related to Nametasomatism<br />

during regional metamorphism by the Trans-Hudson Orogen. He suggested<br />

that the resulting Na-alteration involving addition of Na and Ca and loss of K, Mg, Fe, Ti,<br />

and U from the rocks are related to interaction between metamorphic-related hydrothermal<br />

fluids and country rocks. The mineralizing brine deposited the U mineralization in fracture<br />

and breccia systems at structurally shallow levels. Others have also proposed a<br />

125


metamorphic origin of the main U 4 mineralizing event. Tremblay et al. (1972) suggested<br />

that rocks of the Beaverlodge area may represent previously U-rich regions that were<br />

leached during metamorphic-hydrothermal alteration during late Trans-Hudson<br />

granitization processes and that the U mineralization was deposited along major fault<br />

zones. Rees (1992) proposed a metamorphic origin for fluids associated with the lode-gold<br />

quartz vein mineralization at the Nicholson deposit, which formed at ca. 1.85-1.84 Ga at<br />

temperatures of ca. 300-400 o C. His results demonstrate that Au gold and U mineralization<br />

likely formed from the same mineralizing event.<br />

A strong structural control is reported in most metamorphic-related U systems, with<br />

U commonly hosted by reactivated ductile to brittle-ductile fault zones (Cuney and Kyser,<br />

2008). Skirrow et al. (2009) suggest that fluids in these systems are saline Na-Ca brines<br />

that were F-rich and CO 2 -bearing. Such U deposits formed from fluids of metamorphicdehydration<br />

origin and appear to be rare and of low grade and tonnage (Plant et al., 1999).<br />

The relatively low oxidation state of such fluids may explain why these systems are not<br />

associated with significant U mineralization. The Beaverlodge U deposits are therefore,<br />

similar to these metamorphic-related U mineralization systems associated with Nametasomatism<br />

(Cuney and Kyser, 2008). Examples include the Krivoy-Rog district in<br />

Ukraine (Belevtsev and Koval, 1968), the Kurupung district in Guyana (Cinelu and<br />

Cuney, 2007) and Skuppesavon in Sweden (Smellie and Laurikko, 1984). Therefore, these<br />

deposits could be related to the global 1.9-1.75 Ga alkali-metasomatism associated with<br />

the plate tectonic-scale collisional orogenesis culminating with the Nuna supercontinent<br />

assembly (Cuney, 2010; Evans et al., 2010).<br />

126


3.5.3. Later basin-related U mineralization<br />

Formation of the Martin Lake Basin (Langford, 1981; Mazimhaka and Hendry,<br />

1984) and associated 1818±4 Ma alkaline mafic dikes (Morelli et al., 2009) is coincident<br />

with periods of active tectonism related to back-arc extension following peak Trans-<br />

Hudson Orogen (Hoffman, 1989; Corrigan, 2009). Extrusion of mafic dikes is associated<br />

with the ca. 1820 Ma volcanic-type U 5 -mineralization (Dieng et al., 2011) identified at the<br />

Cinch Lake, Ace-Fay, and Gunnar deposits (Fig. 3.11E). Syn-ore Chl 8 chlorite and Cal 9<br />

calcite have δ 18 O, δ 13 C and δ 2 H values typical of magmatic fluids (Fig. 3.8) that are likely<br />

exsolved from mafic dikes during their emplacement. Chl 8<br />

chlorite crystal chemistry<br />

indicates that the U 5 -bearing hydrothermal fluid formed at ca. 320°C from an Mg- and Ferich<br />

fluid. REE patterns of U 5 uraninite are similar to those in the mafic dikes and there is<br />

a close spatial field relationship between mafic dikes and fractures hosting U 5 uraninite.<br />

Therefore, during the mafic dikes intrusion and subsequent magmatic-hydrothermal<br />

degassing, pre-existing fractures would have provided pathways for U 5<br />

uranium<br />

mineralizing solutions. Chondrite normalized REE patterns of U 5 uraninite indicate that<br />

Eu is relatively more depleted in U 5 uraninite than in mafic dikes, suggesting that the<br />

exsolved fluid changed from oxidized to less so during U 5 uranium deposition. The<br />

shallow structural levels of emplacement and the presence of Mn-oxides and Hem 7<br />

hematite alteration associated with U 5<br />

uraninite indicate that during early stages, the<br />

hydrothermal fluids were oxidized and capable of transporting U. In such an oxidizing<br />

environment with intermediate pH conditions (4-8) and temperatures near 320°C, uranylphosphate<br />

complexes were likely the most stable (Langmuir, 1978). This is corroborated<br />

127


y the abundance of Ap 1 apatite and Mnz 2 monazite intergrown with U 5 uraninite in the<br />

ore assemblage, suggesting that U 5 uraninite was probably transported in its oxidized state<br />

as U 6+ primarily as uranyl-phosphate complexes (e.g. UO 2 (HPO 4 ) -2 2 ). Therefore, changes<br />

in the pH or Eh state of the mineralizing solution through interaction between the<br />

oxidizing hydrothermal brine and the reduced metamorphic host rocks was likely the key<br />

process leading to U 5 uranium deposition. Destabilization of the aqueous uranyl-phosphate<br />

complexes have resulted in the phosphate-bearing minerals intergrown with U 5 uraninite.<br />

During the late Paleoproterozoic, the Athabasca Basin formed at ca. 1750 Ma<br />

(Kyser et al., 2000) following exhumation of the Martin Lake Basin rocks. Tectonic<br />

reactivation along fault zones during the Mesoproterozoic Mazatzal Orogen (Labrenze and<br />

Karlstrom, 1991; Eisele and Isachsen, 2001) caused minor fracturing, deformation of the<br />

basin and deposition of the 1620 Ma Athabasca-type U 6 mineralization observed in the<br />

Ace-Fay and Martin Lake deposits (Dieng et al., 2011). Syn-ore Chl 9 chlorites formed<br />

from fluids with δ 18 O and δ 2 H values (Fig. 3.8) identical to those of the unconformityrelated<br />

U-deposits in the Athabasca Basin (e.g. Fayek and Kyser, 1997; Cuney and Kyser,<br />

2008). The crystal chemistry of syn-ore Chl 9 chlorite indicates that fluids related to U 6<br />

uraninite formed at ca. 235°C also identical to those of the Athabasca brines. U 6 uraninites<br />

have total REE contents intermediate to those of U 4 and U 5 uraninites and are LREE<br />

enriched, suggesting that these uraninites may have originated from an environment where<br />

both U 4 and U 5 uraninites were remobilized. These observations suggest that this event<br />

may be related in part to remobilization of pre-existing U mineralization into late fractures<br />

from fluids that formed the unconformity-type U-mineralization in the Athabasca Basin<br />

128


(Alexandre et al., 2009). Positive chondrite normalized Ce anomaly in U 6 uraninite may<br />

indicate destruction of monazite and incorporation of Ce into the mineralizing brine<br />

(Kyser et al., 2003), but the similarity of the isotopic composition, temperature and timing<br />

of fluid events, all suggest that U 6 mineralizing brines originated in the Athabasca Basin<br />

and descended downward along fracture systems into the basement rocks (Fig. 3.11F).<br />

Syn-ore Chl 9 chlorite and U 6 uraninite crystal chemistry indicate that F - , Chl - , CO 2- 3 , and<br />

PO 4<br />

3-<br />

were likely present in the ore assemblage and could be effective ligands for<br />

complexing U 6 (e.g. UO 2 F 2 , UO 2 Cl 2 , UO 2 (CO 3 ) 2- , and UO 2 (H 2 PO 4 ) 2 ). In oxidized aqueous<br />

basinal brines with pH between 4 and 7.5, uranyl-phosphate complexes are the important<br />

species (Cuney and Kyser, 2008), uranyl-carbonate complexes are dominant under<br />

relatively oxidizing and near-neutral pH conditions and the chlorine- and fluorinecomplexes<br />

are dominant in fluids under acidic conditions at temperatures up to 200°C<br />

(Romberger, 1984; Kojima et al., 1994). Therefore, the key process controlling U 6<br />

uranium deposition was likely reduction of the mineralizing solution through interaction<br />

between the oxidizing basinal brines and the reducing metamorphic basement lithologies<br />

(Hoeve and Quirt, 1984; Polito et al., 2005, 2006; Cuney and Kyser, 2008).<br />

Destabilization of the aqueous uranyl complexes is indicated by syn-ore Cal 10 carbonate<br />

alteration, high phosphate contents in U 6 uraninite and elevated values of fluorine and<br />

chlorine in Chl 9 chlorite.<br />

3.5.4. Late alteration events<br />

Electron microprobe analyses indicate that Chl 5 , Chl 7 , and Chl 8<br />

chlorites were<br />

subsequently altered to low-temperature Mg-rich chlorite (Table 3.4) recording the effect<br />

129


of late fluid events that have affected the deposits subsequent to their formation (Figs.<br />

3.11F and 3.11E). These late events may represent incursion and circulation of meteoric<br />

water through structurally reactivated fault zones (Kotzer and Kyser, 1995). This is<br />

reflected in the hydrogen isotopic composition of Chl 7 and Chl 8 chlorites, which record<br />

retrograde exchange of H-isotopes with relatively recent meteoric water having low δ 2 H<br />

values (Fig. 3.8) (Kyser and Kerrich, 1991; Kotzer and Kyser, 1995). The preferential<br />

exchange of hydrogen isotopes in Chl 7 and Chl 8 chlorites suggests that the fault zones<br />

were active after U-mineralization and remain a zone of preferential fluid circulation (e.g.<br />

Fayek and Kyser, 1997; Beyer et al., 2011).<br />

3.6. Conclusions<br />

This study demonstrates that the Beaverlodge area records ore-forming systems that<br />

resulted from multistage deformation, hydrothermal alteration and U mineralization, and<br />

modern meteoric fluid processes during protracted tectonic evolution. The main brecciatype<br />

U 4 mineralizing event that affected all deposits in the Beaverlodge area formed from<br />

Ca-Na-dominated metamorphic fluids at ca. 330 o C associated with metasomatism<br />

accompanying the regional metamorphism of the Trans-Hudson Orogen or post-peak<br />

Thelon-Taltson Orogen. The ore-forming fluids were likely derived from dehydration of<br />

hydrous minerals and ascended upward along deep fracture systems that resulted from<br />

brittle reactivation of early ductile shear zones. U 4<br />

transfer into the metasomatizing<br />

solutions was as uranyl-carbonate-fluoride complexes and precipitation in the breccia<br />

systems by a decrease in the solubility of the carbonate complexes and temperature caused<br />

by fluid decompression during brecciation. Pressure and temperature conditions were the<br />

130


most dominant factors controlling U 4 uranium deposition. The style of the mineralization<br />

process is similar to U deposits in northern Sweden, Ukraine, Brazil and Guyana, all of<br />

which contain high grade U mineralization in zones of brecciation related to the global<br />

1.9-1.75 Ga alkali-metasomatism during plate tectonic-scale collisional orogenesis<br />

culminating with the Nuna supercontinent assembly. In the Beaverlodge area, brittle<br />

reactivated ductile shear zones represent an exploration target for U mineralization.<br />

However, the metamorphic origin of the main U mineralization with fluids incapable of<br />

transporting significant amounts of U may indicate that these deposits have only marginal<br />

potential to host economic U mineralization, and certainly they would be relatively lowgrade.<br />

These U mineralization events are older than the unconformity-related U<br />

mineralization in the overlying Athabasca Basin. Therefore, U mineralization in this older<br />

successor basin would have been one potential source of U for the Athabasca Basin.<br />

131


CHAPTER 4<br />

FLUID EVOLUTION AND GENESIS OF URANIUM<br />

MINERALIZATION IN THE SOUTH ALLIGATOR VALLEY AREA,<br />

NORTHERN TERRITORIES, AUSTRALIA<br />

Abstract<br />

Uranium deposits in the South Alligator Valley Mineral Field, Northern Territories,<br />

Australia, are hosted in deformed and metamorphosed volcanoclastic rocks and calcareous<br />

and carbonaceous sedimentary units of the Koolpin Formation, at the unconformity with<br />

overlying El Sherana Basin sandstones. The ore is confined to greenschist facies host rocks<br />

that are cut by the El Sherana-Palette fault, a northwest-striking, southwest dipping and<br />

dextral strike-slip fault system. Petrographic studies on polished thin sections combined<br />

with electron microprobe analysis, stable isotope geochemistry, and geochronology of<br />

uranium-bearing minerals at the El Sherana and Coronation Hill deposits have identified a<br />

multistage fluid history, involving hydrothermal alteration and uranium mineralization.<br />

The pre-ore stage mineralogy consists of sericite, quartz, chlorite, and calcite<br />

alteration at temperatures at ca. 300°C, interpreted to result from regional greenschist<br />

metamorphism of the basement rocks during the ca. 1860-1840 Ma Nimbuwah event and<br />

prior to deposition of the ca. 1840-1830 Ma El Sherana Basin. The basement pre-ore<br />

alteration is followed by diagenesis of the El Sherana Basin sediments by oxidizing low<br />

latitude basinal brines that produced a kaolinite+quartz+hematite assemblage. The ore stage<br />

of uranium, gold, and galena formed at ca. 1820 Ma from evolved basinal brines that<br />

originated from the El Sherana Basin and descended downward into basement rocks along<br />

132


fracture systems created by brittle reactivation of the El Sherana-Palette fault at<br />

temperatures near 250°C. Syn-ore mineral crystal chemistry suggests that uranyl-fluoridechloride<br />

and -phosphate were dominant ore transporting complexes. Interaction of<br />

oxidizing basinal brines with reducing Koolpin Formation sediments led to deposition of<br />

the ore metals. Uranium deposits of the South Alligator Valley Mineral Field can therefore,<br />

be classified as unconformity-related uranium mineralization associated with the El<br />

Sherana successor basin. Post-ore alteration is dominated by secondary uraninite along late<br />

fractures, kaolinite and hematite alteration, and chlorite and calcite veins, which formed at<br />

temperatures near ca. 100°C. Post-ore alteration occurred during major tectonic events<br />

based on U-Pb and Pb-Pb dating of uraninite and was coincident with fluid flow induced by<br />

both near and far-field tectonic events that altered much of the primary uraninite into<br />

secondary uranium minerals.<br />

Our results show that the age of the uranium deposits are older than previously<br />

proposed and are also older than the unconformity-related uranium mineralization in the<br />

Kombolgie Basin. Unconformity-related uranium mineralization is associated with basinal<br />

brines from the Paleoproterozoic successor basin, thereby enhancing the uranium<br />

prospectivity of the area.<br />

4.1. Introduction<br />

The South Alligator Valley Mineral Field (SAVMF), Northern Territories, Australia,<br />

lies within a north-west-trending zone of folded and faulted Paleoproterozoic<br />

metasediments (Fig. 4.1) exposed within the South Alligator Valley in the Pine Creek<br />

Orogen (Needham et al., 1980, 1987, 1988; Needham and Stuart-Smith, 1985, Valenta,<br />

133


1990, 1991; Wyborn et al., 1990). Historic exploration within the SAVMF resulted in the<br />

discovery of several uranium deposits and occurrences. Nevertheless, the SAVMF is the<br />

smallest uranium field in the Pine Creek uranium province (Fig. 4.1). Between 1956 and<br />

1964 only 874 t of U 3 O 8 was mined from 14 deposits (Foy, 1975). Since the discovery of<br />

unconformity-type uranium deposits in the Kombolgie Basin, research in the Pine Creek<br />

Orogen has been focused on the large and higher grade deposits within the Kombolgie<br />

Basin, which uncomformably overlies the successor El Sherana Basin (Friedmann and<br />

Grotzinger, 1994). The character and formation of unconformity-related uranium deposits<br />

associated with the younger Kombolgie Basin (Sweet et al., 1999) have been well<br />

documented and a general genetic model proposed (e.g. Gustafson and Curtis, 1983; Polito<br />

et al., 2004; 2005; Cuney, 2005). In contrast, uranium mineralization in the successor El<br />

Sherana Basin has been less studied, despite several decades of intense exploration and<br />

mining activities and the discovery of several uranium and precious metal deposits (e.g.<br />

Needham and Stuart-Smith, 1987; Mernagh et al., 1994). Moreover, there is limited<br />

information on the role of the successor basin and the key processes by which these<br />

deposits formed. The U mineralization occurs in basement rocks beneath, and within, the<br />

successor El Sherana Basin (e.g. Ayres et al., 1975; Mernagh et al., 1994) that is<br />

stratigraphically older than, but spatially related to, the younger U-rich Kombolgie Basin<br />

(e.g. Wilde, 1992; Polito et al., 2005). Whether these deposits are unconformity-related<br />

associated with the successor basin or similar to those in the younger Kombolgie Basin is<br />

inconclusive.<br />

134


Figure 4.1. a) Geological map of the SAVMF showing location of the Coronation Hill and El<br />

Sherana deposits and other U deposits. b) Map of Australia showing location of the (SAVMF)<br />

in Northern Territories. c) Simplified map of Pine Creek Orogen, showing the Coronation<br />

Hill and El Sherana deposits in the SAVMF, U deposits in the Alligator Rivers Uranium Field<br />

(ARUF), and deposits in the Rum Jungle Mineral Field (RJMF) (modified from<br />

www.ga.gov.au/minerals/projects/current projects/ geologica lmapsstandards.html).<br />

In this chapter, we evaluate the character and formation of U mineralization of the El<br />

Sherana and Coronation Hill deposits in the SAVMF, using a mineral paragenesis that<br />

details the relative timing of alteration minerals in the deposits (Fig. 4.1). We also constrain<br />

the timing, nature and origin of the fluids that produced and affected the deposits using<br />

135


stable isotope geochemistry, U-Pb geochronology of paragenetically well-characterized U-<br />

rich minerals, and chlorite and uraninite crystal chemistry. These results are used to identify<br />

key processes controlling U mineralization in the SAVMF, present a genetic model for U<br />

mineralization, and compare the South Alligator Valley U deposits to those in the younger<br />

and U-rich Kombolgie Basin.<br />

4.2. Geologic Setting<br />

4.2.1. General geology<br />

The South Alligator Valley area, Northern Territories, Australia (Fig. 4.1) comprises<br />

rocks dated from Neoarchean to Paleoproterozoic, which are divided into four main<br />

sequences. 1) Neoarchean basement granitic units (ca. 2.5 Ga; Needham and Stuart-Smith,<br />

1985; Needham et al., 1988); 2) Paleoproterozoic sedimentary rocks of the Pine Creek<br />

Orogen (2200 Ma to 1870 Ma) uncomformably overlying Neoarchean basement rocks<br />

(Needham et al., 1987); 3) Paleoproterozoic silisiclastic red beds and associated volcanic<br />

rocks of the El Sherana-Edith River Group (1829 Ma to 1822 Ma), which uncomformably<br />

overlie Pine Creek Orogen sediments (Jagodzinski, 1992); and 4) late Paleoproterozoic<br />

sedimentary rocks of the Kombolgie Basin (1822 Ma to 1720 Ma; Sweet et al., 1999)<br />

uncomformably overlying older rocks and intruded by the 1723±6 Ma Oenpelli dolerite<br />

(e.g. Kyser et al., 2000).<br />

In the SAVMF, the oldest exposed unit of the Pine Creek Orogen sequence is the<br />

Mundogie sandstone of the Mount Partridge Group (2025 Ma, Worden et al., 2004),<br />

followed by the Koolpin Formation, the basal unit of the South Alligator Group (Needham,<br />

1987). Sedimentation of the Koolpin Formation was accompanied by felsic volcanism,<br />

136


epresented by the 1884±3 Ma Gerowie Tuff (Pietsch and Stuart-Smith, 1987) and the<br />

overlying 1877±11 Ma Mount Bonnie Formation (Needham et al., 1988). These rocks are<br />

uncomformably overlain by the ca. 1863 Ma Finniss Group (Walpole et al., 1968).<br />

Following deposition of the Pine Creek Orogen sequence, the 1870±6 Ma Zamu<br />

Dolerite sills (Page et al., 1980) were intruded, folded, and metamorphosed with the host<br />

rocks by the 1860–1840 Ma Nimbuwah event of the Top End Orogen (Ferguson and<br />

Needham, 1978; Lally and Worden 2004). In the SAVMF, the regional metamorphic grade<br />

is greenschist facies (Needham et al., 1988a). Deformation and metamorphism were<br />

accompanied and followed by emplacement of granitic rocks (Stuart-Smith et al., 1993;<br />

Ferenczi and Sweet, 2005; Rasmussen et al., 2006; Neumann and Fraser, 2007).<br />

Following exhumation of the final stages of the Nimbuwah event, minor deformation<br />

and rift-related sedimentation occurred during the ca. 1825 Ma Cullen Event (Wyborn et<br />

al., 1997), resulting in deposition of the El Sherana Group (Needham et al., 1988a). The El<br />

Sherana Group consists of the Coronation sandstone and associated felsic volcanics, the Pul<br />

Pul Rhyolite at 1829±5 Ma (Jagodzinski, 1991). Following folding, faulting and erosion of<br />

the El Sherana Group, the Edith River Group (Kurrundie Sandstone) overlain by the Plum<br />

Tree Creek volcanics at 1822±6 Ma (Jagodzinski, 1992) were deposited. Ahmad et al.,<br />

(2006) interpreted the initial deposition of the El Sherana Group at 1865 Ma associated<br />

with graben formation centred on the South Alligator River valley and followed later by<br />

rifting and deposition of the Edith River Group at 1850 Ma. A regional low-grade<br />

metamorphism, the ca. 1780 Ma Shoobridge event, may represent a thermal stage<br />

137


coincident with the initiation of sedimentation in the McArthur Basin (Wyborn et al.,<br />

1997).<br />

All of these rocks are uncomformably overlain by the Paleoproterozoic fluvial redbed<br />

sandstone successions of the Kombolgie Basin (Ojakangas, 1979; Sweet et al., 1999),<br />

which is part of the McArthur Basin sequence (Kyser et al., 2000). Rocks of the Kombolgie<br />

Basin were intruded by the late Paleoproterozoic 1723±6 Ma Oenpelli dolerite (e.g. Kyser<br />

et al., 2000).<br />

In the South Alligator Valley, the Pine Creek Orogen rocks were deformed during the<br />

1870-1780 Ma Top End Orogen (Needham and DeRoss, 1990). Johnston (1984) and<br />

Valenta (1990) identified three deformation phases. D 1 occurred during the 1890–1870 Ma<br />

Barramundi Orogen (Page and Williams, 1988) and produced meso-scale isoclinal folding<br />

and bedding-parallel cleavage, related to major low-angle reverse faulting, at the base of<br />

the Koolpin Formation. D 2 occurred during the 1860-1840 Ma Nimbuwah tectonic event<br />

and formed regional-scale, northwest trending, upright, tight to isoclinal folds, and a<br />

penetrative axial-plane cleavage. Open, upright northeast-trending southeast-plunging folds<br />

and fault movements formed during D 3 and affected the El Sherana and Edith River Group<br />

rocks. (Valenta, 1991; Lally and Bajwah, 2006).<br />

4.2.2. Uranium mineralization<br />

Uranium deposits of the SAVMF are on or near the El Sherana–Palette fault system<br />

(Fig. 4.1; Valenta, 1990), and were formed in dilatational zones at fault bends or<br />

intersections (Valenta, 1991). The mineralization occurred as vein-type lodes in faults at the<br />

unconformity between the El Sherana Group and the underlying Koolpin Formation<br />

138


(Mernagh et al., 1994). Uraninite is associated with galena, chalcopyrite, pyrite, gold, and<br />

clausthatite (Ayres et al., 1975). The alteration is dominated by quartz+sericite±chlorite±<br />

kaolinite+hematite (Mernagh and Wyborn, 1994).<br />

Mernagh et al. (1994) suggested that highly oxidizing, acid and low temperature<br />

basinal brines transported Au–PGE–U as oxy-chloride and chloride species and proposed a<br />

model for the Coronation Hill deposit wherein U mineralization formed by reaction of<br />

acidic oxidized basinal brines from the cover sandstone with reducing basement rocks of<br />

the Koolpin Formation. The precipitation of Au-PGE ore in the quartz feldspar porphyry<br />

resulted from acid neutralization and moderate reduction from fluid interaction with<br />

feldspathic host rocks (Mernagh et al., 1994). Ayres (1975) suggested that the U source was<br />

the El Sherana Basin volcanics. The U-bearing groundwater percolated down to an aquifer<br />

in the sandstone unit at the base of the volcanics. U precipitation occurred where U-bearing<br />

basinal brines reacted with reducing carbonaceous shales of the Koolpin Formation.<br />

Previous dating of uraninite from the SAVMF deposits proved inconclusive.<br />

Uraninites from the El Sherana and Palette deposits have U-Pb ages ranging from 815 Ma<br />

to 710 Ma (Hills and Richards, 1972; Cooper, 1973). Thermal Ionization Mass<br />

Spectrometry (TIMS) dating of U-bearing samples indicate young 207 Pb/ 206 Pb ages ranging<br />

between 830 Ma and 494 Ma and an U-Pb upper intercept of 730 Ma at the Palette deposit<br />

whereas 207 Pb/ 206 Pb dates of 1196 Ma and U-Pb upper intercept ages of 1600 Ma occur at<br />

the El Sherana deposit (Greenhalgh and Jeffery, 1959). U-Pb dating of uraninite from the<br />

Palette deposit gives 207 Pb/ 206 Pb dates ranging from 964 Ma to 634 Ma (Greenhalgh and<br />

Jeffery, 1959) and uraninite analyzed by laser ablation-high resolution inductively-coupled<br />

139


plasma mass spectrometry (LA-HR-ICP-MS; Chipley et al., 2007) yielded 207 Pb/ 206 Pb dates<br />

between 1855 Ma and 820 Ma at the El Sherana deposit and between 964 Ma and 634 Ma<br />

at the Palette deposit (Chipley et al., 2007). Uraninite from the Adelaide River deposit<br />

gives 207 Pb/ 206 Pb ages ranging between 1069 Ma and 735 Ma (Chipley et al., 2007). Ages<br />

for the unconformity-related U deposits in the overlying Kombolgie Basin are 1675 to 1650<br />

Ma (Polito et al., 2004; 2005).<br />

4.3. Characteristics of selected uranium deposits<br />

4.3.1. Coronation Hill uranium deposit<br />

The oldest rocks in the Coronation Hill deposit area consist of interbedded<br />

ferruginous slate, carbonate and quartzite of the Koolpin Formation and green<br />

volcanoclastic sedimentary rocks (Fig. 4.2; Wyborn et al., 1991). Quartz-feldspar porphyry<br />

and mafic intrusive rocks are correlated with the Gerowie Tuff (Carville et al., 1991) and<br />

the Zamu Dolerite (Warren and Kamprad, 1990), respectively. The mafic intrusive rocks<br />

consist of quartz diorite and minor granophyre, which are overlain by a sedimentary breccia<br />

that is part of the Coronation sandstone (Mernagh et al. 1994). All of these rocks are<br />

uncomformably overlain by a quartz sandstone unit of the Kombolgie Formation (Fig. 4.2,<br />

Carville et al., 1991).<br />

Valenta (1991) described three events of faulting. East-striking normal faults separate<br />

quartz-feldspar porphyry and conglomerate and are overprinted by a north-striking dip-slip<br />

fault that separates conglomerate and green volcanoclastic sedimentary rocks. North<br />

northwest-striking, subvertical, strike-slip shear zones offset earlier faults and control the<br />

mineralization (Mernagh and Wyborn, 1994; Eupene, 2003).<br />

140


100m<br />

Figure 4.2. (A) Geological plan of the Coronation Hill deposit showing main lithological units<br />

and structural elements. (B) East-west geological cross-sections (line AB) across the<br />

Coronation Hill deposit illustrating lithological units, fault systems and location of Au-PGE<br />

and U-Au-PGE mineralization (modified from Wyborn et al., 1990).<br />

141


The Coronation Hill deposit occupies a zone of complex faulting near the El Sherana-<br />

Palette fault system (Fig. 4.1) and was mined between 1955 and 1964. Over this period,<br />

25,306 metric tons of U ore grading 0.26% U 3 O 8 were mined (Fisher, 1969). Some gold<br />

and PGE (4 850 000t at 4.31 g/t Au, 0.65 g/t Pd and 0.19 g/t Pt) were recovered from the<br />

deposit. Two types of ore have been recognized (Fig. 4.2B). 1) U±Au mineralization in<br />

faulted blocks of the Koolpin Formation (Needham, 1987), and 2) a Au-PGE±U orebody in<br />

a north northwest-trending zone of fractured and sheared volcanoclastic rocks, quartzfeldspar<br />

porphyry, sedimentary breccia and diorite (Carville et al., 1990, 1991).<br />

4.3.2. El-Sherana uranium deposit<br />

The El Sherana deposit is located within the El Sherana–Palette fault (Fig. 4.1;<br />

Valenta, 1991). The deposit area consists of interlayered cherty ferruginous and<br />

carbonaceous shale of the Koolpin Formation, uncomformably overlain by the Coronation<br />

sandstone and volcanics of the Pul Pul Rhyolite (Fig. 4.3). The two dominant faults are<br />

steeply southwest-dipping normal faults and younger, shallowly southwest-dipping reverse<br />

faults (Valenta, 1991). Faulted and brecciated contact between carbonaceous and<br />

ferruginous shale was the focus of the U mineralization (Fig. 4.3, Lally and Bajwah, 2006).<br />

The uranium ore is hosted within subvertical, northwest-trending, interlayered cherty<br />

ferruginous shale and carbonaceous shale at the unconformity below the Coronation<br />

sandstone (Fig. 4.3; Crick et al., 1980). Minor mineralization also occurred within the<br />

Coronation sandstone and altered volcanic rocks close to the unconformity.<br />

142


Surface<br />

100m<br />

Figure 4.3. Geological cross-section of El Sherana and El Sherana West U deposits showing<br />

main lithological units and location of the U mineralization. (modified from Valenta, 1991)<br />

The mineralized zone has a strike length of 400 m and a vertical range of 180 m (Taylor,<br />

1968). The total production was 226 t U 3 O 8 and 0.33 t Au from El Sherana, and 185 t U 3 O 8<br />

and 0.007 t Au from El Sherana West during the period 1956-1964. Primary U<br />

mineralization occurs as pods, lenticular masses, veins and disseminations and is associated<br />

with fault zones and brittle fracturing (Taylor, 1968; Ayres and Eadington, 1975; Valenta,<br />

1989, 1991). Gold occurs as veinlets within the uranium ore or as separate zones of<br />

mineralization. Minor galena, angelsite, clausthalite, pyrite, marcasite, cobalt-nickel<br />

143


arsenides, nickel selenide and copper sulfides are also associated with the ore (Threadgold,<br />

1960).<br />

4.4. Methodology<br />

Polished thin sections were prepared from 250 core samples from the El Sherana and<br />

Coronation Hill deposits (Fig. 4.1) and were examined using transmitted and reflected-light<br />

microscopy to determine mineral crosscutting relationships and develop a paragenetic<br />

succession for the area.<br />

Electron microprobe analysis of syn-ore chlorite and uraninite were done on polished<br />

thin sections using a JEOL JXA-8230 equipped with five wavelength dispersive<br />

spectrometers (WDS) at Queen’s <strong>University</strong>, Canada. A suite of well-characterized natural<br />

and synthetic minerals and compounds were used as calibration standards. Analytical<br />

conditions were 15 kV accelerating voltage, 10 nA beam current, and a defocused beam.<br />

Typical counting times were 10 s for major elements and 20 s for minor elements.<br />

Analytical errors were


<strong>University</strong>, Canada. Monomineralic fractions, typically >95% pure, were used for stable<br />

isotope analyses at the Queen’s Facility for Isotope Research. Oxygen isotopic<br />

compositions of muscovite and kaolinite were measured using the BrF 5 method of Clayton<br />

and Mayeda (1963) and a dual inlet Finnigan MAT252 isotope ratio mass spectrometer.<br />

Hydrogen isotope compositions were determined using a Thermo Finnigan TC/EA in-line<br />

with a DeltaPlus XP Finnigan Mat mass spectrometer. Isotopic compositions are reported<br />

in the δ notation in units of permil (‰) relative to V-SMOW. Analyses of δ 18 O were<br />

reproducible to ±0.2‰, and δ 2 H values were reproducible to ±3‰. The isotopic<br />

composition of fluid was calculated using the oxygen isotope fractionation factors proposed<br />

by O’Neil and Taylor (1969) for water-muscovite and Sheppard and Gilg (1996) for<br />

kaolinite-water. The hydrogen isotope fractionation factors of Sheppard and Gilg (1996)<br />

were used for water-muscovite and of Capuano (1992) for kaolinite-water.<br />

U-Pb isotope ratios were determined by laser ablation-high resolution inductivelycoupled<br />

plasma mass spectrometry (LA-HR-ICP-MS; Chipley et al., 2007) using a<br />

Finnigan MAT Element 1 HR-ICP-MS and a Neptune HR-MC-ICP-MS, both equipped<br />

with a high-performance Nd.YAG New Wave UP-213 laser ablation system at <strong>Queen's</strong><br />

Facility for Isotope Research. Ablation of uraninite was achieved on polished thin sections<br />

using a 30 to 40μm spot size with 35% to 40% laser power at a frequency of 2Hz. The<br />

argon gas flows were as follows; cooling gas, 1.5l/min; auxiliary gas, 1.0l/min; and sample<br />

carrier gas, 1.0 l/min. A low resolution of 350 defined as the ratio of mass over peak width<br />

mass at 5% of the signal height was used. For each sample, 204 Pb, 206 Pb, 207 Pb, 235 U, and<br />

238 U were measured and corrections for common Pb were made scan-by-scan to each spot.<br />

145


No corrections were made to the 238 U/ 235 U ratios as they were near the 137.8 natural ratios.<br />

Instrument checks were done using an in-house uraninite standard.<br />

Mineral name abbreviations used in this chapter are those from Kretz (1983). The<br />

superscript numerical value on the mineral name abbreviations reflects the mineral growth<br />

stages.<br />

4.5. Results<br />

4.5.1. Mineral Paragenesis<br />

4.5.1.1. Coronation Hill uranium deposit<br />

Mineral paragenesis for the Coronation Hill deposit is based on textural relationships<br />

shown in Figures 4.4, 4.5, 4.6 and 4.7. Quartz-feldspar porphyry and granophyre rocks host<br />

the U mineralization and three main stages of alteration: pre-ore, syn-ore, and post-ore<br />

alteration. The quartz-feldspar porphyry is composed of Qtz 0 quartz and Kfs 0 feldspar<br />

xenoliths of variable size embedded in a fine-grained matrix composed of Qtz 0 quartz, Kfs 0<br />

feldspar, and Ms 0 muscovite (Fig. 4.5A). The granophyre rock consists of Qtz 0 quartz and<br />

Kfs 0<br />

alkali feldspar in characteristic angular intergrowths, embedded in a groundmass<br />

consisting of fine-grained Qtz 0 quartz and Kfs 0 feldspars, Ms 0 muscovite and Bt 0 biotite<br />

(Fig. 4.4).<br />

4.5.1.1.1. Pre-ore alteration<br />

Pre-ore alteration of the quartz-feldspar porphyry is characterized by fine-grained<br />

Qtz 1 quartz grains as overgrowths on Qtz 0 quartz xenoliths (Fig. 4.5A). Src 1 sericite is the<br />

most extensive alteration and occurs as fine-grained replacement of Qtz 0 quartz and Kfs 0<br />

146


Deformation-Metamorphism:<br />

1860-1840 Ma (Nimbawah Event)<br />

Deposition of El Sherana Group (ca. 1830 Ma)<br />

Deposition of Kombolgie Group (ca. 1750 Ma)<br />

feldspar xenoliths in the matrix (Fig. 4.5A). In places, Kfs 0<br />

feldspar xenoliths are<br />

completely replaced by Src 1 .<br />

Minerals<br />

Deposition of Koolpin Formation and associated volcanic rocks (1900-1870 Ma)<br />

Quartz Qtz 0<br />

Feldspar KFs 0<br />

Biotite* Bt 0<br />

Muscovite Ms 0<br />

Pre-Ore alteration<br />

Quartz overgrowth Qtz 1<br />

Sericite Src 1<br />

Monazite Mzn 1<br />

Titanite Tt 1<br />

Chalcopyrite Cpy 1<br />

Pyrite Py 1<br />

Apatite* Ap 1<br />

Early quartz vein Qtz 2 140 o C<br />

Hematite Hem 1<br />

Chlorite Chl 1 160 o C<br />

Calcite Cal 1<br />

Main U mineralization Event<br />

250 o C<br />

Chlorite Chl 2<br />

Calcite Cal 2<br />

Muscovite Ms 2<br />

Uraninite U 1 1820Ma<br />

Hematite Hem 2<br />

Galena Pb 1<br />

Gold Au 1<br />

Chalcopyrite Cpy 2<br />

Late alteration Event<br />

Chlorite Chl 3 100 o C<br />

Secondary uraninites U 2<br />

Calcite Cal 3<br />

Quartz Qtz 3<br />

Hematite Hem 3<br />

Azurite Az 1<br />

Kaolinite Kln 1<br />

Relative timing<br />

Host rock<br />

Pre-ore Syn-ore Post-ore<br />

Figure 4.4. General mineral paragenesis of the Coronation Hill deposit. The three main<br />

alteration stages include a pre-, syn-, and post-ore alteration of the basement rocks. The<br />

thickness of the lines indicates the relative mineral abundance. An asterisk (*) marks the<br />

primary minerals present in quartz feldspar porphyry and granophyre rocks. Temperatures<br />

associated with the different alteration minerals are derived from their chlorite crystal<br />

chemistry. The temperature of 140 o C for the pre-ore Qtz 2 is from Mernagh et al. (1994),<br />

147


which was interpreted as being associated with the U mineralization. The age of 1820 Ma is<br />

interpreted from U-Pb geochronology of paragenetically constrained U 1 . (See text for details).<br />

Disseminated Cpy 1 chalcopyrite and Py 1 pyrite are present in the most altered<br />

samples. Mzn 1 monazite associated with Ttn 1 titanite occurs as disseminated aggregates of<br />

grains (Fig. 4.5B) and Ap 1 apatite occurs as elongated euhedral and transparent tabular<br />

crystals (Fig. 4.5C). Early Qtz 2 quartz veins crosscut the quartz-feldspar porphyry (Fig.<br />

4.5D) and occur locally as stockworks. Chl 1 chlorite is present as replacement of Src 1<br />

sericite in the matrix (Fig. 4.5E) or frequently as coarse, felty-textured, radiating aggregates<br />

coating Qtz 2 veins (Fig. 4.5D) where it forms thin needles crosscutting Qtz 2 veins (Fig.<br />

4.5D). Hem 1 hematite forms primary inclusions in Qtz 2 veins where it replaces Chl 1<br />

chlorite needles (Fig. 4.5D) and Src 1 sericite (Fig. 4.5E) in the matrix. Cal 1 calcite also<br />

replaces Src 1 sericite and Chl 1 chlorite in the matrix (Fig. 4.5F).<br />

The granophyre rock displays a similar pre-ore alteration pattern. Src 1<br />

sericite<br />

replaces Kfs 0 alkali feldspar in quartz-alkali feldspar intergrowths. Src 1 sericite is later<br />

replaced by Cal 1 calcite. Bt 0 biotite and Ms 0 muscovite laths are typically pseudomorphous<br />

after Chl 1 Chlorite. Ap 1 apatite, Hem 1 hematite and Ttn 1 titanite are part of the pre-ore<br />

assemblage.<br />

148


A<br />

C<br />

B<br />

Qtz 0<br />

Mzn 1<br />

Qtz 0<br />

Qtz 1 Ttn 1<br />

Src 1<br />

Cpy 1<br />

Qtz 0 Hem 1<br />

500μm<br />

Chl 1<br />

D<br />

Ap 1 Qtz 2 Hem 1<br />

Chl 1<br />

500μm<br />

150μm<br />

Qtz 2<br />

100μm<br />

E<br />

Cal 1 Src 1<br />

Cal 1<br />

Src 1 Hem 1 Chl 1<br />

Chl 1<br />

F<br />

250μm<br />

500μm<br />

Figure 4.5. Photomicrographs of typical mineral alteration phases of the pre-ore stage. (A)<br />

Pre-ore alteration of the quartz-feldspar porphyry showing fine-grained Qtz 1 overgrowth on<br />

xenolith Qtz 0 . Src 1 occurs as fine-grained minerals replacing Qtz 0 and Kfs 0 into the matrix.<br />

(B) Altered quartz-feldspar porphyry showing disseminated Cpy 1 , aggregates of Mzn 1<br />

associated with Ttn 1 , Chl 1 and Hem 1 . (C) Quartz-feldspar porphyry matrix showing elongated<br />

euhedral and transparent crystals of Ap 1 . (D) Early Qtz 2 vein crosscutting the quartz-feldspar<br />

149


porphyry and coated by Chl 1 forming thin needles injecting into the Qtz 2 vein. Hem 1 occurs as<br />

inclusions in Qtz 2 and as fine grains replacing Chl 1 needle. (E) Highly altered quartz-feldspar<br />

porphyry showing Hem 1 and Chl 1 as replacement of Src 1 in the matrix. (F) Altered quartzfeldspar<br />

porphyry showing Cal 1 as replacement of Src 1 in the matrix.<br />

4.5.1.1.2. Uranium and gold mineralization<br />

Following the pre-ore alteration stage, the host rocks of the Coronation Hill deposit<br />

were brecciated and mineralized. Mineralization consists of U 1 uraninite, Au 1 gold and Gn 1<br />

galena confined to zones that were mostly affected by the pre-ore alteration. Cross-cutting<br />

relationships show that the ore assemblage crosscuts and obliterates the pre-ore mineral<br />

assemblage. Mineralized breccias typically comprise sub-angular and altered quartzfeldspar<br />

porphyry fragments cemented by U 1 uraninite (Fig. 4.6A) that occurs as massive<br />

grains occupying open space in the matrix or as veins crosscutting the pre-ore assemblage<br />

minerals.<br />

U 1 uraninite is associated with Cal 2 calcite, Chl 2 chlorite, Hem 3 hematite (Fig. 4.6B),<br />

and Ms 2 muscovite (Fig. 4.6C). In places, U 1 uraninite coats or replaces Py 1 pyrite grains<br />

(Fig. 4.6D). U 1 uraninite is also disseminated in the granophyre, wherein it is associated<br />

with Chl 2 chlorite, Cal 1 calcite, and Hem 2 hematite. U 1 uraninite is associated with the<br />

assemblage Gn 1 Galena- Au 1 gold- Cpy 2 chalcopyrite (Fig. 4.6E). Gn 1 galena occurs as fine<br />

white crystals, typically less than 50 μm across, or generally as massive euhedral to<br />

anhedral grains greater than 1 mm in size.<br />

Crystals of Gn 1 galena are intimately intergrown with U 1 uraninite, native Au 1 gold<br />

and Cpy 2 chalcopyrite (Fig. 4.6E). Native Au 1 gold forms subhedral grains typically ca. 10–<br />

150


100 μm diameter within Gn 1 galena (Figs. 4.6E and 4.6F). Cpy 2 chalcopyrite inclusions in<br />

Gn 1 galena are common (Fig. 4.6E).<br />

A<br />

B<br />

U 1 Cal 2<br />

U 1<br />

U 1 Chl 2<br />

U 1<br />

Altered quartz-feldspar<br />

porphyry fragments<br />

Hm 1<br />

U 1<br />

U 1 U 1<br />

200μm<br />

Src 1<br />

150μm<br />

C<br />

D<br />

U 1 Ms 1 U 1<br />

Chl 1<br />

Chl 2<br />

Py 1<br />

U 1<br />

U 1 Qtz 1<br />

100μm<br />

500μm<br />

E<br />

U 1<br />

U 1 U 2<br />

U 1 U 2<br />

U 2 Cpy 1<br />

U 2 Gn 1<br />

Au 1<br />

Gn 1<br />

Az 1 Au 1<br />

Coffinite<br />

Figure 4.6. Photomicrographs of typical mineral alteration phases of the syn-ore stage. (A)<br />

151


Mineralized breccias showing quartz-feldspar porphyry fragments cemented by massive U 1 .<br />

(B) Mineralized breccias showing U 1 vein crosscutting the early pre-ore alteration assemblage<br />

and associated with Cal 2 , Chl 2 , and Hem 2 . (C) Syn-ore Ms 2 associated with the U 1 and Chl 1 .<br />

(D) Mineralized breccias showing U 1 replacing early Py 1 grains. (E) Assemblage U 1 -Gn 1 -Au 1 -<br />

Cpy 2 . Gn 1 galena as sub-euhedral crystals associated with native Au 1 , Cpy 2 and U 1 . Cpy 2 is<br />

locally altered to Az 1 azurite. (F) Mineralized breccias showing U 1 intimately intergrown with<br />

Gn 1 and Au 1 .<br />

4.5.1.1.3. Post-ore alteration<br />

Post-ore alteration is characterized by late mineralized veins containing banded<br />

colloform U 2 uraninite coating Cal 3 calcite veins (Fig. 4.7A) and associated with minor<br />

Chl 3 chlorite and Hem 3 hematite. U 2 uraninite fills late fractures indicating remobilization<br />

during the post-ore alteration stage. Microprobe investigation reveals that secondary U 2<br />

uraninite grains rim primary U 1 uraninite crystals in the ore (Figs. 4.6E and 4.6F). In<br />

reflected light and backscattered electron images, U 2 uraninite is commonly heterogeneous<br />

and zoned, has a mottled and speckled appearance, and forms sub -euhedral aggregates<br />

(Fig. 4.6E). Post-ore Cal 4 calcite veins cut the ore assemblage (Fig. 4.7B). Thin, fibrous<br />

Qtz 3 quartz veinlets crosscut the pre- and syn-ore assemblages (Fig. 4.7C). Cpy 2<br />

chalcopyrite is locally altered to Az 1 azurite (Fig. 4.6E) likely during the post-ore stage.<br />

Late Kln 1 kaolinite and Hem 4 hematite alteration obliterates earlier texture and minerals of<br />

the pre-ore and syn-ore assemblage (Fig. 4.7D).<br />

152


A<br />

B<br />

Cal 3 Cal 3<br />

U 2 U 2 U 2 Cal 3 U 2<br />

Sr 1 500μm Sr 1<br />

Cl 1<br />

500μm<br />

C<br />

D<br />

S<br />

U 1 Cpy 2<br />

Qz 3 Kln 1<br />

500μm<br />

500μm<br />

Figure 4.7. Photomicrographs of typical mineral alteration phases of the post-ore stage. (A)<br />

Post-ore mineralized veins containing banded colloform secondary U 2 coating Cal 3 vein. (B)<br />

Post-ore Cal 4 veins cutting the ore assemblage. (C) Thin, fibrous Qtz 2 veinlets crosscutting the<br />

pre- and syn-ore assemblages. (D) Late Kln 1 obliterating earlier texture and minerals of the<br />

pre-ore and syn-ore mineral assemblage.<br />

4.5.1.2. El-Sherana uranium deposit<br />

The mineral paragenesis for the El Sherana deposit is shown in Figures 4.8, 4.9 and<br />

4.10. The basement Koolpin Formation rocks have been altered during pre-ore, syn-ore and<br />

post-ore alteration stages while the overlying Coronation sandstone has been affected by a<br />

pre-ore basin-related diagenetic alteration stage. The pre-ore alteration assemblage is absent<br />

from the Coronation sandstone. This corroborates the suggestion of Wyborn et al. (1991)<br />

153


SOUTH ALLIGATOR RIVER GROUP EL SHERAN GROUP<br />

Coronation Sandstone<br />

Koolpin Formationn<br />

Deformation and Metamorphism 1860-1840 Ma (Nimbawah Event)<br />

Deposition El Sherana Group (ca. 1830 Ma)..<br />

that the pre-ore alteration formed during the Nimbuwah event that predates deposition of El<br />

Sherana Group sediments.<br />

Minerals Host rock Pre-ore Diagenesis Syn-ore Post-ore<br />

Quartz Qtz 0<br />

Feldspar KFs 0<br />

Muscovite Ms 0<br />

Tourmaline* Tur 0<br />

Late events<br />

Quartz overgrowth Qtz 2<br />

Hematite Hem 3<br />

Kaolinite Kln 1<br />

Sericite Src 2<br />

Calcite Cal 2<br />

Monazite Mzn 1<br />

Titanite Ttn 1<br />

Secondary uraninite U 2<br />

U n c o n f o r m i t y<br />

Pre-ore alteration<br />

Early quartz vein Qtz 1<br />

Sericite Src 1<br />

Chalcopyrite Cpy 1<br />

Pyrite Py 1<br />

Monazite Mzn 1<br />

Titanite Ttn 1<br />

Chlorite Chl 1 300 o C<br />

Apatite Ap 1<br />

Hematite Hem 1<br />

Main U mineralization Event<br />

Chlorite Chl 2 260 o C<br />

Calcite Cal 1<br />

Uraninite U 1 1820 Ma<br />

Chalcopyrite Cpy 2<br />

Galena Gn 1<br />

Hematite Hem 2<br />

Late events<br />

Chlorite Chl 3<br />

Hematite Hem 3<br />

Kaolinite Kln 1<br />

Secondary uraninite U 2 Relative timing<br />

(B)<br />

(A)<br />

Figure 4.8. General mineral paragenesis of the El Sherana deposit for (A) basement rocks of<br />

the Koolpin Formation and (B) Coronation sandstones of the El Sherana Group. The three<br />

main alteration stages for the basement rocks include a pre-, syn-, and post-ore alteration.<br />

The overlying Coronation sandstone is affected by diagenetic alteration, which postdates the<br />

pre-ore alteration in the basement rocks. The thickness of the lines indicates the relative<br />

mineral abundance. An asterik (*) marks the primary minerals present in the carbonaceous<br />

shale and Coronation sandstones. Temperatures associated with the alteration minerals are<br />

154


derived from their chlorite crystal chemistry. The age of 1820 Ma is interpreted from U-Pb<br />

geochronology of paragenetically constrained U 1 .<br />

4.5.1.2.1. Pre-ore basement hydrothermal alteration<br />

The pre-ore alteration of the cherty ferruginous shale of the Koolpin Formation is<br />

characterized by the occurrence of 0.1 to 1 cm-wide comb-textured Qtz 1 quartz veins (Fig.<br />

4.9A). Crosscutting relationships indicate that Qtz 1<br />

quartz veins predate massive<br />

brecciation associated with pervasive Src 1 sericite alteration that fills and cements the pore<br />

space between brecciated fragments (Fig. 4.9B). Src 1 sericite is replaced by Chl 1 chlorite<br />

(Fig. 4.9C). Chl 1 chlorite also forms radially-textured laths around Qtz 1 quartz (Fig. 4.9D).<br />

Their size and texture indicate growth into open pore spaces that were possibly created by<br />

brittle deformation. Hem 1 hematite alteration is pervasive. The pre-ore assemblage includes<br />

Ap 1 apatite (Fig. 4.9C), minor Mzn 1 monazite, Ttn 1 titanite, Cpy 1 chalcopyrite and Py 1<br />

pyrite disseminated in the matrix in the most altered samples.<br />

4.5.1.2.2. Pre-ore diagenetic alteration of the Coronation sandstone<br />

Detrital minerals in well-sorted, quartz-dominated sandstones of the Coronation<br />

sandstone consist of rounded Qtz 0 quartz grains and granite fragments (Fig. 4.10A), altered<br />

Mzn 0 monazite (Fig. 4.10B), fragmented and altered Tur 1 tourmaline (Fig. 4.10C) and<br />

altered Ms 0<br />

muscovite laths (Fig. 4.10D). Diagenesis of the Coronation sandstone is<br />

indicated by the occurrence of thin, discontinuous veneers of dark red-brown Hem 2<br />

hematite (Fig. 4.10C) and well developed Qtz 2 quartz overgrowths that outline detrital Qtz 0<br />

quartz grains (Fig. 4.10C).<br />

155


A<br />

Carbonaceous<br />

Shale<br />

B<br />

Src 1<br />

Qtz 1<br />

Qtz 1<br />

Qtz 1<br />

500μm<br />

Src 1 Qtz 1<br />

Carbonaceous<br />

Shale fragment<br />

500μm<br />

C<br />

D<br />

Src 1 Chl 2<br />

Chl 1 Ap 1<br />

Qtz 1<br />

Chl 1<br />

Src 1<br />

500μm<br />

E<br />

Qtz 1<br />

U 1<br />

Qtz 1<br />

Src 1 Src 1<br />

Chl 1 Chl 2<br />

Chl 1<br />

Qtz 1 Cal 1<br />

Cal 1<br />

500μm<br />

U 1<br />

U 1<br />

Src 1<br />

F<br />

Kln 2 Qtz 1<br />

Cal 2<br />

500μm<br />

500μm<br />

Figure 4.9. Microphotograph of typical mineral assemblages and crosscutting relationships of<br />

the pre-, syn, and post-ore stage in the El Sherana deposit. A. Pre-ore Qtz 1 vein cutting the<br />

interlayered cherty ferruginous shale of the Koolpin Formation. (B) Massive brecciation<br />

associated with pervasive Src 1 alteration, which fills and cements the pore space between<br />

brecciated fragments. (C) Pre-ore assemblage Src 1 replaced by Chl 1 . Chl 1 forms locally<br />

radially-textured laths around Qtz 1 fragments associated with Ap 1 . (D) Syn-ore assemblage<br />

156


cutting early Qtz 1 veins and the assemblage Src 1 -Chl 1 -dominated pre-ore alteration. (E) U 1<br />

associated with Chl 2 , Cal 2 , and Hem 2 cutting the assemblage Src 1 -Chl 1 -dominated pre-ore<br />

alteration. (F) Post-ore Kln 1 alteration obliterating texture of the pre-ore and syn-ore mineral<br />

assemblage.<br />

Qtz 2 quartz has Hem 3 hematite inclusions (Fig. 4.9C) and displays irregular contours<br />

(Fig. 4.10C) that suggest partial dissolution during a late alteration event. Qtz 2 quartz<br />

displays similar morphology to those recognized in sandstone of the Athabasca and<br />

Kombolgie basins (Hiatt and Kyser. 2000; Polito et al., 2005; Hiatt et al., 2007). Pressure<br />

solution features such as grain-point contacts and sutured grain boundaries are well<br />

developed and locally forming stylolites. Kln 1 kaolinite alteration is pervasive and fills<br />

well-developed secondary porosity (Fig. 4.10E) where it partially replaces detrital Ms 0<br />

muscovite (Fig. 4.10D). The morphology of the Kln 1 kaolinite varies from coarse-grained<br />

vermiform to very fine-grained (Fig. 4.10E). Aggregates of Ttn 1 titanite are disseminated<br />

and generally associated with altered Mzn 0 monazite (Fig. 4.10B).<br />

4.5.1.2.3. Uranium mineralization<br />

The ore alteration stage in the basement overprints the pre-ore alteration assemblage.<br />

Crosscutting relationships indicate that the syn-ore assemblage cross cuts Qtz 1 quartz veins<br />

and the pre-ore alteration assemblage Src 1 sericite and Chl 1 chlorite (Fig. 4.9D). U 1<br />

Uraninite is spatially associated with, or rimmed by Chl 2 chlorite, Cal 2 calcite, and Hem 3<br />

hematite (Fig. 4.9E). Cpy 2 chalcopyrite and minor Gn 1 galena are associated with the U 1<br />

uranium mineralization.<br />

157


A<br />

Granite<br />

Qtz 0<br />

fragments<br />

Qtz 0<br />

B<br />

Mzn 1 Ttn 1 Qtz 0<br />

Qtz 0 Kln 1<br />

500μm<br />

150μm<br />

C<br />

D<br />

E<br />

Kln 1 Kln 1<br />

Qtz 0 Qtz 0<br />

150μm<br />

Kln 1<br />

F<br />

Qtz 0<br />

Kln 1<br />

Qtz 0 Src 2<br />

Qtz 0 Kln 1 Qtz 0<br />

250μm<br />

Qtz 0 Hem 2 Qtz 0<br />

Qtz 2 Tur 1<br />

150μm<br />

150μm<br />

Figure 4.10. Photomicrographs of typical mineral assemblages of the Coronation sandstones.<br />

(A) Well-sorted, quartz-dominated sandstones of the Coronation sandstone including rounded<br />

Qtz 0 grains and granite fragments. (B) Altered Mzn 0 in sandstone. (C) Fragmented Tur 1 in<br />

sandstone. Well-developed Qtz 2 overgrowths outlining detrital Qtz 0 grains in sandstone. Qtz 2<br />

overgrowths have very fine Hem 2 grains inclusions and display irregular contours that<br />

suggest partial dissolution during late alteration event. (D) Altered Ms 0 laths in the altered<br />

158


sandstone. (E) Pervasive Kln 1 alteration in the sandstone filling well-developed secondary<br />

porosity between detrital Qtz 0 grains. (F) Late Src 2 alteration replacing Kln 1 in sandstone.<br />

The uranium mineralization was not observed in the overlying Coronation sandstone.<br />

Ayres et al. (1975) observed minor uranium mineralization occurring within the Coronation<br />

sandstone, close to the unconformity with the underlying mineralized Koolpin Formation.<br />

4.5.1.2.4. Post-Ore alteration<br />

Post-ore alteration in the basement rock is characterized by the occurrence of thin<br />

veinlets of Chl 3 chlorite cutting through the syn-ore alteration assemblage. Late Kln 2<br />

kaolinite alteration obliterates the pre-ore and syn-ore mineral assemblage (Fig. 4.9F).<br />

Backscattered electron images indicate that U 1 uraninite is coarsely mottled and areas of<br />

apparently pristine uraninite coexist with finely pitted altered U 2<br />

uraninite. Post-ore<br />

alteration in the Coronation sandstone is reflected also by the presence of minor Src 2<br />

sericite that locally replaces Kln 1 kaolinite (Fig. 4.10F). Extensive secondary uranium<br />

mineralization has been previously described associated with the overlying Coronation<br />

sandstone (e.g. Valenta, 1991) (Fig. 4.3).<br />

4.5.2. Crystal chemistry of the alteration minerals<br />

4.5.2.1. Coronation Hill uranium deposit<br />

4.5.2.1.1. Uraninite Crystal Chemistry<br />

Electron microprobe analysis and backscatter images indicate that U 1 and U 2<br />

uraninites have been variably altered to different forms of uranyl-silicates and have variable<br />

U, Pb, Fe, Mg, Mn, and Ca contents (Table 4.1). These uraninites show considerable<br />

variation in reflectance (Figs. 4.6E and 4.6F), suggesting significant heterogeneity in their<br />

159


chemical composition as a result of alteration by later fluids (Kotzer and Kyser, 1993;<br />

Polito et al., 2007). The chemical compositions of well-preserved U 1 uraninite (Table 4.1,<br />

Sample C29-214B) have elevated amounts of PbO (4.5 wt% to 18 wt%) and UO 2 (71 wt%<br />

to 85 wt%) and variable amounts of SiO 2 , CaO, FeO, Na 2 O, MnO, Y 2 O 3 , and P 2 O 5 . The<br />

most reflective area in U 1 uraninite (Table 4.1, Sample C29-217A) has low silica contents<br />

(e.g. from 0.4 wt% to 6.4 wt%) and high UO 2 contents (77 wt% to 86 wt %), in contrast,<br />

the most altered area (U 2 ) have high silica contents (e.g. from 13.85 wt% to 21.88 wt%),<br />

lower UO 2 contents (55 wt% to 65 wt%) and a low total due to the presence of structural<br />

water (Table 4.1). The presence of these elements in the U structure reflects post-ore<br />

alteration of the uraninite (Smith, 1984). U 1 uraninite has typically high P 2 O 5 (0.01 wt% to<br />

1.64 wt%) and Y 2 O 3 (0.02 wt% to 5.52 wt%) contents (Table 4.1).<br />

Sample I.D SiO 2 CaO FeO ThO 2 MnO UO 2 PbO Na 2O Y 2O 3 P 2O 5 Total<br />

Chemical<br />

Pb age<br />

C29-214B-1 0.21 1.1 0.1 0.09 0.08 75.09 17.91 0.14 0.74 0.01 95 1479<br />

C29-214B-2 0.62 1.7 0.2 0.23 0.16 79.91 10.65 0.19 0.44 0.04 94 827<br />

C29-214B-3 1.22 3.33 0.36 0.12 0.35 81.56 6.8 0.25 0.62 0.07 95 517<br />

C29-214B-4 1.19 2.86 0.35 0.2 0.33 83.46 5.21 0.23 0.73 0.07 95 387<br />

C29-214B-5 0.36 1.34 0.17 0.04 0.11 77.7 16.21 0.1 0.32 0.04 96 1294<br />

C29-214B-6 1.14 2.84 0.27 0.33 0.25 83.19 5.27 0.21 0.84 0.07 94 393<br />

C29-214B-7 1.3 2.64 0.32 0.2 0.23 80.77 8.81 0.18 0.64 0.08 95 677<br />

C29-214B-8 1.16 3.08 0.14 0.25 0.24 83.82 5.06 0.19 0.6 0.04 95 375<br />

C29-214B-9 1.34 3.76 0.11 0.28 0.32 85.23 4.7 0.17 0.54 0.05 96 342<br />

C29-214B-10 0.65 2 0.31 0.06 0.19 78.47 11.77 0.25 0.47 0.04 94 930<br />

C29-214B-11 1.12 2.92 0.43 0.14 0.3 82.18 8.17 0.34 0.55 0.08 96 617<br />

C29-214B-12 0.88 2.65 0.37 0.15 0.34 84.44 5.52 0.28 0.62 0.07 95 405<br />

C29-214B-13 0.45 1.66 0.24 0.05 0.14 78.08 13.57 0.23 0.35 0.03 95 1078<br />

C29-214B-14 1.04 2.74 0.37 0.25 0.29 82.62 6.54 0.28 0.63 0.06 95 491<br />

C29-214B-15 1.34 3.54 0.46 0.24 0.44 83.18 4.57 0.27 0.78 0.08 95 341<br />

C29-214B-16 0.87 2.16 0.21 0.13 0.18 78.39 11.57 0.18 0.45 0.06 94 916<br />

C29-214B-17 1.76 3.88 0.13 0.26 0.29 83.36 4.55 0.16 0.47 0.06 95 338<br />

C29-214B-18 0.44 2.3 0.19 0.04 0.16 81.12 10.77 0.21 0.44 0.03 96 824<br />

C29-214B-19 0.85 2.53 0.28 0.21 0.21 80.49 9.25 0.19 0.47 0.05 95 713<br />

C29-214B-20 0.37 1.39 0.17 0.04 0.1 75.38 14.93 0.19 0.46 0.03 93 1228<br />

C29-214B-21 1.4 2.33 0.11 0.29 0.21 71.71 6.24 0.29 0.94 0.71 84 540<br />

C29-217A-28 0.40 1.15 0.05 0.07 0.03 86.99 5.52 0.08 0.98 0.03 95 393<br />

C29-217A-7 0.60 2.68 0.36 0.02 0.24 84.28 6.49 0.36 0.40 0.08 96 477<br />

C29-217A-12 0.63 2.86 0.35 0.03 0.30 83.99 6.49 0.25 0.42 0.05 95 479<br />

160


Sample I.D SiO 2 CaO FeO ThO 2 MnO UO 2 PbO Na 2O Y 2O 3 P 2O 5 Total<br />

Chemical<br />

Pb age<br />

C29-217A-23 0.73 2.44 0.28 0.01 0.23 85.06 6.30 0.33 0.68 0.06 96 459<br />

C29-217A-19 0.96 6.60 0.25 0.33 0.26 80.12 2.59 0.20 0.40 0.12 92 200<br />

C29-217A-8 0.97 3.15 0.48 0.10 0.33 83.39 6.02 0.31 0.63 0.08 95 447<br />

C29-217A-25 0.99 1.21 0.07 0.02 0.04 85.02 5.83 0.18 0.70 0.13 94 425<br />

C29-217A-2 1.01 2.64 0.20 0.45 0.17 83.20 6.90 0.17 0.54 0.07 95 514<br />

C29-217A-4 1.02 5.93 0.39 0.73 0.38 83.82 2.71 0.21 0.46 0.09 96 200<br />

C29-217A-1 1.06 3.22 0.41 0.13 0.33 83.96 6.24 0.35 0.62 0.10 96 461<br />

C29-217A-22 1.15 5.36 0.28 0.12 0.21 86.25 2.81 0.32 0.41 0.17 97 202<br />

C29-217A-21 1.15 5.96 0.40 0.00 0.25 85.97 2.70 0.19 0.40 0.19 97 195<br />

C29-217A-27 1.15 1.24 0.15 0.14 0.09 86.24 5.41 0.20 0.57 0.15 95 389<br />

C29-217A-9 1.19 3.73 0.48 0.05 0.41 82.84 5.15 0.32 0.82 0.11 95 386<br />

C29-217A-24 1.27 5.87 0.35 0.04 0.29 84.96 2.04 0.27 0.50 0.17 96 149<br />

C29-217A-14 1.28 3.55 0.43 0.00 0.35 83.13 6.78 0.39 0.55 0.11 97 506<br />

C29-217A-13 1.29 2.76 0.20 0.06 0.24 77.36 10.30 0.19 0.41 0.06 93 826<br />

C29-217A-18 3.06 6.91 0.11 0.02 0.67 83.03 1.35 0.09 0.34 0.16 96 101<br />

C29-217A-17 5.37 6.60 0.00 0.09 0.44 80.39 2.14 0.05 0.02 0.17 95 165<br />

C29-217A-16 6.14 6.50 0.01 0.01 0.45 79.62 2.06 0.06 0.14 0.22 95 161<br />

C29-217A-15 13.85 3.18 0.04 0.14 0.04 56.94 10.55 0.03 0.89 0.70 86 1150<br />

C29-217A-11 13.98 3.27 0.00 0.18 0.05 55.03 5.28 0.04 2.16 0.95 81 595<br />

C29-217A-6 15.68 3.53 0.02 0.07 0.12 62.37 0.44 0.03 4.12 1.43 88 43<br />

C29-217A-3 16.33 3.12 0.01 0.03 0.05 59.01 4.35 0.02 4.29 1.64 89 458<br />

C29-217A-5 16.80 3.74 0.00 0.00 0.09 65.86 0.65 0.05 2.14 0.97 90 61<br />

C29-217A-26 18.50 3.30 0.01 0.00 0.00 61.86 0.27 0.02 5.52 1.45 91 27<br />

C29-217A-29 18.58 3.20 0.01 0.00 0.01 61.92 0.07 0.01 5.09 1.27 90 7<br />

C29-217A-20 21.88 3.33 0.01 0.01 0.08 59.86 0.58 0.02 1.94 1.03 89 60<br />

C29-217B-1 0.92 2.83 0.27 0.04 0.26 83.72 6.28 0.24 0.71 0.08 95 466<br />

C29-217B-2 1.03 3.23 0.19 0.03 0.29 80.04 9.41 0.18 0.50 0.07 95 729<br />

C29-217B-3 1.17 3.21 0.23 0.04 0.27 82.90 5.95 0.23 0.61 0.07 95 445<br />

C29-217B-4 4.13 6.78 0.05 0.02 0.65 82.47 2.83 0.07 0.39 0.08 97 213<br />

C29-217B-5 0.99 2.82 0.23 0.03 0.24 84.64 6.33 0.24 0.57 0.07 96 464<br />

C29-217B-6 4.67 8.00 0.00 0.00 0.58 78.29 2.99 0.06 0.53 0.11 95 237<br />

C29-217B-7 0.48 2.72 0.30 0.03 0.27 85.76 5.72 0.25 0.57 0.07 96 414<br />

C29-217B-8 4.51 5.58 0.02 0.00 0.38 81.05 2.19 0.15 0.75 0.26 95 168<br />

C29-217B-9 4.12 7.33 0.11 0.00 0.69 81.89 0.50 0.09 0.75 0.20 96 38<br />

C29-217B-10 4.36 6.20 0.10 0.00 0.49 82.51 0.70 0.15 0.76 0.26 96 52<br />

C29-217B-11 0.54 2.43 0.29 0.02 0.26 85.80 5.76 0.31 0.73 0.08 96 416<br />

C29-217B-12 0.56 2.04 0.23 0.00 0.19 85.75 6.33 0.26 0.54 0.07 96 458<br />

C29-217B-13 1.54 3.74 0.20 0.00 0.34 83.80 4.60 0.17 0.64 0.09 95 340<br />

C29-217B-14 1.11 2.82 0.19 0.01 0.23 84.04 6.09 0.26 0.57 0.10 95 449<br />

C29-217B-15 1.53 3.26 0.16 0.03 0.27 83.52 5.58 0.18 0.52 0.09 95 415<br />

C29-217B-16 1.12 3.33 0.35 0.01 0.34 82.58 7.10 0.25 0.69 0.10 96 534<br />

C29-217B-17 0.67 2.44 0.24 0.00 0.23 83.59 7.03 0.25 0.67 0.07 95 522<br />

C29-217B-18 1.22 3.60 0.36 0.02 0.30 82.56 6.22 0.37 0.79 0.11 96 468<br />

C29-217B-19 1.11 3.32 0.33 0.01 0.33 83.84 4.96 0.27 0.78 0.12 95 367<br />

C29-217B-20 0.60 3.76 0.16 0.08 0.16 86.48 3.64 0.25 0.77 0.11 96 261<br />

C29-217B-21 8.49 0.00 0.00 0.02 0.28 72.01 4.44 0.22 0.83 0.40 87 382<br />

C29-217B-22 18.58 3.49 0.02 0.00 0.01 63.53 0.34 0.03 3.61 1.45 91 34<br />

C29-217B-23 19.34 3.25 0.01 0.04 0.04 61.61 0.38 0.01 3.80 1.15 90 38<br />

C29-217B-24 0.89 5.07 0.17 0.01 0.18 82.87 2.86 0.38 0.66 0.17 93 214<br />

C29-217B-25 0.94 5.68 0.25 0.00 0.18 82.83 2.69 0.28 0.77 0.28 94 201<br />

C29-217B-26 0.96 5.37 0.25 0.00 0.19 86.27 2.92 0.34 0.72 0.20 97 210<br />

C29-217B-27 1.09 2.93 0.27 0.06 0.26 83.12 5.44 0.26 0.62 0.11 94 406<br />

161


Sample I.D SiO 2 CaO FeO ThO 2 MnO UO 2 PbO Na 2O Y 2O 3 P 2O 5 Total<br />

Chemical<br />

Pb age<br />

C29-217B-28 1.03 2.96 0.25 0.06 0.25 83.60 5.66 0.24 0.64 0.10 95 420<br />

C29-217B-29 0.44 2.35 0.27 0.06 0.25 84.03 6.28 0.34 0.62 0.07 95 464<br />

C29-217B-30 0.50 2.19 0.25 0.03 0.21 82.86 5.60 0.32 0.80 0.09 93 419<br />

C29-217B-31 2.65 4.91 0.10 0.02 0.58 81.79 3.84 0.12 0.56 0.08 95 291<br />

Table 4.1. Results of the electron microprobe analyses for uraninite occurrences in the<br />

Coronation Hill deposit with average chemical composition and calculated chemical Pb age.<br />

The composition is reported in weight percent and the age in Ma.<br />

4.5.2.1.2. Chlorite crystal chemistry<br />

Pre-ore Chl 1<br />

chlorite is Mg-rich with a calculated structural formula of<br />

Mg 3.04 Al 2.53 Fe 0.47 (Si 3.3, Al 0.7 )O 10 (F 0.1 Cl 0.01 (OH) 7.89 ), corresponding to clinochlore (Deer et<br />

al., 1992). Formation temperatures are near 160°C (Table 4.2), based on site occupancy<br />

(Cathelineau, 1988). Syn-ore Chl 2 chlorite is similar in composition to pre-ore Chl 1 chlorite<br />

with a structural formula of Mg 3.26 Al 2.52 Fe 0.89 (Si 3.03, Al 0.97 )O 10 (F 0.16 Cl 0.01 (OH) 7.73 , but with<br />

formation temperatures near 250°C (Table 4.2). Post-ore Chl 3 chlorite has a structural<br />

formula of Mg 2.67 Al 2.52 Fe 0.49 (Si 3.03 Al 0.97 )O 10 (F 0.16 Cl 0.01 (OH) 15.8 ) and records formation<br />

temperatures near 100°C (Table 4.2). Chl 1 , Chl 2 and Chl 3 chlorites are low-Fe chlorite with<br />

low Fe/Fe+Mg ratios (0.14 to 0.21) and high Si contents (Table 4.2), likely reflecting the<br />

chemistry of the felsic quartz-feldspar porphyry host rock with which the hydrothermal<br />

fluid has reacted. The composition of these chlorites includes trace amounts of Mn, F, and<br />

Cl. Syn-ore Chl 2 chlorites have higher F contents (0.16 wt %; Table 4.2).<br />

Coronation Hill Deposit<br />

El Sherana Deposit<br />

Pre-Ore Chl 1 Ore Stage Chl 2 Post-Ore Chl 3 Pre-Ore Chl 1 Ore Stage Chl 2<br />

Oxides Wt % n=16 n=53 n=8 n=22 n=61<br />

SiO2 33.48 30.76 35.64 26.11 28.44<br />

TiO2 0.01 0.01 0.01 0.02 0.02<br />

Al2O3 21.78 21.78 21.88 18.67 17.55<br />

162


Coronation Hill Deposit<br />

El Sherana Deposit<br />

Pre-Ore Chl 1 Ore Stage Chl 2 Post-Ore Chl 3 Pre-Ore Chl 1 Ore Stage Chl 2<br />

FeO 5.63 10.68 5.97 34.40 35.83<br />

MnO 0.08 0.08 0.20 0.01 0.01<br />

MgO 20.74 22.23 18.28 9.15 10.48<br />

CaO 0.50 0.07 0.20 0.02 0.03<br />

Na2O 0.05 0.02 0.05 0.02 0.02<br />

K2O 0.40 0.05 0.72 0.03 0.02<br />

F 0.25 0.39 0.23 0.13 0.16<br />

Cl 0.05 0.03 0.04 0.01 0.02<br />

H2O* 11.91 11.81 12.03 10.81 11.29<br />

Total 94.87 97.93 95.23 99.38 103.86<br />

Atomic proportion<br />

Number of O 28.00 28.00 28.00 28.00 28.00<br />

Tetrahedral sites<br />

Si 3.30 3.03 3.49 2.86 2.98<br />

Al iv 0.70 0.97 0.51 1.14 1.02<br />

Total 4.00 4.00 4.00 4.00 4.00<br />

Octahedral sites<br />

Al vi 2.53 2.52 2.52 2.41 2.17<br />

Ti 0.00 0.00 0.00 0.00 0.00<br />

Fe2+ 0.47 0.89 0.49 3.15 3.14<br />

Mn 0.01 0.01 0.02 0.00 0.00<br />

Mg 3.04 3.26 2.67 1.50 1.64<br />

Interlayers sites<br />

Ca 0.05 0.01 0.02 0.00 0.00<br />

Na 0.01 0.00 0.01 0.00 0.00<br />

K 0.05 0.01 0.09 0.00 0.00<br />

Total 0.11 0.02 0.12 0.01 0.01<br />

Anions<br />

O=F 0.10 0.16 0.10 0.06 0.07<br />

0=Cl 0.01 0.01 0.01 0.00 0.01<br />

OH* 15.67 15.51 15.70 15.81 15.78<br />

Total 25.94 26.37 25.62 26.94 26.80<br />

Fe/Fe+Mg 0.14 0.21 0.16 0.68 0.66<br />

Temperatures o C 163 252 103 305 266<br />

Table 4.2. Representative electron microprobe analyses of various chlorite phases from the<br />

Coronation Hill and El Sherana deposits, including formation temperatures calculated using<br />

the method of Cathelineau (1988). Calculated temperatures are accurate to 30°C based on<br />

replicate analyses.<br />

4.5.2.2. El-Sherana Uranium deposit<br />

Pre-ore alteration Chl 1 chlorite is an Fe-chlorite with a calculated structural formula<br />

of Fe 3.45 Mg 1.5 Al 2.41 (Si 2.86, Al 1.14 )O 10 (F 0.06 (OH) 7.94 ), reflecting the composition of chamosite<br />

(Deer et al., 1992). Calculated formation temperatures are near 300°C (Table 4.2), based on<br />

163


site occupancy (Cathelineau, 1988). Syn-ore chlorites Chl 2 are similar in composition to<br />

pre-ore Chl 1 chlorites with a calculated structural formula of Fe 3.14 Mg 1.64 Al 2.17 (Si 2.98, Al 1.02 )<br />

O 10 (F 0.07 Cl 0.01 (OH) 7.92 ). The calculated formation temperatures are near 260°C,<br />

indistinguishable from those of the syn-ore chlorite from the Coronation Hill deposit. Chl 1<br />

and Chl 2 chlorites contain lower MgO and higher FeO contents relative to those from the<br />

Coronation Hill deposit (Table 4.2). They have high Fe/Fe+Mg ratios (0.66-0.68) and low<br />

Si contents (Table 4.2) likely reflecting the chemistry of the host cherty ferruginous shale,<br />

which has affected the mineralizing hydrothermal fluid. Syn-ore Chl 2 chlorites have trace<br />

amounts of F (0.16 wt%) and Cl (0.02 wt%).<br />

4.5.3. Isotopic compositions of minerals and fluids involved in the U mineralization<br />

Pre-ore Src 1 sericite at the Coronation Hill deposit has δ 18 O values that range from<br />

10.1 ‰ to 14.2 ‰ and δ 2 H values between -76 ‰ and -44 ‰ (Fig. 4.11; Table 4.3). Using<br />

a formation temperature of 160°C based on coexisting chlorite (Table 4.2), Src 1 sericite<br />

formed in equilibrium with a fluid having δ 18 O fluid values ranging from 5.1 ‰ to 7.7 ‰ and<br />

δ 2 H fluid values from -84 ‰ and -52 ‰ (Fig. 4.11 ; Table 4.3 ). In contrast, pre-ore Src 1<br />

sericite at the El Sherana deposit have higher δ 18 O values near 14.2 ‰ and δ 2 H values of -<br />

44 ‰. With a formation temperature of 300°C (Table 4.2) the fluid that equilibrated with<br />

the pre-ore Src 1 sericite at El Sherana has δ 18 O fluid and δ 2 H fluid values of 10.7 ‰ and -60‰,<br />

respectively.<br />

Syn-ore Ms 2 muscovite in textural equilibrium with U 1 uranium mineralization at the<br />

Coronation Hill deposit has δ 18 O values that range from 11.8 ‰ to 13.8 ‰ and δ 2 H values<br />

between -85 ‰ and -67 ‰ (Fig. 4.11; Table 4.3). Using a formation temperature of 250°C<br />

164


calculated from chlorite crystal chemistry (Table 4.2), the calculated δ 18 O fluid and δ 2 H fluid<br />

values for the mineralizing fluid that formed Ms 2 muscovite range from 2.8 ‰ to 4.8 ‰<br />

and -75 ‰ to -57 ‰ respectively (Fig. 4.11; Table 4.3 ). At the El Sherana deposit the<br />

isotopic composition of the mineralizing fluid is not obtainable due to difficulties from<br />

separating pure syn-ore minerals.<br />

Figure 4.11. Calculated δ 2 H and δ 18 O values of fluids in equilibrium with clay minerals from<br />

various alteration stages of the basement rocks at the Coronation Hill and El Sherana deposits<br />

(Table 4.3). Also shown are the meteoric water line and the isotopic composition of standard<br />

modern ocean water (SMOW).<br />

165


Mineral values Temperature Fluid values<br />

Sample ID Deposits δ 18 O δ 2 H o C<br />

δ 18 O fluid δ 2 H fluid<br />

V-SMOW ‰ V-SMOW‰ V-SMOW‰ V-SMOW‰<br />

Basement<br />

Synore muscovite<br />

C29-214 Coronation Hill 11.8 -74 250 2.8 -64<br />

C29-195 Coronation Hill 13.8 -85 250 4.8 -75<br />

C29-202 Coronation Hill 12.0 -67 250 3.0 -57<br />

Pre-ore sericite<br />

C29-189 Coronation Hill 12.7 -73 160 7.7 -81<br />

C77-121 Coronation Hill 10.2 -53 160 5.2 -61<br />

C29-209 Coronation Hill 12.7 -76 160 7.7 -84<br />

C7788 Coronation Hill 11.8 -53 160 6.9 -62<br />

C29-80 Coronation Hill 10.1 -44 160 5.1 -52<br />

C29-80 (dup) Coronation Hill 10.1 -49 160 5.1 -57<br />

E30-81 El Sherana 14.2 -44 300 10.7 -60<br />

Table 4.3. Measured δ 18 O and δ 2 H for muscovite and calculated δ 18 O and δ 2 H values for fluids<br />

in equilibrium with minerals from various alteration stages of the basement rocks at the<br />

Coronation Hill and El Sherana deposits. Temperatures used to calculate the fluid values are<br />

derived from the chlorite crystal chemistry (see Table 4.2)<br />

4.5.4. Geochronology of uraninite and isotopic systematics<br />

Paragenetically constrained uraninite from the Coronation Hill and El Sherana<br />

deposits were dated by LA-HR-ICP-MS (Chipley et al., 2007). Uraninite samples analyzed<br />

have a mottled appearance with micron-size areas that are highly reflective surrounded by<br />

dull areas, which is typical of the ore from both deposits (Figs. 4.6E and 4.6F). The<br />

majority of the U–Pb isotope ratios are significantly discordant, as in other deposits (e.g.<br />

Fayek and Kyser, 1997; Polito et al., 2004). The oldest 207 Pb/ 206 Pb ages are likely to be<br />

closer to the initial formation age because Pb-Pb ratios in U are less susceptible to resetting<br />

by younger fluid events than are the U-Pb ratios (Collins et al., 1954). The errors observed<br />

166


in the U-Pb systems are in large part a function of the U age (Chipley et al., 2007); older<br />

uraninite is more likely affected by multiple alteration events so that errors obtained in the<br />

U-Pb system are greater. Analytical results are presented in Table 4.4 and the U-Pb<br />

concordia results summarized in Table 4.5.<br />

4.5.4.1. U-Pb geochronology of U-rich minerals by LA-HR-ICP-MS<br />

U 1 uraninite grains from the syn-ore stage at the Coronation Hill deposit have U-Pb<br />

isotopic compositions that define a discordia line with an upper intercept age of 1823±140<br />

Ma and an oldest 207 Pb/ 206 Pb age of 1719±31 Ma (2σ, MSWD=2.6) (Fig. 4.12A). Two<br />

samples from the El Sherana deposit have upper intercept ages of 1819±150 Ma (2σ,<br />

MSWD=7.8; Fig. 4.12B) and 1616±100 Ma (2σ, MSWD=1.02; Fig. 4.12C) and the oldest<br />

207 Pb/ 206 Pb ages of 1810±15 Ma and 1825±90 Ma, respectively. The upper intercept and<br />

oldest 207 Pb/ 206 Pb ages at Coronation Hill are identical to oldest 207 Pb/ 206 Pb ages at El<br />

Sherana and can therefore be interpreted as the estimate formation age for U 1<br />

mineralization.<br />

The U-Pb system in uraninite from various samples from the Coronation Hill deposit<br />

records various periods of post-mineralization alteration coincident with major tectonic<br />

events that have affected the area. These ages include 1654±170 Ma and 1638±160 Ma<br />

(Figs. 4.12D and 4.12E respectively), 1510±10 Ma (Fig. 4.12F), 1266±68 Ma (Fig. 4.12G),<br />

and 837±130 Ma (Fig. 4.12H). Similar post-formation alteration dates of uraninite have<br />

been reported from unconformity-type deposits in the Athabasca (Kotzer and Kyser 1993;<br />

Fayek and Kyser 1997; Cloutier et al., 2009) and Kombolgie basins (Polito et al., 2004).<br />

167


Corrected ratios<br />

Apparent ages ( ±2σ, Ma)<br />

Sample I.D Deposit n<br />

206 Pb/ 204 Pb<br />

207 Pb/ 204 Pb<br />

207 Pb/ 206 Pb ±2σ<br />

206 Pb/ 238 U ±2σ<br />

207 Pb/ 235 U ±2σ R‡<br />

207 Pb/ 206 Pb ±<br />

206 Pb/ 238 U ±<br />

207 Pb/ 235 U ± Disc‡<br />

c29-217 Coronation Hill 17 6022 420 0.0703 0.0009 0.1013 0.0042 0.9859 0.0391 0.90 935 27 622 24 695 20 26<br />

C29-214 Coronation Hill 14 21973 1802 0.0813 0.0007 0.0886 0.0038 1.0014 0.0455 0.92 1224 18 545 23 692 23 56<br />

C29-295 Coronation Hill 12 4045 238 0.0609 0.0016 0.0518 0.0060 0.4426 0.0522 0.90 619 56 322 36 349 33 46<br />

C29-217Ac Coronation Hill 10 6216 516 0.0799 0.0012 0.1055 0.0063 1.1987 0.0760 0.90 1188 30 645 37 786 34 46<br />

C29-217Ax Coronation Hill 11 6052 430 0.0706 0.0009 0.1028 0.0049 1.0044 0.0479 0.92 944 25 630 29 704 24 33<br />

Cor29_201.6G Coronation Hill 18 1989 170 0.0885 - 0.1204 - 1.4988 - - 1387 39 742 57 911 58 -<br />

El Sherana 7b El Sherana 14 - - 0.0936 - 0.0751 - 1.1023 - - 1492 - 463 - 729 - -<br />

El Sherana 20 El Sherana 14 1823 - 0.0931 0.0034 0.0787 0.0045 0.9425 0.0351 0.32 1481 65 487 27 666 16 67<br />

Table 4.4. Isotopic data of the U-Pb LA-HR-ICP-MS analysis and apparent-ages for uraninite from the Coronation Hill and El<br />

Sherana deposits. The paragenesis of each type of uraninite analyzed is shown in Figures 4.3 and 4.5 and described in Section<br />

4.2.1.1., R. error correlation coefficient, Disc‡. % discordant. n:number of grains. 206 Pb/ 238 U, 207 Pb/ 235 U, and 207 Pb/ 206 Pb ages are<br />

calculated using equations reported by Ludwig (2000) and expressed in Ma.<br />

168


A<br />

B<br />

C<br />

D<br />

E<br />

F<br />

169


G<br />

H<br />

Figure 4.12. U-Pb concordia diagrams from in situ isotopic analysis by LA-HR-ICP-MS of U-<br />

rich minerals from the Coronation Hill and El Sherana deposits (see text for details).<br />

Mineralization<br />

event<br />

Deposit<br />

Upper<br />

intercept age<br />

(Ma)<br />

Lower<br />

intercept<br />

age (Ma)<br />

207 Pb/ 206 Pb<br />

age (Ma)<br />

MSWD<br />

Figures<br />

a. Primary uranium mineralization.<br />

Coronation Hill 1823±140 362±82 1719±31 2.6 4.10A<br />

El Sherana 1819±150 45±92 1810 7.8 4.10B<br />

El Sherana 1616±100 160±49 1825 1.02 4.10C<br />

b. Post-mineralization alteration events recorded in altered uraninite<br />

Coronation Hill 1654±170 493±35 1169 1 4.10D<br />

Coronation Hill 1638±160 486±32 1152 1.6 4.10E<br />

Coronation Hill 1510±100 257±71 1402 3.8 4.10F<br />

Coronation Hill 1266±68 23±73 1303 2.5 4.10G<br />

Coronation Hill 837±130 122±90 1021 8 4.10H<br />

Table 4.5. Summary of the U-Pb concordia results of U-rich minerals for various events of. a)<br />

primary uranium mineralization and b) post-mineralization alteration event in the<br />

Coronation Hill and El Sherana deposits.<br />

170


4.5.4.2. Pb-Pb geochronology of galena and uraninite by LA-HR-ICP-MS<br />

The Gn 1 Galena- Au 1 gold- U 1 uraninite assemblage from the Coronation Hill deposit<br />

has been dated by means of Pb-Pb dating of cogenetic Gn 1 galena (Table 4.6). A Pb-Pb<br />

isochron from Gn 1 galena in equilibrium with Au 1 gold and U 1 yields an age of 1601±98<br />

Ma (Fig. 4.13A) recording a period of post-ore alteration coincident with the timing of<br />

unconformity-related U mineralization in the Kombolgie Basin (Gulson and Mizon, 1980;<br />

Page et al., 1980; Maas, 1989; Polito et al., 2004). This event is also identical to alteration<br />

periods recorded in the U-Pb system in U 1 uraninite (Figs. 4.12D, 4.12C and 4.12E).<br />

The Pb-Pb system in uraninite from various samples records periods of postmineralization<br />

alteration events as well. Model ages obtained are 1412±86 Ma (Fig. 4.13B),<br />

1282±54 Ma (Fig. 4.13C), 790±240 Ma (Fig. 4.13D), 719±110 Ma (Fig. 4.13E), and<br />

377±67 Ma (Fig. 4.13F).<br />

171


Figure 4.13. Pb-Pb isochron diagrams of galena and uraninite from the Coronation Hill<br />

deposit.<br />

Corrected ratios<br />

Sample<br />

206 Pb/ 204 Pb ±2σ<br />

207 Pb/ 204 Pb ±2σ<br />

207 Pb/ 206 Pb ±2σ<br />

238 U/ 235 U ±2σ<br />

238 U ±2σ<br />

C29-217BPPz1 240.47 15.10 39.36 3.43 0.16 0.004 138 10.32 0.04 0.04<br />

C29-217BPPz6 235.20 10.20 38.02 0.93 0.16 0.004 141 0.84 0.75 0.40<br />

C29-217BPPz4 382.59 41.87 51.10 4.81 0.13 0.007 140 9.41 0.05 0.03<br />

C29-217BPPz3 314.68 25.13 45.96 4.79 0.14 0.008 142 20.44 0.05 0.07<br />

C29-217BPPz2 250.33 23.84 41.60 5.87 0.17 0.007 133 14.17 0.03 0.02<br />

C29-217BPPy 227.09 8.98 38.43 2.50 0.17 0.005 135 7.67 0.17 0.18<br />

C29-217BPPx 230.35 22.68 37.77 5.65 0.16 0.008 142 16.12 0.04 0.04<br />

C29-217BPPw 266.64 25.05 40.11 4.33 0.15 0.005 145 13.02 0.05 0.04<br />

C29-217BPPv 426.15 49.45 54.95 4.24 0.13 0.007 139 2.85 0.15 0.06<br />

C29-217BPPu 294.97 10.66 43.59 1.68 0.15 0.003 140 4.47 0.07 0.05<br />

C29-217BPPt 419.20 20.21 54.79 2.45 0.13 0.003 139 6.64 0.22 0.15<br />

C29-217APPs 252.77 10.49 39.75 1.18 0.16 0.004 141 2.26 0.18 0.13<br />

172


C29-217APPr 295.26 13.37 43.50 1.34 0.15 0.005 139 2.11 0.36 0.28<br />

C29-217APPr1 246.05 19.17 39.12 1.72 0.16 0.006 140 1.97 0.21 0.09<br />

C29-217APPq 242.05 24.61 38.84 5.90 0.16 0.009 143 18.50 0.02 0.01<br />

C29-217APPp 195.35 1.13 32.74 0.53 0.17 0.000 154 2.72 0.02 0.01<br />

C29-217APPo 224.24 53.26 38.51 12.99 0.17 0.021 157 61.47 0.02 0.02<br />

C29-217APPm 236.15 7.59 38.67 1.01 0.16 0.005 139 2.80 0.19 0.11<br />

C29-217APPk 211.22 9.58 36.70 2.11 0.17 0.003 142 7.34 0.07 0.04<br />

C29-217APPh 644.46 57.38 81.54 10.87 0.13 0.006 116 15.61 0.07 0.00<br />

C29-217APPg 187.96 16.40 34.21 3.95 0.18 0.009 145 22.67 0.02 0.01<br />

C29-217APPf 247.09 18.16 40.02 4.70 0.16 0.007 145 16.59 0.01 0.00<br />

C29-217APPd 233.28 9.80 38.43 2.41 0.16 0.006 139 7.35 0.08 0.05<br />

Table 4.6. Isotopic analyses data of the Pb-Pb LA-HR-ICP-MS analysis of galena from the<br />

Coronation Hill deposit. Result of the age model is shown in Figure 4.12A.<br />

4.5.4.3. Chemical Pb age of the uranium mineralization<br />

The chemical Pb age is derived from the assumption that the total Pb present in the<br />

sample is of radiogenic origin, resulting exclusively from the decay of U and Th and that<br />

the mineral has not lost or acquired Pb since it formed (Bowles, 1990). Different Chemical<br />

Pb ages in the same grain reflect variable alteration by subsequent fluids during<br />

recrystallization of the uraninite to new uranium minerals, resulting in a decrease in the<br />

Chemical Pb age and an increase in elements other than uranium. As alteration is expected<br />

to result in a decrease in radiogenic Pb contents, the formation age of the uraninite can be<br />

estimated by extrapolating the Chemical Pb ages to when the concentrations of the<br />

secondary elements (e.g. Ca, Fe and Si) were negligible (e.g. Alexandre and Kyser, 2005).<br />

Chemical Pb ages derived from the composition of U 1 uraninite vary from 341 Ma to<br />

1479 Ma (Table 4.1), suggesting variable recrystallization, Pb loss, and gain of elements<br />

that make up new uranium alteration phases. Regression of the SiO 2 +Fe 2 O 3 +CaO+MnO<br />

contents to zero in U 1 uraninite corresponds to 1822 Ma (Fig. 4.14), which is within error<br />

identical to the U-Pb upper intercept dates of 1823±140 Ma and 1819±150 Ma (Figs. 4.12A<br />

173


and 4.12B), and to 207 Pb/ 206 Pb ages of 1810±15 Ma and 1825±90 Ma (Figs. 4.12B and<br />

4.12C).<br />

Chemical Pb ages (Ma)<br />

Figure 4.14. Plot of element contents in uraninite as a function of chemical Pb ages.<br />

4.6. Discussion<br />

Paragenetic minerals and geochronologic data from the Coronation Hill and El<br />

Sherana deposits indicate that basement rocks of the Koolpin Formation and the overlying<br />

El Sherana Basin sandstones have been affected by multistage deformation and fluid<br />

events, including early stages of basement metamorphism and basin diagenesis followed by<br />

hydrothermal alteration and U mineralization and post-ore alteration (Fig. 4.15, Table 4.7).<br />

Alteration assemblage<br />

Pre-ore Stage Diagenesis Ore Stage Post-ore stage<br />

Src 1 -Chl 1 -Hem 1 -<br />

Qtz 1 Kln1 -Hem 2 -Qtz 2 U 1 -Au 1 -Gn 1 -Chl 4 -<br />

Cal 4 -Hem 4 U 2 -Chl 5 -Cal 5 -Hem 5<br />

Age of formation 1860 – 1840 Ma 1830 – 1820 Ma 1820 Ma Post 1820 Ma<br />

174


Tectonic Event<br />

Formation<br />

temperature<br />

Pre-ore Stage Diagenesis Ore Stage Post-ore stage<br />

Nimbuwah event<br />

Late stage<br />

Nimbuwah event<br />

Post stage<br />

Nimbuwah event<br />

Various tectonic events<br />

160 o to 300 o C - 250 o C ca. 100 o C<br />

δ 18 O fluid (‰) 5.1 to10.7 - 2.8 to 4.8 -<br />

δ 2 H fluid (‰) -81 to -52 - -75 to -57 -<br />

Complexing agent F - , PO 3 -4 , Cl -<br />

Fluid source<br />

low grade<br />

greenschist<br />

metamorphic<br />

Basinal Basinal Meteoric<br />

Table 4.7. Summary of the major results presented in this chapter showing the paragenetic<br />

mineral assemblages and timing of the U mineralization, major thermotectonic events,<br />

formation temperatures, isotopic compositions of fluids, source of fluid events recorded in U<br />

deposits in the SAVMF area. (Ap=apatite, Cal=calcite, Chl=chlorite, Hem=hematite,<br />

Qtz=quartz, Src=sericite, U=uraninite).<br />

4.6.1. Basement metamorphism and basin diagenesis<br />

The pre-ore alteration assemblage Src 1 -Qtz 1 -Chl 1 -Cal 1<br />

(Figs. 4.5 and 4.9) at the<br />

Coronation Hill and El Sherana deposits is similar to alteration patterns described by<br />

Warren and Kamprad (1990) and Wyborn et al. (1991), which they interpreted as related to<br />

early metamorphism and metasomatism of the basement rocks during D 2 deformation<br />

associated with the 1860-1840 Ma Nimbuwah tectonic event. This event predates<br />

deposition of the ca. 1830 Ma El Sherana Group. δ 18 O and δ 2 H isotopic compositions of the<br />

pre-ore Src 1 sericite indicate that the pre-ore alteration fluids at the Coronation Hill and El<br />

Sherana deposits are metamorphic in origin (Fig. 4.11) and therefore associated with<br />

deformation and regional metamorphism during the Nimbuwah event (Fig. 4.15 A). The<br />

high δ 18 O value of pre-ore Src 1 sericite at the El Sherana deposit is indicative of extensive<br />

water/rock interaction. The fluid formed at ca. 300 o C at the El Sherana deposit and ca.<br />

175


160 o C at Coronation Hill. The temperature of ca. 300 o C at the El Sherana deposit is<br />

consistent with fluids derived from low grade greenschist metamorphic processes (Wyborn<br />

et al., 1991). Extensive hematite inclusions in pre-ore Qtz 2 quartz veins (Fig. 4.5D) at the<br />

Coronation Hill deposit suggest that pre-ore metamorphic fluids were highly oxidized (e.g.<br />

Mernagh et al., 1994).<br />

A Sensitive High Resolution Ion Microprobe (SHRIMP) U-Pb age of 1827±3 Ma for<br />

the Pul Pul Rhyolite (Jagodzinski, 1998) near the top of the El Sherana Group indicates that<br />

sediments of the El Sherana Basin could have begun to accumulate well before ca. 1830<br />

Ma during deformation associated with the Nimbuwah event (Fig. 4.15B). Ahmad et al.<br />

(2006) suggested that the initial deposition of El Sherana Group sediments occurred at<br />

around ca. 1865 Ma associated with graben formation centred on the South Alligator River<br />

valley. Therefore deposition of the El Sherana Basin sediments took place rapidly in a<br />

tectonically active environment associated with the Nimbuwah Orogen (Friedmann and<br />

Grotzinger, 1994). The prevailing geothermal gradient must have been higher compared to<br />

the younger and larger Kombolgie Basin.<br />

Petrographic analysis of the Coronation sandstone at the El Sherana deposit indicate<br />

features typical for diagenetic alteration processes (Fig. 4.10), including well developed<br />

Qtz 2 quartz overgrowths outlining detrital Qtz 0 quartz grains accompanied by partial to<br />

complete resorption and pressure solution features that occurred during compaction at deep<br />

burial levels. Extensive Kln 1 kaolinite alteration that is associated with development of<br />

secondary porosity indicates that there were diagenetic aquifers in the El Sherana Basin<br />

sandstone, which could have conducted U-bearing basinal brines (Fig. 4.15B). This<br />

176


alteration is similar to sandstone alteration of Proterozoic basins in Canada and Australia<br />

(Wilson and Kyser, 1987; Kotzer and Kyser, 1995; Hiatt et al., 2001; Polito et al., 2005).<br />

Koolpin Formation<br />

Carbonaceous Shale<br />

Koolpin Formation<br />

Carbonaceous Shale<br />

177


Figure 4.15. Conceptual genetic model for U mineralization in the SAVMF. A. Deformation,<br />

metamorphism and metasomatism of the basement lithologies during the 1860-1840 Ma<br />

Nimbuwah tectonic event. The pre-ore alteration Src 1 -Qtz 1 -Chl 1 -Cal 1<br />

formed from<br />

metamorphic fluids between 150 o and 300 o C. B. Deposition of the El Sherana Group during<br />

extensional tectonism associated with the Nimbuwah event is followed by basin-diagenesis<br />

during burial. Subsequently, reactivation of the El Sherana-Palette fault system more focused<br />

in zones of pre-existing tectonic weakness that were previously affected by an early pre-ore<br />

alteration, created structural traps for fluid flow, hydrothermal alteration and U<br />

mineralization. The ore-forming fluids originated in the El Sherana Basin and descended<br />

downward into the basement rocks along fracture systems. Interaction of the oxidizing<br />

basinal brine with reducing lithologies of the Koolpin Formation led to deposition of the ore<br />

metals at ca. 1820 Ma. C. U 1 was altered during multiple stages of fluid overprinting related<br />

to fault reactivation during successive regional thermotectonic events that occurred over a<br />

period of at least 1.8 Gyrs. These alteration events resulted in subsequent alteration of the<br />

deposits and the formation of the post-ore mineral assemblage including widespread<br />

secondary uraninite occurring as fracture-filling veinlets.<br />

Koolpin Formation<br />

Carbonaceous Shale<br />

178


4.6.2. Hydrothermal alteration and uranium mineralization<br />

Following metamorphism and pre-ore alteration of the basement and diagenesis of<br />

the overlying Coronation sandstone of the El Sherana Basin, the rocks were affected by the<br />

main U mineralization event associated with an intense brecciation that is likely related to<br />

tectonic reactivation along the El Sherana-Palette fault system (Lally and Bajwah, 2006).<br />

Petrographic and textural observations indicate a spatial relationship between the intensity<br />

of the pre-ore alteration and the location of the U mineralization. Fault reactivation was<br />

likely more focused in zones of pre-existing tectonic weakness that were previously<br />

affected by pre-ore alteration, creating structural traps that were open for fluid flow,<br />

hydrothermal alteration, and uranium mineralization. Syn-ore Ms 2 muscovite has δ 18 O and<br />

δ 2 H isotopic compositions typical of low latitude basinal brines (Fig. 4.11) similar to those<br />

of unconformity-related U-deposits in the Athabasca (e.g. Fayek and Kyser, 1997; Cuney<br />

and Kyser, 2008) and Kombolgie basins (e.g. Polito et al., 2004, 2006). The ore-forming<br />

fluid most likely originated in the El Sherana Basin and descended downward into the<br />

basement rocks along fracture systems created by brittle reactivation of the El Sherana-<br />

Palette fault system (Fig. 4.15B). The mineralizing brine contained U, Au and PGE, the<br />

former most likely leached from detrital U-bearing minerals (e.g. monazite and apatite) in<br />

the El Sherana Basin sandstone, and the Au and PGE from alteration of felsic volcanics and<br />

mafic rocks that comprised much of the El Sherana Group subsequent to burial and<br />

diagenesis (Fig. 4.15B).<br />

The syn-ore alteration is associated with precipitation of U 1 ±Au 1 mineralization in<br />

faulted and brecciated contact between reducing carbonaceous and cherty ferruginous shale<br />

179


of the Koolpin Formation, while deposition of ±U 1 -Au 1 -PGE occurred in fractured and<br />

sheared quartz-feldspar porphyry at the Coronation Hill deposit. The U 1 -Gn 1 -Au 1 -Cpy 2 ore<br />

assemblage formed at temperatures of ca. 250 o C, based on chlorite crystal chemistry (Table<br />

4.4, Cathelineau, 1988). Mernagh et al. (1994) indicated a temperature of 140 o C based on a<br />

microthermometry study of quartz veins at Coronation Hill. However, cross-cutting<br />

relations indicate that these quartz veins formed earlier, during the pre-ore alteration stage<br />

and therefore, pre-date the U mineralizing event. Chl 2<br />

chlorites at Coronation Hill<br />

paragenetically associated with the Qtz 2 quartz veins have formation temperatures near<br />

160 o C (Table 4.4), similar to temperatures proposed by Mernagh et al. (1994).<br />

The presence of small amounts of fluorine and chlorine in syn-ore Chl 2 chlorite<br />

(Table 4.4) and phosphate in U 1 uraninite (Table 4.1) suggest that fluorine, chlorine, and<br />

phosphate were important ore transporting complexes. Uranium is mobile under oxidizing<br />

conditions (Cuney and Kyser, 2008) and in oxidized aqueous basinal brines between pH 4<br />

and 7.5, uranyl-phosphate complexes are the important species (Cuney and Kyser, 2008),<br />

while chlorine- and fluorine-complexes are dominant in fluids under acidic conditions at<br />

temperatures up to 200°C (Romberger, 1984; Kojima et al., 1994). Interaction of oxidizing<br />

mineralizing fluid with the reducing Fe-rich interlayered cherty ferruginous shale of the<br />

Koolpin Formation may have led to deposition of the U-ore metals at El Sherana.<br />

Petrographic observation indicates that early Py 1 pyrite (Fig. 4.6D) in the basement rock<br />

was a reductant so that Fe 2+ or S in Py 1 pyrite would have acted as reductants for U 6+ .<br />

In hydrothermal fluids, Au and PGE are soluble as chloride complexes (Mountain<br />

and Wood, 1988a, 1988b), which are more important in oxidized, low-temperature, acidic,<br />

180


and saline fluids (Mernagh et al., 1994). Therefore, the occurrence of Au 1 -PGE±U 1<br />

associated with the quartz feldspar porphyry at the Coronation Hill deposit may have<br />

resulted from acid neutralization and moderate reduction resulting from fluid interaction<br />

with feldspathic host rocks (Wyborn, 1992; Mernagh et al., 1994). Ore metal deposition is<br />

therefore, strongly controlled by the composition of the host lithology (e.g. Needham and<br />

Stuart-Smith, 1984; Needham, 1988b)<br />

Our results corroborate Ayres (1975) suggestion that the Au source was the El<br />

Sherana Basin volcanics, particularly the Pul Pul Rhyolite of the Coronation sandstone.<br />

Mernagh et al. (1994) indicated that highly oxidizing, basinal, low temperature and low-pH<br />

solutions transported simultaneously Au, PGE and U as oxy-chloride and chloride species,<br />

but proposed the Kombolgie Basin sediments as the source of the mineralizing fluids. Sener<br />

et al. (2002) suggested that the nature of the ore elements and alteration at the Coronation<br />

Hill deposit is consistent with deposition from acid and oxidizing fluids.<br />

Au and PGE are found in ore grade concentrations in unconformity-related uranium<br />

deposits. For example, U ore in the Jabiluka deposit contains Au grading 10 g/t and<br />

significant concentrations of Pd (Wilde et al., 1989). Unconformity-related U deposits in<br />

the Athabasca Basin in Canada have also been reported to contain minor concentrations of<br />

Au and PGE (Wray et al., 1985).<br />

LA-HR-ICPMS data indicate that initial U precipitation occurred in the basement at<br />

ca. 1820 Ma (Figs. 4.12A to 4.12C). The 1822 Ma chemical Pb age of U 1 uraninite (Fig.<br />

4.14) at Coronation Hill is identical to the U-Pb concordia ages at the El Sherana deposit<br />

(Figs. 4.12A to 4.12C). These ages suggest that the U mineralization in the SAVMF formed<br />

181


at ca. 1820 Ma, approximately 40 Myr after initial deposition and diagenesis of the EL<br />

Sherana Basin.<br />

The timing of the U-Au-PGE mineralization at the Coronation Hill at El Sherana<br />

deposits is coincident with a period of regional extension tectonism and granite intrusion in<br />

the Pine Creek Orogen (Ferguson et al., 1980a; Stuart-Smith and Needham, 1984;<br />

Needham et al., 1988). These granites include the 1820±8 Ma Malone Creek Granite<br />

(Edgecombe et al., 2002), which intruded El Sherana Group rocks, the ca. 1820 Ma<br />

calcalkaline Cullen Suite granite intruding the Pine Creek Orogen (Stuart-Smith et al.,<br />

1993) and the 1818±3 Ma Fenton Granite in the Gold Ridge area (Needham et al., 1988).<br />

4.6.3. Late stage alteration and resetting events<br />

Post-ore alteration recorded in uraninite samples indicate that the U-Pb and Pb-Pb<br />

isotopic system in U 1 uraninite and cogenetic Gn 1 galena were reset during multiple fluid<br />

events related to fault reactivation during successive regional thermotectonic events that<br />

occurred over a period of at least 1.8 Gyrs (Figs. 4.15A and 4.16). These alteration events<br />

resulted in subsequent alteration of the El Sherana and Coronation Hill deposits and<br />

formation of the post-ore mineral assemblage including widespread secondary uranium<br />

minerals (Figs. 4.6E and 4.6F) occurring as fracture-filling veinlets (Fig. 4.7A).<br />

The U 1 mineralization records an alteration event at ca. 1720 Ma, consistent with the<br />

timing of the Oenpelli dolerite intrusion of the Kombolgie Basin (Fig. 4.16, Sweet et al.,<br />

1999; Kyser et al., 2000). This event is coincident with the timing of post-ore alteration<br />

event at the Ranger (1737±20 Ma, Ludwig et al., 1985, 1987) and Koongarra U deposits<br />

(1800 Ma to 1700 Ma, Hills and Richards, 1976). Polito et al. (2004) interpreted ages of<br />

182


1696 Ma - 1715 Ma from pre-ore sericite in altered schist at the Nabarlek deposit to be<br />

related to resetting during intrusion of the Oenpelli dolerite at 1720 Ma.<br />

The 1601±98 Ma model age of Gn 1 galena (Fig. 4.13A) from the Coronation Hill<br />

deposit is coincident with formation of unconformity-related U mineralization in the<br />

Kombolgie Basin (Fig. 4.16; e.g. Page et al., 1980; Riley et al., 1980; Maas, 1989; Polito et<br />

al., 2004). This timing is coincident with Mesoproterozoic compressional tectonism and<br />

metamorphism during the early Isan Orogen (1600 Ma - 1580 Ma) in northern Australia<br />

(Hand, 2006). Peak Isan Orogen (MacCready et al., 1998) is recorded by alteration of<br />

uraninite at ca. 1500 Ma (Fig. 4.16), which deformed the McArthur Basin (Page and Bell,<br />

1986; Connors and Page, 1995). This event is followed by fault reactivation at ca. 1400 Ma<br />

(Figs. 4.13B, 4.16) and is attributed to deformation related to post-peak Isan exhumation<br />

and crustal extension (Fig. 4.16, Spikings et al., 2001). Similar U-Pb ages from Jabiluka<br />

uraninite of 1473±40 Ma (Ludwig et al., 1985) and 1400 Ma from Nabarlek (Polito et al.<br />

2004) are interpreted to be related to this late alteration event.<br />

An alteration event at ca. 1300 Ma (Fig. 4.16) records widespread intrusive activity<br />

within the Pine Creek Orogen. These events correlate with the intrusion of the<br />

Maningkorrirr phonolitic dikes and the Derim Derim Dolerite at ca. 1316±40 and 1324±4<br />

Ma, respectively (Sweet et al., 1999). Extensive alteration between 1200 Ma - 1250 Ma<br />

(Fig. 4.16) corresponds to tectonic activity during the Proterozoic Australia assembly as an<br />

early component of Rodinia, involving the amalgamation of West and North Australian<br />

cratons, followed by collision with the South Australian craton (Myers et al., 1996). At ca.<br />

1140 Ma (Fig. 4.16) Australia and Laurentia amalgamated during the Grenville Orogen<br />

183


culminating with the formation of Rodinia (Wingate et al., 2002; Li et al., 2008). Alteration<br />

of uraninite at ca. 1380 Ma and 1100 Ma is also recorded at Jabiluka and Nabarlek (Gulson<br />

and Mizon, 1980; Polito et al., 2004).<br />

Figure 4.16. Distribution of 207 Pb/ 206 Pb ages for 176 uraninite grains along with the timing of<br />

various U mineralization and tectonic events that affected the South Alligator Valley area.<br />

Alteration peaks at ca. 1000 Ma and 800 Ma (Fig. 4.16) are consistent with periods of<br />

Rodinia breakup (Dalziel, 1991; Li et al., 2008) with the rifting of Laurentia and Gondwana<br />

along the eastern margin of Proterozoic Australia at ca. 900 Ma-850 Ma and formation of<br />

the Paleo-Pacific Ocean (Wingate and Giddings, 2000; Harlan et al., 2003b). These<br />

alteration events are also recorded in uraninite from Ranger, Jabiluka, Nabarlek and<br />

184


Koongarra, and deposits in the SAVMF (Hills and Richards, 1972; Gulson and Mizon,<br />

1980). Subsequent fault reactivation and alteration continued into the Phanerozoic at ca.<br />

530 Ma - 510 Ma (Fig. 4.16), coincident with the formation of Cambrian to early<br />

Ordovician Georgina Basin (Shergold and Druce, 1980) and the extrusion of the 513 Ma<br />

Antrim Volcanics (Hanley and Wingate, 2000) outpouring early Cambrian Plateau over<br />

most of the North Australian Craton (Myers et al., 1996). Following a period of apparent<br />

tectonic quiescence from the Ordovician to Devonian (Fig. 4.16), uraninite alteration<br />

occurred during the Carboniferous coincident with tectonic activities during continental<br />

rifting that separated Asian terranes to the north from the NW Australian Gondwana to the<br />

south at around ca. 350 Ma - 270 Ma (Metcalfe, 2001).<br />

Lower intercept ages in the U-Pb system of 122±90 Ma, 45±92 Ma and 23±73 Ma<br />

(Figs. 4.12H, 4.12G and 4.12B, respectively) and recent chemical Pb ages of uraninite<br />

(Table 4.1) record tectonic activities along the western active margin of the Australian plate<br />

including the Mesozoic breakup between Greater India and Australia at ca. 136 Ma and<br />

various recent collisional processes and plate boundary reorganizations north and east of<br />

Australia during the Cenozoic (Müller et al., 2000).<br />

4.7. Conclusions<br />

Hydrothermal alteration, uranium mineralization, and late remobilization events have<br />

affected rocks of the SAVMF during protracted tectonic evolution that spans over 1.8 Gyrs<br />

(Table 4.7). Results indicate that these deposits formed at ca. 1820 Ma, subsequent to<br />

deposition of the El Sherana Group and are therefore, older than the unconformity-related<br />

U mineralization at 1650-1675 Ma in the Kombolgie Basin. The formation of these<br />

185


deposits is related to fluids derived from diagenetic processes in sandstone of the El<br />

Sherana Group and have particularly affected zones of preexisting weakness of the<br />

basement rocks that were previously altered by a metamorphic pre-ore alteration stage. The<br />

source of U was U-bearing minerals (monazite, apatite) in the sandstone and felsic rocks of<br />

the El Sherana Group. The Au and PGE are derived from basement felsic and mafic rocks,<br />

as proposed by Wyborn et al. (1997). Therefore, these deposits can be classified as<br />

unconformity-related uranium mineralization like those in the younger overlying<br />

Kombolgie Basin.<br />

Results from Stewart (1965) indicate that felsic volcanic rocks of the Pul Pul Rhyolite<br />

of the El Sherana Group have above background radioactivity. Analyses indicate<br />

concentration of up to 25-30 ppm U in these volcanic rocks (Ayers, 1975). Fluid inclusion<br />

data (Mernagh et al., 1994) indicate that the fluids were saline, acidic, calcium-dominated<br />

(ca. 26 wt% CaCl 2 equiv) and highly oxidizing. Such fluids would have been particularly<br />

favorable for uranium transport (Hedges et al., 1984) as uranyl-complexes in basinal brines<br />

in the sandstone aquifer above the unconformity. Tectonic reactivation of the El Sherana-<br />

Palette fault during deformation associated with the Nimbuwah event would have provided<br />

structural conduits for hydrothermal basinal brines that descended downward into the<br />

metamorphic basement rocks. Interaction between the oxidized U-bearing basinal brines<br />

and the reducing carbonaceous shale of the Koolpin Formation would have led to U<br />

reduction and precipitation. The occurrence of Au and PGE associated with quartz feldspar<br />

porphyry at Coronation Hill may have resulted from acid neutralization and reduction<br />

186


during fluid interaction with feldspathic host rocks (Mernagh et al., 1994), thus indicating<br />

that ore metals deposition is also controlled by lithology composition.<br />

Subsequent to their formation, the uranium deposits in the SAVMF have been<br />

affected by late alteration fluid event related to both near and far-field tectonic events that<br />

formed much of the secondary U minerals. These late events may represent incursion and<br />

circulation of meteoric water through structurally reactivated fault zones (e.g. Kotzer and<br />

Kyser, 1995) that remain areas of preferential fluid flow (e.g. Fayek and Kyser, 1997).<br />

187


CHAPTER 5<br />

GENERAL DISCUSSION<br />

5.1. Introduction<br />

Results presented in the preceding chapters contribute in understanding the<br />

Proterozoic tectonic evolution and U mineralizing system in successor basins in the<br />

Beaverlodge area of Northern Saskatchewan, Canada, and the South Alligator River area of<br />

the Northern Territories, Australia. Based on structural, geochemical, geochronological and<br />

petrographic relationships, this research has evaluated the character and formation of U<br />

deposits in successor basins by detailing the relative timing relationships between<br />

deformation and fluid events, elucidating the timing, nature and origin of ore-forming<br />

fluids, identifying critical key structural and geochemical factors controlling U<br />

mineralization, and presenting a conceptual genetic model for U mineralization in successor<br />

basin areas (Fig. 5.1.).<br />

The following elucidates the general models for uranium mineralizing systems in<br />

Paleoproterozoic successor basins, compares them with the unconformity-related uranium<br />

mineralization in the younger, U-rich Athabasca and Kombolgie basins and discusses the<br />

potential implication for uranium metallogeny and exploration strategy in others<br />

Paleoproterozoic successor basins in Finland and Guyana.<br />

188


Figure 5.1. Generalized model for different types of U mineralizing systems manifest<br />

in Paleoproterozoic successor basins.<br />

5.2. Uranium mineralizing system in Paleoproterozoic successor basins: A<br />

generalized model<br />

Rocks underlining Paleoproterozoic successor basins in the Beaverlodge area in<br />

Canada and the South Alligator River area in Australia record a history of dynamic<br />

geologic events that span more than 2 Gyr. These geologic events contributed significantly<br />

to the development of multifarious U deposits (Fig. 5.1) in these areas. Subsequent to major<br />

deformation that affected the supracrustal rocks during the Paleoproterozoic, sedimentary<br />

189


ed-bed strata and associated volcanic rocks were deposited in continental environments<br />

along pre-existing faults that were reactivated during the waning stage of a major orogen.<br />

Most of the U deposits in successor basins are structurally controlled and are affected by<br />

repeated deformation events that affected the host rock.<br />

In the Beaverlodge area, the Martin Lake Basin formed at ca. 1820 Ma (Langford,<br />

1981; Morelli et al., 2001) but was immediately deformed, fractured and folded during<br />

tectonism following the peak Trans-Hudson Orogen (Hoffman, 1990; Corrigan, 2009). The<br />

main U mineralization event predated the deposition of the Martin Lake successor basin<br />

and is associated with regional metamorphism and deformation during early stages of the<br />

Trans-Hudson Orogen (Dieng et al., 2011). These deposits are classified as metamorphicrelated<br />

uranium mineralization system (Fig. 5.1) (e.g Cuney and Kyser, 2008).<br />

In the South Alligator River area, the El Sherana Basin formed at ca. 1830 Ma<br />

(Jagodzinski, 1992) during crustal extension following the peak Nimbuwah event that<br />

reactivated previous fault zones (Needham et al., 1988). The main U mineralizing event<br />

that affected both the supracrustal rocks and sediments of the successor basin is associated<br />

with basinal brines generated from the successor basin itself. Deposition of the El Sherana<br />

Basin is followed by a period of relative tectonic quiescence during which time<br />

sedimentary and associated volcanic rocks of the El Sherana group were altered by basinal<br />

brines capable of transporting and depositing the scavenged U at the unconformity between<br />

the basement rock and sediments of the El Sherana Basin. These deposits are variants of<br />

unconformity-related U mineralization system (Fig. 5.1), similar to those in the younger<br />

overlying Kombolgie Basin (e.g. Polito et al., 2004, 2006).<br />

190


Tectonic during and immediately after basin formation plays a critical role in the<br />

formation of unconformity-related uranium mineralization. Deformation may prevent<br />

alteration of the successor basin sediments by inhibiting fluids circulating into the basin<br />

thereby reducing fluid-rock interaction. This is corroborated by the weakly to unaltered<br />

character of the Martin Lake Basin sediments that were deposited at ca. 1820 Ma during<br />

active tectonism associated with the Trans-Hudson Orogen (Hoffman, 1989). In contrast,<br />

deformation was less intense in the South Alligator River area during the deposition of the<br />

El Sherana Basin at ca. 1830 Ma immediately after the peak Nimbuwah Orogen (Needham<br />

et al., 1988), thus promoting fluid-rock interaction and alteration of the El Sherana Basin<br />

sediments. The spatial association of U deposits with successor basins may result from the<br />

presence of pre-existing lines of tectonic weakness that focus both near and far field<br />

deformation and can therefore be easily reactivated, creating structural traps that are<br />

favorable for hydrothermal fluid flow and uranium mineralization.<br />

5.2.1. Early U mineralization<br />

Supracrustal rocks underlying successor basins are commonly affected by multiple<br />

tectonic events and thereby metamorphosed, granitized and intruded by granitic rocks. In<br />

the Beaverlodge area, early U mineralization predating the formation of the successor basin<br />

is associated with thermotectonic activities accompanied by magmatism, regional<br />

metamorphism, and hydrothermal alteration. On the basis of their structural setting, host<br />

rock geology, timing and style of mineralization, the early U mineralization can be divided<br />

into two main U mineralizing systems: the granite-related U mineralization and<br />

metamorphic-related U mineralization systems (Fig. 5.1). Similarly, based on the origin and<br />

191


character of the fluid that formed them, early vein- and cataclasite-type mineralization can<br />

be classified as metamorphic-related U mineralization.<br />

5.2.1.1. Granite-related uranium mineralization<br />

Extensional deformation during deposition of Neoarchean to Paleoproterozoic<br />

supracrustal rocks of the Murmac Bay Group may have provided channel ways for granite<br />

intrusions. In the Beaverlodge area, the Gunnar granite (Hartlaub et al., 2004a) was<br />

emplaced along extensional fault systems (Fig. 5.2, Mary’s Channel and Frasier) that likely<br />

formed during the ca. 2.35 Ga Arrowsmith Orogen (Hartlaub et al., 2007; Berman et al.,<br />

2010), concomitant with deposition of the Murmac Bay Group (Ashton et al., 2009b). The<br />

magmatic-related U mineralization in the Gunnar deposit produced about 7,420 t of U<br />

metal from ores grading 0.15% U (Evoy, 1986). Isotopic compositions of syn-ore minerals<br />

indicate that the U mineralization was derived from magmatic fluids that exsolved from the<br />

albitized granitic rock itself during its emplacement (Fig. 5.1). Uraninite formed when<br />

reduced and cooling exsolved residual hydrothermal magmatic fluids near 315 o C were<br />

deposited in voids left after quartz and calcite dissolution. The loss of a large volume of<br />

CO 2 during magmatic-fluid degassing controlled U precipitation. However, the U<br />

associated with the granite-related mineralization is minor in the deposit and is overprinted<br />

later by more substantial breccia-type U mineralization. The metasomatism that affected the<br />

granite produced an albitized rock that is more competent than the surrounding rocks and<br />

therefore capable of focusing brittle reactivation caused by tectonic events. The age of the<br />

magmatic-related U mineralization at Gunnar is not known with certainty because of the<br />

multiple late fluid events that affected the uraninite, but it can be bracketed between the age<br />

192


of the 2321±3 Ma Gunnar granite and the age of the 1.85 Ga major brecciation event that<br />

overprinted the mineralized albitized granite.<br />

Figure 5.2. Geologic cross-section through the Gunnar deposit (modified from Evoy, 1960)<br />

The metasomatic-type U mineralization at Gunnar is genetically linked to the albite<br />

metasomatism of the Gunnar granite because all of it was derived from the same magmatichydrothermal<br />

alteration process. Ashton (2010) reported albite metasomatic alteration<br />

associated with U mineralization at several localities in the Beaverlodge area but suggested<br />

that this alteration affected a variety of rock types of different ages. There are a number of<br />

granite intrusions in the Beaverlodge area that are coeval with the Gunnar granite, including<br />

the Cameroon, Mackintosh Bay, Rogers Lake and White granites (Fig. 2.2). Whether the<br />

same hydrothermal magmatic-related U mineralization system affected these granites is<br />

currently not known.<br />

193


5.2.1.2. Metamorphic-related uranium mineralization<br />

5.2.1.2.1. Early-vein and cataclasite-type uranium mineralization<br />

Minor U mineralization associated with early veins and cataclasite in the Beaverlodge<br />

area formed at ca. 2.29 Ga during late stages of the ca. 2.35 Ga Arrowsmith Orogen and<br />

was triggered by reactivation of basement-rooted shear zones during exhumation, resulting<br />

in overprinting of mylonite by cataclasite and early tensional veins (Fig. 5.3; Dieng et al.,<br />

2011). The δ 13 C and δ 18 O values and chlorite crystal chemistry of syn-ore minerals are<br />

consistent with formation of Ca-F-Mg-rich fluids at ca. 310 o C derived from retrograde<br />

metamorphic processes during exhumation and erosion of the supracrustal rocks. Hydraulic<br />

fracturing and hydration during decompression and exhumation is interpreted as the main<br />

mechanism for the early tensional vein formation. The associated pressure decrease and<br />

fluid decompression during fracturing changed the stability of the U-carbonate complexes,<br />

decreased the temperature of the fluids, and likely promoted U precipitation into fractures.<br />

Although this style of U mineralization is limited, it indicates that the Beaverlodge area<br />

probably had elevated reserves of leachable U.<br />

5.2.1.2.2. Breccia-type uranium mineralization<br />

The major event of U mineralization in the Beaverlodge area coincided with massive<br />

brecciation at ca. 1850 Ma triggered by reactivation of fault zones that breached the host<br />

rock (Fig, 5.3) during the early stages of the Trans-Hudson Orogen. The δ 18 O, δ 13 C and δ 2 H<br />

values and chlorite crystal chemistry of syn-ore minerals indicate that the ore-forming<br />

brines originated from a ca. 330 o C, Ca-Na-F-containing metamorphic-hydrothermal fluid.<br />

194


Figure 5.3. Schematic illustration of the tectonic evolution of the Main Ore Shear Zone and<br />

the Saint Louis Fault on a crustal scale showing the spatial distribution of breccias, cataclasite<br />

and mylonite. A: Mylonitisation with oblique-normal and lateral dextral sense of motion in<br />

the ductile environment. B: Cataclasite overprinted the ductile shear zones subsequent to<br />

exhumation of the fault zone to shallower crustal depths. C: Breccias formed during<br />

reactivation the ductile-brittle fault zone in the brittle environment presumably at near<br />

surface conditions.<br />

These fluids were likely derived from dehydration of hydrous minerals and ascended<br />

upward along fracture systems and dilatant jogs that resulted from brittle reactivation of<br />

early shear zones (Fig. 5.3), thus providing pathways for metamorphic fluids that<br />

scavenged and transported U-bearing fluids (Fig. 5.1). Uranium precipitation in the breccia<br />

system was likely caused by a decrease in the solubility of the U-carbonate complexes<br />

resulting from a loss of CO 2 and a decrease in temperature caused by fluid decompression<br />

195


during brecciation or reduction as the U-mineralizing fluid reacted with reducing<br />

metamorphic host rocks (e.g. Skirrow et al., 2009).<br />

Strong structural control is reported in most metamorphic-related U systems, with U<br />

originating from saline, F-rich and CO 2 -bearing, Na-Ca brines (Skirrow et al., 2009) and<br />

commonly hosted by reactivated fault zones (Cuney and Kyser, 2008). In the Beaverlodge<br />

area, the high δ 18 O values of metamorphic fluids reflect the low water/rock ratios, and<br />

hence the relatively low volume of fluid, during hydrothermal alteration, preventing the<br />

transport of enough U by metamorphic brines to produce economically significant U<br />

mineralization. This is consistent with Plant et al. (1999) suggestion that U deposits of<br />

metamorphic-dehydration origin are of low grade and tonnage. The Beaverlodge U deposits<br />

are similar to metamorphic-related U mineralization systems associated with Nametasomatism<br />

(Cuney and Kyser, 2008) and related to the global 1.9-1.75 Ga alkalimetasomatism<br />

(Cuney, 2010).<br />

5.2.2. Successor basin-related U mineralization<br />

5.2.2.1. Volcanic-related U mineralization<br />

Volcanic-related U mineralization in the Beaverlodge area was triggered by extrusion<br />

of the 1818±4 Ma alkaline mafic dikes (Morelli et al., 2009) during deposition of the<br />

Martin Lake Basin (Langford, 1981; Mazimhaka and Hendry, 1984). Extrusion of the mafic<br />

dikes is coincident with periods of active tectonism related to back-arc extension following<br />

peak Trans-Hudson Orogen (Hoffman, 1989; Corrigan, 2009). The δ 18 O, δ 13 C and δ 2 H<br />

values and chlorite crystal chemistry of syn-ore minerals indicate that the U mineralization<br />

formed at ca. 1820 Ma from ca. 320°C, Mg- and Fe-rich magmatic fluids that were likely<br />

196


exsolved from the mafic dikes during their emplacement (Fig. 5.1). Faulting and fracturing<br />

of the host rock during extrusion of the mafic dikes provided pathways for exsolved<br />

magmatic-hydrothermal mineralizing solutions. The key geochemical process leading to U<br />

deposition was changes in the pH or Eh state of the mineralizing solution through<br />

interaction between the magmatic hydrothermal brine and fluids resident in metamorphic<br />

host rocks that destabilized the uranyl-phosphate complexes.<br />

5.2.2.2. Unconformity-related U mineralization<br />

Minor U-veins associated with fluids generated in the 1750 Ma Athabasca Basin<br />

(Kyser et al., 2000) formed at ca. 1620 Ma in the Beaverlodge area and were triggered by<br />

tectonic reactivation of fault zones during the Mesoproterozoic Mazatzal Orogen (Eisele<br />

and Isachsen, 2001). This deformation caused minor faulting and fracturing of the basement<br />

and basin rocks followed by deposition of Athabasca-type U-mineralization observed in the<br />

Ace-Fay and Martin Lake deposits (Dieng et al., 2011). δ 18 O and δ 2 H values and chlorites<br />

crystal chemistry of syn-ore chlorite indicates that U mineralization formed oxidizing<br />

basinal brines near 235°C, identical to those of the unconformity-related U-deposits in the<br />

Athabasca Basin (e.g. Fayek and Kyser, 1997). Syn-ore mineral crystal chemistry indicates<br />

that F - , Chl - , CO 2- 3 , and PO 3- 4 were likely present in the ore assemblage and could be<br />

effective ligands for complexing U. The key process controlling U deposition in vein<br />

systems was likely reduction of the oxidizing U-bearing basinal brines through interaction<br />

with reducing basement lithologies (e.g. Hoeve and Quirt, 1984; Cuney and Kyser, 2008).<br />

U mineralization in the El Sherana Basin in the South Alligator River area coincided<br />

with a hydrothermal alteration event during later stages of the Nimbuwah tectonic event at<br />

197


ca. 1820 Ma that triggered reactivation of the El Sherana-Palette fault system (Lally and<br />

Bajwah, 2006). Faulting and brecciation was likely more focused in zones of pre-existing<br />

tectonic weakness that were previously affected by pre-ore alteration, thus creating<br />

structural traps near the unconformity that were open to fluid flow, hydrothermal alteration<br />

and U mineralization. The mineralization formed when a 250 o C, low latitude, oxidizing, U-<br />

bearing basinal brine from diagenetic aquifers in the Coronation sandstone, similar to those<br />

of unconformity-related U-deposits in the Athabasca (e.g. Cuney and Kyser, 2008) and<br />

Kombolgie basins (e.g. Polito et al., 2004, 2006), descended downward into the<br />

unconformity along fracture systems created by brittle reactivation of the El Sherana-<br />

Palette fault system (Fig. 5.1). At Coronation Hill, the mineralizing brine contained U, Au<br />

and PGE, the former most likely leached from detrital U-bearing minerals in the El Sherana<br />

Basin sandstone, and the Au and PGE from alteration of felsic volcanics and mafic rocks<br />

that are part of the El Sherana Group (Jagodzinski, 1992). Interaction of oxidizing basinal<br />

brines with the reducing Fe-rich ferruginous shale of the Koolpin Formation may have led<br />

to deposition of the U-ore metals at El Sherana. The U, Au and PGE ore associated with the<br />

quartz feldspar porphyry at Coronation Hill may have resulted from acid neutralization and<br />

moderate reduction caused by fluid interaction with feldspathic host rocks (Needham,<br />

1988b; Wyborn, 1992; Mernagh et al., 1994).<br />

5.2.3. Late alteration events<br />

Subsequent to their formation, U deposits in the Beaverlodge and South Alligator<br />

River areas were affected by alteration events associated with multiple stages of<br />

deformation and fluid events that are related to both near and far-field geodynamic events<br />

198


and coincident with the timing of major thermotectonic events that have affected these<br />

areas. Results show that periods of alteration and remobilization events recorded over 2 Gyr<br />

of tectonic evolution of the North American Shield and the Australian craton.<br />

Early vein and cataclasite-type U mineralization in the Beaverlodge area was<br />

significantly affected by the 2.2-2.1 Ga and 2.1-2.0 Ga tectonism coincident with a period<br />

of rifting related to the breakup of the Kenorland supercontinent (Williams et al., 1991).<br />

This event is followed by the 2.0-1.9 Ga period of alteration during the Taltson-Thelon<br />

Orogen (Chacko et al., 2000) and activation of the Snowbird Tectonic Zone (Berman et al.,<br />

2007a).<br />

A major event, which has significantly reactivated structures in the Beaverlodge area,<br />

corresponds to the Trans-Hudson Orogen, which produced brecciation along reactivated<br />

fault zones, fluid flow and the major U mineralization. This mineralization has been altered<br />

during intracratonic deformation following the peak Trans-Hudson Orogen and formation<br />

of the Martin Lake Basin (Mazimhaka and Hendry, 1985). The event has produced the<br />

volcanic-type mineralization and subsequent alteration during emplacement of 1788±3 Ma<br />

lamprophyre (Sassano et al., 1974) and granitic dikes (Ashton et al., 2009b).<br />

Late brittle reactivation along fault zones during the Mesoproterozoic caused minor<br />

fracturing and alteration of preexisting mineralization and records tectonism of the 1.65-<br />

1.60 Ga Mazatzal Orogen in southern Laurentia (Labrenze and Karlstrom, 1991).<br />

From the Mesoproterozoic to recent time, far field tectonic events of several<br />

orogenic episodes during the evolution of the Laurentian plate (e.g. Evans and Pisarevsky,<br />

2008) caused minor brittle reactivation in the Beaverlodge area. These include the Granite<br />

199


Plutons Event at 1.4 Ga (Barinek et al., 1999), the 1.27 Ga Mackenzie mafic dike swarms<br />

(Ernst and Buchan, 2001b) coincident with the final breakup of the Nuna supercontinent<br />

(Rogers and Santos, 2002), the Grenville Orogen at ca. 1.2–0.9 Ga (Carr et al., 2004)<br />

reflecting the assembly of Rodinia (Moores, 1991), the diachronous breakup of Rodinia at<br />

0.7-0.8 Ga and 0.6-0.5 Ga (Li et al., 2008), and the Appalachian Orogen at 0.3-0.4 Ga<br />

linked to Pangea assembly (Cocks and Torsvik, 2002). Lower intercept ages in the U-Pb<br />

system reflect tectonic activity during the Cordilleran Orogen (Molnar and Atwater, 1978)<br />

and recent reactivation during the Pleistocene glaciations (Adams, 1989).<br />

In the South Alligator River area, deposits also have been significantly affected by<br />

late fluid events related to fault reactivation during successive regional thermotectonic<br />

events that occurred over a period of at least 1.8 Gyrs. The first coincided with the timing<br />

of the ca. 1720 Ma Oenpelli dolerite intrusion (Sweet et al., 1999). Uraninite from the<br />

Coronation Hill deposit record the Isan Orogen (1600-1580 Ma) in northern Australia<br />

(Hand, 2006), shortly after formation of unconformity-related U mineralization in the<br />

Kombolgie Basin (Polito et al., 2004). From the Mesoproterozoic to recent time, far field<br />

tectonic events affected deposits in the South Alligator River area as discussed in a greater<br />

detail in Chapter 4.<br />

Electron microprobe analyses of various chlorite phases in deposits of the<br />

Beaverlodge and South Alligator River areas indicate also that these deposits were<br />

subsequently altered to low-temperature, recording the effect of late fluid events. These<br />

events may represent incursion and circulation of meteoric water through fault zones<br />

(Kotzer and Kyser, 1995). Hydrogen isotopic composition of chlorites in the Beaverlodge<br />

200


area record retrograde exchange of H-isotopes with relatively recent meteoric water having<br />

low δ 2 H values (e.g. Kyser and Kerrich, 1991). The preferential exchange of H-isotopes in<br />

these chlorites suggests that the fault zones were active after U-mineralization and remain<br />

a zone of preferential fluid circulation (e.g. Fayek and Kyser, 1997).<br />

5.3. Implication for uranium metallogeny in others Paleoproterozoic successor<br />

basins: the case of Finland and Guyana<br />

U mineralization in Paleoproterozoic successor basins similar to those in the<br />

Beaverlodge and South Alligator River areas are also known in Finland and Guyana.<br />

5.3.1. Uranium metallogenic in Paleoproterozoic successor basins in Finland<br />

Rocks of the Fennoscandinavian shield in central Finland (Fig. 5.4) are divided into<br />

the Karelian and Kola domains separated by the Lapland granulite belt (Sorjonen-Ward et<br />

al., 1994). The Kola domains comprise Archean and Paleoproterozoic terrains that were<br />

accreted to the Karelian domain between 2 Ga and 1.8 Ga (Sorjonen-Ward and Luukkonen,<br />

2005) and consist of granitoids and gneisses (Gaál and Gorbatschev, 1987). The 2.5-1.85<br />

Ga Karelian domain consists of Neoarchean basement and Paleoproterozoic sedimentary<br />

rocks with minor volcanic rocks and occurs in separate basins within Neoarchean basement<br />

blocks.<br />

201


Kolari-Kittila<br />

Province<br />

Kuusamo<br />

Province<br />

Muhos<br />

Basin<br />

Koli<br />

Province<br />

Satakunta<br />

Basin<br />

Uussimaa<br />

Province<br />

Figure 5.4. Bedrock of Finland showing the location of Mesoproterozoic basins and successor<br />

basin U provinces. Map from Geological Survey of Finland.<br />

The early Paleoproterozoic Karelian rocks in the Koli province (Fig. 5.4) have been<br />

affected by amphibolite facies metamorphism and cut by 2.1–1.97 Ga tholeitic and 2.2 Ga<br />

spilitic intrusions (Saltikoff et al., 2006) (Fig. 5.5). The Karelian stratigraphy comprises the<br />

Sariolan (2.5–2.3 Ga), Jatulian (2.3–2.0 Ga), and Kalevan (2.0–1.9 Ga) units (Fig. 5.5; äikä,<br />

202


2006) that likely formed during rifting and breakup between 2.5 Ga and 2.0 Ga that<br />

strongly affected and partly dispersed the Archean domains (Gorbatschev and Bogdanova,<br />

1993). Sedimentary rocks of the Jatulian lower sequence (Fig. 5.5) constitute a successor<br />

basin to this major tectonic event and are later inverted during the 1.95-1.82 Ga<br />

Svecofennian Orogen (Pharaoh and Brewer, 1990), exhumed and overlain by the late<br />

Mesoproterozoic Satakunta Basin at ca.1.4–1.3 Ga (Simonen, 1980).<br />

Figure 5.5. Schematic Karelian stratigraphy, lithology, and uranium occurrences in the Koli<br />

area, eastern Finland, showing location of various U deposits (modified from Piiarinen (1968),<br />

Merlainen (1980) and Äikä (2006))<br />

In the Koli domain, six U deposits are known within the lower quartzite and middle<br />

arkosite member of the Jatulian unit (Fig 5.5, Äikä, 2006).<br />

203


The uranium deposits in various provinces shown in Fig. 5.4 have been interpreted as<br />

epigenetic in origin with fluid probably originated from the Archean granitoids and<br />

associated Paleoproterozoic rocks (Äikä and Sarikkola, 1987). The U mineralization occurs<br />

as: (1) lenses and disseminations in the quartz-pebble conglomerate in quartzite and<br />

arkosite members, (2) near the contact between the Jatulian diabase dikes and the basal<br />

conglomerate where they cut the uraniferous quartzite-conglomerate horizon, and (3) at the<br />

unconformity between the Sariolian basement rocks and the basal conglomerate of the<br />

lower Jatulian unit (Fig.5.5).<br />

Recent geochronological studies suggest that the age of the Jatulian U mineralization<br />

is close to ca. 2273 Ma (K. Kyser, pers. Comm.2012) with extensive late alteration related<br />

to subsequent tectonic events such as the dominant 1.95-1.82 Ga Svecofennian Orogen<br />

(Pharaoh and Brewer, 1990). The age of the U mineralization in this successor basin is<br />

therefore older than the overlying late Mesoproterozoic Satakunta sandstones deposited at<br />

1.4-1.3 Ma (Fig. 5.4). Aikas and Sarikkola (1987) suggested that mineralogical and<br />

geochemical evidence indicate multistage epigenetic U mineralization in these deposits.<br />

Äikä and Sarikkola (1987) and Saltikoff et al (2006) suggested some similarities with<br />

known economically important, unconformity, vein, breccia, and sandstone deposit styles.<br />

The styles of U mineralization spatially associated with Jatulian successor basins in<br />

the Koli area, the occurrence of U at the basal Jatulian unconformity, the close association<br />

between the U mineralization and the 2.1–1.97 Ma mafic dikes, and U occurrences as<br />

disseminations in metamorphosed conglomerate of the Jatulian quartzite and arkosite<br />

members (Fig. 5.5), suggest many similarities between these deposits and U deposits<br />

204


associated with the Martin Lake successor Basin in the Beaverlodge area and El Sherana<br />

Basin in South Alligator River area. U mineralization at the basal Jatulian unconformity<br />

may have formed from fluid originating from diagenetic processes in the overlying basal<br />

quartzite and conglomerates of the lower Jatulian sequence similar to deposits in the South<br />

Alligator River area. U mineralization in close association with the mafic dikes are similar<br />

to those of volcanic-type associated with the Martin Lake mafic dikes in the Beaverlodge<br />

area. Uranium mineralization disseminated in the metamorphosed conglomerate of the<br />

quartzite and arkosite members could have originated from remobilization of pre-existing<br />

uranium enrichments from the Sariolian rocks along fault zones (K. Kyser, pers. Comm.<br />

2012).<br />

The occurrence of early U mineralization associated with the Jatulian successor basin<br />

could be a favorable indication for the presence of unconformity-related U mineralization<br />

in the younger overlying late Mesoproterozoic basins in the Karelia region of Finland, as<br />

the early U mineralization in the successor basin could be a potential source for detrital<br />

uraninite in younger Mesoproterozoic basins, such as the Satakunta Basin (Fig. 5.4).<br />

5.3.2. Uranium metallogeny in Paleoproterozoic basins in Guyana<br />

The Roraima Basin was deposited in a large Paleoproterozoic foreland basin in<br />

northern South America. The basin covers a large area in Brazil, Venezuela, Guyana,<br />

Suriname, and Colombia (Fig. 5.6) and consists mostly of horizontal and gently dipping<br />

fluvial sandstones (Santos al., 2003).<br />

205


Fig. 5.6. Distribution of the Roraima Supergroup and outliers in northern South America<br />

(modified from Santos et al., 2000).<br />

This broad region comprises five geologic provinces of different age and structural<br />

settings: the Archean Imataca province and the Proterozoic Trans-Amazon, Tapajo´s-<br />

Parima, Central Amazon, Rio Negro, and Sunsa´s provinces (Santos et al., 2000). Roraima<br />

Basin sedimentary rocks consist principally of sandstone derived from the 2.25–2.0 Ga<br />

Trans-Amazonian granitoid-greenstone basement rocks (Santos et al., 2000; Gibbs and<br />

Olszewski, 1982), to the north and northeast and deposited in braided, deltaic, and shallow<br />

marine environments (Reis et al., 1990). These sediments overlap sandstones of the post-<br />

Roraima Neblina successor foreland basin (Pinheiro et al., 1976), which was also derived<br />

206


from both the Trans-Amazon and Tapajo´s-Parima orogenic belts to the east and northeast<br />

(Santos al., 2003). The minimum age of the Roraima Basin was determined by U-Pb<br />

geochronology from mafic sills to be 1782±3 Ma (Santos et al., 2003).<br />

A number of U showings are spatially associated with the Roraima Basin. These<br />

include the Aricheng albitite-hosted U mineralization (Fig. 5.7) and several other<br />

occurrences hosted by the Kurupung Batholith in the basement near the Roraima Basin, in<br />

western Guyana (Cinelu and Cuney 2006; Alexandre, 2010).<br />

The Aricheng deposit is geologically similar to albitite-hosted deposits worldwide<br />

(Cinelu and Cuney 2006, Alexandre, 2010). The Lagoa Real and Espinharas U deposits in<br />

Brazil have host rocks that resemble those of around Kurupung Batholith in the Aricheng<br />

deposit. Syn-ore hydrothermal zircon gives a minimum age of 1995±15 Ma for the U<br />

mineralization (Alexandre, 2010), which is older than the age of the Roraima Basin. The<br />

timing and style of U mineralization in the Aricheng deposit (Cinelu and Cuney 2006,<br />

Alexandre, 2010) in Guyana and Lagoa Real (Lobato and Fyfe, 1990) and Espinharas<br />

deposits (Porto de Silveira et al. 1991) in Brazil are similar to those of the granite-related U<br />

mineralization in the Beaverlodge area (Dieng et al., 2011). This early U mineralization<br />

associated with the underlying basement rock in the Roraima Basin could have been a<br />

potential source for detrital uraninite in the younger Paleoproterozoic Roraima Basin as<br />

most of the detritus in the basin were derived from Trans-Amazonian granitoids (Orestes<br />

al., 2003) that host most of the U deposits in the successor basins.<br />

The presence of early U mineralization in successor basins is thus a favorable<br />

indication for unconformity-related U mineralization in the younger Paleoproterozoic<br />

207


Roraima Basin, similar to what is observed in the Beaverlodge area in Canada, the South<br />

Alligator River area in Australia, and the Koli province in eastern Finland<br />

Fig. 5.7. Geological map of the Aricheng occurrence with the major geotectonic units in South<br />

America (top) and with the major rock types observed in its vicinity in western Guyana<br />

(bottom) (modified from Alexander et al., 2010).<br />

208


CHAPTER 6<br />

CONCLUSIONS<br />

An integrated multidisciplinary geological study, including structural geology,<br />

geochronology, petrographic and geochemistry approaches, was used to detail the structural<br />

and fluid evolution of uranium deposits in successor basins in the Beaverlodge area in<br />

Canada, and the South Alligator River area in Australia.<br />

The results presented in this research demonstrate that:<br />

a) The Beaverlodge area in Canada and the South Alligator River area in Australia record<br />

ore-forming systems that resulted from multistage deformation, hydrothermal<br />

alteration, U mineralization, and late fluid processes during protracted tectonic<br />

evolution that spans over 2.3 Gyr.<br />

b) The main breccia-type U mineralizing event that affected all deposits in the<br />

Beaverlodge area formed at ca. 1850 Ma from Ca-Na-dominated metamorphic fluids at<br />

ca. 330 o C linked to metasomatism accompanying regional metamorphism of the Trans-<br />

Hudson Orogen. The ore-forming fluids were likely derived from metamorphic<br />

remobilization of pre-existing U-rich basement rocks, and ascended upward along deep<br />

fracture systems that resulted from brittle reactivation of early ductile shear zones. U<br />

precipitated when decompression during brecciation decrease the solubility of the U-<br />

carbonates complexes and the temperature of the fluid.<br />

c) Early minor stages of U mineralization in the Beaverlodge area are hosted in<br />

cataclasite and veins at ca. 2.29 Ga and in albitized granite in the Gunnar deposit<br />

209


etween ca. 2.3 Ga and 1.9 Ga. Later stages are related to minor U veins at ca. 1.82 Ga<br />

linked to Martin Lake mafic dikes and to minor late veins at ca. 1.62 Ga corresponding<br />

to the timing of unconformity-type U mineralization in the Athabasca Basin.<br />

d) The main event of U mineralization in the South Alligator River area formed at ca.<br />

1820 Ma, subsequent to deposition of the El Sherana Group at 1840-1830 Ma. The<br />

formation of these deposits is related to fluids derived from diagenetic processes in<br />

sandstone of the El Sherana Group. The source of the ore was likely U-bearing<br />

minerals in the sandstone and volcanic rocks of the El Sherana Group and the source of<br />

metals such as Au and PGE are from basement rocks, similar to some of the multielement<br />

deposits (i.e. Nicholson) in the Beaverlodge area of Canada. These deposits<br />

can be classified as a variation on unconformity-related U mineralization similar to<br />

those in the overlying Kombolgie Basin. Tectonic reactivation of the El Sherana-<br />

Palette fault during the Nimbuwah event would have provided structural conduits for<br />

hydrothermal basinal brines that descended downward into the metamorphic basement<br />

rocks. Interaction between the oxidizing U-bearing basinal brines and the reducing<br />

carbonaceous shale of the Koolpin Formation would have led to U precipitation.<br />

Uranium deposits in the Beaverlodge and South Alligator River areas record late<br />

alteration fluid events related to both near and far-field tectonic events. These late<br />

events represent circulation of meteoric water through fault zones.<br />

e) Uraninite in major structures is greatly sensitive to fluid events stimulated by both<br />

near- and far-field tectonic events. It can serve as vehicle to understand the complex<br />

210


timing relationships between fault activities, hydrothermal and ore-forming processes<br />

to regional thermotectonic events.<br />

f) Uranium deposits in the Beaverlodge and South Alligator River area are older than<br />

those in the U-rich Athabasca and Kombolgie basins. Rocks that host these deposits<br />

have been folded and exhumed during subsequent tectonic events. These older U<br />

deposits can be considered as a potential source for detrital uraninite that fed sediments<br />

of the Athabasca and Kombolgie basins and therefore contributed to the inventory of<br />

uranium that formed unconformity-related U mineralization in the younger basins.<br />

g) Uranium deposits in the Beaverlodge and South Alligator River areas share many<br />

similarities with those associated with the Jatulian successor basin of the<br />

Fennoscandinavian shield of central Finland. The overlying late Mesoproterozoic<br />

Satakunta Basin can be considered as being a potential basin to host unconformityrelated<br />

U mineralization similar to those in the Athabasca and the Kombolgie basins.<br />

Similarly, the Roraima basin in Guyana has also potential to host unconformity-related<br />

U mineralization.<br />

h) The occurrence of older U mineralization associated with successor basins and<br />

basement lithology can be considered as a new criterion for exploration of<br />

unconformity-related uranium mineralization in younger Paleoproterozoic basins.<br />

211


REFERENCES<br />

Adams, J., 1989. Postglacial faulting in eastern Canada: Nature, origin and seismic hazard<br />

implications. Tectonophysics 163, issue 3-4, 323-331.<br />

Ahmad M, Lally J.H., McCready A.J., 2006. Economic geology of the Rum Jungle Mineral<br />

Field, Northern Territory. Northern Territory Geological Survey, Report 19.<br />

Äikä, O and Sarikkola, R., 1987. Uranium in lower Proterozoic conglomerates of the Koli<br />

area, eastern Finland. In: Uranium deposits in Proterozoic quartz-pebble<br />

conglomerates. IAEA-TECDOC-427, Wien, pp. 189–234.Aldrich, L. T. and<br />

Wetherill, G. W., 1956. Evaluation of mineral age measurements, I and II.<br />

National Research Council Science 19, 147-156.<br />

Äikä, O., 2006. Uranium in Finland: Geology, deposits & exploration. http://www.atsfns.fi/archive/esitys_aikas.pdf<br />

Alexandre P. and Kyser K., 2005. Effects of cationic substitutions and alteration of<br />

uraninite and implications for the dating of uranium deposits. Canadian<br />

Mineralogy 43, 1005–1017.<br />

Alexandre P., Kyser K., Thomas D., Polito P., Marlat J., 2007. Geochronology of<br />

unconformity-related uranium deposits in the Athabasca Basin, Saskatchewan,<br />

Canada and their integration in the evolution of the basin. Mineralium Deposita.<br />

44-1, 41-59.<br />

Alexandre P., Kyser K., Thomas D., Polito P., Marlat J., 2009, Geochronology of<br />

unconformity-related U deposits in the Athabasca Basin, Saskatchewan, Canada<br />

and their integration in the evolution of the basin: Mineralium Deposita, v. 44-1,<br />

p. 41-59.<br />

Alexandre, P., 2010. Mineralogy and Geochemistry of Sodium Metasomatism-Related<br />

Uranium Occurrence of Aricheng South, Guyana,” Mineralium Deposita, Vol.<br />

45, No. 4, pp. 351-367.<br />

Alexandre P., Kyser K., Layton-Matthews D., 2010. REE concentrations in zircon and the<br />

origin of U in the unconformity-related U deposits in the Athabasca Basin,<br />

Canada: GeoCanada 2010, 10-14 May, Calgary, Canada.<br />

Allen, J. A., 1963. Structural control of the 01 and 09 orebodies, Ace and Fay mine,<br />

Beaverlodge, Saskatchewan. Unpublished M.Sc. Queen’s <strong>University</strong>, Kingston,<br />

Ontario, Canada, 70p.<br />

Ansdell, K.M. and Yang, H., 1995. Detrital zircons in the McLennan Group meta-arkoses<br />

and MacLean Lake belt, western Trans-Hudson Orogen: In Hajnal, Z., Lewry, J.<br />

212


(Eds.). Lithoprobe Trans-Hudson Orogen Transect Report 48, Lithoprobe<br />

Secretariat, <strong>University</strong> of British Columbia, pp. 190–197.<br />

Ansdell, K.M., Corrigan, D., Stern, R., Maxeiner, R., 1999. Shrimp U–Pb geochronology<br />

of complex zircons from Reindeer Lake Saskatchewan: implications for timing<br />

of sedimentation and metamorphism in the northwestern Trans-Hudson Orogen.<br />

Geological Association of Canada. Abstract 24, 3–4.<br />

Ansdell, K.M., 2005. Tectonic evolution of the Manitoba-Saskatchewan segment of the<br />

Paleoproterozoic Trans-Hudson Orogen, Canada. Canadian Journal of Earth<br />

Sciences 42, 741-759.<br />

Ashton, K. E. and Card, C. D., 1998. Rae northeast: a reconnaissance of the Rae province<br />

northeast of Lake Athabasca. Saskatchewan Geological Survey. Miscellaneous<br />

Report 98-4, 3–16.<br />

Ashton, K. E., Kraus, J., Hartlaub, R. P., Morelli, R., 2000. Uranium City revisited: a new<br />

look at the rocks of the Beaverlodge Mining Camp. Saskatchewan Geological<br />

Survey. Miscellaneous Report 2000-4, 2 3–15.<br />

Ashton, K. E., Boivin, D., Heggie, G., 2001. Geology of the southern Black Bay Belt, west<br />

of Uranium City, Rae province. Saskatchewan Geological Survey, Miscellaneous<br />

Report 2001-4, 50–63.<br />

Ashton, K.E., Hartlaub, R.P., Heaman, L.M., Morelli, R., Bethune, K.M., Hunter, R.C.,<br />

2004. Paleoproterozoic sedimentary successions of the southern Rae Province:<br />

Ages, origins and correlations: Geological Association Canada/Mineralogy<br />

Association Canada, Jt. Annual Meeting., St. Catharines, Abstract. V., CD-ROM,<br />

p. 434.<br />

Ashton, K.E. and Hartlaub, R.P., 2008. Geological compilation of the Uranium City area.<br />

Saskatchewan Ministry of Energy and Resources, Open File 2008-5, set of four<br />

1:50 000- scale maps.<br />

Ashton, K.E., Hartlaub, R.P., Heaman, L.M., Morelli, R.M., Card, C.D., Bethune, K.,<br />

Hunter. R.C., 2009a. Post-Taltson sedimentary and intrusive history of the<br />

southern Rae province along the northern margin of the Athabasca Basin,<br />

Western Canadian shield. Precambrian Research 175, 16-34.<br />

Ashton, K.E., Rayner, N.M., Bethune, K.M., 2009b. Meso- and Neoarchean Granitic<br />

Magmatism, Paleoproterozoic (2.37 Ga and 1.93 Ga) Metamorphism and 2.17<br />

Ga Provenance Ages in a Murmac Bay Group Pelite; U-Pb SHRIMP Ages from<br />

the Uranium City Area. In Summary of Investigations, 2009. v. 2, Saskatchewan<br />

Geological Survey, Saskatchewan Ministry of Energy and Resources,<br />

Miscellaneous Report, 2009-4,2, Paper A-5, 9p.<br />

213


Ashton, K.E., 2010. The Gunnar Mine: an episyenite-hosted, granite-related uranium<br />

deposit in the Beaverlodge uranium district; in Summary of Investigations 2010<br />

Volume 2,. Saskatchewan Geological Survey, Saskatchewan Ministry of Energy<br />

and Resources, Miscellaneous Report, 2010-4,2, Paper A-4, 21p.<br />

Ayres, D.E. and Eadington P.J., 1975. Uranium Mineralization in the South Alligator<br />

ValleyValley. CSIRO Division of Mineralogy, Sydney, Aust. Min. Deposita<br />

Berl.. 10, 27-41.<br />

Baldwin, J.A., Bowring, S.A., Williams, M.L., 2003. Petrological and geochronological<br />

constraints of high pressure, high temperature metamorphism in the Snowbird<br />

tectonic zone, Canada. Journal of Metamorphic Geology 21, 81–98.<br />

Barinek, M. F., Foster C. T., Chaplinsky P. P., 1999. Metamorphism and deformation near<br />

the N 1.4-Ga Mount Ethel pluton, Park Range, Colorado. Rocky Mountain<br />

Geology 34, 21-35.<br />

Beck, L.S., 1969. Uranium Deposits of the Athabasca Region, Saskatchewan.<br />

Saskatchewan Department Mineral Resources 126, 139p.<br />

Beecham, A.W., 1969. A structural study of the ABC fault, Beaverlodge, Saskatchewan.<br />

Unpublished M.Sc. thesis, Queen’s <strong>University</strong>, Kingston, Ontario, Canada 80p.<br />

Belevtsev, Y.N. and Koval, V.B., 1968. Genesis of U deposits associated with sodium<br />

metasomatism in crystalline rocks of shields: Geologicheskiy Zhurnal (Kiev.) v.<br />

28, p. 4-17.<br />

Bell, K., 1981. A review of the geochronology of the Precambrian of Saskatchewan- some<br />

clues to uranium mineralization Mineralogical Magazine. Vol. 44, 371-378.<br />

Bergeron, J., 2001. Deformation of the Black Bay structure: Unpublished M.Sc. Thesis,<br />

<strong>University</strong> of Saskatchewan, Saskatoon, Saskatchewan.<br />

Bergeron, J., Stauffer, M., Ansdell, K., 2002. The Black Bay deformation zone, Rae<br />

province, Canadian Shield: Archean ductile deformation to Paleoproterozoic<br />

brittle slip; 900 my of reactivation. Geological Association Canada – Mineralogy<br />

Association Canada, Program with Abstract, 27, 8.<br />

Berman, R.G., Sanborn-Barrie, M., Stern, R.A., Carson, C., 2005. Tectono-metamorphism<br />

at ca. 2.35 and 1.85 Ga in the Rae domain, western Churchill province, Nunavut,<br />

Canada: insights from structural, metamorphic and in situ geochronological<br />

analysis of the southwestern Committee Bay belt. Canadian Mineralogy 43, 409–<br />

442.<br />

214


Berman, R.G., Davis, W.J., Pehrsson, S., 2007a. The collisional Snowbird tectonic zone<br />

resurrected: growth of Laurentia during the 1.9 Ga accretionary phase of the<br />

Trans-Hudson Orogen. Geology 35, 911–914.<br />

Berman, R.G., Ryan, J.J., Davis, W.J., Nadeau, L., 2008. Preliminary results of linked insitu<br />

SHRIMP dating and thermobarometry studies in the Boothia mainland area,<br />

north-central Rae province, Nunavut. Geological Survey of Canada 2, 1–13.<br />

Berman, R.G., Sandeman, H.A.I., Camacho, A., 2010. Diachronous deformation and<br />

metamorphism in the Committee Bay belt, Rae province, Nunavut: insights from<br />

40Ar–39Ar cooling ages and thermal modeling: Precambrian Research181,<br />

Issues 1-4, 1-20.<br />

Bethune, K.M., 1997. The Sudbury dike swarm and its bearing on the tectonic development<br />

of the Grenville Front, Ontario, Canada: Precambrian Research 85, 117-146.<br />

Bethune, K.M., Ashton, K.E., Berman, R.G., Knox, B., 2008. U–Pb SHRIMP<br />

geochronology in the western Beaverlodge Domain, Saskatchewan: unraveling<br />

the polyphase tectono-metamorphic history of the SW Rae province. GAC–MAC<br />

2008 Abstract, 33, 21.<br />

Bethune, K., Ashton, K. E. and Knox, B., 2010. Tectonic evolution of the Beaverlodge<br />

domain, SW Rae province, based on structural, petrological and<br />

geochronological study: implications for the nature and extent of Taltson (-<br />

Thelon) Orogen and the origin of the Snowbird tectonic zone. Geocanada, 2010,<br />

Calgary, Canada.<br />

Beyer, S. R., 2011, Basin analysis and the evaluation of critical factors for unconformityrelated<br />

U mineralization, Paleoproterozoic western Thelon and Otish basins,<br />

Canada: Unpublished Ph.D. thesis, Queen’s <strong>University</strong> Kingston, Ontario,<br />

Canada, 230 p.<br />

Bilal, B.A. and Koss, V., 1980a, Studies on the distribution of fluoro complexes of rare<br />

earth elements in fluorite bearing model systems: Journal of Inorganic and<br />

Nuclear Chemistry, v. 42, p. 629-630.<br />

Bogdanova, S. V., Pisarevsky, S. A., Li, Z. X., 2009. Assembly and Breakup of Rodinia<br />

(Some Results of IGCP Project 440): Stratigraphy and Geological Correlation<br />

17, 259–274.<br />

Bostock, H.H. and van Breemen, O., 1992. The timing of emplacement and distribution of<br />

the Sparrow diabase dike swarm, District of Mackenzie, Northwest Territories:<br />

In Radiogenic Age and Isotopic Studies: Report 6, Geological Survey of Canada<br />

92-2, 49-55.<br />

215


Bowles, J.F.W., 1990. Age dating of individual grains of uraninite in rocks from electron<br />

microprobe analyses. Chem. Geology. 83, 47-53.<br />

Capuano R.M., 1992. The temperature dependence of hydrogen isotope fractionation<br />

between clay minerals and water: Evidence from a geopressured system.<br />

Geochim. Cosmochim. Acta 56, 2547–2554.<br />

Card, C.D., Pana, D., Portella, P., Thomas, D.J., Annesley, I.R., 2007. Basement rocks to<br />

the Athabasca Basin, Saskatchewan and Alberta, in: EXTECH IV, Geology and<br />

Uranium Exploration Technology of the Proterozoic Athabasca Basin,<br />

Saskatchewan and Alberta. Geological Survey Canada, Bulletin. 588, pp. 193–<br />

209.<br />

Carr, S.D., Easton, R.M., Jamieson, R.A., Culshaw, N.G. and White, D.J., 2004. The<br />

Grenville Orogen of Ontario and New York—a Himalayan-scale mountain belt:<br />

Significance of along strike-variations: In: The Celebratory Conference, From<br />

Parameters to Processes—Revealing the Evolution of a Continent, October 12-<br />

15, 2004, Toronto, Program and Abstract, Lithoprobe Secretariat, <strong>University</strong> of<br />

British Columbia, Vancouver, British Columbia, Lithoprobe Report No. 86, 4p.<br />

Carville D.P, Leckie J.F, Moorhead C.F, Rayner J.G, Durbin A.A., 1990. Coronation Hill<br />

gold-platinum palladium deposit: in Hughes FE editor. ‘Geology of the mineral<br />

deposits of Australia and Papua New Guinea. The Australasian Institute of<br />

Mining and Metallurgy Monograph 14, 759 – 762.<br />

Carville D.P, Leckie J.F, Moorhead C.F, Rayner, J.G., 1991. Coronation Hill Unconformity<br />

related gold, platinum, palladium prospect, Northern Territory. World Gold 91,<br />

Australasian Institute of Mining and Metallurgy, 287-291.<br />

Cathelineau, M., 1988. Cation site occupancy in Chlorite and illites as a function of<br />

temperature: Clay Minerals, v. 23, p. 471–485.<br />

Chacko, T., De, S. K., Creaser, R. A., Muehlenbachs, K., 2000. Tectonic setting of the<br />

Taltson magmatic zone at 1.9–2.0 Ga: a granitoid-based perspective. Canadian<br />

Journal of Earth Sciences 37, 1597–1609.<br />

Chiarenzelli, J.R., Aspler, L.B., Villeneuve, M., Lewry, J.F., 1998. Paleoproterozoic<br />

evolution of the Saskatchewan Craton, Trans-Hudson Orogen. J. Geol. 106, 247–<br />

267.<br />

Chipley, D., Paul A., Polito, T., Kyser K., 2007. Measurement of U-Pb ages of uraninite<br />

and davidite by laser ablation-HR-ICP-MS. American Mineralogist 92, 1925–<br />

1935.<br />

216


Cinelu, S. and Cuney, M., 2006, Sodic metasomatism and U–Zr mineralization: A model<br />

based on the Kurupung batholith (Guyana): Abstract, Geochimica et<br />

Cosmochimica Acta, v. 70, p. 103.<br />

Clayton, R.N., and Mayeda, T.K., 1963. The use of bromine pentafluoride in the extraction<br />

of oygen from oxides and silicates for isotopic analysis: Geochimica et<br />

Cosmochimica Acta, v. 27, p. 43–52.<br />

Clendenin, C.W., Charlesworth E.G., Maske S., 1988. Tectonic style and mechanism of<br />

Early Proterozoic successor basin development, southern Africa. Tectonophysics<br />

156, 275-291.<br />

Cloutier J, Kyser K, Olivo G.R, Alexandre P., Halaburda J., 2009. The Millennium<br />

Uranium Deposit, Athabasca Basin, Saskatchewan, Canada: An Atypical<br />

Basement- Hosted Unconformity-Related Uranium Deposit: Economic Geology,<br />

104, 815-840.<br />

Cocks, L.R.M. and Torsvik, T.H., 2002. Earth Geography from 500 to 400 million years<br />

ago: a faunal and palaeomagnetic review. Journal Geological Society London<br />

159, 631-644.<br />

Collins, C.B., Farquhar, R.M. and Russel, R.D., 1954. Isotopic constitution of radiogenic<br />

leads and the measurements of geological time. Geological Society America 65,<br />

1-22.<br />

Condon M.A and Walpole B.P, 1955. Sedimentary environments as a control of uranium<br />

mineralisation in the Katherine– Darwin region, Northern Territory. Bureau of<br />

Mineral Resources, Australia, Report 24.<br />

Connors K.A and Page R.W., 1995. Relationships between magmatism, metamorphism and<br />

deformation in the western Mount Isa inlier, Australia. Precambrian Res 71:131–<br />

153<br />

Cooper, J.A., 1973. On the age of uranium mineralization at Nabarlek, N. T., Australia. J.<br />

Geol. Soc. Australia 19, 483<br />

Corrigan, D., Pehrsson, S., Wodicka, N., Kemp, E., 2009. The Paleoproterozoic Trans-<br />

Hudson Orogen: a prototype of modern accretionary processes. Journal<br />

Geological Society of London 327, 457-479.<br />

Crick, I.H, Muir M.D, Needham R.S, Roarty M.J., 1980. The Geology and Mineralization<br />

of the South Alligator Valley Mineral Field. In J. Ferguson and A. Goleby, Eds.,<br />

Uranium in the Pine Creek Geosyncline, p. 273–285. Proceedings of the<br />

International Atomic Energy Agency, Vienna<br />

217


Cuney, M.L., 2005. World-class unconformity-related uranium deposits: key factors for<br />

their genesis. In: Mao Jingwen & Bierlein FP eds., Mineral Deposit Research:<br />

Meeting the Global Challenge. Proceedings of the Eighth Biennial SGA Meeting<br />

2005, Beijing, August 18–21.<br />

Cuney, M. and Kyser, K., 2008. Recent and not-so-recent developments in U deposits and<br />

implications for exploration: Mineralogical Association of Canada, Short Course<br />

Series Volume 39, 257 p.<br />

Cuney, M., 2010. Evolution of Uranium Fractionation Processes through Time: Driving the<br />

Secular Variation of Uranium Deposit Types: Economic Geology, v. 105, p. 553-<br />

569.<br />

Dahlkamp, F.J., 1978. Geologic appraisal of the Key Lake U-Ni deposits, northern<br />

Saskatchewan: Economic Geology, v. 73, p. 1430-1449.<br />

Dalziel, I.W.D., 1991. Pacific margins of Laurentia and East Antarctica–Australia as a<br />

conjugate rift pair: Evidence and implications for an Eocambrian supercontinent:<br />

Geology, v. 19, 598–601.<br />

DeBaar, H.J.W., 1991. On cerium anomalies of the Saragasso Sea: Geochimica et<br />

Cosmochimica Acta, v. 55, p, 2981-2983.<br />

Deer, WA, Howie RA, Zussman J 1992. An introduction to the rock-forming minerals:<br />

London, Longman, 696.<br />

Dieng, S., Kyser, K., Godin, L., 2011. Tectonic setting, Fluid History and Genesis of<br />

Uranium Mineralization in the Beaverlodge area, Saskatchewan, Canada:<br />

Mineralogical Association of Canada, the Society of Economic Geologists and<br />

the Society for Geology Applied to Mineral Deposits (GAC- MAC), May 25-27,<br />

2011 Ottawa.<br />

Du Letian, 1986. Granite-type U deposits of China. In: H. Fuchs: Vein Type U Deposits:<br />

International Atomic Energy Agency, IAEA-TECDOC, v. 361, p. 377-393.<br />

Dudar, J. S., 1960. The geology and mineralogy of the Verna uranium deposit,<br />

Beaverlodge, Saskatchewan <strong>University</strong> of Michigan. Unpublished M.Sc thesis,<br />

312 pages.<br />

Dudás, F.Ő., Davidson, A., Bethune, K.M., 1994. Age of the Sudbury diabase dikes and<br />

their metamorphism in the Grenville province. Radiogenic age and isotopic<br />

studies. Geological Survey of Canada, Current Research 1994-F, 97-106.<br />

Eisele, J. and Isachsen, C.E., 2001. Crustal growth in southern Arizona: U-Pb<br />

geochronologic and Sm-Nd isotopic evidence for addition of the<br />

218


Paleoproterozoic Cochise block to the Mazatzal province. American Journal of<br />

Earth Sciences 310, 773–797.<br />

Eckelman, N.N. and Kulp J. L., 1957. Uranium-lead method of age determination II: North<br />

American Localities. BuIletin G.S.A.<br />

Edgecombe, S.M, Hazell M, Page R.W, Black L.P., Sun S.S., 2002. OZCHRON National<br />

Geochronology Database Canberra: Geoscience Australia. Accessible at<br />

http://www.ga.gov.au/ databases/20010926_27.jsp<br />

Ernst, R.E. and Buchan, K.L., 2001a. Mantle Plumes: Their Identification through Time.<br />

Geological Society of America Special Paper 352, 483-575.<br />

Ernst, R.E and Buchan, K.L., 2001b. Large mafic magmatic events through time and links<br />

to mantle plume heads. Geological Society of America Special Paper 362. 230 p<br />

Ernst, R.E., 2007. Large igneous provinces in Canada through time and their metallogenic<br />

potential, in: Goodfellow, W.D., ed., Mineral Deposits of Canada: A Synthesis of<br />

Major Deposit-Types, District Metallogeny, the Evolution of Geological<br />

provinces and Exploration Methods. Geological Association of Canada, Mineral<br />

Deposits Division, Special Publication No. 5, 929-937.<br />

Ernst, R.E., Wingate, M.T.D., Buchan, K.L., Li, Z.X., 2008. Global record of 1600–700 Ma<br />

Large Igneous provinces (LIPs): implications for the reconstruction of the<br />

proposed Nuna (Columbia) and Rodinia supercontinents. Precambrian Research<br />

160, 159–178.<br />

Eupene, G.S., 2003. Modelling of the Coronation Hill drill hole database. Northern<br />

Territory Geological Survey, Technical Note 2003-011.<br />

Evans, D.A.D. and Pisarevsky, S.A., 2008. Plate tectonics on early Earth Weighing the<br />

paleomagnetic evidence: In Condie, K.C., Pease, V. (Eds.), When Did Plate<br />

Tectonics Begin on Earth Geological Society of America, Special Paper, 249–<br />

263.<br />

Evans, A.D., Mitchell, R. N., Kilian, M., Joseph E. P., 2010. Reconstruction of Nuna: A<br />

working hypothesis: GeoCanada 2010, 10-14 May, Calgary, Canada.<br />

Evoy, E.F., 1961. Geology of the Gunnar uranium deposit, Beaverlodge area,<br />

Saskatchewan: Unpublished Ph.D thesis, <strong>University</strong> of Wisconsin, Madison, 62<br />

p.<br />

Faure, G., 1989, Principles of Isotope Geology: Wiley, New York, 1986; Mir, Moscow.<br />

Fayek, M. and Kyser, K., 1997. Characterization of multiple fluid-flow events and rareearth<br />

elements mobility associated with formation of unconformity uranium<br />

219


deposits in the Athabasca Basin, Saskatchewan: The Canadian Mineralogist 35,<br />

627-658.<br />

Ferenczi, P.A and Sweet I.P., 2005. Mount Evelyn, Northern Territory Second Edition.<br />

1:250 000 geological map series explanatory notes, SD 53-05. Northern Territory<br />

Geological Survey, Darwin.<br />

Ferguson, J. and Needham R.S., 1978. The Zamu Dolerite. A Lower Proterozoic<br />

preorogenic continental tholeiitic suite from the Northern Territory, Australia. J.<br />

Geol. Soc. Aust, 25: 309-322.<br />

Ferguson, J, Chappell B.W, Goleby A.B., 1980a. Granitoids in the Pine Creek Geosyncline:<br />

in Ferguson J and Goleby AB editors. Uranium in the Pine Creek Geosyncline.<br />

International Atomic Energy Agency, Vienna, 73–90.<br />

Fisher, W.J., 1969. Mining practice in the South Alligator Valley: Atomic Energy in<br />

Australia. 12, 25-40.<br />

Foy, M.F., 1975. South Alligator Valley Uranium Deposits. In Knight, C. L. ed.., Geology<br />

of Australia and Papua New Guinea: Melbourne, Australasian Institute of Mining<br />

and Metallurgy, 1, 301–303.<br />

Friedmann, J.S, and Grotzinger, P.J., 1994. Sedimentology, stratigraphy, and tectonic<br />

implication of a Paleoproterozoic continental extensional basin: the El Sherana–<br />

Edith River groups, Northern Territory, Australian: Canadian Journal of Earth<br />

Sciences, 31, 743–764.<br />

Fullerton, D.S., Colton, R.B., Bush, C.A. & Straub, A.W., 2003. Spatial and temporal<br />

relationships of Laurentide continental glaciations and mountains glaciations on<br />

the northern Plains in Montana and northwestern North Dakota, with<br />

implications for reconstruction of the configurations of vanished ice sheets: U.S.<br />

Geological Survey Miscellaneous Geologic Investigations Map, with text.<br />

Gaál, G and Gorbatschev, R., 1987. An outline of the Precambrian evolution of the Baltic<br />

Shield. In: Gaál, G and Gorbatschev, R. (Eds.), Precambrian Geology and<br />

Evolution of the Central Baltic Shield. Special Issue. Precambrian Research 35:<br />

15–52.Gao, S. and Wedepohl, K. H., 1995, The negative Eu anomaly in Archean<br />

sedimentary rocks: Implications for decomposition, age and importance of their<br />

granitic sources: Earth and Planetary Science Letters, v. 133, p. 81–94.<br />

Ghandi, 2007. Significant Unconformity Associated Uranium Deposits of the Athabasca<br />

Basin, Saskatchewan and Alberta, and Selected Related Deposits of Canada and<br />

the World: Geological Survey of Canada, Open File 5005, Saskatchewan<br />

Industry and Resources, Open File 2007- 11, CD-ROM.<br />

220


Gibbs, A.K., and Olszewski, W.J., 1982, Zircon U-Pb ages of Guyana greenstone-gneiss<br />

terrane: Precambrian Research, v. 17, p. 199–214.<br />

Greenhalgh, D. and Jeffery P.N., 1959. A contribution to the Precambrian chronology of<br />

Australia. Geochim. Cosmochim. Acta, 16: 39-57.<br />

Gulson,, B.L. and Mizon K.J., 1980. Pb isotope studies at Jabiluka. In: Ferguson J and<br />

Goleby, AB Eds.., Proceedings of the International Uranium Symposium on the<br />

Pine Creek Geosyncline International Atomic Energy, Vienna, 439–455.<br />

Gustafson, L.B. and Curtis L.W., 1983. Post-Kombolgie metasomatism at Jabiluka,<br />

Northern Territory, Australia, and its significance in the formation of high-grade<br />

uranium mineralization in lower Proterozoic rocks. Economic Geology 78, 26–<br />

56.<br />

Gorbatschev, R., and Bogdanova, S. 1993. Frontiers in the Baltic Shield: Precambrian<br />

Research, v. 64, pp. 3–21.<br />

Hajnal, Z., Lucas, S.B., White, D.J., Lewry, J., Bezdan, S., Stauffer, M.R. & Thomas,<br />

M.D., 1996. Seismic reflection images of strike-slip faults and linked<br />

detachments in the Trans-Hudson Orogen, Tectonics, 15, 427-439.<br />

Hand, M., 2006. Intracratonic Orogeny in Mesoproterozoic Australia. In: LYONS, P. &<br />

HUSTON, D. L. eds. Evolution and Metallogenesis of the North Australian<br />

Craton. Geoscience Australia, Record2006/16, Alice Springs.<br />

Hanley, L.M. and Wingate M.T.D., 2000. SHRIMP zircon age for an Early Cambrian<br />

dolerite dyke: an intrusive phase of the Antrim Plateau Volcanics of northern<br />

Australia: Australian Journal of Earth Sciences, 47, 1029–1040.<br />

Hanmer, S., Williams, M.L., Kopf, C., 1995. Striding-Athabasca mylonite zone:<br />

implications for Archean and Early Proterozoic tectonics of the western<br />

Canadian shield: Canada Journal Earth Science 32, 178–196.<br />

Harlan, S.S., Heaman, L.W., LeCheminant, A.N., Premo, W. R., 2003b. The Gunbarrel<br />

mafic magmatic event: A key 780 Ma time marker for Rodinia plate<br />

reconstructions. Geology 31, 1053–1056.<br />

Hartlaub, R. P. and Ashton, K. E., 1998. Geological investigations of the Murmac Bay<br />

group, Lake Athabasca north shore transect. Saskatchewan Geological Survey<br />

Miscellaneous Report 98-4, 17–28.<br />

Hartlaub, R. P., Heaman, L. M., Ashton, K. E., Chacko, T., 2004a. The Archean Murmac<br />

Bay Group: evidence for a giant Archean rift in the Rae province, Canada.<br />

Precambrian Research 131, 345–372.<br />

221


Hartlaub, R.P., Heaman, L.M., Chacko, T., Ashton, K.E., 2007. Circa 2.3-Ga magmatism<br />

of the Arrowsmith Orogen, Uranium City region, western Churchill Craton,<br />

Canada. Journal of Geology 115, 181-195.<br />

Hatcher, Jr., R.D., 2002. Alleghanian (Appalachian) Orogen, a product of zipper tectonics:<br />

Rotational transpressive continent–continent collision and closing of ancient<br />

oceans along irregular margins. Geological Society of America 364, 199-208.<br />

Heaman, L.M., LeCheminant, A.N., Rainbird, R.H., 1992. Nature and timing of Franklin<br />

igneous events, Canada; the break-up of Laurentia. Earth Planet Science Letters<br />

109, 117–131.<br />

Heaman, L.M., Hartlaub, R.P., Ashton, K.E., Harper, C.T., Maxeiner, R.O., 2003.<br />

Preliminary results of the 2002–2003 Saskatchewan Industry and Resources<br />

geochronology program. In Summary of Investigations 2003, 2. Saskatchewan<br />

Geological Survey, Saskatchewan Industry Resources, Miscellaneous Report<br />

2003-4, 2, Paper A-3, p. 4.<br />

Hedges, M.M., Wall V.J, Bloom M.S., 1984. Hydrothermal transport and deposition of<br />

uranium: Modelling and implications. Geol. Soc. Australia, 12, 226-227.<br />

Henderson, J.B., McGrath, P.H., Theriault, R.J., van Breemen, O., 1990. Intracratonic<br />

indentation of the Archean Slave province into the early Proterozoic Thelon<br />

tectonic zone of the Churchill province, NW Canadian shield: Canada Journal<br />

Earth Science 27, 1699-1713.<br />

Hendry, H. E., 1983. Sedimentology study of the Martin Group: In Summary of<br />

Investigations, 1983, Saskatchewan Geological Survey, Miscellaneous Report<br />

83-4, 46-48.<br />

Hiatt, E.E. and Kyser T.K., 2000. Links between depositional and diagenetic processes in<br />

basin analysis: Porosity and permeability evolution in sedimentary rocks:<br />

Mineralogical Association of Canada Short Course, 28, 63–92<br />

Hiatt, E.E, Fayek M, Kyser T.K, Polito 2001. The importance of early quartz cementation<br />

events in the evolution of aquifer properties of ancient sandstones: Isotopic<br />

evidence from ion probe analysis of sandstones from the McArthur, Athabasca,<br />

and Thelon basins [abs]: Geological Society of America Abstracts with<br />

Programs, 33, no 6, A74<br />

Hiatt, E.E, Kyser T.K, Fayek M, Polito P, Holk G.J., Riciputi L.R., 2007. Early quartz<br />

cements and evolution of paleohydraulic properties of basal sandstones in three<br />

Paleoproterozoic continental basins: Evidence from in situ δ18O analysis of<br />

quartz cements: Chemical Geology, 238, 19-37<br />

222


Hills, J.H and Richards J.R., 1972. The age of uranium mineralization in northern Australia<br />

Search; 392396<br />

Hills, J.H. and Richards J.R., 1976. Pitchblende and galena ages in the Alligator Rivers<br />

region, Northern Territory, Australia Mineralium Deposita, 11, 133–154<br />

Hoeve, J., 1982, Perspective on U mineralization at Beaverlodge: Saskatchewan Research<br />

Council, Publication. No. G-745-1-E-82.<br />

Hoeve, J., and Quirt, D., 1984. U mineralization and host rock alteration in relation to clay<br />

mineral diagenesis and evolution of the Middle-Proterozoic Athabasca basin,<br />

Saskatchewan Canada: Saskatchewan Research Council, Publication, R-855-2-B,<br />

190 p.<br />

Hoffman, P.F., 1987. Continental transform tectonics: Great Slave Lake shear zone (ca. 1.9<br />

Ga), northwest Canada. Geology 15, 785-788.<br />

Hoffman, P.F., 1988. United plates of America, the birth of a craton: early Proterozoic<br />

assembly and growth of Laurentia. Annual Review of Earth and Planetary<br />

Sciences 16, 543–603.<br />

Hoffman, P.F., 1989. Precambrian geology and tectonic history of North America, in: The<br />

Geology of North America: An Overview (eds. A.W. Bally and A.R. Palmer)<br />

Geological Society of America, Boulder pp. 447-511.<br />

Hoffman, P.F., 1990. Subdivision of the Churchill province and extent of the Trans-<br />

Hudson Orogen, in: The Early Proterozoic Trans-Hudson Orogen of North<br />

America. Edited by J.F. Lewry and M.R. Stauffer. Geology Association of<br />

Canada, Special Paper, 37, 15-39.<br />

Hoffman, P.F., 1997. Tectonic genealogy of North America, in: van der Pluijm, B,A. and<br />

Marshak, S., eds., Earth structure: An introduction to structural geology and<br />

tectonics: New York, McGraw-Hill, pp. 459–464.<br />

Hou, G., Santosh, M., Qian, X., Lister, G.S., Li, J., 2008. Configuration of the late<br />

Paleoproterozoic supercontinent Columbia: insights from radiating mafic dike<br />

swarms. Gondwana Research 14, 395–409.<br />

Hu, G.X., Clayton R.N., 2003. Oxygen isotope salt effects at high pressure and high<br />

temperature and the calibration of oxygen isotope geothermometry: Geochimica<br />

et Cosmochimica Acta v. 67, p. 3227-3246.<br />

Hunter, R.C., Bethune, K.M., Ashton, K.E., 2003. Stratigraphic and structural<br />

investigations of the Paleoproterozoic Thluicho Lake Group, central Zemlak<br />

Domain (Uranium City Project). In: Summary of Investigations 2003, Volume 2,<br />

223


Saskatchewan Geological Survey, Sask. Industry Resources, Misc. Rep. 2003-<br />

4.2, CD-ROM, Paper A-2, p. 14.<br />

Hunter, R.C., Bethune, K.M., Yeo, G.M., Ashton, K.E., 2004. Investigations of the<br />

Thluicho Lake Group: A stratigraphic, structural and tectonic perspective<br />

(Uranium City Project). In: Summary of Investigations 2004, Volume 2,<br />

Saskatchewan Geological Survey, Sask. Industry Resources, Misc. Rep. 2004-<br />

4.2, CD-ROM, Paper A-9, p. 14.<br />

Hynes, A., 1980. Carbonatization and mobility of Ti, Y, and Zr in Ascot Formation<br />

metabasalts, SE Quebec: Contrib. Miner. Petrol., v. 75, p. 79-87.<br />

Jagodzinski E.A., 1991. Stratigraphy of the Pul Pul Rhyolite, South Alligator Valley<br />

Mineral Field BMR Research Newsletter, 14, 4-5<br />

Jagodzinski, E.A., 1992. A study of the felsic volcanic succession south-east of Coronation<br />

Hill: Palaevolcanology-geochemistry-geochronology Bureau of Mineral<br />

Resources, Geology and Geophysics, Record, 1992/9, 147<br />

Jagodzinski, E.A., 1998. Shrimp U-Pb dating of ignimbrites in the Pul Pul Rhyolite,<br />

Northern Territory AGSO Research Newsletter, 28, 23–25<br />

Jefferson, C.W., Thomas, D.J., Gandhi, S.S., Ramaekers, P., Delaney, G., Brisbin, D.,<br />

Cutts, C., Portella, P., and Olson, R.A., 2007, Unconformity-associated uranium<br />

deposits of the Athabasca Basin, Saskatchewan and Alberta, in Jefferson, C.W.<br />

and Delaney, G., eds., EXTECH IV: Geology and uranium EXploration<br />

TECHnology of the Proterozoic Athabasca Basin, Saskatchewan and Alberta:<br />

Geological Survey of Canada, Bulletin 588, p. 23-67.<br />

Johns, R.W., 1970. The Athabasca U deposits: Western miner, Oct., p. 42-52<br />

Johnston, J.D., 1984. Structural evolution of the Pine Creek inliers and mineralization<br />

therein PhD thesis, Monash <strong>University</strong>, Australia<br />

Joubin, F.R., 1955. Some economic U deposits in Canada. Precambrian Research , v. 28,<br />

no.1 p. 6-8<br />

Kamo, S. L., Gower, C. F., Krogh, T. E., 1989. Birthdate for the Iapetus Ocean A precise<br />

U-Pb zircon and baddeleyite age for the Long Range dikes, southern Labrador:<br />

Geology, v. 17, p. 602–605.<br />

Karlstrom, K.E., Harlan, S.S., Williams, M.L., McLelland, J., Geissman, J.W. and Ahall,<br />

K.I., 1999. Refining Rodinia: Geologic evidence for the Australia–Western U.S.<br />

connection for the Proterozoic: GSA Today 9, no. 10, 1–7.<br />

224


Karlstrom, E.T., 2000. Fabric and origin of multiple diamictons within the pre-Illinoian<br />

Kennedy Drift of Waterton- Glacier International Peace Park, Alberta, Canada<br />

and Montana, USA. Geological Society of America Bulletin, 112, 1496–1506.<br />

Karlstrom, K.E., Ahall, K.-I., Harlan, S.S., William, M.L., McLelland, J. and Geissman,<br />

J.W., 2001. Long-lived (1.8–0.8 Ga) convergent Orogen in southern Laurentia,<br />

its extensions to Australia and Baltica and implications for refining Rodinia:<br />

Precambrian Research 111, 5–30.<br />

Koeppel, V., 1969. Age and history of the uranium mineralization of the Beaverlodge area,<br />

Saskatchewan. Geological Survey Canada, paper 67-31, 111p.<br />

Kojima, S., Takeda S., Kogita S., 1994, Chemical factors controlling the solubility of<br />

uraninite and their significance in the genesis of unconformity-related U<br />

deposits: Mineralium Deposita, v. 29 (4): p. 353-360.<br />

Kotzer, T.G. and Kyser, T.K., 1993. O, U, and Pb isotopic and chemical variations in<br />

uraninite: implications for determining the temporal and fluid history of ancient<br />

terrains. Am. Mineral. 78, 1262-1274.<br />

Kotzer, T.G., and Kyser, T.K., 1995. Petrogenesis of the Proterozoic Athabasca basin,<br />

northern Saskatchewan, and its relation to diagenesis, hydrothermal U<br />

mineralization and paleohydrology: Chemical Geology, v. 120, p. 45–89.<br />

Kretz, R., 1983. Symbols for rock-forming minerals, American Mineralogist 68, 277-279.<br />

Krupicka, J. and Sassano, G.P., 1972. Multiple deformations of crystalline rocks in the<br />

Tazin Group, Eldorado, Fay Mine, NW Saskatchewan: Canadian Journal Earth<br />

Science 9, 422-433.<br />

Kyser, T.K., and Kerrich, R., 1991. Retrograde exchange of hydrogen isotopes between<br />

hydrous minerals and water at low temperatures, in Taylor, Jr., H.P., O’Neil,<br />

J.R., and Kaplan, I., 19 8 eds., Stable isotope geochemistry: A tribute to Samuel<br />

Epstein: Geochemical Society Special Publication, v. 3, p. 409-424.<br />

Kyser, T.K., Hiatt, E.E., Renac, C., Durocher, K., Holk, G., Deckart, K., 2000. Diagenetic<br />

fluids in Paleo- and Meso-Proterozoic sedimentary basins and their implications<br />

for long protracted fluid histories: In Fluids and Basin Evolution (T.K. Kyser,<br />

ed.). Mineralogy Association Canada, Short Course, v. 28, p. 225-262.<br />

Kyser, T.K., Polito, P.A., Holk, G.J. and Hiatt, E.E., 2003. Pb-isotope ratios in sandstones<br />

near unconformity-related U deposits in Australia - a guide for exploration:<br />

Association of Exploration Geochemists' 21st International Geochemical<br />

Exploration Symposium, Dublin, Ireland, p. 75.<br />

225


Kyser, K., and Cuney, M., 2008. Geochemical characteristics of U and analytical<br />

methodologies, in Cuney, M. and Kyser, K., eds., Recent and not-so-recent<br />

developments in U deposits and implications for exploration: Mineralogical<br />

Association of Canada Short Course, v. 39, p. 23-85.<br />

Labrenze, M.E. and Karlstrom, K.E., 1991. Timing of the Mazatzal Orogeny: Constraints<br />

from the Young Granite, Pleasant Valley, Arizona, in: Karlstrom, K.E. and<br />

DeWitt, E., (Eds.), Proterozoic geology and ore deposits of Arizona. Arizona<br />

Geological Society Digest, v. 19, pp. 225–236.<br />

Lally, J. and Worden K., 2004. Geochronology in the Pine Creek Orogen – new results<br />

from NTGS: in ‘Annual Geoscience Exploration Seminar AGES. 2004 Record of<br />

abstracts’ Northern Territory Geological Survey, Record 2004-001, 3–4<br />

Lally, J.H. and Bajwah Z.U., 2006. Uranium deposits of the Northern Territory Northern<br />

Territory Geological Survey, Report 20<br />

Langford, F.F., 1981. The Martin Group in the Greater Beaverlodge area. In Summary of<br />

Investigations 1981. Saskatchewan Geological Survey, Saskatchewan Energy<br />

Mines, Miscellaneous Report 81-4, 38–43.<br />

Langmuir, D., 1978. U solution-minral equilibria at low temperatures with applications to<br />

sedimentary ore deposits: Geochimica et Cosmochimica Acta, v. 42, p. 547-569.<br />

LeCheminant, A.N. and Heaman, L.M., 1989. Mackenzie igneous events, Canada: Middle<br />

Proterozoic hotspot magmatism associated with ocean opening. Earth and<br />

Planetary Science Letters 96, 38–48.<br />

LeCheminant, A.N. and Heaman, L.M., 1994. 779 mafic magmatism in the northwestern<br />

Canadian shield and northern Cordillera: A new regional time-marker. Eighth<br />

International Conference on Geochronology, Cosmochronology and Isotope<br />

Geology, Berkeley, California, Programs with Abstract: U.S. Geological Survey<br />

Circular 1107, 187 p.<br />

LeCheminant, A.N., Buchan, K.L., van Breemen, O., 1997. Paleoproterozoic continental<br />

breakup and reassembly: Evidence from 2.19 Ga diabase dike swarms in the<br />

Slave and western Churchill provinces, Canada: Geological Association of<br />

Canada/Mineralogical Association of Canada, Abstract volume, p. A-86.<br />

Leroy, J., 1978, The Margnac and Fanay U deposits of the La Crouzille district (western<br />

Massif Central, France), geologic and fluid inclusion studies: Economic<br />

Geology, v. 73, p. 1611-1634.<br />

Lewry, J.F. and Collerson, K.D., 1989. The Trans-Hudson Orogen: Extent, subdivision and<br />

problems, in: The Early Proterozoic Trans-Hudson Orogen of North America.<br />

226


Edited by J.F. Lewry and M.R. Stauffer. Geological Association of Canada,<br />

Special Paper 37, 1-14.<br />

Li, Z.X. Bogdanova, S.V., Collins, A.S., Davidson, A. B., Wael, D., Ernst, R.E.,<br />

Fitzsimons, I.C.W., Fuck , R.A., Gladkochub, D.P., Karlstrom, K.E., Natapovm,<br />

S. L. L.M., Peas, V., Pisarevsky , S.A. Thrane , K., Vernikovsky, V., 2008.<br />

Assembly, configuration, and break-up history of Rodinia: a synthesis.<br />

Precambrian Research 160, 179–210.<br />

Ludwig, K.R, Grauch R.I, Nutt C.J, Frisman D, Nash JT, Simmons K.R., 1985. Age of<br />

uranium ores at Ranger and Jabiluka unconformity vein deposits, Northern<br />

Territory, Australia Economic Geology 82, 857–874<br />

Ludwig, K.R, Frauch, R.I, Nutt, C.J, Frishman, D, Simmons K.R., 1987. Age of uranium<br />

mineralization at the Jabiluka and Ranger deposits, Northern Territory, Australia:<br />

new U-Pb isotope evidence: Economic Geology, 82, 857–874<br />

Ludwig, K.R., 2000. Decay constant errors in U–Pb concordia-intercept ages. Chem. Geol.<br />

166, 315–318.<br />

Maas, R., 1989. Nd-Sr isotope constraints on the age and origin of unconformity type<br />

uranium deposits in the Alligator Rivers Uranium Field, Northern Territory,<br />

Australia Economic Geology 84, 64–90<br />

MacCready, T, Goleby B.R, Goncharov A, Drummond B.J, Lister G.S., 1998. A<br />

framework of overprinting orogens based on interpretation of the Mount Isa deep<br />

seismic transect: Economic Geology, 93, 1422–1434<br />

Macdonald, R. and Slimmon, W.L., 1985. Bedrock Geology of the Greater Beaverlodge<br />

Area, NTS 74N-6 to -11: Saskatchewan Energy Mines, Map 241A, 1:100 000<br />

scale.<br />

Marumo, K., Nagasawa K., Kuroda Y., 1980. Mineralogy and hydrogen isotope<br />

geochemistry of clay minerals in the Ohnuma geothermal area, northeastern<br />

Japan: Earth and Planetary Science Letters, v. 47, p. 255–262.<br />

Mazimhaka, P.K. and Hendry, H.E., 1984. The Martin Group, Beaverlodge Area. In<br />

Summary of Investigations 1984, Saskatchewan Geological Survey,<br />

Saskatchewan Energy Mines, Miscellaneous Report 84-4, 53-62.<br />

Mazimhaka, P.K. and Hendry, H.E., 1985. The Martin Group, Charlot Point and Jug Bay<br />

areas. In Summary of Investigations 1985. Saskatchewan Geological Survey,<br />

Saskatchewan Energy Mines, Miscellaneous Report 85-4, 67-80.<br />

McDonough, M. R. McNicoll, V. J. Schetsela, E. M., Grover, T. W., 2000.<br />

Geochronological and kinematic constraints on crustal shortening and escape in a<br />

227


two-sided oblique-slip collisional and magmatic Orogen, Paleoproterozoic<br />

Taltson magmatic zone, northeastern Alberta: Canada Journal of Earth Science<br />

37, 1549–1573.<br />

McDonough, W. F. and Sun, S, S., 1995. The composition of the Earth: Chemical Geology,<br />

v. 120, p. 223–253.<br />

McLelland, J., Daly, S., McLelland, J., 1996. The Grenville orogenic cycle: An Adirondack<br />

perspective. Tectonophysics, 265, 1-29.<br />

Mckenzie, D. P., 1978. Some remarks on the development of sedimentary basins. Earth and<br />

Planetary Science Letters 40, 25-32.<br />

McNicoll, V.J., Thériault, R.J., McDonough, M.R., 2000. Taltson basement gneissic rocks;<br />

U–Pb and Nd isotopic constraints on the basement to the Paleoproterozoic<br />

Taltson magmatic zone, northeastern Alberta: Canada Journal of Earth Science<br />

37, 1575-1596.<br />

Mercadier, J., Cuney, M., Lach, P., Boiron, M.C., Bonhoure, J., Richard, A., Leisen, M.,<br />

Kister, P., 2011. Origin of uranium deposits revealed by their rare earth element<br />

signature: Terra Nova, v. 23, p. 264-269.<br />

Metcalfe, I., 2001. Paleozoic and Mesozoic tectonic evolution and biogeography of SE<br />

Asia-Australasia Pages 15–34 in I Metcalfe, JMB Smith, M Morwood, and I<br />

Davidson, eds, Faunal and Floral Migrations and Evolution in SE Asia-<br />

Australasia AA Balkema, Lisse, Switzerland<br />

Mernagh, T.P, Heinrich C.A, Leckie J.F, Carville D.P, Gilbert D.J, Valenta R.K, Wyborn<br />

L.A.O., 1994. Chemistry of low-temperature hydrothermal gold, platinum, and<br />

palladium±uranium. mineralization at Coronation Hill, Northern Territory,<br />

Australia: Economic Geology, 89, 1053–1073<br />

Mernagh T.P and Wyborn L.A.I., 1994. The genesis of the Coronation Hill gold, palladium<br />

and platinum deposit: implications for exploration: in Australian research on ore<br />

genesis symposium, Adelaide, South Australia, December 12 -14, 1994,<br />

Proceedings Australian Mineral Foundation, Adelaide, 231 – 235<br />

Miller, J. A., Buick, I. S., Cartwright, I., 2002. Fluid processes during the exhumation of<br />

high-P metamorphic belts, Mineral. Mag. 66, 93-119.<br />

Miller, J.A. and Cartwright, I., 2006. Albite vein formation during exhumation of highpressure<br />

terranes: a case study from Alpine Corsica. Journal of Metamorphic<br />

Geology, 24, 409-428.<br />

228


Molnar, P. and Atwater. T., 1978. Interarc spreading and Cordilleran tectonics as alternates<br />

related to the age of subducted oceanic lithosphere: Earth and Planetary Science<br />

Letters 41, 330-340.<br />

Moores, E.M., 1991. The Southwest U.S.–East Antarctica (SWEAT) connection: A<br />

hypothesis. Geology 19, 425–428.<br />

Morelli, R., Ashton, K., Ansdell, K., 2001. A geochemical investigation of the Martin<br />

Group igneous rocks, Beaverlodge Domain, northwestern Saskatchewan. In<br />

Summary of Investigations 2001, Saskatchewan Geological Survey,<br />

Saskatchewan Energy Mines v. 2, Miscellaneous Report 2001-4, 64-75.<br />

Morelli, R.M., Hartlaub, R.P., Ashton, K.E., Ansdell, K.M., 2009. Evidence for enrichment<br />

of subcontinental lithospheric mantle from Paleoproterozoic intracratonic<br />

magmas: geochemistry and U–Pb geochronology of Martin Group igneous rocks,<br />

western Rae craton, Canada. Precambrian Research 175, 1-15.<br />

Morton, R. D. and Sassano, G. P., 1972. Structural studies on the uranium deposit of the<br />

Fay Mine, Eldorado, northwest Saskatchewan. Canada Journal of Earth Science<br />

9, 803-823.<br />

Mountain, B.W. and Wood S.A., 1988a. Solubility and transport of platinum-group<br />

elements in hydrothermal solutions: Thermodynamic and physical chemical<br />

constraints; in Geo-Platinum 87, Prichard, HM, Potts, PJ, Bowles, JFW and<br />

Cribb, SJ eds., Elsevier Science Publishing Ltd, Barking, Essex, UK, 57-82<br />

Mountain, B.W. and Wood S.A., 1988b. Chemical controls on the solubility, transport, and<br />

deposition of platinum and palladium in hydrothermal solutions: A<br />

thermodynamic approach; Economic Geology 83, 492-510<br />

Müller, R.D, Gaina C, Clarke S., 2000. Seafloor spreading around Australia, In: J Veevers<br />

ed., Billion-year earth history of Australia and neighbours in Gondwanaland –<br />

BYEHA 18-28<br />

Myers, J.S, Shaw R.D, Tyler I.M., 1996. Tectonic evolution of Proterozoic Australia<br />

Tectonics 15, 1431 – 1446<br />

Needham, R.S, Crick I.H, Stuart-Smith P.G., 1980. Regional geology of the Pine Creek<br />

Geosyncline: in Ferguson J and Goleby AB editors. Uranium in the Pine Creek<br />

Geosyncline International Atomic Energy Agency, Vienna, 1-22<br />

Needham, R.S., 1982. Cahill, Northern Territory 1:100 000 geological map series<br />

commentary, 5472 Bureau of Mineral Resources, Australia<br />

Needham, R.S. and Stuart-Smith P.G., 1984. The relationship between mineralisation and<br />

depositional environment in the Early Proterozoic metasediments of the Pine<br />

229


Creek Geosyncline: in ‘The mineral potential of northern Australia and changing<br />

concepts of development’ Australasian Institute of Mining and Metallurgy, 1984<br />

Annual Conference, Darwin, Northern Territory, Australia, August 1984<br />

Australasian Institute of Mining and Metallurgy, Conference Series 13, 201–211<br />

Needham, R.S. and Stuart-Smith P.G., 1985. Stratigraphy and tectonics of the Early to<br />

Middle Proterozoic transition, Katherine-E1 Sherana area, NT Aust J Earth Sci,<br />

32: 219-230<br />

Needham, R.S. and Stuart-Smith P.G., 1986. Coronation Hill U-Au mine, South Alligator<br />

Valley, Northern Territory: an epigenetic sandstone-type deposit hosted by<br />

debris-flow conglomerate BMR Journal of Australian Geology and Geophysics<br />

10, 121-131<br />

Needham, R.S., 1987. A review of mineralisation in the South Alligator Conservation Zone<br />

Bureau of Mineral Resources, Australia, Record 1987/52<br />

Needham, R.S., 1987. Geology of the Alligator Rivers Uranium Field, northern Territory<br />

Australian Government Publishing Service, Canberra<br />

Needham, R.S, Stuart-Smith P.G, Page R.W., 1988. Tectonic evolution of the Pine Creek<br />

Inlier, Northern Territory Precambrian Research 40/41, 543–564<br />

Needham, R.S., 1988a. Geology of the Alligator Rivers Uranium Field, Northern Territory<br />

Bureau of Mineral Resources, Australia, Bulletin 224<br />

Needham, R.S., 1988b. Geology and mineralization of the South Alligator Valley Mineral<br />

Field 1:75 000 scale map. Bureau of Mineral Resources, Australia<br />

Needham, R.S. and DeRoss G.J., 1990. Pine Creek Inlier – regional geology and<br />

mineralisation: in Hughes FE editor. ‘Geology and mineral deposits of Australia<br />

and Papua New Guinea’ Australasian Institute of Mining and Metallurgy,<br />

Monograph 14, 727–737<br />

Neumann, N.L. and Fraser G.L., 2007. Geochronological synthesis and Time-Space plots<br />

for Proterozoic Australia Geoscience Australia Record 2007/06<br />

O’Hanley, D.S., Kyser, T.K., Sibbald, T.I.I., 1991. The Age of the Mine Granites,<br />

Goldfields Area. In Summary of Investigations, 1991; Saskatchewan Geological<br />

Survey; Saskatchewan Energy and Mines, Miscellaneous Report 91-4.<br />

Ohmoto, H. and Rye R. O., 1979. Isotopes of sulfur and carbon: In Geochemistry of<br />

Hydrothermal Ore Deposits, 2nd ed. (ed. H. L. Barnes), p. 509–567.<br />

Ojakangas, R.W., 1979. Sedimentation of the basal Kombolgie Formation Upper<br />

Precambrian-Carpentarian. Northern Territory, Australia: Possible significance in<br />

230


the genesis of the underlying Alligator Rivers Unconformity- type uranium<br />

deposits US Dept of Energy, GJBX- 173 79., 38<br />

O’Neil,, J..R. and Taylor H.P. Jr., 1969. Oxygen isotope equilibrium between muscovite<br />

and water: Journal of Geophysical Research, 74, 6012–6022<br />

Page, R.W, Compston W, Needham R.S., 1980. Geochronology and evolution of the late<br />

Achaean basement and Proterozoic rocks in the Alligator River Uranium Field,<br />

Northern Territory, Australia: in Ferguson J and Goleby AB editors. Uranium in<br />

the Pine Creek Geosyncline International Atomic Energy Agency, Vienna, 39–68<br />

Page, R.W. and Williams I.S., 1988. Age of the Barramundi Orogeny in northern Australia<br />

by means of ion microprobe and conventional U-Pb zircon studies Precambrian<br />

Research 40/41, 21–36<br />

Page, R.W. and Bell T.H., 1986. Isotopic and structural responses of granite to successive<br />

deformation and metamorphism J Geol 94:365–379<br />

Persons, S.S., 1983. U–Pb geochronology of Precambrian rocks in the Beaverlodge area,<br />

northwestern Saskatchewan: Unpublished M.Sc. Thesis, <strong>University</strong> of Kansas,<br />

68 p.<br />

Peiris, E. and Parslow, G., 1988. Geology and geochemistry of the uranium-gold<br />

mineralization in the Nicholson Bay-Fish Hook Bay Area: In Summary of<br />

Investigations, Saskatchewan Geological Survey Miscellaneous Report 88-4, p.<br />

70-77<br />

Pharaoh, T. C. and Brewer, T. S., 1990. Spatial and temporal diversity of Early Proterozoic<br />

volcanic sequences. Comparisons between the Baltic and Laurentian Shields:<br />

Precambrian Research, v. 47, p. 169-189.<br />

Pietsch, B.A. and Stuart-Smith P.G., 1987. Darwin SD52-4 1:250 Geological Map Series,<br />

Northern Territory Geological Survey, Department of Mines and Energy<br />

Comparisons between the Baltic and Laurentian Shields: Precambrian Research,<br />

v. 47, p. 169-189.<br />

Pinheiro, S.S., Fernandes, P.E.C.A., Pereira, E.R., Vasconcelos, E.G., Pinto, A.C.,<br />

Montalva˜o, R.M.G., Issler, R.S., Dall’Agnoll, R., Teixeira, W., and Fernandes,<br />

C.A.C., 1976, Geologia, in Levantamento de Recursos Naturais, Projeto Radar na<br />

Amazoˆnia: Rio de Janeiro, Brazil, Departamento Nacional da Produc¸a˜o<br />

Mineral, sheet NA.19—Pico da Neblina, v. 11, p. 19–137.<br />

Piper, J.D.A., 2000. The Neoproterozoic Supercontinent: Rodinia or Palaeopangaea: Earth<br />

and Planetary Science Letters 176, 131-146.<br />

231


Piper, J.D.A., 2004. Discussion on “The making and unmaking of a supercontinent:<br />

Rodinia revisited” Tectonophysics, 375, 261–288.<br />

Pisarevsky, S.A., Natapov, L.M., Donskaya, T.V., Gladkochub, D.P., Vernikovsky, V.A.,<br />

2008. Proterozoic Siberia: a promontory of Rodinia. Precambrian Research 160,<br />

66-76.<br />

Plant, J.A., Simpson, P.R., Smith, B., Windley, B.F., 1999. U ore deposits: products of the<br />

radioactive earth: Reviews in Mineralogy and Geochemistry, v. 38, p. 255-319.<br />

Polito, P.A, Kyser T.K, Marlatt J, Alexandre P, Bajwah Z.U, Drever, D., 2004.<br />

Significance of alteration assemblages for the origin and evolution of the<br />

Proterozoic Nabarlek unconformity-related uranium deposit, Northern Territory,<br />

Australia Economic Geology 99, 113–139<br />

Polito, P.A, Kyser T.K, Thomas D, Marlatt J, Drever G., 2005. Re-evaluation of the<br />

petrogenesis of the Proterozoic Jabiluka unconformity-related U deposit,<br />

Northern Territory, Australia Miner Depos 40:257–288<br />

Polito, P.A, Kyser T.K, Southgate P.N, Jackson M.J., 2006. Sandstone Diagenesis in the<br />

Mount Isa Basin: An isotopic and fluid inclusion perspective in relation to<br />

district-wide Zn, Pb, and Cu mineralization Econ Geol 101:1159–1188<br />

Polito, P.A, Kyser K.T, Stanley C., 2007. The Proterozoic, albitite hosted, Valhalla U<br />

deposit, Queensland, Australia: A description of the alteration assemblage<br />

associated with U mineralization in diamond drill hole: Mineralium Deposita, 44,<br />

p11–40<br />

Porto da Silveira, C,L., Schorscher H,D., Miekeley N., 1991, The geochemistry of<br />

albitization and related U mineralization, Espinharas, Paraiba (PB), Brazil.<br />

Journal of Geochemical Exploration, v. 40, p. 329–347.<br />

Quirt, D.H., 2003. Athabasca unconformity-type uranium deposits: one deposit type with<br />

many variations, in Cuney, M., ed., Uranium Geochemistry 2003, International<br />

Conference, April 13-162003, Proceedings: Unité Mixte de Recherche CNRS<br />

7566 G2R, Université Henri Poincaré, Nancy, France, p. 309-312.<br />

Rainbird, R.H., Stern, R.A., Rayner, N., Jefferson, C.W., 2007. Age, provenance and<br />

regional correlation of the Athabasca Group, Saskatchewan and Alberta<br />

constrained by igneous and detrital zircon geochronology, in: Jefferson, C.W.,<br />

Delaney, G. (Eds.), Extech IV: Geology and Uranium Exploration Technology of<br />

the Proterozoic Athabasca Basin Saskatchewan and Alberta. Geological Survey<br />

of Canada, Bulletin 588, pp. 193-209.<br />

232


Ramaekers, P., 1981. Hudsonian and Helikian basins of the Athabasca region, northern<br />

Saskatchewan, in: Campbell, F.H.A. (Ed.), Proterozoic Basins of Canada.<br />

Geological Survey of Canada, Paper 81-10, pp. 219-233.<br />

Ramsay, J G., 1967. Folding and fracturing of rocks. New York: McGraw Hill. 568 p.<br />

Rasmussen, B, Sheppard S, Fletcher I.R., 2006. Testing ore deposit models using in situ U-<br />

Pb geochronology of hydrothermal monazite: Paleoproterozoic gold<br />

mineralization in northern Australia Geology 34:77–80<br />

Rees, M.I., 1992. History of the fluids associated with the Lode-Gold deposits, and<br />

complex U-PGE-Au vein-typedeposits, Goldfields Peninsula, northern<br />

Saskatchewan, Canada; unpubl. M.Sc. thesis, Univ. Saskatchewan, 209p.<br />

Riley, G.H, Binns R.A, Craven,S.J., 1980. Rb-Sr chronology of micas at Jabiluka, In:<br />

Ferguson, John, and Goleby, A B, eds, Uranium in the Pine Creek Geosyncline:<br />

Vienna, Int Atomic Energy Agency, 457-468<br />

Rivers, T., 1997. Lithotectonic elements of the Grenville province: Review and tectonic<br />

implications. Precambrian Research 86, 117-154.<br />

Robinson, S.C., 1955. Mineralogy of Uranium Deposits, Goldfields, Saskatchewan.<br />

Canadian Geological Survey, Bulletin 31.<br />

Rogers, J.J.W. and Santosh, M., 2002. Configuration of Columbia, a Mesoproterozoic<br />

supercontinent: Gondwana Research 5, 5-22.<br />

Romberger, S.B., 1984. Mechanisms of Deposition of Gold in Low Temperature<br />

Hydrothermal Systems: Assoc Expl. Geochemists Annual Meeting, Reno,<br />

Nevada.<br />

Russel, R.D. and Ahren, L. D., 1957. Additional regularities among discordant Pb/U ages.<br />

Geochimica et Cosmochimica Acta 11, 213-218.<br />

Ruzicka, V.R., 1996. Unconformity-associated uranium, Chapter 7 in Eckstrand, O.R.,<br />

Sinclair, W.D., and Thorpe, R.I., eds., Geology of Canadian Mineral Deposit<br />

Types: Geological Survey of Canada, Geology of Canada, v, 8, p. 197-210.<br />

Saltikoff, B., Puustinen, K. and Tontti, M., 2006. Metallogenic zones and metallic mineral<br />

deposits in Finland–Explanation to the Metallogenic Map of Finland. Geological<br />

Survey of Finland, Special paper 35, pp 66.<br />

Santos, J.O.S., Hartmann, L.A., Gaudette, H.E., Groves, D.I., McNaughton, N.J., and<br />

Fletcher, I.R., 2000. A new understanding of the provinces of the Amazon craton<br />

based on integration of field mapping and UPb and Sm-Nd geochronology:<br />

Gondwana Research, v. 3, p. 453–488. Science B.V., Amsterdam, 19–<br />

233


99.Sheppard SMF and Gilg HA 1996. Stable isotope geochemistry of clay<br />

minerals: Clay Minerals, 31, 1-24<br />

Santos, J.O.S., Potter, P.E., Reis, N.J., Hartmann, L.A., Fletcher, I.R., McNaughton, N.J.,<br />

2003. Age, source and regional stratigraphy of the Roraima Supergroup and<br />

Roraima-like outliers in northern South America based on U-Pb geochronology.<br />

Geological Society of America Bulletin 115 (3): 331–348.<br />

Sassano, G. P., 1972. The nature and origin of the uranium mineralization at the Fay Mine,<br />

Eldorado, Saskatchewan: Unpublished Ph.D. thesis, <strong>University</strong> of Alberta,<br />

Edmonton, Alberta, 416p.<br />

Sassano, G.P., Fritz P., Morton R.D., 1972. Paragenesis and isotopic composition of some<br />

gangue minerals from the uranium deposits of Eldorado, Saskatchewan.<br />

Canadian Journal of Earth Science 9, 141-157.<br />

Sassano, G.P., Baadsgaard, H., Burwash, R.A., 1974. Rb-Src age of the late kinematic<br />

phase of the Hudsonian Orogen in the Beaverlodge area, Saskatchewan:<br />

Canadian Journal of Earth Science 11, 643-649.<br />

Scott, B.P., 1978. The geology of an area east of Thluicho Lake, Saskatchewan (part of<br />

NTS area 74N-11). Saskatchewan Mineral Resources, Report 167, p. 51<br />

(1:31680 scale map).<br />

Sener, A.K, Grainger C.J, Groves D.I., 2002. Epigenetic gold-platinum-group deposits:<br />

examples from Brazil and Australia Transactions of the Institution of Mining and<br />

Metallurgy: Section B 111: 65-73<br />

Shergold, J.H. and Druce E.C., 1980. Upper Proterozoic and Lower Palaeozoic rocks of the<br />

Georgina Basin In Henderson, RA & Stephenson, PJ Editors.: The Geology and<br />

Geophysics of Northeastern Australia Geological Society of Australia,<br />

Queensland Division, 149-174<br />

Sibbald, T.I.I., 1982. Uranium Metallogenic Studies: Nicholson Bay Area. In Summary of<br />

Investigations, 1982; Saskatchewan Geological Survey; Saskatchewan Energy<br />

and Mines, Miscellaneous Report 82-4.<br />

Sibbald, T.I.I., 1983. Geology of the crystalline basement, NEA/AEA Athabasca Test Area,<br />

in: Cameron, E.M. (Ed.), Uranium Exploration in Athabasca Basin<br />

Saskatchewan, Canada, Geological Survey of Canada, pp. 1-14.<br />

Sibbald, T.I.I. and Quirt, D., 1987. U deposits of the Athabasca basin: Saskatchewan<br />

Research Council Publication R-855-1-G-87, 79 p.<br />

Sibson, RH., Moore, J., Rankin, A., 1975. Seismic pumping-a hydrothermal fluid transport<br />

mechanism. Journal of Geological Society of London, vol. 131, p. 653-659.<br />

234


Sibson, R.H., 1977. Fault rocks and fault mechanisms: Journal Geological Society, London<br />

133, 191-213.<br />

Sibson, R.H., 1987. Earthquake rupture as a hydrothermal mineralizing agent. Geology, vol<br />

15, p. 701-704.<br />

Simonen, A., 1986. Stratigraphic studies on the Precambrian in Finland. Geological Survey<br />

of Finland, Bulletin 336: 21–37<br />

Skirrow, R.G., Jaireth, S., Huston, D.L., Bastrakov, E.N., Schofield, A., van, der Wielen,<br />

S.E., Barnicoat, A.C., 2009. U Mineral, Systems: Processes, Exploration Criteria<br />

and a New Deposit Frame Systems: Framework; work; Geoscience Australia<br />

Record 2009/20, 44 p.<br />

Slater, J. R., 1983. Some relationships between deformation, mineralization and ore genesis<br />

at the Fay mine, Eldorado, Saskatchewan: Unpublished M.Sc. thesis, <strong>University</strong><br />

of Alberta, 105 p.<br />

Smellie, J.A.T. and Laurikko, J., 1984. Skuppesavon, northern Sweden: a U mineralization<br />

associated with alkali metasomatism: Mineralium Deposita v. 19, p. 184-192.<br />

Smith, D.K., 1984. U mineralogy. In: De Vivo B, Ippolito F, Capaldi G, Simpson PR (eds)<br />

U geochemistry, mineralogy, geology, exploration and resources: The Institution<br />

of Mining and Metallurgy, London, England, p 43–88.<br />

Sorjonen-Ward, P., Claoué-Long, J. and Huhma, H., 1994. SHRIMP isotope studies of<br />

granulite zircons and their relevance to early Proterozoic tectonics in northern<br />

Fennoscandia. In: Lamphere, M., Darymple, G., Turrin, B (Eds.), Abstract of the<br />

Eighth International Conference on Geochronology, Cosmochronology and<br />

isotope Geology, Berkeley, Califormia, USA, June 5-11, 1994. U.S Geological<br />

Survey Circular 1107: 1–299.<br />

Sorjonen-Ward, P. & Luukkonen, E., 2005. Archean rocks. In: Lehtinen, M., Nurmi, P. A.<br />

& Rämö, O. T., (eds.) Precambrian geology of Finland: key to the evolution of<br />

the Fennoscandian Shield. Developments in Precambrian geology 14. Elsevier<br />

Spikings, R.A, Foster D.A, Kohn B.P, Lister G.S., 2001. Post-orogenic


Proceedings Darwin Conference 1984 Australasian Institute of Mining &<br />

Metallurgy; 329338<br />

Stuart-Smith, P.G, Needham R.S, Page R.W, Wyborn L.A.I., 1993. Geology and mineral<br />

deposits of the Cullen Mineral Field, Northern Territory Australian Geological<br />

Survey Organisation, Bulletin 229<br />

Sweet, I.P, Brakel A.T, Carson L., 1999. The Kombolgie Subgroup a new look at an old<br />

formation AGSO Research Newsletter 1999; No 30: 2628<br />

Taylor J., 1968. Origin and controls of uranium mineralization in the South Alligator<br />

valley: in Berkman DA, Cuthbert RH and Harris LA Editors. Uranium in<br />

Australia Symposium, Rum Jungle, June 1968 Proceedings Australasian Institute<br />

of Mining and Metallurgy, 32-44<br />

Taylor, H. P. Jr., 1974. The application of oxygen and hydrogen isotope studies to<br />

problems of hydrothermal alteration and ore deposition. Economic Geology, v.<br />

69, p. 843.<br />

Thériault, R.J., 1992. Nd isotopic evolution of the Taltson magmatic zone, Northwest<br />

Territories, Canada: insights into Early Proterozoic accretion along the western<br />

margin of the Churchill province: Journal of Geology 100, 465–475.<br />

Thompson, A.G. and Barnes, C.G., 1999. 1.4 Ga peraluminous granites in central New<br />

Mexico: Petrology and geochemistry of the Priest pluton: Rocky Mountain.<br />

Geology 34, 223–243.<br />

Torsvik, T.H. and Van der Voo, R., 2002. Refining Gondwana and Pangaea<br />

Palaeogeography: Estimates of Phanerozoic (octupole) non-dipole fields.<br />

Geophysical Journal International 151, 771-794.<br />

Tortosa, D. J.-J., 1983. The Geology of the Cenex Uranium Deposit, Beaverlodge,<br />

Saskatchewan, in: C.I.M.M. Special Volume 33, Uranium Deposits of Canada,<br />

Dr. E. L. Evans, Editor.<br />

Tremblay, L. P., 1968. Geology of the Beaverlodge Mining Area, Saskatchewan (Parts of<br />

74N/9 and 74N/10). Geological Survey of Canada, Memoir 367.<br />

Tremblay, L.P., 1972. Geology of the Beaverlodge Mining Area, Saskatchewan. Geological<br />

Survey of Canada, Memoir 367, including two maps at 1:14,400 that encompass<br />

the entire Beaverlodge Mining Area, 265p.<br />

Turek, A., 1962. Geology of the Cinch Lake Mine Limited, Uranium City, Saskatchewan.<br />

Unpublished M.Sc. thesis, <strong>University</strong> of Alberta, 101 p.<br />

236


Valenta, R.K., 1989. Structure and mineralization in the South Alligator Valley, NT Bureau<br />

of Mineral Resources<br />

Valenta, R.K., 1990. Structural setting of unconformity-related U Au platinoid<br />

mineralization in the South Alligator Valley, NT In: Gondwana and Resources<br />

Geologl Society of Australia; Abstracts No 25: 173<br />

Valenta, R.K., 1991. Structural controls on mineralization of the Coronation Hill deposit<br />

and surrounding area: Australia Bureau of Mineral Resources: Geology and<br />

Geophysics Record1991/107, 186<br />

Walpole, B.P, Crohn P.W, Dunn P.R, Randal M.A., 1968. Geology of the Katherine–<br />

Darwin region, Northern Territory Bureau of Mineral Resources, Australia,<br />

Bulletin 82<br />

Warren, R.G. and Kamprad, J.L., 1990. Mineralogical petrographic and geochemical<br />

studies in the South Alligator region Pine Creek inlier, NT: Australia Bureau of<br />

Mineral Resources, Geology and Geophysics Record1 990/54, 113<br />

Wasserburg, G. J. and Hayden, R. J., 1955. Ar 40 :K 40 dating. Geochimica et Cosmochimica<br />

Acta 7, 51–60.<br />

Wenner, D.B., and Taylor, H.P., Jr., 1971. Temperature of serpentinization of ultramafic<br />

rocks based on O18/O16 fractionation between coexisting serpentinite and<br />

magnesite: Contributions to Mineralogy and Petrology, v. 32, p. 165–185.<br />

Whitmeyer, S. J. and Karlstrom K. E., 2007. Tectonic model for the Proterozoic growth of<br />

North America. Geosphere, 3, 220–259.<br />

Wiedenbeck, M., Allé P., Corfu, F., Griffin, W.L, Meier, M., Oberli, F., von Quadt, A.,<br />

Roddick, J.C., Spiegel, W., 1995. Three natural Zircon standards for U-Th-Pb,<br />

Lu-Hf, trace element and REE analysis: Geostandards Newsletter, v. 19, p. 1-23.<br />

Wilde, A.R, Mernagh T.P, Bloom M.S, Hoffmann C.F., 1989. Fluid inclusion evidence on<br />

the origin of some Australian Unconformity-related Uranium Deposits:<br />

Economic Geology, 84, 1627- 1642<br />

Wilde, A.R., 1992. Unconformity-related uranium-gold deposits on northern Australia;<br />

resources, genesis and exploration IAEA-Tecdoc, 650, 49-58<br />

Williams, H., Hoffman, P.F., Lewry, J.F., Monger, J.W.H., Rivers, T., 1991. Anatomy of<br />

North America: thematic portrayals of the continent. Tectonophysics 187, 117–<br />

134.<br />

Wilson, M.R., and Kyser, K., 1987. Stable isotopes geochemistry of alteration associated<br />

with the Key Lake U deposit, Canada: Economic Geology, v. 82, p. 1540–1557.<br />

237


Wingate, M.T.D, Pisarevsky SA, Evans D.A.D., 2002. Rodinia connections between<br />

Australia and Laurentia: no SWEAT, no AUSWUS Terra Nova 14:121–128<br />

Wingate, M.T.D and Giddings J.W., 2000. Age and paleomagnetism of the Mundine Well<br />

dyke swarm, Western Australia: implications for an Australia–Laurentia<br />

connection at 755 Ma Precamb Res100:335–357<br />

Wray, E.M, Ayres, D.E, Ibrahim H., 1985. Geology of the Mid-west uranium deposit<br />

northern Saskatchewan Canadian Institute of Mining and Metallurgy, 32, 54-66<br />

Wyborn, L.A.I, Valenta R, Needham R.S, Jagodzinski E.A, Whitaker A, Morse M.P., 1990.<br />

A review of the geological, geophysical and geochemical data of the Kakadu<br />

Conservation Zone: a basis for the assessing resource potential Report by the<br />

Bureau of Mineral Resources to the Resource Assessment Commission, Inquiry<br />

on the Kakadu Conservation Zone<br />

Wyborn, L.A.I, Valenta, R.K, Jagodzinski, E.A, Whitaker A, Morse M.P, Needham R.S.,<br />

1991. A review of the geological, geophysical and geochemical data of the<br />

Kakaduc conservation zone basis for estimating resource potential: Australia<br />

Bureau of Mineral Resources Geology and Geophysics Report to Resource<br />

Assessment Commission 2, 90 p<br />

Wyborn, L.A.I., 1992. Au-Pt-Pd-U mineralization in the Coronation Hill-EL Sherana<br />

region NT: BMR Research Newsletter, 16, 1-3<br />

Wyborn, L.A.I, Budd A., Bastrikova, I., 1997. The metallogenic potential of Australian<br />

Proterozoic Granites Final Meeting Report Australian Geological Survey<br />

Organisation, Canberra<br />

Yeo, G.M., 2005. Stratigraphy and metallogeny of the Paleoproterozoic Thluicho Lake<br />

Group, northwestern Saskatchewan (NTS 74N/11). In: Summary of<br />

Investigations 2005, Volume 2, Saskatchewan Geological Survey, Sask. Industry<br />

Resources, Misc. Rep. 2005-4.2, Paper A-2, p. 20.<br />

238


APPENDIX A<br />

Isotopic Data and Apparent Ages for Various generations of Uraninite from the Beaverlodge area<br />

Sample<br />

Deposit<br />

207 Pb/ 206 Pb ±2σ<br />

207 Pb/ 235 U ±2σ<br />

206 Pb/ 238 U ±2σ R‡<br />

207 Pb/ 206 Pb ±<br />

206 Pb/ 238 U ±<br />

207 Pb/ 235 U ± Disc‡<br />

Cataclasite-type uraninite<br />

6122-Cat_6b Ace Fay 0.125 0.002 4.36 0.47 0.26 0.01 0.22 2023 24 1493 690 1705 90 26<br />

6122-Cat_7b Ace Fay 0.1020 0.0004 2.84 0.18 0.21 0.03 1.00 1660 8 1223 510 1366 46 26<br />

6122-Cat_11c Ace Fay 0.102 0.001 3.47 0.58 0.23 0.04 0.30 1668 20 1338 187 1521 132 20<br />

6122-Cat_14b Ace Fay 0.112 0.003 3.89 0.53 0.25 0.03 0.19 1829 50 1421 161 1612 110 22<br />

6122-Cat_16b Ace Fay 0.1345 0.0003 4.29 0.34 0.25 0.03 0.90 2158 4 1463 419 1691 65 32<br />

6122-Cat_22b Ace Fay 0.1335 0.002 4.12 0.32 0.26 0.04 0.24 2144 25 1491 194 1659 63 30<br />

6122-Cat_24a Ace Fay 0.145 0.001 5.28 0.11 0.31 0.03 1.00 2293 17 1718 298 1866 18 25<br />

6122-Cat_24c Ace Fay 0.117 0.003 4.30 0.11 0.26 0.02 0.86 1903 46 1468 391 1693 216 23<br />

6122-Cat_26b Ace Fay 0.128 0.002 3.42 0.84 0.22 0.03 0.62 2066 29 1305 366 1510 195 37<br />

6122-Cat_28a Ace Fay 0.134 0.003 4.49 0.10 0.27 0.02 0.05 2155 37 1522 364 1729 168 29<br />

6122-Cat_29b Ace Fay 0.132 0.002 3.03 0.45 0.21 0.03 0.78 2126 26 1237 523 1415 115 42<br />

Early tensional vein-type uraninite<br />

6122BV_Cat_9c Ace Fay 0.085 0.002 3.22 0.68 0.24 0.07 0.66 1310 49 1396 373 1461 166 -7<br />

6122BV_Cat_11a Ace Fay 0.094 0.002 3.2 0.6 0.23 0.08 0.63 1505 43 1360 405 1456 144 10<br />

6122BV_Cat_14d Ace Fay 0.089 0.000 4.1 0.5 0.31 0.02 0.22 1399 5 1753 117 1655 101 -25<br />

6122BV_Cat_16d Ace Fay 0.113 0.002 3.37 0.54 0.24 0.05 0.01 1851 28 1399 270 1498 125 24<br />

6122BV_Cat_16f Ace Fay 0.098 0.002 3.2 0.4 0.24 0.05 0.21 1586 44 1409 274 1467 108 11<br />

6122BV_Cat_17b Ace Fay 0.135 0.003 3.7 0.6 0.27 0.05 0.92 2158 39 1525 267 1579 134 29<br />

6122BV_Cat_21c Ace Fay 0.097 0.003 3.3 0.5 0.24 0.08 0.15 1573 67 1364 393 1481 117 13<br />

6122BV_Cat_22c Ace Fay 0.113 0.003 3.54 0.31 0.26 0.04 0.08 1855 55 1510 183 1536 70 19<br />

6122BV_Cat_22d Ace Fay 0.103 0.001 3.1 0.2 0.23 0.04 1.00 1682 11 1328 208 1430 41 21<br />

6122BV_Cat_22e Ace Fay 0.096 0.002 3.79 0.24 0.28 0.07 0.11 1540 35 1582 333 1590 51 -3<br />

6122BV_Cat_25a Ace Fay 0.145 0.002 3.49 0.36 0.25 0.05 0.62 2289 20 1448 234 1525 82 37<br />

6122BV_Cat_25d Ace Fay 0.114 0.003 3.5 0.6 0.26 0.05 0.20 1864 45 1469 232 1536 128 21<br />

6122BV_Cat_27e Ace Fay 0.094 0.001 3.77 0.23 0.29 0.10 0.53 1503 28 1628 483 1587 49 -8<br />

6122BV_Cat_29e Ace Fay 0.103 0.002 4.0 1.0 0.30 0.09 0.70 1682 44 1688 433 1634 198 0<br />

6122a Ace Fay 0.099 0.001 2.25 0.23 0.17 0.02 1.00 1599 12 987 91 1197 71 38<br />

6122b Ace Fay 0.088 0.003 1.40 0.14 0.11 0.01 0.98 1387 58 701 50 889 59 49<br />

239


Sample<br />

Deposit<br />

207 Pb/ 206 Pb ±2σ<br />

207 Pb/ 235 U ±2σ<br />

206 Pb/ 238 U ±2σ R‡<br />

207 Pb/ 206 Pb ±<br />

206 Pb/ 238 U ±<br />

207 Pb/ 235 U ± Disc‡<br />

Gunnar type-uraninite<br />

6037b_1 Gunnar 0.0571 0.0007 0.24 0.02 0.030 0.002 0.99 497 26 190 14 215 15 62<br />

6037b_2 Gunnar 0.0530 0.0003 0.28 0.01 0.039 0.001 0.98 329 15 246 8 254 7 25<br />

6037b_3 Gunnar 0.0533 0.0006 0.33 0.02 0.045 0.002 0.98 341 25 283 13 289 12 17<br />

6037b_4 Gunnar 0.055 0.001 0.29 0.02 0.039 0.001 1.00 394 49 246 9 261 13 38<br />

6037b_5 Gunnar 0.0531 0.0006 0.23 0.01 0.031 0.001 0.97 335 28 197 9 208 9 41<br />

6037b_6 Gunnar 0.053 0.001 0.17 0.01 0.024 0.001 0.93 326 42 151 7 161 7 54<br />

6037b_7 Gunnar 0.054 0.002 0.17 0.02 0.022 0.002 0.99 373 93 141 13 156 19 62<br />

6037b_8 Gunnar 0.053 0.003 0.16 0.04 0.022 0.004 1.00 324 138 141 22 153 33 57<br />

6037b_9 Gunnar 0.054 0.001 0.37 0.32 0.050 0.042 1.00 362 62 315 255 323 238 13<br />

6037b_10 Gunnar 0.051 0.003 0.11 0.02 0.016 0.002 0.95 238 130 102 12 109 15 57<br />

6134 Gunnar 0.084 0.005 0.09 0.01 0.0075 0.0004 0.77 1290 126 48 3 85 8 96<br />

6134e Gunnar 0.077 0.003 0.44 0.10 0.0419 0.0098 0.99 1122 87 264 60 373 73 76<br />

6134g Gunnar 0.074 0.003 0.015 0.001 0.00151 0.00002 0.36 1037 87 10 0 15 1 99<br />

6134j Gunnar 0.0866 0.0004 0.33 0.01 0.027 0.001 0.99 1352 9 175 8 288 11 87<br />

6134k Gunnar 0.0867 0.0004 0.29 0.01 0.0242 0.0007 1.00 1353 9 154 5 258 8 89<br />

6134l Gunnar 0.0866 0.0005 0.34 0.04 0.028 0.003 1.00 1351 11 179 21 293 31 87<br />

6134m Gunnar 0.0875 0.0002 0.31 0.01 0.0258 0.0009 0.05 1372 4 164 5 274 8 88<br />

GN-42 Gunnar 0.0787 0.0007 0.34 0.04 0.032 0.004 1.00 1164 18 201 23 300 30 83<br />

GN-42_1 Gunnar 0.0786 0.0012 0.35 0.01 0.032 0.001 0.93 1162 31 204 8 304 11 82<br />

GN-42_2 Gunnar 0.0791 0.0009 0.32 0.02 0.029 0.002 0.99 1174 23 186 14 281 17 84<br />

GN-42_3 Gunnar 0.084 0.001 0.47 0.03 0.041 0.003 0.99 1284 22 256 17 389 21 80<br />

GN-42_4 Gunnar 0.081 0.001 0.38 0.02 0.034 0.002 0.99 1222 25 217 15 329 17 82<br />

GN-42_6 Gunnar 0.0788 0.0009 0.34 0.03 0.031 0.002 0.99 1166 23 196 15 294 19 83<br />

GN-42_8 Gunnar 0.0830 0.0007 0.44 0.04 0.038 0.004 1.00 1270 16 243 22 370 29 81<br />

GN-42_9 Gunnar 0.0807 0.0015 0.37 0.03 0.033 0.002 0.97 1213 38 209 14 317 21 83<br />

GN-42_10 Gunnar 0.0822 0.0008 0.40 0.02 0.035 0.002 0.98 1250 18 223 11 341 15 82<br />

GN-42_11 Gunnar 0.0796 0.0009 0.36 0.02 0.033 0.002 0.99 1187 22 208 14 312 19 82<br />

GN-42_12 Gunnar 0.081 0.002 0.39 0.03 0.035 0.003 0.96 1221 48 224 17 338 24 82<br />

VR69190-2 Gunnar 0.0652 0.0005 0.653 0.049 0.073 0.005 0.99 782 18 452 32 510 30 42<br />

VR69190-3 Gunnar 0.0655 0.0005 0.678 0.042 0.075 0.005 0.99 790 16 467 28 525 26 41<br />

VR69190-4 Gunnar 0.0649 0.0006 0.557 0.042 0.062 0.005 0.99 772 20 389 29 449 28 50<br />

VR69190-5 Gunnar 0.0651 0.0009 0.566 0.049 0.063 0.006 0.99 777 29 395 35 456 32 49<br />

VR69190-7 Gunnar 0.0657 0.0005 0.683 0.043 0.075 0.005 0.99 796 15 469 28 528 26 41<br />

VR69190-8 Gunnar 0.0656 0.0008 0.674 0.046 0.074 0.005 0.99 795 25 463 31 523 28 42<br />

VR69190-9 Gunnar 0.0655 0.0006 0.733 0.050 0.081 0.006 0.99 791 19 503 34 559 29 36<br />

240


Sample<br />

Deposit<br />

207 Pb/ 206 Pb ±2σ<br />

207 Pb/ 235 U ±2σ<br />

206 Pb/ 238 U ±2σ R‡<br />

207 Pb/ 206 Pb ±<br />

206 Pb/ 238 U ±<br />

207 Pb/ 235 U ± Disc‡<br />

VR69190-10 Gunnar 0.0653 0.0007 0.599 0.050 0.067 0.006 0.99 783 21 415 34 476 32 47<br />

VR69190-11 Gunnar 0.0652 0.0004 0.596 0.025 0.066 0.003 0.99 782 12 414 17 475 16 47<br />

VR69190-12 Gunnar 0.0654 0.0006 0.613 0.055 0.068 0.006 1.00 788 19 424 35 486 35 46<br />

Breccia type-uraninite<br />

B5812_1 Ace Fay 0.104 0.002 3.12 0.07 0.197 0.026 0.15 1698 39 1157 140 1437 17 32<br />

B5812_2 Ace Fay 0.112 0.003 2.04 0.01 0.126 0.025 0.50 1825 44 767 142 1130 2 58<br />

B5812_3 Ace Fay 0.110 0.002 2.61 0.01 0.153 0.011 0.50 1802 33 920 64 1304 2 49<br />

B5812_4 Ace Fay 0.110 0.004 2.32 0.05 0.146 0.022 0.32 1800 74 879 125 1218 16 51<br />

B5812_5 Ace Fay 0.108 0.004 2.58 0.03 0.160 0.004 0.59 1759 67 958 25 1294 7 46<br />

B5812_6 Ace Fay 0.1130 0.0003 2.72 0.02 0.168 0.010 0.50 1848 5 1001 57 1335 5 46<br />

B5812_7 Ace Fay 0.109 0.002 3.48 0.05 0.219 0.004 0.50 1778 42 1278 23 1523 12 28<br />

B5812_8 Ace Fay 0.111 0.001 2.77 0.07 0.196 0.056 0.29 1812 24 1155 299 1349 20 36<br />

B5812_9 Ace Fay 0.101 0.001 3.52 0.05 0.234 0.058 0.16 1649 24 1353 305 1531 11 18<br />

B5812_10 Ace Fay 0.107 0.005 2.41 0.03 0.166 0.046 0.31 1742 88 990 252 1247 9 43<br />

B5812_11 Ace Fay 0.112 0.003 3.90 0.64 0.255 0.088 0.64 1838 53 1465 451 1613 133 20<br />

B5812_12 Ace Fay 0.066 0.001 1.23 0.11 0.090 0.015 0.50 802 31 557 87 814 50 31<br />

C23-116 Cinch Lake 0.073 0.007 0.22 0.07 0.022 0.008 0.99 1010 188 143 50 201 57 86<br />

C23-116a Cinch Lake 0.078 0.002 0.55 0.05 0.051 0.005 0.97 1145 49 320 33 443 34 72<br />

C23-116b Cinch Lake 0.072 0.001 0.37 0.01 0.038 0.001 0.98 986 16 238 6 322 8 76<br />

C23-116d Cinch Lake 0.072 0.001 0.37 0.01 0.038 0.001 0.99 986 16 238 6 322 8 76<br />

C23-116e Cinch Lake 0.079 0.001 0.74 0.04 0.068 0.005 0.99 1164 24 426 27 563 25 63<br />

C23-116f Cinch Lake 0.075 0.002 0.06 0.02 0.006 0.002 0.50 1069 43 38 11 61 19 96<br />

C23-116n Cinch Lake 0.072 0.001 0.56 0.10 0.057 0.011 1.00 992 37 357 69 455 67 64<br />

C23-116o Cinch Lake 0.076 0.000 0.63 0.15 0.060 0.015 1.00 1089 7 376 90 494 97 65<br />

C23-116p Cinch Lake 0.070 0.003 0.26 0.06 0.027 0.007 0.99 929 83 173 45 235 50 81<br />

C23-116q Cinch Lake 0.073 0.004 0.18 0.08 0.018 0.009 1.00 1016 122 115 55 165 67 89<br />

C23-116r Cinch Lake 0.076 0.000 0.95 0.02 0.091 0.003 0.99 1093 10 563 15 680 13 49<br />

C23-116s Cinch Lake 0.070 0.001 0.46 0.09 0.048 0.009 1.00 916 34 300 55 382 62 67<br />

C23-116t Cinch Lake 0.077 0.001 0.57 0.08 0.054 0.008 1.00 1120 27 340 51 461 55 70<br />

C23-116u Cinch Lake 0.074 0.001 0.37 0.07 0.036 0.007 1.00 1052 23 227 44 318 55 78<br />

C23-116v Cinch Lake 0.077 0.001 0.22 0.04 0.020 0.004 1.00 1127 32 130 27 199 37 88<br />

C23-116w Cinch Lake 0.070 0.002 0.21 0.04 0.022 0.004 0.99 936 66 137 26 192 31 85<br />

C23-116x Cinch Lake 0.066 0.001 0.32 0.05 0.034 0.006 1.00 822 28 218 35 278 40 73<br />

C23-116y Cinch Lake 0.075 0.000 0.61 0.08 0.060 0.008 1.00 1056 13 374 46 486 48 65<br />

C23-116zb Cinch Lake 0.075 0.001 0.39 0.09 0.038 0.009 1.00 1065 29 238 57 333 68 78<br />

241


Sample<br />

Deposit<br />

207 Pb/ 206 Pb ±2σ<br />

207 Pb/ 235 U ±2σ<br />

206 Pb/ 238 U ±2σ R‡<br />

207 Pb/ 206 Pb ±<br />

206 Pb/ 238 U ±<br />

207 Pb/ 235 U ± Disc‡<br />

C23-116zc Cinch Lake 0.073 0.001 0.26 0.05 0.026 0.005 1.00 1007 20 163 31 232 41 84<br />

C23-116zd Cinch Lake 0.073 0.001 1.08 0.05 0.107 0.006 0.97 1016 34 657 35 744 23 35<br />

C23-116ze Cinch Lake 0.068 0.003 0.35 0.03 0.037 0.002 0.85 854 105 236 15 303 25 72<br />

C23-116zf Cinch Lake 0.071 0.001 0.19 0.03 0.019 0.003 1.00 954 29 124 18 176 22 87<br />

C23-116zg Cinch Lake 0.074 0.001 0.46 0.06 0.045 0.007 1.00 1039 15 286 41 386 45 72<br />

VRC2 Gunnar 0.0840 0.0003 1.60 0.09 0.138 0.008 1.00 1293 6 836 45 972 35 35<br />

VRC3 Gunnar 0.0838 0.0004 1.58 0.05 0.137 0.004 0.99 1288 10 826 21 962 18 36<br />

VRC4 Gunnar 0.0879 0.0015 1.09 0.03 0.090 0.001 1.00 1380 34 553 5 747 14 60<br />

VRC5 Gunnar 0.0855 0.0002 1.74 0.07 0.147 0.006 1.00 1327 4 887 32 1023 25 33<br />

VRC7 Gunnar 0.0850 0.0002 1.50 0.06 0.128 0.006 1.00 1316 5 778 32 932 26 41<br />

VRC8 Gunnar 0.0851 0.0003 1.31 0.07 0.112 0.006 1.00 1318 7 683 33 851 29 48<br />

VRC9 Gunnar 0.0848 0.0002 1.42 0.08 0.121 0.007 1.00 1312 4 738 42 897 35 44<br />

VRC10 Gunnar 0.0860 0.0002 1.71 0.05 0.144 0.004 1.00 1338 4 869 23 1012 18 35<br />

VRC11 Gunnar 0.0865 0.0003 1.77 0.07 0.148 0.006 0.99 1349 8 891 31 1033 25 34<br />

VRC12 Gunnar 0.0857 0.0006 1.30 0.07 0.110 0.006 0.99 1332 14 673 34 846 30 49<br />

VRC13 Gunnar 0.0854 0.0004 1.47 0.09 0.125 0.008 1.00 1325 9 757 44 916 36 43<br />

VRC14 Gunnar 0.0864 0.0002 2.08 0.07 0.174 0.006 1.00 1348 5 1036 33 1142 23 23<br />

VRC15 Gunnar 0.0867 0.0002 2.04 0.07 0.171 0.006 1.00 1354 5 1017 30 1130 22 25<br />

VRC16 Gunnar 0.087 0.001 2.13 0.09 0.178 0.008 0.96 1356 24 1054 42 1157 31 22<br />

Volcanic type-uraninite<br />

6120a Ace Fay 0.1073 0.0002 2.98 0.12 0.202 0.008 1.00 1754 4 1184 44 1403 30 32<br />

6120b Ace Fay 0.1085 0.0002 3.43 0.19 0.229 0.012 0.89 1774 4 1331 61 1511 43 25<br />

6120c Ace Fay 0.1078 0.0005 4.45 0.31 0.299 0.020 1.00 1763 9 1688 101 1722 58 4<br />

6120e Ace Fay 0.1081 0.0003 3.41 0.09 0.229 0.006 1.00 1768 5 1329 33 1507 21 25<br />

6120f Ace Fay 0.1072 0.0005 3.70 0.19 0.250 0.012 1.00 1753 8 1441 63 1572 42 18<br />

6120g Ace Fay 0.1065 0.0001 3.36 0.11 0.229 0.007 1.00 1740 2 1328 38 1495 25 24<br />

6120i Ace Fay 0.1080 0.0004 3.51 0.10 0.235 0.007 0.99 1766 6 1363 36 1529 24 23<br />

6120k Ace Fay 0.1075 0.0005 3.27 0.13 0.221 0.009 0.99 1758 9 1285 48 1474 30 27<br />

6120l Ace Fay 0.1067 0.0003 3.43 0.29 0.233 0.019 1.00 1743 5 1352 101 1512 67 22<br />

6120m Ace Fay 0.1085 0.0003 3.69 0.25 0.246 0.017 1.00 1775 4 1420 85 1569 55 20<br />

6120n Ace Fay 0.1054 0.0005 2.83 0.17 0.195 0.012 1.00 1722 9 1146 66 1363 45 33<br />

6120q Ace Fay 0.1100 0.0023 2.99 0.34 0.208 0.033 0.52 1800 37 1218 178 1405 86 32<br />

6139a Gunnar 0.1097 0.0001 4.74 0.28 0.316 0.019 1.00 1794 2 1768 91 1774 49 1<br />

6139b Gunnar 0.1096 0.0001 4.53 0.20 0.302 0.014 1.00 1792 2 1702 69 1737 38 5<br />

6139d Gunnar 0.1094 0.0002 4.55 0.29 0.304 0.019 1.00 1789 4 1711 94 1740 53 4<br />

242


Sample<br />

Deposit<br />

207 Pb/ 206 Pb ±2σ<br />

207 Pb/ 235 U ±2σ<br />

206 Pb/ 238 U ±2σ R‡<br />

207 Pb/ 206 Pb ±<br />

206 Pb/ 238 U ±<br />

207 Pb/ 235 U ± Disc‡<br />

6139e Gunnar 0.1085 0.0004 4.0 0.4 0.271 0.028 1.00 1775 7 1545 140 1639 84 13<br />

6139f Gunnar 0.1094 0.0001 4.40 0.32 0.294 0.021 1.00 1789 2 1662 106 1713 60 7<br />

6139g Gunnar 0.1100 0.0001 4.52 0.23 0.300 0.015 1.00 1799 2 1692 77 1734 43 6<br />

6139h Gunnar 0.1095 0.0002 4.2 0.4 0.281 0.024 1.00 1791 3 1595 121 1676 70 11<br />

6139i Gunnar 0.1094 0.0003 4.30 0.22 0.287 0.016 1.00 1790 5 1627 79 1693 43 9<br />

6139j Gunnar 0.1102 0.0001 4.56 0.26 0.302 0.017 1.00 1803 1 1703 85 1742 47 6<br />

6139k Gunnar 0.1091 0.0002 4.52 0.17 0.303 0.011 1.00 1784 3 1707 56 1735 31 4<br />

6139l Gunnar 0.1093 0.0002 4.51 0.32 0.301 0.021 1.00 1787 3 1698 106 1732 60 5<br />

6139m Gunnar 0.1101 0.0001 3.96 0.28 0.264 0.019 1.00 1800 2 1508 94 1626 57 16<br />

6139n Gunnar 0.1104 0.0003 4.0 0.4 0.268 0.025 1.00 1806 5 1529 127 1641 74 15<br />

6139o Gunnar 0.1101 0.0002 4.0 0.4 0.268 0.024 1.00 1801 4 1529 121 1639 71 15<br />

6139p Gunnar 0.1098 0.0002 3.71 0.29 0.247 0.019 1.00 1797 4 1422 101 1573 62 21<br />

6139q Gunnar 0.1098 0.0003 3.66 0.29 0.244 0.020 1.00 1795 4 1406 102 1562 64 22<br />

6139r Gunnar 0.1108 0.0009 4.0 0.3 0.268 0.019 0.99 1812 15 1529 94 1641 53 16<br />

6139s Gunnar 0.1080 0.0005 3.3 0.5 0.226 0.033 1.00 1766 8 1315 171 1490 111 26<br />

6139t Gunnar 0.1106 0.0002 4.21 0.38 0.279 0.025 1.00 1809 4 1584 125 1677 73 12<br />

6139u Gunnar 0.1099 0.0002 4.14 0.42 0.276 0.028 1.00 1797 4 1569 143 1662 83 13<br />

6139v Gunnar 0.1084 0.0005 3.56 0.33 0.241 0.023 1.00 1773 8 1390 117 1541 74 22<br />

6139vna Gunnar 0.1097 0.0001 4.63 0.24 0.309 0.016 1.00 1794 2 1734 79 1755 44 3<br />

EA3011 Eagle-Ace 0.0524 0.0008 0.25 0.01 0.035 0.002 0.96 303 36 222 13 229 12 27<br />

EA3011a Eagle-Ace 0.0523 0.0006 0.23 0.03 0.032 0.004 0.99 300 28 202 25 210 24 33<br />

EA3011b Eagle-Ace 0.0536 0.0003 0.26 0.01 0.035 0.002 1.00 354 11 221 11 232 10 38<br />

EA3011c Eagle-Ace 0.0537 0.0008 0.23 0.02 0.031 0.003 0.99 360 35 198 18 211 20 45<br />

EA3011d Eagle-Ace 0.0519 0.0010 0.21 0.02 0.029 0.002 0.97 282 43 186 13 193 14 34<br />

EA3011e Eagle-Ace 0.0531 0.0004 0.27 0.01 0.037 0.002 0.99 334 17 232 10 241 10 31<br />

EA3011f Eagle-Ace 0.0535 0.0003 0.26 0.02 0.036 0.002 1.00 348 14 225 15 236 14 35<br />

EA3011g Eagle-Ace 0.0516 0.0009 0.18 0.01 0.025 0.001 0.97 269 40 158 9 166 10 41<br />

EA3011h Eagle-Ace 0.0514 0.0013 0.21 0.02 0.030 0.003 0.98 259 59 188 20 193 21 27<br />

EA3011j Eagle-Ace 0.0525 0.0007 0.20 0.02 0.027 0.002 0.99 306 31 172 15 181 14 44<br />

EA3011k Eagle-Ace 0.0539 0.0005 0.29 0.02 0.039 0.003 0.99 369 20 247 17 259 16 33<br />

EA3011l Eagle-Ace 0.0540 0.0002 0.30 0.01 0.040 0.001 0.99 373 10 254 8 266 8 32<br />

EA3011n Eagle-Ace 0.0529 0.0006 0.20 0.02 0.028 0.002 0.99 323 26 176 13 186 13 46<br />

EA3011o Eagle-Ace 0.0518 0.0005 0.19 0.02 0.027 0.003 1.00 278 24 173 18 180 17 38<br />

EA3011t Eagle-Ace 0.0552 0.0005 0.31 0.01 0.040 0.001 0.96 419 21 254 7 271 8 39<br />

Athabasca type-uraninite<br />

243


Sample<br />

Deposit<br />

207 Pb/ 206 Pb ±2σ<br />

207 Pb/ 235 U ±2σ<br />

206 Pb/ 238 U ±2σ R‡<br />

207 Pb/ 206 Pb ±<br />

206 Pb/ 238 U ±<br />

207 Pb/ 235 U ± Disc‡<br />

2202p2 Martin Lake 0.0896 0.0003 2.33 0.16 0.190 0.013 1.00 1416 7 1123 68 1223 48 21<br />

2202p2-1 Martin Lake 0.0859 0.0004 1.80 0.10 0.153 0.009 1.00 1336 8 920 50 1047 36 31<br />

2202p2-2 Martin Lake 0.0890 0.0008 2.20 0.14 0.180 0.013 1.00 1404 16 1069 70 1180 45 24<br />

2202p2-3 Martin Lake 0.0863 0.0002 2.0 0.2 0.171 0.013 1.00 1345 4 1018 73 1122 52 24<br />

2202p2-4 Martin Lake 0.0931 0.0002 2.05 0.08 0.161 0.006 1.00 1489 4 963 36 1133 28 35<br />

2202p2-5 Martin Lake 0.0841 0.0002 1.82 0.16 0.159 0.014 1.00 1295 4 949 77 1054 58 27<br />

2202p2-6 Martin Lake 0.0882 0.0003 2.09 0.06 0.173 0.005 0.99 1388 6 1029 27 1145 19 26<br />

2202p2-7 Martin Lake 0.0922 0.0003 2.21 0.13 0.175 0.010 1.00 1471 5 1039 58 1183 42 29<br />

2202p2-8 Martin Lake 0.0891 0.0004 1.86 0.11 0.153 0.010 1.00 1407 8 915 54 1067 40 35<br />

2202p2-9 Martin Lake 0.0901 0.0002 2.34 0.15 0.190 0.012 1.00 1427 4 1119 67 1223 46 22<br />

2202p2-11 Martin Lake 0.0901 0.0004 2.26 0.15 0.183 0.012 1.00 1429 9 1083 67 1198 45 24<br />

2202p2-12 Martin Lake 0.0906 0.0006 2.1 0.2 0.167 0.012 1.00 1439 13 997 66 1141 53 31<br />

2202p2-13 Martin Lake 0.0890 0.0001 2.0 0.1 0.168 0.012 1.00 1404 3 999 64 1129 47 29<br />

2202p2-14 Martin Lake 0.0866 0.0004 2.0 0.1 0.170 0.011 1.00 1351 9 1012 61 1120 44 25<br />

2202p2-15 Martin Lake 0.0890 0.0007 2.21 0.16 0.181 0.012 1.00 1404 14 1075 65 1184 50 23<br />

2202p2-16 Martin Lake 0.0857 0.0005 2.0 0.2 0.170 0.016 1.00 1332 10 1012 88 1114 67 24<br />

2202p2-17 Martin Lake 0.0873 0.0005 2.1 0.1 0.178 0.013 1.00 1367 11 1054 69 1156 48 23<br />

2202p2-18 Martin Lake 0.0914 0.0006 2.43 0.19 0.194 0.015 1.00 1456 13 1144 81 1252 57 21<br />

2202p2-19 Martin Lake 0.0901 0.0002 2.25 0.11 0.182 0.009 1.00 1427 5 1080 51 1196 35 24<br />

2202p2-21 Martin Lake 0.0998 0.0002 3.1 0.2 0.229 0.017 1.00 1620 4 1327 91 1438 58 18<br />

2202p2-22 Martin Lake 0.0850 0.0003 1.74 0.11 0.149 0.010 1.00 1316 6 898 54 1023 40 32<br />

2202p2-23 Martin Lake 0.0983 0.0003 2.99 0.22 0.222 0.016 1.00 1593 5 1295 85 1406 56 19<br />

2202p2-24 Martin Lake 0.0855 0.0005 1.98 0.17 0.169 0.014 1.00 1326 12 1006 75 1108 58 24<br />

2202p2-25 Martin Lake 0.0993 0.0006 3.0 0.2 0.224 0.013 1.00 1611 12 1302 69 1419 43 19<br />

2202p2-26 Martin Lake 0.0894 0.0001 2.0 0.1 0.167 0.012 1.00 1413 2 993 64 1128 48 30<br />

2202p2-27 Martin Lake 0.0952 0.0012 2.35 0.11 0.180 0.010 0.98 1532 24 1068 56 1226 34 30<br />

2202p2-28 Martin Lake 0.0969 0.0008 2.85 0.10 0.215 0.008 0.98 1565 15 1255 44 1368 26 20<br />

2202p2-29 Martin Lake 0.0934 0.0023 2.64 0.36 0.206 0.023 1.00 1496 47 1208 123 1312 100 19<br />

2202p2-31 Martin Lake 0.0875 0.0005 1.76 0.12 0.147 0.010 1.00 1371 11 882 55 1030 45 36<br />

2202p2-32 Martin Lake 0.0872 0.0001 1.59 0.08 0.134 0.006 1.00 1364 2 808 37 968 30 41<br />

2202p2-33 Martin Lake 0.0870 0.0003 2.0 0.1 0.170 0.010 1.00 1361 6 1013 53 1124 39 26<br />

2202p1 Martin Lake 0.0880 0.0004 2.1 0.2 0.171 0.014 1.00 1383 8 1019 75 1136 52 26<br />

2202p1-2 Martin Lake 0.0881 0.0002 1.69 0.06 0.140 0.005 1.00 1384 5 845 29 1004 24 39<br />

2202p1-33 Martin Lake 0.0906 0.0002 1.88 0.08 0.151 0.006 1.00 1438 5 908 36 1073 27 37<br />

2202p1-34 Martin Lake 0.0851 0.0002 1.48 0.09 0.127 0.008 1.00 1317 5 772 45 923 38 41<br />

2202p1-35 Martin Lake 0.0884 0.0005 1.52 0.06 0.126 0.006 1.00 1392 10 764 33 940 25 45<br />

244


Sample<br />

Deposit<br />

207 Pb/ 206 Pb ±2σ<br />

207 Pb/ 235 U ±2σ<br />

206 Pb/ 238 U ±2σ R‡<br />

207 Pb/ 206 Pb ±<br />

206 Pb/ 238 U ±<br />

207 Pb/ 235 U ± Disc‡<br />

2202p1-36 Martin Lake 0.0880 0.0002 1.56 0.08 0.130 0.006 1.00 1382 5 785 37 954 32 43<br />

EA3010A Eagle-Ace 0.0540 0.0003 0.29 0.01 0.039 0.002 1.00 373 11 248 12 261 11 33<br />

EA3010A-1 Eagle-Ace 0.0539 0.0003 0.27 0.02 0.036 0.003 1.00 366 12 229 16 241 15 38<br />

EA3010A-2 Eagle-Ace 0.0539 0.0002 0.28 0.03 0.037 0.004 1.00 367 9 235 24 247 23 36<br />

EA3010A-3 Eagle-Ace 0.0531 0.0004 0.26 0.02 0.036 0.002 0.99 333 16 228 14 237 14 32<br />

EA3010A-4 Eagle-Ace 0.0543 0.0004 0.27 0.02 0.036 0.003 1.00 385 19 229 16 243 14 41<br />

EA3010A-5 Eagle-Ace 0.0524 0.0004 0.24 0.02 0.034 0.003 1.00 302 16 213 16 220 16 30<br />

EA3010A-6 Eagle-Ace 0.0537 0.0004 0.26 0.03 0.035 0.004 1.00 360 17 224 25 236 24 38<br />

EA3010A-7 Eagle-Ace 0.0516 0.0003 0.21 0.02 0.029 0.003 1.00 269 15 185 20 192 19 31<br />

EA3010A-8 Eagle-Ace 0.0528 0.0004 0.25 0.01 0.034 0.002 0.99 320 16 216 13 225 12 32<br />

EA3010A-9 Eagle-Ace 0.0546 0.0003 0.30 0.02 0.039 0.002 0.99 396 13 248 12 262 12 38<br />

245


APPENDIX B<br />

REE contents of various generation of uraninite from the deposits of the Beaverlodge area<br />

Sample Y Zr Cs Ba Th La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu<br />

6120-1 395.4 1124.4 0.3 1615.1 84.27 1502.3 2267.9 181.4 471.9 42.4 10.5 44.8 5.8 39.3 8.4 25.0 3.4 22.2 3.1<br />

6120-3 519.2 1150.5 0.3 848.9 40.99 1127.4 1478.6 112.0 310.7 34.2 8.6 46.6 6.2 43.0 9.7 27.9 3.7 24.3 3.7<br />

6120-4 394.4 1268.9 0.3 1068.9 69.55 1414.3 2016.8 154.9 391.0 33.9 7.9 35.9 4.8 33.3 7.1 20.7 2.8 18.6 2.8<br />

6120-5 452.7 1113.7 0.2 1208.2 63.73 1553.0 2260.4 186.0 519.3 51.4 11.9 52.9 7.5 50.2 10.5 29.2 3.9 24.5 3.4<br />

6120-8 552.4 1210.1 0.3 927.8 69.96 1713.6 2312.2 188.7 550.8 62.5 14.6 69.8 9.9 65.0 13.6 39.2 5.0 29.8 4.4<br />

6120-10 411.8 1085.0 0.3 892.3 56.26 1287.5 1866.2 151.3 393.7 37.6 9.5 41.6 5.6 38.8 8.1 23.2 3.1 20.6 3.0<br />

6120-11 469.4 1329.7 0.2 773.4 74.18 1833.3 2728.2 230.0 632.1 57.7 14.0 54.5 7.0 46.4 9.9 27.5 3.8 24.6 3.4<br />

3705-1 910.0 2002.0 9.1 1210.8 607.24 1459.7 4766.3 390.1 1181.7 248.0 41.6 152.1 29.1 198.6 35.6 92.2 15.3 87.6 10.9<br />

3705-2 634.6 1825.4 2.2 850.7 590.77 1175.1 4674.0 468.8 1617.6 288.7 49.1 172.4 31.2 197.3 35.5 100.5 14.9 91.1 10.9<br />

3705-3 765.9 1486.8 6.8 875.0 492.21 1775.0 6435.4 573.9 1869.6 312.8 53.4 214.5 36.0 233.2 41.4 121.2 16.3 110.0 14.4<br />

3705-4 989.8 2018.2 2.3 774.7 521.64 1948.2 6666.6 601.0 2047.4 347.8 58.3 220.0 38.2 244.7 43.8 125.7 18.4 117.8 14.4<br />

3705-5 318.6 1770.7 0.5 1031.2 650.85 893.9 2913.2 237.8 844.7 115.8 20.4 69.4 12.3 74.0 13.7 35.1 5.1 34.0 3.8<br />

3705-6 532.9 1821.9 1.8 776.4 382.13 1157.4 4863.5 442.2 1411.6 215.9 38.3 140.8 26.9 182.0 30.1 93.9 14.2 101.3 11.6<br />

3705-7 187.9 2732.4 1.8 1322.6 687.03 718.4 2384.4 208.9 670.4 93.3 16.9 52.4 9.8 64.3 10.4 27.6 4.3 26.7 3.6<br />

3705-8 130.5 4649.5 1.9 1276.3 1110.85 544.1 1627.9 138.4 432.0 60.9 9.9 36.5 6.0 42.0 6.7 18.8 2.8 19.2 2.2<br />

3705-10 148.5 8107.2 8.0 1621.4 1075.82 399.4 1224.4 105.2 360.6 58.6 7.7 39.4 6.7 44.4 7.6 23.5 4.1 27.2 3.0<br />

3705-12 465.0 2257.5 1.2 948.8 827.95 1571.3 5964.9 511.0 1625.1 258.8 41.3 145.7 26.8 178.6 29.6 80.7 12.6 86.7 9.8<br />

5812_1 5517.2 7031.7 0.1 69.8 803.7 1473.1 2587.5 345.7 1608.8 458.2 112.6 718.3 119.4 854.0 177.8 485.6 61.6 344.7 42.4<br />

5812_2 5467.8 7113.0 0.6 422.6 2202.3 2010.3 4375.0 616.7 2937.2 790.8 173.4 778.6 141.6 943.7 187.5 527.6 68.6 426.6 52.6<br />

5812_3 3309.7 8056.2 6.8 3289.2 7150.2 4789.0 7968.2 903.1 3369.1 866.5 174.9 732.5 138.8 972.8 187.4 540.7 72.6 419.7 49.9<br />

5812_5 2218.5 10919.2 0.3 2684.7 3117.8 1769.4 6915.6 919.6 3302.0 614.1 121.5 394.1 79.4 559.1 103.9 302.8 48.7 339.1 39.2<br />

5812_8 3190.0 9671.6 1.1 1690.4 2584.7 3536.8 7751.8 886.5 3322.5 683.1 160.7 566.2 104.4 714.0 129.0 368.3 56.0 370.9 43.5<br />

5812_9 8937.3 299758.8 7.2 2289.5 7459.0 3508.8 8452.6 1036.5 4487.9 1258.8 192.6 1199.0 263.1 2017.8 401.3 1249.2 246.5 1867.3 221.7<br />

5812_10 296.5 8372.7 0.7 2840.3 4543.5 1444.3 2214.2 174.0 487.0 85.1 16.5 61.1 12.0 86.5 14.8 39.8 6.8 43.3 5.2<br />

5812_11 1150.9 5126.7 0.1 289.3 2668.1 1585.3 2494.8 275.8 990.1 190.2 44.3 184.0 31.6 223.4 43.5 115.2 16.3 105.3 12.1<br />

90085-1 3006.9 2913.6 0.4 150.0 1441.4 1676.0 3607.3 476.3 2106.9 532.0 128.2 522.9 85.5 571.7 108.0 293.9 38.6 234.6 28.3<br />

90085-2 4783.0 3209.7 0.2 87.3 1901.3 2015.6 3993.8 542.6 2464.9 673.4 168.2 676.0 116.1 800.5 145.7 383.5 54.1 337.1 38.6<br />

90085-3 2407.3 4846.2 0.3 72.8 1420.0 1459.5 2831.5 356.2 1551.3 379.5 99.0 420.8 65.1 463.0 86.8 214.3 29.0 180.1 19.4<br />

246


Sample Y Zr Cs Ba Th La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu<br />

90085-4 2997.8 3900.8 0.3 69.1 1542.2 1678.9 3252.0 426.7 1843.8 506.2 120.4 501.3 79.0 508.7 100.7 256.3 34.4 213.3 24.3<br />

90085-5 4270.4 3266.4 0.2 66.3 1912.2 2220.0 4653.4 599.9 2661.6 720.6 166.4 702.8 119.5 793.6 148.0 386.3 53.4 344.4 38.5<br />

90085-6 2182.5 4199.7 0.2 78.6 1013.4 1251.7 2196.5 264.8 1147.7 304.8 74.7 321.1 55.2 384.5 73.9 199.9 27.0 169.7 19.7<br />

90085-7 5088.6 4145.2 0.3 174.1 1538.2 1888.5 3574.8 458.6 2139.1 593.9 158.7 691.8 115.8 791.9 157.3 420.7 56.1 358.1 41.2<br />

90085-8 2111.3 4817.6 0.4 79.8 1218.5 1397.3 2540.5 309.9 1326.8 345.9 81.6 339.6 56.9 383.6 72.8 190.8 26.8 165.1 18.0<br />

90085-9 1838.6 4395.7 0.2 63.2 991.0 1158.3 2097.4 256.2 1158.1 296.7 69.4 296.7 47.6 334.4 60.8 163.4 22.8 142.9 15.5<br />

90085-10 4913.5 2419.0 0.3 138.1 1418.1 1731.2 3981.7 514.2 2460.9 649.1 176.7 734.0 120.1 817.5 155.1 420.8 55.4 339.7 42.1<br />

90085-11 6560.4 2597.1 0.7 400.7 1009.7 2310.0 4095.9 550.8 2804.5 831.6 196.1 948.6 180.0 1319.4 257.1 726.6 104.3 669.1 81.6<br />

6134-12 2049.0 11910.2 0.1 11671.1 87.0 3729.8 1650.0 1505.6 7426.5 1744.4 66.4 1281.9 156.4 875.6 162.7 408.2 57.3 374.7 42.9<br />

6134-10 2661.0 390.6 0.1 9416.2 12.7 3526.3 1739.6 1491.9 7088.4 1601.7 62.4 1204.1 150.2 867.6 158.7 406.4 57.5 383.7 47.0<br />

6134-9 3430.1 186.1 0.1 10570.5 13.4 3031.1 1371.2 1162.3 5581.2 1342.3 52.1 973.2 123.3 728.4 131.3 339.9 48.7 312.2 37.6<br />

6134-8 829.5 1528.5 0.0 11317.2 73.1 2274.2 631.8 440.1 2224.2 578.3 25.6 564.9 69.1 400.7 74.3 190.3 28.9 193.3 22.7<br />

6134-11 3266.0 14.6 0.1 9888.2 1.7 1549.9 244.1 138.5 706.5 174.6 7.9 196.2 22.2 132.6 26.7 71.5 9.9 62.4 8.1<br />

6134-13 208.6 47.2 0.5 9233.4 0.2 795.5 113.9 44.4 222.2 33.7 1.4 34.2 3.4 17.7 4.2 10.4 1.4 7.8 1.1<br />

6134-14 179.8 84.4 0.7 10900.2 0.1 674.2 116.6 43.6 200.7 32.5 1.5 33.1 3.8 20.7 4.5 12.3 1.8 11.7 1.4<br />

6122-22 164.1 1208.6 5.6 5213.4 5.8 822.9 1028.4 119.2 605.6 77.9 15.6 87.3 11.0 73.1 14.7 40.1 5.3 28.3 5.4<br />

6122-21 276.2 2150.6 8.4 14778.3 6.3 680.9 867.5 95.9 391.4 66.9 13.6 67.4 7.7 59.9 10.5 32.3 3.8 27.8 3.7<br />

6122-19 157.9 1104.7 1.9 3467.8 2.9 675.6 863.8 95.6 408.3 65.3 11.9 57.4 7.9 52.1 12.7 34.8 5.4 31.9 4.1<br />

6122-17 265.0 2177.3 1.4 8225.1 6.8 630.9 835.5 92.8 382.0 64.0 13.3 64.0 8.7 58.9 11.8 32.8 4.3 27.5 3.6<br />

6122-18 234.0 1680.8 4.4 3870.5 2.7 640.2 736.2 87.0 342.2 66.9 11.5 64.0 8.9 60.4 12.8 36.9 5.0 30.7 4.5<br />

6122-20 160.6 1482.7 2.0 4759.1 2.7 616.9 682.8 75.0 312.6 57.4 15.8 50.1 7.8 53.4 10.0 32.4 5.0 21.7 3.8<br />

6122-3 178.3 1681.1 1.9 7814.0 2.7 366.9 481.2 39.2 132.8 21.6 4.7 21.7 2.9 20.0 4.4 15.4 2.3 14.8 2.2<br />

6122-11 180.9 1508.2 1.2 7845.6 15.0 317.8 454.6 39.3 133.0 20.3 4.5 17.4 2.3 15.3 3.3 9.5 1.5 9.3 1.7<br />

6122-12 183.7 2199.3 3.0 5415.1 3.6 302.3 376.5 40.4 123.6 14.1 2.4 17.5 2.2 17.8 3.8 12.1 1.9 11.4 2.0<br />

6122-9 267.3 3662.7 2.8 8829.1 6.7 274.8 381.0 35.1 118.2 17.9 4.1 16.6 2.4 16.1 3.3 9.9 1.5 9.9 1.5<br />

6122-2 208.7 1938.7 3.7 5962.3 4.1 231.0 358.1 33.0 120.8 21.0 4.8 23.0 3.4 23.0 4.3 11.7 1.7 14.4 2.0<br />

6122-13 207.8 1844.4 2.3 5888.9 5.1 263.2 342.9 33.7 105.6 17.5 3.6 14.9 2.4 19.1 4.0 11.0 2.0 12.2 1.6<br />

6122-4 473.7 2235.8 0.6 1371.1 86.5 225.8 325.5 30.4 103.1 16.5 4.4 21.6 3.1 23.5 5.4 14.2 2.4 15.6 2.0<br />

6122-5 530.7 2350.1 1.2 4080.8 73.0 285.9 300.8 30.5 89.9 15.0 3.5 19.9 2.3 12.7 4.0 11.3 1.7 12.6 2.1<br />

6122-15 487.5 2227.1 1.6 6451.9 99.1 238.8 292.3 28.5 99.7 17.0 3.4 16.1 2.2 15.5 3.5 10.3 1.5 9.6 1.6<br />

6122-8 443.3 3328.4 3.7 3264.3 78.4 213.5 290.2 29.0 98.0 14.7 3.2 13.4 1.9 14.0 3.1 9.4 1.5 9.8 1.5<br />

6122-6 454.3 2285.9 1.7 3551.7 79.3 214.1 273.0 25.9 77.7 11.7 3.0 16.5 2.1 10.8 2.6 8.6 1.3 6.7 1.2<br />

6122-7 619.7 2209.9 0.7 2175.5 120.8 148.4 224.3 21.0 72.8 10.7 2.2 9.6 1.4 10.1 2.5 7.3 1.2 7.5 1.2<br />

247


Sample Y Zr Cs Ba Th La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu<br />

6139-2 810.9 2096.5 0.3 1048.4 64.2 1384.1 1280.7 126.5 498.2 89.2 19.4 97.0 14.3 99.2 19.9 53.5 7.2 44.6 5.7<br />

6139-3 809.1 1613.8 0.2 510.0 24.6 1533.8 1271.3 122.0 460.2 82.7 18.3 94.7 14.4 101.7 20.7 55.4 7.9 49.4 6.0<br />

6139-4 639.2 1560.8 0.3 1377.8 36.9 1796.1 1485.6 129.3 469.2 72.8 16.6 78.9 12.0 84.2 17.3 46.2 6.5 43.9 4.8<br />

6139-5 749.0 1829.4 0.4 1815.1 45.8 1032.3 1127.3 115.5 480.0 89.9 19.1 91.8 13.9 92.5 19.5 49.8 6.9 43.4 5.3<br />

6139-6 856.0 1404.6 0.5 6402.1 46.9 1571.9 1978.3 172.3 586.1 99.7 24.3 106.2 17.7 129.8 25.9 69.5 9.9 61.0 8.1<br />

6139-7 854.4 2438.0 0.4 2212.6 17.5 1100.9 1179.8 112.0 472.2 88.7 20.6 104.2 14.4 96.6 19.3 49.9 6.4 39.8 5.2<br />

6139-8 776.6 1722.9 2.0 803.4 11.3 922.8 916.7 94.1 388.5 73.9 16.9 84.0 12.7 87.8 18.6 50.7 6.7 42.1 5.6<br />

6139-9 921.3 1978.3 0.8 1015.4 42.7 1197.1 1228.3 127.1 521.8 100.5 22.7 118.0 16.6 113.1 22.4 59.4 7.7 49.8 6.3<br />

6139-11 853.4 35639.6 0.5 7346.8 19.5 583.2 614.8 59.0 241.7 51.7 13.7 71.1 11.5 82.9 18.8 54.6 8.6 58.0 8.1<br />

248


APPENDIX C<br />

REE characteristic parameters of various generation of uraninite from deposits of the<br />

Beaverlodge area.<br />

Sample ΣREE TLREE THREE LREE/HREE Eu/Eu* (La/Sm)N (Tb/La)N (Tb/La)N Tb/Yb Sm/La (La/Yb)N<br />

6120-1 4628.5 4476.5 152.0 29.4 0.7 19.4 0.01 0.00 1.1 0.03 41.0<br />

6120-3 3236.6 3071.5 165.1 18.6 0.7 18.1 0.02 0.01 1.1 0.03 28.1<br />

6120-4 4144.8 4018.9 126.0 31.9 0.7 22.9 0.01 0.00 1.1 0.02 46.1<br />

6120-5 4764.1 4582.0 182.1 25.2 0.7 16.6 0.02 0.00 1.3 0.03 38.4<br />

6120-8 5079.1 4842.3 236.9 20.4 0.7 15.0 0.02 0.01 1.4 0.04 34.8<br />

6120-10 3889.7 3745.7 144.0 26.0 0.7 18.8 0.02 0.00 1.1 0.03 37.9<br />

6120-11 5672.4 5495.2 177.2 31.0 0.8 17.4 0.01 0.00 1.2 0.03 45.1<br />

3705-1 8708.6 8087.3 621.3 13.0 0.6 3.2 0.06 0.02 1.4 0.17 10.1<br />

3705-2 8927.3 8273.3 654.0 12.7 0.6 2.2 0.08 0.03 1.5 0.25 7.8<br />

3705-3 11807.0 11020.1 786.9 14.0 0.6 3.1 0.06 0.02 1.4 0.18 9.8<br />

3705-4 12492.5 11669.4 823.1 14.2 0.6 3.1 0.06 0.02 1.4 0.18 10.0<br />

3705-5 5273.3 5025.8 247.5 20.3 0.6 4.2 0.04 0.01 1.5 0.13 15.9<br />

3705-6 8729.9 8129.0 600.9 13.5 0.6 2.9 0.09 0.02 1.1 0.19 6.9<br />

3705-7 4291.4 4092.2 199.1 20.6 0.7 4.2 0.04 0.01 1.6 0.13 16.3<br />

3705-8 2947.5 2813.2 134.2 21.0 0.6 4.9 0.04 0.01 1.3 0.11 17.1<br />

3705-10 2311.8 2155.8 156.0 13.8 0.5 3.7 0.07 0.02 1.1 0.15 8.9<br />

3705-12 10542.9 9972.3 570.6 17.5 0.6 3.3 0.06 0.02 1.3 0.16 11.0<br />

5812_1 9389.7 6585.9 2803.8 2.3 0.6 1.8 0.23 0.08 1.5 0.31 2.6<br />

5812_2 14030.2 10903.4 3126.9 3.5 0.7 1.4 0.21 0.07 1.4 0.39 2.9<br />

5812_3 21185.2 18070.8 3114.4 5.8 0.7 3.0 0.09 0.03 1.4 0.18 6.9<br />

5812_5 15508.5 13642.2 1866.3 7.3 0.7 1.6 0.19 0.04 1.0 0.35 3.2<br />

5812_8 18693.8 16341.5 2352.3 6.9 0.8 2.8 0.10 0.03 1.2 0.19 5.8<br />

5812_9 26403.2 18937.3 7465.8 2.5 0.5 1.5 0.53 0.07 0.6 0.36 1.1<br />

5812_10 4690.6 4421.1 269.5 16.4 0.7 9.3 0.03 0.01 1.2 0.06 20.2<br />

5812_11 6312.0 5580.6 731.4 7.6 0.7 4.6 0.07 0.02 1.3 0.12 9.1<br />

90085-1 11334.7 8526.6 1883.5 4.5 0.7 1.6 0.14 0.05 1.6 0.32 4.3<br />

90085-2 14232.9 9858.4 2551.7 3.9 0.7 1.6 0.17 0.06 1.5 0.33 3.6<br />

90085-3 9697.7 6677.1 1478.5 4.5 0.7 1.9 0.12 0.04 1.5 0.26 4.9<br />

90085-4 10126.3 7828.1 1718.0 4.6 0.7 1.8 0.13 0.05 1.6 0.30 4.8<br />

90085-5 15865.5 11021.9 2586.6 4.3 0.7 1.6 0.16 0.05 1.5 0.32 3.9<br />

90085-6 7659.2 5240.2 1251.0 4.2 0.7 2.2 0.14 0.04 1.4 0.24 4.5<br />

90085-7 13572.8 8813.7 2632.8 3.3 0.8 1.8 0.19 0.06 1.4 0.31 3.2<br />

90085-8 7914.4 6002.1 1253.8 4.8 0.7 2.1 0.12 0.04 1.5 0.25 5.1<br />

90085-9 6868.9 5036.0 1084.0 4.6 0.7 2.2 0.12 0.04 1.4 0.26 4.9<br />

249


Sample ΣREE TLREE THREE LREE/HREE Eu/Eu* (La/Sm)N (Tb/La)N (Tb/La)N Tb/Yb Sm/La (La/Yb)N<br />

90085-10 14839.2 9513.8 2684.8 3.5 0.8 1.4 0.20 0.07 1.5 0.37 3.1<br />

90085-11 14381.9 10788.9 4286.8 2.5 0.7 1.6 0.29 0.08 1.1 0.36 2.1<br />

6134-12 19482.4 16122.7 3359.8 4.8 0.1 1.2 0.10 0.04 1.8 0.47 6.0<br />

6134-10 18785.4 15510.3 3275.1 4.7 0.1 1.2 0.11 0.04 1.7 0.45 5.6<br />

6134-9 15234.8 12540.1 2694.6 4.7 0.1 1.2 0.10 0.04 1.7 0.44 5.9<br />

6134-8 7718.3 6174.2 1544.0 4.0 0.1 2.2 0.08 0.03 1.5 0.25 7.1<br />

6134-11 3350.9 2821.4 529.5 5.3 0.1 4.9 0.04 0.01 1.5 0.11 15.1<br />

6134-13 1291.3 1211.1 80.2 15.1 0.1 13.0 0.01 0.00 1.9 0.04 61.7<br />

6134-14 1158.3 1069.1 89.3 12.0 0.1 11.4 0.02 0.01 1.4 0.05 34.9<br />

6122-22 2934.6 2669.5 265.1 10.1 0.6 5.8 0.03 0.01 1.7 0.09 17.6<br />

6122-21 2329.3 2116.4 212.9 9.9 0.6 5.6 0.04 0.01 1.2 0.10 14.9<br />

6122-19 2326.9 2120.5 206.4 10.3 0.6 5.7 0.05 0.01 1.1 0.10 12.8<br />

6122-17 2230.0 2018.5 211.5 9.5 0.6 5.4 0.04 0.01 1.3 0.10 13.9<br />

6122-18 2107.2 1884.0 223.2 8.4 0.5 5.2 0.05 0.01 1.2 0.10 12.6<br />

6122-20 1944.8 1760.5 184.2 9.6 0.9 5.9 0.04 0.01 1.5 0.09 17.3<br />

6122-3 1130.3 1046.5 83.8 12.5 0.7 9.3 0.04 0.01 0.9 0.06 15.1<br />

6122-11 1029.5 969.4 60.2 16.1 0.7 8.6 0.03 0.01 1.0 0.06 20.8<br />

6122-12 928.0 859.4 68.6 12.5 0.5 11.7 0.04 0.01 0.8 0.05 16.0<br />

6122-9 892.4 831.1 61.2 13.6 0.7 8.4 0.04 0.01 1.1 0.07 16.8<br />

6122-2 852.3 768.6 83.6 9.2 0.7 6.0 0.06 0.01 1.0 0.09 9.7<br />

6122-13 833.5 766.4 67.1 11.4 0.7 8.3 0.05 0.01 0.8 0.07 13.0<br />

6122-4 793.5 705.7 87.7 8.0 0.7 7.5 0.07 0.01 0.8 0.07 8.8<br />

6122-5 792.4 725.7 66.7 10.9 0.6 10.4 0.04 0.01 0.8 0.05 13.8<br />

6122-15 740.0 679.7 60.2 11.3 0.6 7.7 0.04 0.01 1.0 0.07 15.1<br />

6122-8 703.3 648.7 54.5 11.9 0.7 7.9 0.05 0.01 0.8 0.07 13.3<br />

6122-6 655.1 605.4 49.7 12.2 0.7 10.0 0.03 0.01 1.3 0.05 19.4<br />

6122-7 520.3 479.5 40.8 11.8 0.7 7.6 0.05 0.01 0.8 0.07 12.1<br />

6139-2 3739.3 3398.1 341.2 10.0 0.6 8.5 0.03 0.01 1.4 0.06 18.8<br />

6139-3 3838.3 3488.2 350.1 10.0 0.6 10.2 0.03 0.01 1.2 0.05 18.8<br />

6139-4 4263.4 3969.5 293.9 13.5 0.7 13.5 0.02 0.01 1.2 0.04 24.8<br />

6139-5 3187.3 2864.2 323.1 8.9 0.6 6.3 0.04 0.01 1.4 0.09 14.4<br />

6139-6 4860.8 4432.6 428.2 10.4 0.7 8.7 0.04 0.01 1.2 0.06 15.6<br />

6139-7 3309.8 2974.1 335.7 8.9 0.7 6.8 0.04 0.01 1.5 0.08 16.8<br />

6139-8 2721.1 2412.9 308.2 7.8 0.7 6.9 0.05 0.01 1.3 0.08 13.3<br />

6139-9 3590.9 3197.6 393.3 8.1 0.6 6.5 0.04 0.01 1.4 0.08 14.6<br />

6139-11 1877.7 1564.2 313.5 5.0 0.7 6.2 0.10 0.02 0.8 0.09 6.1<br />

250


APPENDIX D<br />

Electron microprobe analyses of various chlorite phases from deposits of the Beaverlodge area<br />

SAMPLE ID. SiO 2 TiO 2 AL 2O 3 CR 2O 3 FeO MnO MgO CaO NA 2O K 2O F CL H 2O O=F O=CL Total Temp ( o ) ±<br />

RETROGRADE LOWER GREENSCHIST CHLORITE (Cl1)<br />

Cl48-7 29.83 0.00 14.82 0.06 19.52 0.07 18.82 0.30 0.02 0.01 0.55 0.00 10.94 -0.23 0.00 94.71 197<br />

Cl48-3 30.10 0.00 15.68 0.02 19.23 0.15 19.74 0.15 0.00 0.00 0.34 0.00 11.30 -0.14 0.00 96.56 211<br />

Cl48-5 29.61 0.01 15.56 0.00 18.54 0.12 19.33 0.16 0.00 0.00 0.44 0.00 11.04 -0.19 0.00 94.63 210<br />

Cl48 30.92 0.00 13.81 0.00 19.72 0.13 20.51 0.12 0.04 0.02 0.51 0.00 11.20 -0.21 0.00 96.77 183<br />

Cl48-2-1 30.79 0.01 14.36 0.00 20.22 0.10 20.28 0.00 0.01 0.01 0.42 0.00 11.30 -0.18 0.00 97.32 192<br />

AVG 30.25 0.00 14.85 0.02 19.45 0.11 19.74 0.15 0.01 0.01 0.45 0.00 11.16 -0.19 0.00 96.00 199 14<br />

EARLY TENSIONAL VEINS URANIUM MINERALIZATION (Cl4)<br />

6122_pt1-2-Cl 29.99 0.02 25.80 0.00 12.16 0.15 18.28 0.28 0.46 0.11 0.17 0.12 12.23 -0.07 -0.03 100.12 287<br />

6122_pt2-1 27.23 -0.01 21.92 0.06 15.36 0.17 17.80 1.88 0.21 0.09 0.50 0.20 11.29 -0.21 -0.05 96.79 318<br />

6122_pt3-2 27.70 -0.01 22.82 0.07 16.71 0.07 19.24 0.37 0.10 0.03 0.16 0.07 11.83 -0.07 -0.02 99.34 329<br />

6122_pt4-1 25.53 0.00 19.50 0.04 11.47 0.22 14.11 10.29 0.44 0.57 0.87 0.10 10.55 -0.37 -0.02 93.71 329<br />

6122_pt4-2 27.34 0.03 19.66 0.09 15.16 0.16 15.72 4.54 0.19 0.73 0.32 0.14 11.07 -0.13 -0.03 95.44 288<br />

AVG 27.56 0.00 21.94 0.05 14.17 0.15 17.03 3.47 0.28 0.31 0.40 0.13 11.39 -0.17 -0.03 97.08 310 21<br />

METASOMATIC -TYPE URANIUM MINERALIZATION (Cl5 Cl6)<br />

Early Chlorite associated with the metasomatic type uranium mineralization (Cl 5 )<br />

Gn21-1 26.65 0.07 19.29 0.00 20.31 0.37 17.80 0.01 0.04 0.02 0.31 0.00 11.11 -0.13 0.00 95.85 312<br />

Gn21-2 26.97 0.05 19.13 0.00 20.39 0.41 18.56 0.00 0.01 0.00 0.23 0.00 11.28 -0.10 0.00 96.93 312<br />

Gn21-4 26.63 0.08 19.71 0.01 20.98 0.37 17.83 0.01 0.00 0.01 0.19 0.00 11.28 -0.08 0.00 97.02 321<br />

Gn21-5 27.24 0.04 19.64 0.00 20.61 0.43 18.17 0.02 0.01 0.00 0.26 0.00 11.35 -0.11 0.00 97.66 310<br />

Gn21-6 26.70 0.07 19.27 0.00 20.62 0.32 18.49 0.00 0.03 0.02 0.29 0.00 11.23 -0.12 0.00 96.92 319<br />

AVG 26.84 0.06 19.41 0.00 20.58 0.38 18.17 0.01 0.02 0.01 0.26 0.00 11.25 -0.11 0.00 96.88 315 6<br />

Late Chlorite vein injected during late stage of the metasomatic process (Cl 6 )<br />

GN03A-1 28.80 0.00 19.65 0.05 15.94 0.30 21.12 0.04 0.02 0.01 0.33 0.00 11.63 -0.14 0.00 97.75 282<br />

GN03A-2 28.96 0.00 19.17 0.13 15.75 0.23 22.08 0.03 0.00 0.01 0.30 0.00 11.70 -0.13 0.00 98.24 282<br />

GN03A-3 29.57 0.00 19.12 0.03 14.20 0.16 23.41 0.03 0.00 0.00 0.40 0.00 11.80 -0.17 0.00 98.55 273<br />

GN03A-4 29.04 0.01 19.17 0.04 13.61 0.21 23.66 0.03 0.01 0.00 0.39 0.00 11.71 -0.16 0.00 97.72 284<br />

251


SAMPLE ID. SiO 2 TiO 2 AL 2O 3 CR 2O 3 FeO MnO MgO CaO NA 2O K 2O F CL H 2O O=F O=CL Total Temp ( o ) ±<br />

GN03A-5 29.38 0.04 19.27 0.06 15.61 0.28 21.65 0.03 0.01 0.01 0.37 0.00 11.70 -0.16 0.00 98.25 270<br />

AVG 29.15 0.01 19.28 0.06 15.02 0.24 22.38 0.03 0.01 0.01 0.36 0.00 11.71 -0.15 0.00 98.10 278 7<br />

Variably Altered Early Chlorite associated with the metasomatic type uranium mineralization<br />

Gn12-2-1 28.49 0.02 18.10 0.04 21.32 0.32 17.40 0.06 0.00 0.01 0.24 0.00 11.29 -0.10 0.00 97.19 262<br />

Gn12-2-2 30.37 0.02 16.57 0.00 15.18 0.11 23.61 0.04 0.01 0.00 0.54 0.00 11.57 -0.23 0.00 97.80 235<br />

Gn12-4-1 28.75 0.02 17.17 0.03 19.96 0.35 18.47 0.09 0.02 0.01 0.32 0.00 11.20 -0.13 0.00 96.26 248<br />

Gn12-4-2 29.73 0.00 16.20 0.01 15.10 0.07 23.53 0.03 0.02 0.00 0.44 0.00 11.44 -0.19 0.00 96.38 240<br />

Gn12-6-1 28.45 0.01 18.10 0.02 21.14 0.25 17.19 0.04 0.01 0.02 0.41 0.00 11.16 -0.17 0.00 96.63 258<br />

Gn12-6-2 30.76 0.01 16.18 0.01 14.14 0.16 24.14 0.01 0.02 0.01 0.26 0.00 11.71 -0.11 0.00 97.30 222<br />

Gn12-8-1 28.47 0.02 18.13 0.01 20.59 0.28 17.35 0.05 0.02 0.01 0.44 0.00 11.14 -0.19 0.00 96.32 257<br />

Gn12-8-2 29.91 0.03 16.13 0.00 14.29 0.14 23.05 0.02 0.02 0.01 0.52 0.00 11.31 -0.22 0.00 95.21 226<br />

Gn12-101 28.49 0.00 17.60 0.02 21.33 0.34 17.90 0.08 0.06 0.03 0.43 0.00 11.20 -0.18 0.00 97.30 261<br />

Gn12-102 30.44 0.02 15.97 0.00 14.54 0.15 23.99 0.00 0.02 0.01 0.25 0.00 11.64 -0.11 0.00 96.92 226<br />

Gn12-111 29.03 0.01 17.49 0.03 19.76 0.34 19.08 0.05 0.08 0.04 0.57 0.00 11.25 -0.24 0.00 97.49 253<br />

GN12-112 30.63 0.05 16.13 0.02 14.03 0.15 24.71 0.01 0.05 0.01 0.73 0.00 11.53 -0.31 0.00 97.74 230<br />

GN-12-1 29.70 0.01 16.07 0.01 15.07 0.01 23.01 0.00 0.01 0.00 0.43 0.00 11.34 -0.18 0.00 95.48 233<br />

AVG 29.48 0.02 16.65 0.02 16.95 0.20 21.74 0.03 0.04 0.02 0.48 0.00 11.39 -0.20 0.00 96.99 242 20<br />

6140-1 29.88 0.00 15.97 0.04 18.10 0.05 20.83 0.03 0.01 0.01 0.27 0.00 11.38 -0.11 0.00 96.45 223<br />

6140-2 29.88 0.00 15.97 0.04 18.10 0.05 20.83 0.03 0.01 0.01 0.27 0.00 11.38 -0.11 0.00 96.45 223<br />

6140-3 29.29 0.01 15.94 0.06 19.97 0.04 20.34 0.01 0.01 0.02 0.38 0.00 11.29 -0.16 0.00 97.20 240<br />

6140-4 29.46 0.02 16.05 0.02 18.31 0.07 20.84 0.03 0.02 0.05 0.27 0.00 11.34 -0.11 0.00 96.37 234<br />

6140-5 29.18 0.01 15.56 0.01 19.32 0.05 20.19 0.03 0.01 0.01 0.34 0.00 11.17 -0.14 0.00 95.73 231<br />

AVR 29.54 0.01 15.90 0.03 18.76 0.05 20.61 0.03 0.01 0.02 0.31 0.00 11.31 -0.13 0.00 96.44 230 8<br />

6134_Pt2_Cl1 34.61 0.02 19.74 0.01 8.14 0.18 21.49 0.49 0.06 0.12 0.92 0.15 11.85 -0.39 -0.03 97.32 141<br />

6134_Pt2_Cl2 35.20 -0.01 19.46 0.01 2.91 0.32 22.27 1.74 0.05 0.13 2.05 0.14 11.22 -0.86 -0.03 94.59 114<br />

6134_Pt3_Cl1 36.06 0.01 20.00 0.03 3.53 0.30 21.07 0.97 0.06 0.17 1.01 0.11 11.78 -0.43 -0.02 94.62 92<br />

6134_Pt4_Cl1 36.14 0.02 21.88 -0.01 4.59 0.25 20.48 0.92 0.04 0.27 1.56 0.06 11.82 -0.66 -0.01 97.62 116<br />

AVG 35.50 0.01 20.27 0.01 4.79 0.26 21.33 1.03 0.05 0.17 1.38 0.11 11.67 -0.59 -0.02 96.04 116 24<br />

BRECCIA-TYPE URANIUM MINERALIZATION (Cl7)<br />

5812A-2 24.73 0.03 18.95 0.05 22.98 0.05 13.57 2.32 0.07 0.02 - 0.00 10.72 0.00 0.00 93.49 335<br />

5812A-3 24.63 0.00 18.86 0.03 18.70 0.07 15.01 2.14 0.06 0.00 - 0.00 10.54 0.00 0.00 90.04 324<br />

5812A-3-1 24.63 0.00 19.27 0.07 23.22 0.08 12.94 0.65 0.04 0.00 - 0.00 10.53 0.00 0.00 91.43 323<br />

5812A-5-2 25.72 0.03 20.40 0.06 27.38 0.08 11.92 0.11 0.04 0.00 - 0.00 11.01 0.00 0.00 96.75 324<br />

5812A-8-1 24.06 0.04 18.36 0.10 26.34 0.16 10.77 2.07 0.05 0.00 - 0.00 10.39 0.00 0.00 92.34 332<br />

5812A-8-2 25.34 0.05 19.66 0.07 26.42 0.11 11.87 0.40 0.08 0.00 - 0.00 10.79 0.00 0.00 94.79 319<br />

252


SAMPLE ID. SiO 2 TiO 2 AL 2O 3 CR 2O 3 FeO MnO MgO CaO NA 2O K 2O F CL H 2O O=F O=CL Total Temp ( o ) ±<br />

5812A-8-3 25.65 0.04 20.38 0.02 27.32 0.07 11.90 0.17 0.02 0.00 - 0.00 10.99 0.00 0.00 96.56 324<br />

5812A-9-1 25.68 0.03 19.84 0.08 27.38 0.08 11.78 0.24 0.03 0.00 - 0.00 10.91 0.00 0.00 96.05 317<br />

5812A-9-2 25.24 0.01 19.56 0.08 28.15 0.09 11.44 0.08 0.05 0.00 - 0.00 10.79 0.00 0.00 95.49 323<br />

5812A-10-1 25.83 0.02 20.21 0.10 27.24 0.05 12.54 0.20 0.03 0.00 - 0.00 11.08 0.00 0.00 97.30 325<br />

5812A-10-2 24.97 0.04 19.24 0.08 26.38 0.06 11.97 1.92 0.04 0.00 - 0.00 10.81 0.00 0.00 95.51 334<br />

5812-Pt1 25.93 0.01 21.15 0.05 27.87 0.02 12.65 0.77 0.04 0.03 0.28 0.04 11.20 -0.12 -0.01 100.18 343<br />

5812-Pt2-2 25.21 0.01 20.87 0.23 25.78 0.07 13.46 0.31 0.02 0.01 0.08 0.02 11.06 -0.03 0.00 97.21 350<br />

5812-Pt2-3 26.49 0.01 20.15 0.45 23.19 0.05 15.28 0.84 0.03 0.02 0.14 0.03 11.26 -0.01 -0.06 98.06 323<br />

5812-Pt3-1 25.97 0.01 21.24 0.03 28.34 0.11 11.84 0.53 0.05 0.03 0.17 0.04 11.20 -0.07 -0.03 99.62 340<br />

AVG 25.34 0.02 19.88 0.10 25.78 0.08 12.60 0.85 0.04 0.01 0.17 0.01 10.89 -0.02 -0.01 95.66 329 16<br />

Late Chlorite replacement<br />

C-27-221-1-1 30.08 0.06 16.42 0.00 15.04 0.14 22.66 0.10 0.00 0.00 0.52 0.00 11.39 -0.22 0.00 96.19 228<br />

C-27-221-1-2 31.72 0.02 15.16 0.01 11.24 0.23 24.86 0.13 0.03 0.01 0.67 0.00 11.43 -0.28 0.00 95.23 183<br />

C-27-221-1-3 31.62 0.00 15.04 0.00 11.23 0.14 24.82 0.12 0.01 0.01 0.48 0.00 11.46 -0.20 0.00 94.73 182<br />

C-27-221-2-1 32.13 0.02 15.42 0.00 11.89 0.11 25.28 0.15 0.02 0.01 0.44 0.00 11.74 -0.19 0.00 97.02 188<br />

C-27-221-3-1 30.84 0.03 15.16 0.00 11.33 0.13 24.02 0.15 0.01 0.01 0.49 0.00 11.26 -0.21 0.00 93.22 189<br />

C-27-221-3-2 31.20 0.04 15.53 0.00 12.04 0.21 23.88 0.19 0.04 0.01 0.47 0.00 11.43 -0.20 0.00 94.84 192<br />

AVG 31.27 0.03 15.46 0.00 12.13 0.16 24.25 0.14 0.02 0.01 0.51 0.00 11.45 -0.22 0.00 95.21 194 23<br />

VOLCANIC-TYPE URANIUM MINERALIZATION (Cl8)<br />

Chlorite associated with the volcanic-type uranium mineralization<br />

C-27-319-1 26.62 0.01 18.11 0.02 28.73 0.00 13.53 0.02 0.01 0.00 0.04 0.00 11.08 -0.02 0.00 98.15 300<br />

C-27-319-2 26.11 0.03 18.98 0.01 27.84 0.22 13.65 0.02 0.01 0.03 0.05 0.00 11.09 -0.02 0.00 98.02 319<br />

C-27-319-3 26.14 0.02 18.78 0.04 28.87 0.21 12.99 0.01 0.00 0.06 0.07 0.00 11.04 -0.03 0.00 98.20 315<br />

C-27-319-4 26.30 0.04 18.20 0.01 27.97 0.33 13.06 0.04 0.02 0.10 0.09 0.00 10.93 -0.04 0.00 97.05 301<br />

C-27-319-5 25.97 0.00 18.38 0.02 28.32 0.23 13.37 0.01 0.00 0.01 0.08 0.00 10.95 -0.03 0.00 97.31 314<br />

C-27-319-6-1 25.81 0.04 18.01 0.00 28.11 0.21 13.22 0.00 0.01 0.00 0.14 0.00 10.81 -0.06 0.00 96.30 309<br />

C-27-319-6-2 25.89 0.05 18.48 0.04 28.39 0.26 13.19 0.00 0.02 0.01 0.10 0.00 10.94 -0.04 0.00 97.32 316<br />

C-27-319-7 25.71 0.00 18.33 0.05 29.74 0.30 12.40 0.00 0.00 0.01 0.04 0.00 10.90 -0.02 0.00 97.47 317<br />

AVG 26.07 0.02 18.41 0.02 28.50 0.22 13.18 0.01 0.01 0.03 0.08 0.00 10.97 -0.03 0.00 97.48 311 9<br />

C-27-34-1 26.90 0.02 19.22 0.04 22.11 0.56 16.89 0.03 0.01 0.02 0.11 0.00 11.26 -0.05 0.00 97.12 308<br />

C-27-34-2 26.19 0.00 19.43 0.00 22.61 0.48 16.48 0.01 0.02 0.02 0.16 0.00 11.12 -0.07 0.00 96.45 323<br />

C-27-34-3 26.76 0.00 19.15 0.03 22.77 0.62 16.73 0.02 0.03 0.02 0.13 0.00 11.24 -0.05 0.00 97.45 312<br />

C-27-34-4-1 26.94 0.02 19.22 0.05 22.45 0.53 17.11 0.02 0.01 0.00 0.11 0.00 11.32 -0.05 0.00 97.73 311<br />

C-27-34-4-2 26.94 0.02 19.22 0.05 22.45 0.53 17.11 0.02 0.01 0.00 0.11 0.00 11.32 -0.05 0.00 97.73 311<br />

C-27-34-5 26.62 0.01 19.28 0.03 22.33 0.58 16.93 0.00 0.01 0.01 0.10 0.00 11.24 0.00 -0.04 97.10 315<br />

C-27-34-5-1 26.48 0.00 19.44 0.04 22.29 0.50 16.68 0.03 0.02 0.01 0.10 0.00 11.21 -0.04 0.00 96.75 317<br />

253


SAMPLE ID. SiO 2 TiO 2 AL 2O 3 CR 2O 3 FeO MnO MgO CaO NA 2O K 2O F CL H 2O O=F O=CL Total Temp ( o ) ±<br />

C-27-34-6 26.91 0.02 19.26 0.02 22.49 0.45 17.10 0.01 0.03 0.03 0.10 0.00 11.32 -0.04 0.00 97.70 312<br />

CL57-4 26.17 0.02 17.82 0.02 27.91 0.34 14.34 0.03 0.01 0.01 0.00 0.00 11.05 0.00 0.00 97.72 311<br />

AVG 26.66 0.01 19.12 0.03 23.05 0.51 16.60 0.02 0.02 0.01 0.10 0.00 11.23 -0.04 0.00 97.31 313 7<br />

CL29-7 25.35 0.02 20.07 0.01 25.65 0.30 14.51 0.01 0.03 0.02 0.13 0.00 11.04 -0.05 0.00 97.09 344<br />

CL29-8 25.98 0.00 19.20 0.00 24.85 0.24 15.10 0.03 0.03 0.02 0.20 0.00 11.00 -0.08 0.00 96.56 322<br />

CL29-2 25.02 0.05 20.14 0.03 25.75 0.24 14.62 0.02 0.03 0.02 0.09 0.00 11.04 -0.04 0.00 97.01 354<br />

CL29-4 25.69 0.04 19.48 0.02 26.21 0.26 14.58 0.00 0.03 0.05 0.11 0.11 11.04 -0.05 -0.02 97.55 334<br />

CL29-5 25.71 0.03 19.39 0.02 25.97 0.21 14.97 0.02 0.02 0.08 0.18 0.00 11.06 -0.08 0.00 97.58 335<br />

AVG 26.10 0.09 18.79 0.01 25.65 0.24 15.13 0.02 0.03 0.03 0.18 0.01 11.03 -0.07 0.00 97.22 338 16<br />

Variably altered chlorite associated with the volcanic type uranium mineralization<br />

CL57-1 29.61 0.00 15.65 0.03 22.37 0.30 18.39 0.12 0.06 0.02 - 0.00 11.44 0.00 0.00 97.99 226<br />

CL57-2 28.68 0.00 15.68 0.11 24.13 0.35 17.64 0.08 0.03 0.03 - 0.00 11.32 0.00 0.00 98.05 248<br />

CL57-3 29.09 0.02 15.85 0.02 23.57 0.27 18.20 0.19 0.02 0.02 - 0.00 11.44 0.00 0.00 98.69 244<br />

CL57-5 29.75 0.00 14.72 0.01 21.98 0.30 18.68 0.17 0.07 0.01 - 0.00 11.33 0.00 0.00 97.02 212<br />

CL57-6 29.95 0.00 14.99 0.10 20.00 0.23 18.76 0.17 0.04 0.01 - 0.00 11.28 0.00 0.00 95.53 200<br />

CL57-7 29.25 0.00 15.05 0.07 22.45 0.23 18.27 0.10 0.08 0.02 - 0.00 11.27 0.00 0.00 96.79 224<br />

CL29-6 27.98 0.08 16.00 0.02 26.42 0.19 15.18 0.04 0.03 0.01 0.19 0.00 10.99 -0.08 0.00 97.05 251<br />

CL29-9 29.84 0.04 17.25 0.02 25.35 0.20 15.35 0.04 0.04 0.02 0.36 0.00 11.36 -0.15 0.00 99.72 227<br />

AVG 29.27 0.02 15.65 0.05 23.28 0.26 17.56 0.11 0.05 0.02 0.28 0.00 11.30 -0.03 0.00 97.61 229 25<br />

6139-3 27.66 0.02 17.39 0.06 25.32 0.22 11.81 0.37 0.18 0.34 0.00 0.00 10.79 0.00 0.00 94.16 236<br />

6139-4 29.89 0.00 17.92 0.03 23.38 0.23 10.39 0.28 0.21 1.11 0.00 0.00 10.96 0.00 0.00 94.40 173<br />

6139-5 27.52 0.05 17.48 0.05 25.20 0.26 11.60 0.28 0.18 0.33 0.00 0.00 10.74 0.00 0.00 93.69 236<br />

6139-6 28.84 0.02 17.41 0.02 24.58 0.15 11.25 0.27 0.16 0.67 0.00 0.00 10.87 0.00 0.00 94.24 201<br />

AVR 30.16 0.02 17.88 0.04 23.31 0.19 10.79 0.30 0.19 1.09 0.00 0.00 11.05 0.00 0.00 95.01 212 32<br />

ATHABASCA-TYPE URANIUM MINERALIZATION Cl9)<br />

3705-1 27.68 0.01 15.09 0.15 28.69 0.04 14.04 0.04 0.07 0.00 0.25 0.00 10.79 -0.11 0.00 96.74 246<br />

3705-2 28.96 0.01 15.10 0.16 26.74 0.00 13.59 0.09 0.04 0.00 0.27 0.00 10.80 -0.11 0.00 95.65 203<br />

3705-3 27.90 0.02 14.84 0.26 26.54 0.03 14.47 0.10 0.24 0.02 0.64 0.00 10.53 -0.27 0.00 95.33 232<br />

3705-4 28.51 0.02 15.77 0.21 24.06 0.00 16.14 0.10 0.02 0.00 0.34 0.00 10.93 -0.14 0.00 95.96 234<br />

3705-5 28.62 0.02 15.77 0.21 24.06 0.00 16.14 0.10 0.02 0.00 0.34 0.00 10.95 -0.14 0.00 96.09 231<br />

3705-7 29.51 0.00 15.05 0.19 22.53 0.00 17.68 0.07 0.00 0.00 0.46 0.00 11.01 -0.19 0.00 96.31 211<br />

3507_Pt1_Cl 28.33 0.04 15.78 0.19 27.49 0.02 15.30 0.07 0.01 0.02 0.31 0.11 11.03 -0.13 -0.02 99.23 250<br />

3507_Pt2_Cl 28.43 0.02 15.55 0.11 26.61 -0.04 16.31 0.04 0.02 0.03 0.33 0.10 11.06 -0.14 -0.02 99.00 249<br />

3507_Pt3_Cl 27.90 0.03 15.45 0.11 27.33 0.02 14.83 0.10 0.04 0.01 0.41 0.08 10.79 -0.17 -0.02 97.61 247<br />

3507_Pt4_Cl 27.96 0.01 15.65 0.13 26.07 0.03 15.83 0.07 0.04 0.02 0.49 0.09 10.82 -0.21 -0.02 97.52 251<br />

AVG 28.38 0.02 15.40 0.17 26.01 0.01 15.43 0.08 0.05 0.01 0.38 0.04 10.87 -0.16 -0.01 96.94 235 24<br />

254


SAMPLE ID. SiO 2 TiO 2 AL 2O 3 CR 2O 3 FeO MnO MgO CaO NA 2O K 2O F CL H 2O O=F O=CL Total Temp ( o ) ±<br />

LATE VEINS (Cl10)<br />

6134_Pt2_Cl1 47.77 0.08 25.89 -0.02 11.16 0.01 2.21 0.69 0.15 5.90 0.13 0.08 4.25 -0.05 -0.02 99.08 161<br />

6134_Pt2_Cl2 48.55 0.03 29.89 -0.02 4.33 0.01 3.75 0.20 0.27 7.02 - 0.07 4.45 -0.01 -0.02 98.92 179<br />

6134_Pt3_Cl1 51.23 0.02 29.24 0.02 4.28 0.05 2.12 0.24 0.26 8.09<br />

0.02<br />

0.12 0.07 4.47 -0.05 -0.02 100.36 137<br />

6134_Pt4_Cl1 48.47 0.02 23.70 -0.02 8.70 0.05 4.44 0.40 0.18 6.48 0.23 0.15 4.15 -0.03 -0.10 97.27 136<br />

6134_Pt4_Cl2 48.14 0.20 21.84 0.01 10.41 0.03 2.42 0.75 0.18 6.20 0.30 0.03 4.01 -0.13 -0.01 94.99 108<br />

AVG 48.83 0.07 26.11 -0.01 7.78 0.03 2.99 0.45 0.21 6.74 0.15 0.08 4.27 -0.05 -0.03 98.12 144<br />

255


APPENDIX E<br />

Electron microprobe data and temperatures of various chlorite phases from deposits of the Beaverlodge area<br />

SAMPLE Si 4+ AL 4+ Total AL 6+ Ti 4+ Cr 3+ Fe 2+ Mn 2+ Mg 2+ Total Ca 2+ Na + K + Total F - CL - H + Total O 2- ∑Cat ∑ions<br />

RETROGRADE LOWER GREENSCHIST CHLORITE (Cl1)<br />

Cl48-7 3.20 0.81 4.00 1.87 0.00 0.01 1.75 0.01 3.01 6.64 0.03 0.00 0.00 0.04 0.19 0.00 7.81 8.00 17.81 9.87 18.00 197<br />

Cl48-3 3.15 0.85 4.00 1.93 0.00 0.00 1.68 0.01 3.08 6.71 0.02 0.00 0.00 0.02 0.11 0.00 7.89 8.00 17.89 9.88 18.00 211<br />

Cl48-5 3.16 0.84 4.00 1.96 0.00 0.00 1.65 0.01 3.07 6.69 0.02 0.00 0.00 0.02 0.15 0.00 7.85 8.00 17.85 9.87 18.00 210<br />

Cl48 3.24 0.76 4.00 1.71 0.00 0.00 1.73 0.01 3.20 6.65 0.01 0.01 0.00 0.02 0.17 0.00 7.83 8.00 17.83 9.91 18.00 183<br />

Cl48-2-1 3.21 0.79 4.00 1.77 0.00 0.00 1.76 0.01 3.15 6.69 0.00 0.00 0.00 0.00 0.14 0.00 7.86 8.00 17.86 9.91 18.00 192<br />

AVG 3.19 0.81 4.00 1.85 0.00 0.00 1.72 0.01 3.10 6.68 0.02 0.00 0.00 0.02 0.15 0.00 7.85 8.00 17.85 9.89 18.00 199 14<br />

EARLY TENSIONAL VEINS URANIUM MINERALIZATION (Cl4)<br />

6122_pt1-2- 2.92 1.08 4.00 2.96 0.00 0.00 0.99 0.01 2.65 6.61 0.03 0.09 0.01 0.13 0.05 0.02 7.93 8.00 17.93 9.65 18.00 287<br />

Cl<br />

6122_pt2-1 2.82 1.18 4.00 2.68 0.00 0.01 1.33 0.02 2.75 6.78 0.21 0.04 0.01 0.26 0.16 0.04 7.80 8.00 17.80 9.86 18.00 318<br />

6122_pt3-2 2.79 1.21 4.00 2.71 0.00 0.01 1.41 0.01 2.89 7.01 0.04 0.02 0.00 0.06 0.05 0.01 7.94 8.00 17.94 9.86 18.00 329<br />

6122_pt4-1 2.79 1.21 4.00 2.51 0.00 0.00 1.05 0.02 2.30 5.88 1.20 0.09 0.08 1.38 0.30 0.02 7.68 8.00 17.68 10.04 18.00 329<br />

6122_pt4-2 2.91 1.09 4.00 2.47 0.00 0.01 1.35 0.01 2.50 6.34 0.52 0.04 0.10 0.66 0.11 0.03 7.87 8.00 17.87 9.91 18.00 288<br />

AVG 2.85 1.16 4.00 2.66 0.00 0.00 1.22 0.01 2.62 6.52 0.40 0.06 0.04 0.50 0.14 0.02 7.84 8.00 17.84 9.87 18.00 310 21<br />

METASOMATIC -TYPE URANIUM MINERALIZATION (Cl5 Cl6)<br />

Early chlorite associated with the metasomatic type uranium mineralization (Cl5)<br />

Gn21-1 2.84 1.16 4.00 2.42 0.01 0.00 1.81 0.03 2.83 7.10 0.00 0.01 0.00 0.01 0.10 0.00 7.90 8.00 17.90 9.95 18.00 312<br />

Gn21-2 2.84 1.16 4.00 2.38 0.00 0.00 1.80 0.04 2.91 7.12 0.00 0.00 0.00 0.00 0.08 0.00 7.93 8.00 17.93 9.97 18.00 312<br />

Gn21-4 2.81 1.19 4.00 2.45 0.01 0.00 1.85 0.03 2.80 7.15 0.00 0.00 0.00 0.00 0.06 0.00 7.94 8.00 17.94 9.96 18.00 321<br />

Gn21-5 2.85 1.15 4.00 2.42 0.00 0.00 1.80 0.04 2.83 7.09 0.00 0.00 0.00 0.00 0.09 0.00 7.91 8.00 17.91 9.94 18.00 310<br />

Gn21-6 2.82 1.18 4.00 2.40 0.01 0.00 1.82 0.03 2.91 7.16 0.00 0.01 0.00 0.01 0.10 0.00 7.90 8.00 17.90 9.98 18.00 319<br />

AVG 2.83 1.17 4.00 2.41 0.01 0.00 1.82 0.03 2.86 7.12 0.00 0.00 0.00 0.01 0.09 0.00 7.92 8.00 17.92 9.96 18.00 315 6<br />

Late chlorite vein injected during late stage of the metasomatic process (Cl6)<br />

GN03A-1 2.93 1.07 4.00 2.36 0.00 0.00 1.36 0.03 3.21 6.95 0.00 0.00 0.00 0.01 0.11 0.00 7.89 8.00 17.89 9.89 18.00 282<br />

GN03A-2 2.93 1.07 4.00 2.29 0.00 0.01 1.33 0.02 3.33 6.98 0.00 0.00 0.00 0.00 0.10 0.00 7.90 8.00 17.90 9.92 18.00 282<br />

GN03A-3 2.96 1.04 4.00 2.26 0.00 0.00 1.19 0.01 3.49 6.95 0.00 0.00 0.00 0.00 0.13 0.00 7.87 8.00 17.87 9.91 18.00 273<br />

GN03A-4 2.93 1.07 4.00 2.28 0.00 0.00 1.15 0.02 3.56 7.00 0.00 0.00 0.00 0.01 0.12 0.00 7.88 8.00 17.88 9.93 18.00 284<br />

GN03A-5 2.97 1.03 4.00 2.29 0.00 0.01 1.32 0.02 3.26 6.91 0.00 0.00 0.00 0.01 0.12 0.00 7.88 8.00 17.88 9.88 18.00 270<br />

AVG 2.94 1.06 4.00 2.29 0.00 0.00 1.27 0.02 3.37 6.96 0.00 0.00 0.00 0.01 0.11 0.00 7.89 8.00 17.89 9.91 18.00 278 7<br />

Variably altered early chlorite associated with the metasomatic type uranium mineralization<br />

Temp<br />

( o )<br />

±<br />

256


SAMPLE Si 4+ AL 4+ Total AL 6+ Ti 4+ Cr 3+ Fe 2+ Mn 2+ Mg 2+ Total Ca 2+ Na + K + Total F - CL - H + Total O 2- ∑Cat ∑ions<br />

Gn12-2-1 3.00 1.01 4.00 2.24 0.00 0.00 1.87 0.03 2.73 6.88 0.01 0.00 0.00 0.01 0.08 0.00 7.92 8.00 17.92 9.88 18.00 262<br />

Gn12-2-2 3.08 0.92 4.00 1.98 0.00 0.00 1.29 0.01 3.57 6.85 0.00 0.00 0.00 0.01 0.17 0.00 7.83 8.00 17.83 9.93 18.00 235<br />

Gn12-4-1 3.04 0.96 4.00 2.14 0.00 0.00 1.76 0.03 2.91 6.84 0.01 0.00 0.00 0.02 0.11 0.00 7.89 8.00 17.89 9.90 18.00 248<br />

Gn12-4-2 3.06 0.94 4.00 1.97 0.00 0.00 1.30 0.01 3.61 6.89 0.00 0.00 0.00 0.01 0.14 0.00 7.86 8.00 17.86 9.96 18.00 240<br />

Gn12-6-1 3.01 0.99 4.00 2.25 0.00 0.00 1.87 0.02 2.71 6.85 0.01 0.00 0.00 0.01 0.14 0.00 7.86 8.00 17.86 9.87 18.00 258<br />

Gn12-6-2 3.12 0.88 4.00 1.93 0.00 0.00 1.20 0.01 3.65 6.79 0.00 0.00 0.00 0.01 0.08 0.00 7.92 8.00 17.92 9.92 18.00 222<br />

Gn12-8-1 3.01 0.99 4.00 2.26 0.00 0.00 1.82 0.03 2.73 6.84 0.01 0.00 0.00 0.01 0.15 0.00 7.85 8.00 17.85 9.86 18.00 257<br />

Gn12-8-2 3.11 0.90 4.00 1.97 0.00 0.00 1.24 0.01 3.57 6.80 0.00 0.00 0.00 0.01 0.17 0.00 7.83 8.00 17.82 9.91 18.00 226<br />

Gn12-101 3.00 1.00 4.00 2.18 0.00 0.00 1.88 0.03 2.81 6.90 0.01 0.01 0.00 0.03 0.14 0.00 7.86 8.00 17.86 9.92 18.00 261<br />

Gn12-102 3.11 0.89 4.00 1.92 0.00 0.00 1.24 0.01 3.65 6.83 0.00 0.00 0.00 0.01 0.08 0.00 7.92 8.00 17.92 9.94 18.00 226<br />

Gn12-111 3.02 0.98 4.00 2.15 0.00 0.00 1.72 0.03 2.96 6.86 0.01 0.02 0.01 0.03 0.19 0.00 7.81 8.00 17.81 9.91 18.00 253<br />

GN12-112 3.09 0.91 4.00 1.92 0.00 0.00 1.19 0.01 3.72 6.84 0.00 0.01 0.00 0.01 0.23 0.00 7.77 8.00 17.77 9.95 18.00 230<br />

GN-12-1 3.09 0.92 4.00 1.97 0.00 0.00 1.31 0.00 3.56 6.84 0.00 0.00 0.00 0.00 0.14 0.00 7.86 8.00 17.86 9.93 18.00 233<br />

AVG 3.06 0.94 4.00 2.03 0.00 0.00 1.47 0.02 3.34 6.85 0.00 0.01 0.00 0.01 0.16 0.00 7.84 8.00 17.84 9.93 18.00 242 20<br />

6140-1 3.11 0.89 4.00 1.96 0.00 0.00 1.58 0.00 3.24 6.78 0.00 0.00 0.00 0.01 0.09 0.00 7.91 8.00 17.91 9.91 18.00 223<br />

6140-2 3.11 0.89 4.00 1.96 0.00 0.00 1.58 0.00 3.24 6.78 0.00 0.00 0.00 0.01 0.09 0.00 7.91 8.00 17.91 9.91 18.00 223<br />

6140-3 3.06 0.94 4.00 1.96 0.00 0.01 1.75 0.00 3.17 6.89 0.00 0.00 0.00 0.01 0.13 0.00 7.87 8.00 17.87 9.96 18.00 240<br />

6140-4 3.08 0.92 4.00 1.98 0.00 0.00 1.60 0.01 3.25 6.84 0.00 0.00 0.01 0.01 0.09 0.00 7.91 8.00 17.91 9.93 18.00 234<br />

6140-5 3.09 0.91 4.00 1.94 0.00 0.00 1.71 0.00 3.19 6.84 0.00 0.00 0.00 0.01 0.11 0.00 7.89 8.00 17.89 9.94 18.00 231<br />

AVR 3.09 0.91 4.00 1.96 0.00 0.00 1.64 0.00 3.22 6.83 0.00 0.00 0.00 0.01 0.10 0.00 7.90 8.00 17.90 9.93 18.00 230 8<br />

6134_Pt2_Cl1 3.37 0.63 4.00 2.27 0.00 0.00 0.66 0.02 3.12 6.06 0.05 0.01 0.02 0.08 0.28 0.03 7.69 8.00 17.69 9.51 18.00 141<br />

6134_Pt2_Cl2 3.45 0.55 4.00 2.25 0.00 0.00 0.24 0.03 3.26 5.77 0.18 0.01 0.02 0.21 0.64 0.02 7.34 8.00 17.34 9.43 18.00 114<br />

6134_Pt3_Cl1 3.52 0.48 4.00 2.30 0.00 0.00 0.29 0.03 3.07 5.69 0.10 0.01 0.02 0.13 0.31 0.02 7.67 8.00 17.67 9.34 18.00 92<br />

6134_Pt4_Cl1 3.45 0.55 4.00 2.46 0.00 0.00 0.37 0.02 2.91 5.76 0.09 0.01 0.03 0.13 0.47 0.01 7.52 8.00 17.52 9.34 18.00 116<br />

AVG 3.45 0.55 4.00 2.32 0.00 0.00 0.39 0.02 3.09 5.82 0.11 0.01 0.02 0.14 0.43 0.02 7.56 8.00 17.56 9.41 18.00 116 24<br />

BRECCIA-TYPE URANIUM MINERALIZATION (Cl7)<br />

5812A-2 2.77 1.23 4.00 2.50 0.00 0.00 2.15 0.01 2.26 6.93 0.28 0.02 0.00 0.30 0.00 0.00 8.00 8.00 18.00 9.99 18.00 335<br />

5812A-3 2.80 1.20 4.00 2.53 0.00 0.00 1.78 0.01 2.55 6.86 0.26 0.01 0.00 0.27 0.00 0.00 8.00 8.00 18.00 9.94 18.00 324<br />

5812A-3-1 2.81 1.20 4.00 2.59 0.00 0.01 2.21 0.01 2.20 7.01 0.08 0.01 0.00 0.09 0.00 0.00 8.00 8.00 18.00 9.90 18.00 323<br />

5812A-5-2 2.80 1.20 4.00 2.62 0.00 0.01 2.49 0.01 1.94 7.06 0.01 0.01 0.00 0.02 0.00 0.00 8.00 8.00 18.00 9.89 18.00 324<br />

5812A-8-1 2.78 1.22 4.00 2.50 0.00 0.01 2.54 0.02 1.85 6.93 0.26 0.01 0.00 0.27 0.00 0.00 8.00 8.00 18.00 9.97 18.00 332<br />

5812A-8-2 2.82 1.18 4.00 2.58 0.00 0.01 2.46 0.01 1.97 7.02 0.05 0.02 0.00 0.07 0.00 0.00 8.00 8.00 18.00 9.90 18.00 319<br />

5812A-8-3 2.80 1.20 4.00 2.62 0.00 0.00 2.49 0.01 1.94 7.06 0.02 0.00 0.00 0.02 0.00 0.00 8.00 8.00 18.00 9.89 18.00 324<br />

5812A-9-1 2.82 1.18 4.00 2.57 0.00 0.01 2.52 0.01 1.93 7.03 0.03 0.01 0.00 0.03 0.00 0.00 8.00 8.00 18.00 9.89 18.00 317<br />

5812A-9-2 2.81 1.20 4.00 2.56 0.00 0.01 2.62 0.01 1.90 7.09 0.01 0.01 0.00 0.02 0.00 0.00 8.00 8.00 18.00 9.92 18.00 323<br />

5812A-10-1 2.80 1.20 4.00 2.58 0.00 0.01 2.47 0.01 2.02 7.09 0.02 0.01 0.00 0.03 0.00 0.00 8.00 8.00 18.00 9.91 18.00 325<br />

Temp<br />

( o )<br />

±<br />

257


SAMPLE Si 4+ AL 4+ Total AL 6+ Ti 4+ Cr 3+ Fe 2+ Mn 2+ Mg 2+ Total Ca 2+ Na + K + Total F - CL - H + Total O 2- ∑Cat ∑ions<br />

5812A-10-2 2.77 1.23 4.00 2.52 0.00 0.01 2.45 0.01 1.98 6.96 0.23 0.01 0.00 0.24 0.00 0.00 8.00 8.00 18.00 9.97 18.00 334<br />

5812-Pt1 2.74 1.26 4.00 2.64 0.00 0.00 2.46 0.00 1.99 7.10 0.09 0.01 0.00 0.10 0.09 0.01 7.90 8.00 17.90 9.94 18.00 343<br />

5812-Pt2-2 2.72 1.28 4.00 2.66 0.00 0.02 2.33 0.01 2.17 7.18 0.04 0.00 0.00 0.04 0.03 0.00 7.97 8.00 17.97 9.94 18.00 350<br />

5812-Pt2-3 2.80 1.20 4.00 2.51 0.00 0.04 2.05 0.00 2.41 7.02 0.10 0.01 0.00 0.10 0.05 0.01 7.95 8.00 17.95 9.93 18.00 323<br />

5812-Pt3-1 2.75 1.25 4.00 2.65 0.00 0.00 2.51 0.01 1.87 7.05 0.06 0.11 0.00 0.17 0.06 0.03 7.92 8.00 17.92 9.98 18.00 340<br />

AVG 2.79 1.21 4.00 2.57 0.00 0.01 2.37 0.01 2.06 7.03 0.10 0.02 0.00 0.12 0.06 0.00 7.98 8.00 17.98 9.93 18.00 329 16<br />

Late chlorite replacement<br />

C-27-221-1-1 3.10 0.90 4.00 1.99 0.01 0.00 1.30 0.01 3.48 6.79 0.01 0.00 0.00 0.01 0.17 0.00 7.83 8.00 17.83 9.90 18.00 228<br />

C-27-221-1-2 3.24 0.76 4.00 1.82 0.00 0.00 0.96 0.02 3.78 6.59 0.01 0.01 0.00 0.02 0.22 0.00 7.78 8.00 17.78 9.85 18.00 183<br />

C-27-221-1-3 3.24 0.76 4.00 1.82 0.00 0.00 0.96 0.01 3.80 6.59 0.01 0.00 0.00 0.02 0.16 0.00 7.84 8.00 17.84 9.85 18.00 182<br />

C-27-221-2-1 3.23 0.78 4.00 1.82 0.00 0.00 1.00 0.01 3.78 6.62 0.02 0.00 0.00 0.02 0.14 0.00 7.86 8.00 17.86 9.86 18.00 188<br />

C-27-221-3-1 3.22 0.78 4.00 1.87 0.00 0.00 0.99 0.01 3.74 6.61 0.02 0.00 0.00 0.02 0.16 0.00 7.84 8.00 17.84 9.85 18.00 189<br />

C-27-221-3-2 3.21 0.79 4.00 1.88 0.00 0.00 1.04 0.02 3.66 6.61 0.02 0.01 0.00 0.03 0.15 0.00 7.85 8.00 17.85 9.85 18.00 192<br />

AVG 3.21 0.79 4.00 1.87 0.00 0.00 1.04 0.01 3.71 6.63 0.02 0.00 0.00 0.02 0.17 0.00 7.83 8.00 17.83 9.86 18.00 194 23<br />

VOLCANIC-TYPE URANIUM MINERALIZATION (Cl8)<br />

Chlorite associated with the volcanic-type uranium mineralization<br />

C-27-319-1 2.88 1.12 4.00 2.31 0.00 0.00 2.60 0.00 2.18 7.09 0.00 0.00 0.00 0.00 0.01 0.00 7.99 8.00 17.99 9.97 18.00 300<br />

C-27-319-2 2.82 1.18 4.00 2.42 0.00 0.00 2.51 0.02 2.20 7.15 0.00 0.00 0.00 0.01 0.02 0.00 7.98 8.00 17.98 9.97 18.00 319<br />

C-27-319-3 2.83 1.17 4.00 2.40 0.00 0.00 2.61 0.02 2.10 7.13 0.00 0.00 0.01 0.01 0.02 0.00 7.98 8.00 17.98 9.97 18.00 315<br />

C-27-319-4 2.87 1.13 4.00 2.34 0.00 0.00 2.56 0.03 2.13 7.06 0.01 0.00 0.01 0.02 0.03 0.00 7.97 8.00 17.97 9.96 18.00 301<br />

C-27-319-5 2.83 1.17 4.00 2.36 0.00 0.00 2.59 0.02 2.18 7.15 0.00 0.00 0.00 0.00 0.03 0.00 7.97 8.00 17.97 9.98 18.00 314<br />

C-27-319-6-1 2.85 1.15 4.00 2.34 0.00 0.00 2.59 0.02 2.17 7.13 0.00 0.00 0.00 0.00 0.05 0.00 7.95 8.00 17.95 9.98 18.00 309<br />

C-27-319-6-2 2.83 1.17 4.00 2.38 0.00 0.00 2.59 0.02 2.15 7.15 0.00 0.00 0.00 0.01 0.04 0.00 7.97 8.00 17.97 9.98 18.00 316<br />

C-27-319-7 2.82 1.18 4.00 2.37 0.00 0.00 2.73 0.03 2.03 7.17 0.00 0.00 0.00 0.00 0.01 0.00 7.99 8.00 17.99 9.99 18.00 317<br />

AVG 2.84 1.16 4.00 2.36 0.00 0.00 2.60 0.02 2.14 7.13 0.00 0.00 0.00 0.01 0.03 0.00 7.97 8.00 17.97 9.98 18.00 311 9<br />

C-27-34-1 2.85 1.15 4.00 2.40 0.00 0.00 1.96 0.05 2.67 7.09 0.00 0.00 0.00 0.01 0.04 0.00 7.96 8.00 17.96 9.95 18.00 308<br />

C-27-34-2 2.81 1.19 4.00 2.45 0.00 0.00 2.03 0.04 2.63 7.16 0.00 0.00 0.00 0.01 0.05 0.00 7.95 8.00 17.95 9.97 18.00 323<br />

C-27-34-3 2.84 1.16 4.00 2.39 0.00 0.00 2.02 0.06 2.65 7.12 0.00 0.01 0.00 0.01 0.04 0.00 7.96 8.00 17.96 9.97 18.00 312<br />

C-27-34-4-1 2.84 1.16 4.00 2.39 0.00 0.00 1.98 0.05 2.69 7.12 0.00 0.00 0.00 0.00 0.04 0.00 7.96 8.00 17.96 9.96 18.00 311<br />

C-27-34-4-2 2.84 1.16 4.00 2.39 0.00 0.00 1.98 0.05 2.69 7.12 0.00 0.00 0.00 0.00 0.04 0.00 7.96 8.00 17.96 9.96 18.00 311<br />

C-27-34-5 2.83 1.17 4.00 2.41 0.00 0.00 1.98 0.05 2.68 7.14 0.00 0.00 0.00 0.00 0.00 - 7.97 7.93 17.97 9.97 18.00 315<br />

C-27-34-5-1 2.82 1.18 4.00 2.44 0.00 0.00 1.99 0.05 2.65 7.13 0.00 0.00 0.00 0.01 0.03<br />

0.03<br />

0.00 7.97 8.00 17.97 9.96 18.00 317<br />

C-27-34-6 2.84 1.16 4.00 2.40 0.00 0.00 1.99 0.04 2.69 7.11 0.00 0.01 0.00 0.01 0.03 0.00 7.97 8.00 17.97 9.97 18.00 312<br />

CL57-4 2.84 1.16 4.00 2.28 0.00 0.00 2.53 0.03 2.32 7.17 0.00 0.00 0.00 0.01 0.00 0.00 8.00 8.00 18.00 10.02 18.00 311<br />

AVG 2.83 1.17 4.00 2.40 0.00 0.00 2.05 0.05 2.63 7.13 0.00 0.00 0.00 0.01 0.03 0.00 7.97 7.99 17.97 9.97 18.00 313 7<br />

Temp<br />

( o )<br />

±<br />

258


SAMPLE Si 4+ AL 4+ Total AL 6+ Ti 4+ Cr 3+ Fe 2+ Mn 2+ Mg 2+ Total Ca 2+ Na + K + Total F - CL - H + Total O 2- ∑Cat ∑ions<br />

CL29-7 2.74 1.26 4.00 2.56 0.00 0.00 2.32 0.03 2.34 7.24 0.00 0.01 0.00 0.01 0.04 0.00 7.96 8.00 17.96 9.99 18.00 344<br />

CL29-8 2.81 1.19 4.00 2.45 0.00 0.00 2.25 0.02 2.43 7.15 0.00 0.01 0.00 0.01 0.07 0.00 7.93 8.00 17.93 9.97 18.00 322<br />

CL29-2 2.71 1.29 4.00 2.57 0.00 0.00 2.33 0.02 2.36 7.29 0.00 0.01 0.00 0.01 0.03 0.00 7.97 8.00 17.97 10.01 18.00 354<br />

CL29-4 2.77 1.23 4.00 2.48 0.00 0.00 2.36 0.02 2.34 7.21 0.00 0.01 0.01 0.01 0.04 - 7.94 7.96 17.94 10.00 18.00 334<br />

CL29-5 2.77 1.23 4.00 2.46 0.00 0.00 2.34 0.02 2.40 7.22 0.00 0.00 0.01 0.02 0.06<br />

0.02<br />

0.00 7.94 8.00 17.94 10.01 18.00 335<br />

AVG 2.81 1.19 4.00 2.39 0.01 0.00 2.31 0.02 2.43 7.16 0.00 0.01 0.00 0.01 0.06 0.00 7.94 8.00 17.94 9.99 18.00 338 16<br />

Variably altered chlorite associated with the volcanic type uranium mineralization<br />

CL57-1 3.11 0.90 4.00 1.93 0.00 0.00 1.96 0.03 2.88 6.80 0.01 0.01 0.00 0.03 0.00 0.00 8.00 8.00 18.00 9.93 18.00 226<br />

CL57-2 3.04 0.96 4.00 1.96 0.00 0.01 2.14 0.03 2.79 6.92 0.01 0.01 0.00 0.02 0.00 0.00 8.00 8.00 18.00 9.98 18.00 248<br />

CL57-3 3.05 0.95 4.00 1.96 0.00 0.00 2.07 0.02 2.84 6.90 0.02 0.00 0.00 0.03 0.00 0.00 8.00 8.00 18.00 9.97 18.00 244<br />

CL57-5 3.15 0.85 4.00 1.84 0.00 0.00 1.95 0.03 2.95 6.76 0.02 0.01 0.00 0.03 0.00 0.00 8.00 8.00 18.00 9.94 18.00 212<br />

CL57-6 3.19 0.82 4.00 1.88 0.00 0.01 1.78 0.02 2.97 6.66 0.02 0.01 0.00 0.03 0.00 0.00 8.00 8.00 18.00 9.88 18.00 200<br />

CL57-7 3.11 0.89 4.00 1.89 0.00 0.01 2.00 0.02 2.90 6.81 0.01 0.02 0.00 0.03 0.00 0.00 8.00 8.00 18.00 9.95 18.00 224<br />

CL29-6 3.03 0.97 4.00 2.04 0.01 0.00 2.39 0.02 2.45 6.91 0.01 0.01 0.00 0.01 0.07 0.00 7.94 8.00 17.94 9.95 18.00 251<br />

CL29-9 3.10 0.90 4.00 2.11 0.00 0.00 2.21 0.02 2.38 6.72 0.00 0.01 0.00 0.02 0.12 0.00 7.88 8.00 17.88 9.84 18.00 227<br />

AVG 3.10 0.90 4.00 1.95 0.00 0.00 2.06 0.02 2.77 6.81 0.01 0.01 0.00 0.02 0.02 0.00 7.98 8.00 17.98 9.93 18.00 229 25<br />

6139-3 3.08 0.93 4.00 2.28 0.00 0.01 2.35 0.02 1.96 6.62 0.04 0.04 0.05 0.13 0.00 0.00 8.00 8.00 18.00 9.83 18.00 236<br />

6139-4 3.27 0.73 4.00 2.31 0.00 0.00 2.14 0.02 1.70 6.17 0.03 0.05 0.16 0.23 0.00 0.00 8.00 8.00 18.00 9.67 18.00 173<br />

6139-5 3.07 0.93 4.00 2.30 0.00 0.00 2.35 0.03 1.93 6.62 0.03 0.04 0.05 0.12 0.00 0.00 8.00 8.00 18.00 9.81 18.00 236<br />

6139-6 3.18 0.82 4.00 2.27 0.00 0.00 2.27 0.01 1.85 6.40 0.03 0.03 0.09 0.16 0.00 0.00 8.00 8.00 18.00 9.75 18.00 201<br />

AVR 3.27 0.73 4.00 2.29 0.00 0.00 2.12 0.02 1.75 6.18 0.03 0.04 0.15 0.22 0.00 0.00 8.00 8.00 18.00 9.68 18.00 212 32<br />

ATHABASCA-TYPE URANIUM MINERALIZATION (Cl9)<br />

3705-1 3.04 0.96 4.00 1.96 0.00 0.01 2.64 0.00 2.30 6.92 0.01 0.02 0.00 0.02 0.09 0.00 7.91 8.00 17.91 9.98 18.00 246<br />

3705-2 3.18 0.82 4.00 1.95 0.00 0.01 2.45 0.00 2.22 6.65 0.01 0.01 0.00 0.02 0.09 0.00 7.91 8.00 17.91 9.84 18.00 203<br />

3705-3 3.09 0.91 4.00 1.94 0.00 0.02 2.46 0.00 2.39 6.81 0.01 0.05 0.00 0.07 0.22 0.00 7.78 8.00 17.78 9.96 18.00 232<br />

3705-4 3.08 0.92 4.00 2.01 0.00 0.02 2.18 0.00 2.60 6.81 0.01 0.00 0.00 0.02 0.12 0.00 7.88 8.00 17.88 9.90 18.00 234<br />

3705-5 3.09 0.91 4.00 2.01 0.00 0.02 2.17 0.00 2.60 6.80 0.01 0.00 0.00 0.02 0.12 0.00 7.88 8.00 17.88 9.90 18.00 231<br />

3705-7 3.15 0.85 4.00 1.89 0.00 0.02 2.01 0.00 2.81 6.74 0.01 0.00 0.00 0.01 0.16 0.00 7.85 8.00 17.85 9.89 18.00 211<br />

3507_Pt1_Cl 3.03 0.97 4.00 1.99 0.00 0.02 2.46 0.00 2.44 6.91 0.01 0.00 0.00 0.01 0.11 0.02 7.88 8.00 17.88 9.96 18.00 250<br />

3507_Pt2_Cl 3.03 0.97 4.00 1.96 0.00 0.01 2.37 0.00 2.59 6.94 0.01 0.00 0.00 0.01 0.11 0.02 7.87 8.00 17.87 9.99 18.00 249<br />

3507_Pt3_Cl 3.04 0.96 4.00 1.99 0.00 0.01 2.49 0.00 2.41 6.90 0.01 0.01 0.00 0.02 0.14 0.02 7.84 8.00 17.84 9.96 18.00 247<br />

3507_Pt4_Cl 3.03 0.97 4.00 2.00 0.00 0.01 2.36 0.00 2.56 6.93 0.00 0.01 0.00 0.01 0.17 0.02 7.82 8.00 17.82 9.97 18.00 251<br />

AVG 3.08 0.92 4.00 1.97 0.00 0.01 2.36 0.00 2.49 6.84 0.01 0.01 0.00 0.02 0.13 0.01 7.86 8.00 17.86 9.94 18.00 235 24<br />

LATE VEINS (Cl10)<br />

6134_Pt2_Cl1 3.31 0.69 4.00 2.11 0.00 0.01 0.65 0.00 0.23 3.00 0.05 0.05 0.52 0.62 0.03 0.01 1.96 2.00 11.96 6.90 12.00 161<br />

Temp<br />

( o )<br />

±<br />

259


SAMPLE Si 4+ AL 4+ Total AL 6+ Ti 4+ Cr 3+ Fe 2+ Mn 2+ Mg 2+ Total Ca 2+ Na + K + Total F - CL - H + Total O 2- ∑Cat ∑ions<br />

6134_Pt2_Cl2 3.25 0.75 4.00 2.36 0.00 0.00 0.24 0.00 0.37 2.98 0.01 0.04 0.60 0.65 0.00 1.99 1.99 11.99 6.88 12.00 179<br />

6134_Pt3_Cl1 3.38 0.62 4.00 2.27 0.00 0.00 0.24 0.00 0.21 2.72 0.02 0.03 0.68 0.73 0.03 0.01 1.97 2.00 11.97 6.84 12.00 137<br />

6134_Pt4_Cl1 3.38 0.62 4.00 1.95 0.00 0.00 0.51 0.00 0.46 2.93 0.03 0.02 0.58 0.63 0.05 0.02 1.93 2.00 11.93 6.94 12.00 136<br />

6134_Pt4_Cl2 3.47 0.53 4.00 1.86 0.01 0.00 0.63 0.00 0.26 2.76 0.06 0.03 0.57 0.65 0.07 0.00 1.93 2.00 11.93 6.89 12.00 108<br />

AVG 3.36 0.64 4.00 2.11 0.00 0.00 0.45 0.00 0.31 2.88 0.03 0.03 0.59 0.66 0.04 0.41 1.95 2.39 11.96 6.89 12.00 144<br />

Temp<br />

( o )<br />

±<br />

260


APPENDIX F<br />

Results of the electron microprobe analyses for different uraninite occurrences in the Beaverlodge area: average<br />

chemical composition and calculated chemical Pb age. Note: the composition is reported in weight percent and<br />

the age in Ma<br />

Sample ID. Deposit UO 2 SiO 2 CaO Fe 2O 3 TiO 2 Cr 2O 3 V 2O 5 PbO P 2O 5 K 2O ThO 2 SO 2 MnO Y 2O 3 Tb 2O 3 CuO Total<br />

Chemical Pb<br />

age (Ma)<br />

Early tensional vein type-uraninite<br />

6122_Pt2 1 Ace Fay 71.83 2.02 3.61 0.39 0.40 0.03 0.11 17.88 0.02 0.03 0.02 0.05 0.12 0.00 0.14 0.03 96.50 1544<br />

6122_Pt3 1 Ace Fay 73.07 3.05 3.45 0.91 0.38 0.05 0.03 14.52 0.04 0.10 0.02 0.02 0.15 0.07 0.11 0.07 95.90 1233<br />

6122_Pt4_2 Ace Fay 72.61 0.59 3.33 0.31 0.65 0.02 0.04 17.42 0.03 0.02 0.02 0.03 0.18 0.04 0.02 0.00 95.29 1488<br />

6122_Pt5_1 Ace Fay 71.65 0.46 2.32 0.11 0.38 0.04 0.06 19.91 0.02 0.05 0.01 0.01 0.07 0.09 0.01 0.02 95.10 1724<br />

6122_Pt10 1 Ace Fay 73.64 9.89 2.48 1.14 1.36 0.28 0.23 1.90 0.36 0.06 0.01 0.03 0.36 0.08 0.20 0.05 91.80 160<br />

Gunnar type-uraninite<br />

6134 pt2 1 Gunnar 77.59 3.01 5.35 0.15 0.06 0.01 0.04 0.07 0.12 0.14 0.01 0.01 0.03 0.02 0.07 0.04 86.61 5<br />

6134 pt2 2 Gunnar 80.25 3.04 5.60 0.23 0.03 0.01 0.09 0.12 0.00 0.08 0.03 0.00 0.08 0.04 0.06 0.04 89.46 9<br />

6134 pt2 3 Gunnar 78.63 3.65 5.19 1.65 0.33 0.01 0.06 0.00 0.06 0.07 0.02 0.02 0.06 0.00 0.07 0.12 89.78 0<br />

6134 pt2 4 Gunnar 78.36 3.72 5.28 1.82 0.44 0.05 0.02 0.03 0.06 0.06 0.05 0.02 0.06 0.01 0.05 0.02 89.85 2<br />

6134 pt3 Gunnar 77.88 4.95 5.57 0.19 0.37 0.01 0.01 0.12 0.05 0.07 0.03 0.01 0.09 0.01 0.08 0.01 89.33 9<br />

6134 pt3 1 Gunnar 79.27 3.95 5.52 0.15 0.01 0.03 0.04 0.11 0.08 0.08 0.04 0.01 0.03 0.00 0.04 0.02 89.22 9<br />

6134 pt3 2 Gunnar 81.64 3.39 4.56 0.16 0.00 0.12 0.07 0.03 0.05 0.06 0.04 0.00 0.07 0.03 0.08 0.05 90.13 2<br />

6134 pt3 3 Gunnar 79.50 3.78 5.54 0.11 0.06 0.04 0.02 0.06 0.09 0.06 0.02 0.00 0.04 0.00 0.06 0.01 89.23 4<br />

261


Sample ID. Deposit UO 2 SiO 2 CaO Fe 2O 3 TiO 2 Cr 2O 3 V 2O 5 PbO P 2O 5 K 2O ThO 2 SO 2 MnO Y 2O 3 Tb 2O 3 CuO Total<br />

Chemical Pb<br />

age (Ma)<br />

6134 pt4 1 Gunnar 80.77 3.52 5.67 0.23 0.01 0.01 0.00 0.13 0.01 0.07 0.03 0.01 0.09 0.04 0.01 0.04 90.58 10<br />

6134 pt4 2 Gunnar 79.52 3.13 5.90 0.26 0.13 0.01 0.03 0.09 0.07 0.05 0.00 0.03 0.07 0.01 0.03 0.01 89.31 7<br />

6134 pt4 3 Gunnar 81.29 2.79 5.67 0.20 0.03 0.00 0.02 0.16 0.01 0.05 0.02 0.00 0.07 0.03 0.04 0.02 90.29 12<br />

6134 pt5 1 Gunnar 81.39 2.70 5.41 0.13 0.00 0.04 0.00 0.11 0.04 0.06 0.07 0.00 0.05 0.06 0.02 0.07 89.88 8<br />

6134 pt5 2 Gunnar 74.27 3.20 4.97 0.22 0.08 0.04 0.02 0.04 0.11 0.23 0.02 0.01 0.10 0.02 0.05 0.04 83.27 3<br />

6134 pt5 3 Gunnar 80.12 4.95 4.54 0.22 0.41 0.01 0.01 0.10 0.12 0.12 0.05 0.01 0.02 0.16 0.01 0.01 90.75 8<br />

6134 pt6 1 Gunnar 81.12 3.04 5.23 0.01 0.01 0.04 0.01 0.03 0.00 0.04 0.02 0.01 0.01 0.01 0.02 0.01 89.49 2<br />

6134 pt6 2 Gunnar 81.92 3.06 5.25 0.04 0.04 0.00 0.00 0.10 0.01 0.04 0.02 0.00 0.08 0.04 0.04 0.04 90.45 7<br />

6134 pt6 3 Gunnar 80.49 3.09 5.36 0.02 0.02 0.01 0.09 0.08 0.04 0.06 0.01 0.01 0.01 0.04 0.09 0.01 89.37 6<br />

6134 pt6 4 Gunnar 81.96 3.12 4.98 0.05 0.04 0.01 0.02 0.10 0.02 0.06 0.04 0.00 0.07 0.02 0.01 0.01 90.44 8<br />

6134 pt8 1 Gunnar 79.17 2.87 4.43 0.01 0.02 0.01 0.57 1.40 0.09 0.07 0.02 0.10 0.03 0.16 0.07 0.01 88.96 110<br />

6134 pt8 2 Gunnar 79.67 2.90 4.69 0.02 0.07 0.03 0.35 1.44 0.06 0.00 0.03 0.07 0.02 0.08 0.10 0.05 89.42 112<br />

6134 pt8 3 Gunnar 80.29 3.14 3.87 0.03 0.78 0.01 0.05 0.11 0.08 0.03 0.04 0.00 0.04 0.12 0.00 0.00 88.53 9<br />

6134 pt8 4 Gunnar 77.08 2.76 5.44 0.05 0.02 0.02 0.53 0.61 0.09 0.01 0.01 0.04 0.06 0.21 0.02 0.04 86.86 49<br />

6134 pt8a 1 Gunnar 80.50 4.02 5.50 0.04 0.11 0.02 0.00 0.07 0.01 0.12 0.06 0.02 0.07 0.05 0.03 0.00 90.45 5<br />

6134 pt8a 2 Gunnar 82.92 2.92 5.30 0.07 0.04 0.02 0.09 0.11 0.01 0.07 0.01 0.04 0.10 0.01 0.07 0.02 91.62 8<br />

6134 pt8a 3 Gunnar 77.51 1.83 5.81 0.17 0.02 0.02 0.05 0.16 0.11 0.15 0.00 0.03 0.12 0.01 0.06 0.07 85.99 13<br />

6134 pt9 1 Gunnar 63.41 3.15 4.32 0.08 0.04 0.03 0.24 1.46 0.18 0.19 0.03 0.05 0.08 0.12 0.05 0.02 73.42 143<br />

6134 pt9 2 Gunnar 75.28 3.78 5.33 0.02 0.07 0.01 0.29 1.41 0.22 0.08 0.00 0.03 0.01 0.20 0.02 0.07 86.69 117<br />

6134 pt9 3 Gunnar 73.41 2.98 5.19 0.09 0.09 0.05 0.31 1.60 0.28 0.29 0.03 0.02 0.07 0.19 0.06 0.03 84.62 135<br />

6134 pt9a 1 Gunnar 81.55 3.36 4.26 0.18 0.69 0.00 0.08 0.08 0.15 0.10 0.01 0.01 0.06 0.07 0.02 0.00 90.57 6<br />

6134 pt9a 2 Gunnar 80.44 2.93 4.23 0.04 0.47 0.06 0.14 0.21 0.15 0.07 0.01 0.01 0.05 0.13 0.02 0.04 88.96 16<br />

6134 pt9a 3 Gunnar 78.82 3.02 4.69 0.03 0.60 0.03 0.15 0.05 0.14 0.05 0.01 0.00 0.03 0.15 0.04 0.05 87.79 4<br />

6134 pt9a 4 Gunnar 77.24 5.45 4.77 0.44 0.46 0.04 0.00 0.12 0.19 0.16 0.00 0.01 0.09 0.16 0.05 0.03 89.07 10<br />

6134 pt10 1 Gunnar 73.83 6.55 3.47 1.32 0.01 0.03 0.07 0.41 0.09 0.14 0.00 0.01 0.05 0.27 0.01 0.06 86.09 35<br />

6134 pt10 2 Gunnar 64.50 9.49 2.43 9.15 0.06 0.01 0.12 0.65 0.12 0.28 0.06 0.03 0.05 0.32 0.26 0.05 87.17 63<br />

6134 pt10 3 Gunnar 74.14 7.47 3.23 1.59 0.01 0.01 0.06 0.32 0.04 0.16 0.00 0.01 0.01 0.27 0.03 0.04 87.34 27<br />

6134 pt10 4 Gunnar 74.03 5.88 2.71 1.97 0.08 0.01 0.18 1.96 0.14 0.13 0.03 0.01 0.01 0.41 0.03 0.07 87.58 164<br />

262


Sample ID. Deposit UO 2 SiO 2 CaO Fe 2O 3 TiO 2 Cr 2O 3 V 2O 5 PbO P 2O 5 K 2O ThO 2 SO 2 MnO Y 2O 3 Tb 2O 3 CuO Total<br />

Chemical Pb<br />

age (Ma)<br />

6134 pt10 5 Gunnar 72.59 6.19 3.29 2.40 0.04 0.02 0.08 1.39 0.14 0.15 0.02 0.01 0.03 0.26 0.11 0.01 86.58 119<br />

Breccia type-uraninite<br />

5812 Pt1 1 Gunnar 75.59 0.50 4.51 0.62 0.46 0.03 0.18 12.07 0.02 0.04 0.03 0.01 0.42 0.45 0.08 0.05 94.92 991<br />

5812 Pt6 2 Ace Fay 34.12 48.31 1.48 1.21 0.18 0.02 0.01 3.86 0.65 0.08 0.03 0.59 0.24 0.14 0.09 0.05 90.96 702<br />

5812 Pt6 1 Ace Fay 74.88 0.54 4.43 0.44 0.44 0.01 0.16 15.88 0.02 0.03 0.02 0.01 0.22 0.15 0.04 0.00 97.16 1315<br />

5812 Pt1 2 Ace Fay 76.71 0.98 6.43 0.90 0.61 0.03 0.21 6.89 0.01 0.03 0.04 0.06 0.70 0.60 0.00 0.01 94.18 557<br />

5812 Pt8 1 Ace Fay 77.99 1.05 4.27 1.20 0.80 0.05 0.01 8.71 0.02 0.03 0.29 0.03 0.35 0.06 0.05 0.02 94.82 693<br />

5812 Pt2 2 Ace Fay 75.02 2.40 4.63 1.28 1.74 0.01 0.14 10.07 0.05 0.06 0.03 0.73 0.67 0.31 0.11 0.03 97.15 832<br />

Volcanic type-uraninite<br />

6120B_pt4 2 Ace Fay 74.34 1.13 4.30 0.95 0.43 0.02 0.26 14.17 0.05 0.03 0.01 0.01 0.23 0.04 0.02 0.00 95.92 1183<br />

6120B_pt3 1 Ace Fay 74.41 0.84 3.66 0.48 0.65 0.01 0.22 15.41 0.06 0.03 0.02 0.02 0.20 0.03 0.09 0.03 95.99 1285<br />

6120B_pt3 2 Ace Fay 74.38 1.68 2.57 0.54 0.58 0.03 0.13 15.68 0.03 0.03 0.00 0.02 0.10 0.09 0.00 0.03 95.82 1307<br />

6120B_pt2 2 Ace Fay 71.88 1.43 3.00 0.46 0.48 0.03 0.25 17.14 0.06 0.02 0.00 0.01 0.08 0.01 0.07 0.03 94.86 1479<br />

6120B_pt1 2 Ace Fay 73.42 1.05 2.73 0.45 0.52 0.01 0.48 17.56 0.06 0.03 0.07 0.04 0.12 0.01 0.04 0.07 96.46 1484<br />

6120B_pt3 3 Ace Fay 73.75 0.47 3.05 0.29 0.42 0.03 0.09 17.91 0.05 0.04 0.05 0.00 0.07 0.03 0.06 0.04 96.19 1506<br />

6120B_pt5 2 Ace Fay 73.23 0.46 2.58 0.43 0.37 0.03 0.04 19.04 0.03 0.03 0.01 0.01 0.07 0.06 0.03 0.03 96.37 1613<br />

6120B_pt6 1 Ace Fay 71.73 0.92 2.35 0.28 0.49 0.04 0.46 19.29 0.04 0.03 0.02 0.03 0.01 0.03 0.05 0.01 95.67 1668<br />

6120B_pt3 4 Ace Fay 74.04 0.50 2.50 0.32 0.30 0.03 0.13 20.15 0.04 0.04 0.02 0.03 0.01 0.02 0.03 0.04 98.05 1689<br />

6120B_pt5 1 Ace Fay 72.87 0.38 2.37 0.23 0.29 0.01 0.16 19.91 0.05 0.02 0.01 0.04 0.04 0.11 0.09 0.03 96.56 1695<br />

6120B_pt4 1 Ace Fay 70.14 0.67 2.65 0.15 0.37 0.01 0.33 19.62 0.04 0.02 0.05 0.02 0.08 0.04 0.08 0.01 94.13 1735<br />

6120B_pt4 1 Ace Fay 71.92 0.51 2.33 0.05 0.51 0.01 0.11 20.29 0.03 0.02 0.08 0.04 0.05 0.09 0.06 0.02 95.99 1750<br />

Athabasca type-uraninite<br />

3705 Pt4 5 Ace Fay 24.22 2.29 0.49 3.46 59.66 0.03 1.23 4.43 0.04 0.02 0.01 0.44 0.01 0.04 0.16 0.00 96.29 1135<br />

3705 Pt3 2 Ace Fay 38.66 4.78 1.74 3.34 36.72 0.06 0.86 5.48 0.01 0.02 0.10 0.40 0.04 0.01 0.22 0.02 92.19 880<br />

3705 Pt3 4 Ace Fay 39.64 6.95 1.09 4.31 36.08 0.04 0.62 3.14 0.30 0.04 0.07 0.00 0.02 0.02 0.07 0.06 92.29 492<br />

3705 Pt4 2 Ace Fay 29.41 9.42 1.69 4.03 36.11 0.08 0.38 1.68 2.70 0.11 0.05 0.01 0.03 0.20 0.11 0.04 85.79 354<br />

3705 Pt4 1 Ace Fay 48.08 10.87 2.67 3.29 16.60 0.00 0.33 5.69 0.84 0.13 0.15 0.86 0.04 0.44 0.20 0.07 89.96 735<br />

263


Sample ID. Deposit UO 2 SiO 2 CaO Fe 2O 3 TiO 2 Cr 2O 3 V 2O 5 PbO P 2O 5 K 2O ThO 2 SO 2 MnO Y 2O 3 Tb 2O 3 CuO Total<br />

Chemical Pb<br />

age (Ma)<br />

3705 Pt4 3 Ace Fay 28.39 8.87 2.09 6.23 44.41 0.02 0.62 2.17 0.18 0.10 0.02 0.01 0.04 0.03 0.26 0.00 93.18 473<br />

3705 Pt2 7 Ace Fay 36.89 10.39 1.29 6.22 33.91 0.01 0.45 0.58 0.74 0.10 0.14 0.01 0.00 0.09 0.18 0.00 90.80 98<br />

3705 Pt2 4 Ace Fay 34.12 11.57 1.16 5.91 33.49 0.01 0.32 0.71 0.77 0.11 0.10 0.01 0.01 0.06 0.10 0.04 88.37 130<br />

3705 Pt4 7 Ace Fay 34.71 11.31 1.27 6.26 34.74 0.01 0.53 0.84 0.64 0.14 0.08 0.02 0.02 0.01 0.13 0.08 90.57 149<br />

3705 Pt2 5 Ace Fay 35.07 11.45 1.29 6.67 36.99 0.01 0.57 0.76 0.61 0.08 0.04 0.00 0.06 0.04 0.15 0.02 93.68 135<br />

3705 Pt4 6 Ace Fay 29.87 12.08 1.98 6.51 36.63 0.22 0.46 1.09 0.58 0.09 0.21 0.00 0.04 0.02 0.20 0.03 89.80 227<br />

3705 Pt4 4 Ace Fay 41.88 16.19 0.63 3.07 28.28 0.01 0.97 0.78 0.30 0.01 0.14 0.00 0.02 0.08 0.12 0.05 92.38 116<br />

3705 Pt2 6 Ace Fay 33.11 13.43 1.46 5.84 36.83 0.02 0.21 1.19 0.62 0.10 0.12 0.02 0.05 0.01 0.20 0.02 93.00 223<br />

3705 Pt2 3 Ace Fay 39.04 16.30 0.64 3.39 28.73 0.07 1.15 0.74 0.30 0.02 0.04 0.01 0.02 0.06 0.10 0.03 90.50 117<br />

3705 Pt3 1 Ace Fay 45.91 17.68 2.01 2.59 16.32 0.01 0.23 0.74 0.95 0.01 0.15 0.00 0.03 0.20 0.09 0.01 86.83 100<br />

.<br />

264


APPENDIX G<br />

Isotopic data and apparent ages for various generations of uraninite from the South Alligator River area<br />

Corrected ratios<br />

Apparent ages ( ±1σ, Ma)**<br />

Sample<br />

Deposit<br />

206 Pb/ 204 Pb<br />

207 Pb/ 204 Pb<br />

207 Pb/ 206 Pb ±2σ<br />

206 Pb/ 238 U ±2σ<br />

207 Pb/ 235 U ±2σ R‡<br />

207 Pb/ 206 Pb ±<br />

206 Pb/ 238 U ±<br />

207 Pb/ 235 U ± Disc‡<br />

c29-217h Coronation Hill 6342 430 0.0678 0.001 0.0931 0.002 0.8695 0.023 0.92 862 15 574 14 635 13 26<br />

c29-217d Coronation Hill 5944 399 0.0673 0.001 0.0932 0.006 0.8633 0.050 0.93 846 33 574 37 632 27 25<br />

c29-217t Coronation Hill 7864 522 0.0665 0.001 0.0937 0.004 0.8598 0.039 0.92 823 29 578 26 630 21 23<br />

c29-217m Coronation Hill 7218 487 0.0674 0.000 0.0942 0.004 0.8759 0.036 0.95 852 11 580 22 639 19 25<br />

c29-217p Coronation Hill 4090 287 0.0701 0.001 0.0950 0.003 0.9185 0.025 0.85 931 28 585 16 662 13 29<br />

c29-217za Coronation Hill 6129 408 0.0671 0.001 0.0954 0.008 0.8805 0.057 0.95 840 43 587 45 641 31 24<br />

c29-217s Coronation Hill 3752 270 0.0722 0.002 0.0955 0.005 0.9487 0.030 0.87 990 49 588 28 677 16 32<br />

C29-217b Coronation Hill 3122 219 0.0703 0.001 0.0967 0.004 0.9367 0.030 0.93 936 23 595 22 671 16 28<br />

c29-217e Coronation Hill 6699 451 0.0675 0.001 0.0986 0.005 0.9178 0.052 0.80 854 42 606 32 661 27 23<br />

c29-217f Coronation Hill 6466 438 0.0678 0.001 0.1009 0.003 0.9440 0.034 0.92 863 21 620 18 675 18 22<br />

c29-217q Coronation Hill 7470 528 0.0707 0.001 0.1016 0.004 0.9900 0.045 0.92 948 17 624 26 699 23 26<br />

c29-217u Coronation Hill 10649 710 0.0668 0.000 0.1026 0.004 0.9441 0.032 0.94 830 14 629 23 675 17 19<br />

c29-217r Coronation Hill 3590 264 0.0735 0.001 0.1048 0.004 1.0621 0.040 0.93 1028 18 642 24 735 20 29<br />

c29-217n Coronation Hill 4666 340 0.0729 0.000 0.1107 0.003 1.1129 0.027 0.93 1011 13 677 17 760 13 25<br />

c29-217z Coronation Hill 9177 677 0.0740 0.002 0.1145 0.004 1.1687 0.054 0.83 1042 49 699 23 786 25 25<br />

c29-217w Coronation Hill 5453 412 0.0758 0.001 0.1147 0.005 1.1984 0.055 0.90 1089 31 700 28 800 25 27<br />

c29-217x Coronation Hill 3742 292 0.0782 0.001 0.1177 0.002 1.2695 0.034 0.87 1152 24 717 14 832 15 28<br />

C29-214Aa Coronation Hill 16126 1278 0.0796 0.0011 0.0838 0.004 0.9202 0.061 1.00 1188 27 519 26 662 33 56<br />

C29-214Ac Coronation Hill 34598 2819 0.0814 0.0012 0.1312 0.001 1.4713 0.021 0.97 1230 28 795 6 919 9 35<br />

C29-214Ae Coronation Hill 22206 1803 0.0811 0.0006 0.0652 0.006 0.7297 0.067 1.00 1223 15 407 34 556 39 67<br />

C29-214Af Coronation Hill 4306 294 0.0683 0.0005 0.0180 0.001 0.1690 0.010 0.99 877 14 115 6 159 8 87<br />

C29-214Ag Coronation Hill 17758 1444 0.0805 0.0030 0.1046 0.005 1.1602 0.067 0.76 1209 74 641 32 782 31 47<br />

C29-214Ah Coronation Hill 31182 2460 0.0798 0.0022 0.1103 0.006 1.2132 0.069 0.88 1193 54 674 35 807 32 43<br />

C29-214Al Coronation Hill 18264 1445 0.0793 0.0005 0.0924 0.007 1.0097 0.078 1.00 1179 13 570 44 709 40 52<br />

C29-214c Coronation Hill 12533 1052 0.0839 0.0002 0.0930 0.002 1.0759 0.019 0.26 1291 4 573 10 742 10 56<br />

C29-214d Coronation Hill 21315 1789 0.0840 0.0002 0.0935 0.006 1.0826 0.066 1.00 1291 4 576 34 745 32 55<br />

C29-214e Coronation Hill 22417 1881 0.0839 0.0002 0.0955 0.003 1.1048 0.029 1.00 1290 4 588 15 756 14 54<br />

C29-214f Coronation Hill 59232 4955 0.0837 0.0001 0.0958 0.003 1.1053 0.037 1.00 1285 3 590 19 756 18 54<br />

C29-214g Coronation Hill 20506 1723 0.0840 0.0002 0.0852 0.003 0.9862 0.030 1.00 1292 4 527 16 697 16 59<br />

265


Corrected ratios<br />

Apparent ages ( ±1σ, Ma)**<br />

Sample<br />

Deposit<br />

206 Pb/ 204 Pb<br />

207 Pb/ 204 Pb<br />

207 Pb/ 206 Pb ±2σ<br />

206 Pb/ 238 U ±2σ<br />

207 Pb/ 235 U ±2σ R‡<br />

207 Pb/ 206 Pb ±<br />

206 Pb/ 238 U ±<br />

207 Pb/ 235 U ± Disc‡<br />

C29-214h Coronation Hill 11979 1011 0.0845 0.0002 0.0781 0.003 0.9102 0.039 1.00 1303 5 485 20 657 20 63<br />

C29-214j Coronation Hill 15197 1274 0.0838 0.0001 0.0936 0.004 1.0815 0.042 1.00 1288 3 577 22 744 21 55<br />

C29-295k Coronation Hill 891 58 0.0650 0.004 0.0293 0.01 0.2595 0.06 0.89 774 126 186 50 234 45 76<br />

C29-295l Coronation Hill 855 58 0.0679 0.002 0.0299 0.00 0.2798 0.03 0.86 865 65 190 22 250 26 78<br />

C29-295h Coronation Hill 1330 87 0.0655 0.002 0.0299 0.01 0.2714 0.05 0.93 790 69 190 35 244 41 76<br />

C29-295g Coronation Hill 2587 154 0.0593 0.001 0.0397 0.00 0.3251 0.03 0.91 580 31 251 20 286 22 57<br />

C29-295d Coronation Hill 10794 605 0.0571 0.002 0.0392 0.00 0.3094 0.04 0.92 495 87 248 28 274 34 50<br />

C29-295f Coronation Hill 3370 175 0.0516 0.000 0.0381 0.00 0.2715 0.01 0.91 269 20 241 9 244 9 10<br />

C29-295j Coronation Hill 2906 160 0.0553 0.002 0.0430 0.00 0.3278 0.03 0.91 423 64 272 28 288 27 36<br />

C29-295a Coronation Hill 3104 175 0.0560 0.001 0.0455 0.00 0.3515 0.03 0.92 453 40 287 19 306 20 37<br />

C29-295b Coronation Hill 1217 88 0.0733 0.002 0.0426 0.00 0.4298 0.02 0.72 1021 64 269 13 363 16 74<br />

C29-295c Coronation Hill 7629 409 0.0535 0.000 0.0502 0.00 0.3703 0.03 0.94 349 19 316 22 320 20 10<br />

C29-295i Coronation Hill 5676 331 0.0583 0.001 0.0603 0.01 0.4851 0.07 0.94 540 38 377 49 402 50 30<br />

C29-295e Coronation Hill 8181 560 0.0681 0.002 0.1737 0.02 1.6303 0.22 0.92 871 47 1033 136 982 85 18<br />

C29-217Aa Coronation Hill 2840 214 0.0757 0.002 0.1052 0.004 1.1500 0.05 0.84 1088 45 645 25 777 25 41<br />

C29-217Ad Coronation Hill 1972 155 0.0787 0.001 0.0846 0.003 0.9181 0.03 0.89 1165 26 523 18 661 15 55<br />

C29-217Ae Coronation Hill 3082 229 0.0744 0.001 0.0967 0.003 1.0600 0.04 0.90 1053 27 595 18 734 18 43<br />

C29-217An Coronation Hill 5575 489 0.0876 0.001 0.1202 0.005 1.4525 0.08 0.93 1374 27 732 31 911 32 47<br />

C29-217Ap Coronation Hill 15919 1416 0.0889 0.001 0.1366 0.013 1.6767 0.18 0.90 1402 26 826 76 1000 69 41<br />

C29-217Aq Coronation Hill 7776 653 0.0838 0.001 0.1242 0.012 1.4370 0.15 0.95 1289 23 755 67 904 62 41<br />

C29-217Ar Coronation Hill 3736 259 0.0696 0.001 0.0585 0.005 0.5610 0.04 0.91 916 41 366 28 452 29 60<br />

C29-217At Coronation Hill 4486 361 0.0804 0.001 0.0877 0.008 0.9720 0.09 0.95 1206 19 542 45 689 48 55<br />

C29-217Au Coronation Hill 14240 1190 0.0838 0.002 0.1490 0.007 1.7900 0.07 0.85 1288 39 895 37 1042 24 30<br />

C29-217Ac Coronation Hill 2535 193 0.0761 0.001 0.0924 0.003 0.9695 0.03 0.89 1098 26 570 19 688 15 48<br />

C29-217Ab Coronation Hill 5057 349 0.0692 0.002 0.1011 0.006 0.9649 0.05 0.86 905 49 621 32 686 24 31<br />

C29-217Ag Coronation Hill 3781 265 0.0702 0.001 0.0984 0.005 0.9516 0.04 0.93 934 21 605 28 679 21 35<br />

C29-217Ai Coronation Hill 7467 494 0.0661 0.001 0.0954 0.004 0.8691 0.03 0.93 809 16 587 21 635 16 27<br />

C29-217Aj Coronation Hill 5061 343 0.0678 0.001 0.0942 0.003 0.8807 0.03 0.91 862 21 581 19 641 14 33<br />

C29-217Ak Coronation Hill 5124 350 0.0683 0.001 0.0947 0.004 0.8915 0.03 0.94 879 21 583 26 647 18 34<br />

C29-217Al Coronation Hill 5420 378 0.0698 0.001 0.1059 0.008 1.0196 0.08 0.94 923 16 649 45 714 38 30<br />

C29-217Am Coronation Hill 6716 479 0.0714 0.001 0.1078 0.003 1.0617 0.04 0.86 970 37 660 19 735 21 32<br />

C29-217Ao Coronation Hill 10150 802 0.0789 0.001 0.1244 0.009 1.3530 0.11 0.94 1169 33 756 52 869 47 35<br />

C29-217As Coronation Hill 3916 294 0.0751 0.001 0.1077 0.004 1.1158 0.04 0.93 1072 14 659 21 761 18 39<br />

C29-217Av Coronation Hill 7613 531 0.0698 0.001 0.0991 0.004 0.9535 0.04 0.93 922 22 609 22 680 21 34<br />

C29-217Ax Coronation Hill 6273 441 0.0704 0.001 0.1018 0.005 0.9873 0.05 0.92 939 23 625 29 697 23 33<br />

266


Corrected ratios<br />

Apparent ages ( ±1σ, Ma)**<br />

Sample<br />

Deposit<br />

206 Pb/ 204 Pb<br />

207 Pb/ 204 Pb<br />

207 Pb/ 206 Pb ±2σ<br />

206 Pb/ 238 U ±2σ<br />

207 Pb/ 235 U ±2σ R‡<br />

207 Pb/ 206 Pb ±<br />

206 Pb/ 238 U ±<br />

207 Pb/ 235 U ± Disc‡<br />

Cor29_205B Coronation Hill 4414 402 0.0916 - 0.1682 - 2.1244 - - 1459 39 1002 106 1157 83 -<br />

Cor29_205Ha Coronation Hill 4541 385 0.0848 - 0.0830 - 0.9709 - - 1311 23 514 39 689 39 -<br />

Cor29_205Ia Coronation Hill 1120 103 0.0919 - 0.1014 - 1.2850 - - 1465 25 623 50 839 50 -<br />

Cor29_205Ib Coronation Hill 1183 114 0.0966 - 0.1388 - 1.8489 - - 1560 17 838 33 1063 28 -<br />

Cor29_205I Coronation Hill 1339 123 0.0930 - 0.1283 - 1.6634 - - 1487 52 778 136 995 166 -<br />

Cor29_205Kb Coronation Hill 2253 181 0.0803 - 0.1119 - 1.2385 - - 1204 16 684 31 818 29 -<br />

Cor29_205L Coronation Hill 1248 127 0.1017 - 0.1643 - 2.3097 - - 1655 50 981 95 1215 93 -<br />

Cor29_201.6Ac Coronation Hill 1684 136 0.0807 - 0.1046 - 1.1679 - - 1214 58 641 81 786 89 -<br />

Cor29_205O Coronation Hill 1270 116 0.0913 - 0.1112 - 1.4001 - - 1452 44 678 52 889 53 -<br />

Cor29_201.6Aa Coronation Hill 1096 107 0.0975 - 0.1284 - 1.7258 - - 1577 53 779 59 1018 53 -<br />

Cor29_201.6Ab Coronation Hill 1322 119 0.0902 - 0.1093 - 1.3615 - - 1531 54 668 67 872 73 -<br />

Cor29_201.6Ad Coronation Hill 4108 293 0.0702 - 0.0793 - 0.7687 - - 935 86 492 29 580 44 -<br />

Cor29_201.6Bbc Coronation Hill 1508 127 0.0842 - 0.1182 - 1.3736 - - 1298 35 720 27 878 27 -<br />

Cor29_201.6aa Coronation Hill 1446 125 0.0864 - 0.0959 - 1.1432 - - 1348 16 790 13 774 12 -<br />

Cor29_201.6abc Coronation Hill 1234 112 0.0911 - 0.1089 - 1.3692 - - 1449 33 666 44 876 48 -<br />

Cor29_201.6D Coronation Hill 1086 114 0.1053 - 0.1967 - 2.8569 - - 1719 31 1157 44 1371 43 -<br />

Cor29_201.6Ga Coronation Hill 2825 214 0.0756 - 0.1012 - 1.0564 - - 1085 36 622 52 732 53 -<br />

Cor29_201.6Gb Coronation Hill 2121 171 0.0808 - 0.1180 - 1.3147 - - 1216 26 719 60 842 54 -<br />

El Sherana 1a El Sherana - - 0.0924 - 0.0564 - 0.8206 - - 1500 - 354 - 610 - -<br />

El Sherana 1b El Sherana - - 0.0935 - 0.0650 - 0.8695 - - 1498 - 406 - 636 - -<br />

El Sherana 1c El Sherana - - 0.0987 - 0.0675 - 0.9866 - - 1600 - 421 - 698 - -<br />

El Sherana 2a El Sherana - - 0.0999 - 0.0700 - 1.0588 - - 1625 - 436 - 756 - -<br />

El Sherana 2b El Sherana - - 0.0768 - 0.0571 - 0.6513 - - 1116 - 358 - 510 - -<br />

El Sherana 3b El Sherana - - 0.1105 - 0.0626 - 1.1142 - - 1810 - 392 - 762 - -<br />

El Sherana 4a El Sherana - - 0.0907 - 0.0622 - 0.9018 - - 1441 - 388 - 654 - -<br />

El Sherana 4b El Sherana - - 0.0793 - 0.0560 - 0.7712 - - 1180 - 352 - 582 - -<br />

El Sherana 4c El Sherana - - 0.1024 - 0.0826 - 1.4012 - - 1665 - 512 - 890 - -<br />

El Sherana 5c El Sherana - - 0.0938 - 0.2121 - 3.1739 - - 1505 - 1240 - 1452 - -<br />

El Sherana 5d El Sherana - - 0.0883 - 0.0585 - 0.8515 - - 1388 - 366 - 626 - -<br />

El Sherana 6b El Sherana - - 0.1010 - 0.0631 - 0.9921 - - 1640 - 395 - 700 - -<br />

El Sherana 7a El Sherana - - 0.0942 - 0.0728 - 1.0060 - - 1515 - 452 - 708 - -<br />

El Sherana 7b El Sherana - - 0.0892 - 0.0655 - 0.8338 - - 1408 - 409 - 616 - -<br />

El Sherana 2 El Sherana 1739 - 0.0916 0.0031 0.0705 0.0033 0.8054 0.0167 0.176 1460 62 439 20 600 9 70<br />

El Sherana 3 El Sherana 1439 - 0.0946 0.0032 0.0724 0.0038 0.8861 0.0181 0.103 1520 63 451 23 644 10 70<br />

El Sherana 4 El Sherana 1356 - 0.0959 0.0034 0.0747 0.0030 0.9551 0.0183 0.114 1545 66 464 18 681 9 70<br />

267


Corrected ratios<br />

Apparent ages ( ±1σ, Ma)**<br />

Sample<br />

Deposit<br />

206 Pb/ 204 Pb<br />

207 Pb/ 204 Pb<br />

207 Pb/ 206 Pb ±2σ<br />

206 Pb/ 238 U ±2σ<br />

207 Pb/ 235 U ±2σ R‡<br />

207 Pb/ 206 Pb ±<br />

206 Pb/ 238 U ±<br />

207 Pb/ 235 U ± Disc‡<br />

El Sherana 5 El Sherana 3605 - 0.0780 0.0023 0.0591 0.0021 0.6221 0.0110 0.134 1146 58 370 13 491 7 68<br />

El Sherana 7 El Sherana 1767 - 0.0935 0.0041 0.0706 0.0040 0.8149 0.0195 0.020 1498 80 440 24 605 11 71<br />

El Sherana 8 El Sherana 3975 - 0.0885 0.0043 0.0656 0.0043 0.7161 0.0155 0.230 1394 90 410 26 548 9 71<br />

El Sherana 9 El Sherana 1251 - 0.0989 0.0048 0.0893 0.0078 1.1072 0.0697 0.632 1604 87 551 46 757 33 66<br />

El Sherana 11 El Sherana 1944 - 0.1099 0.0068 0.0715 0.0052 0.7964 0.0207 0.035 1798 109 445 31 595 12 75<br />

El Sherana 12 El Sherana 1526 - 0.1116 0.0057 0.0754 0.0054 0.9074 0.0193 0.033 1825 90 469 32 656 10 74<br />

El Sherana 13 El Sherana 1476 - 0.0884 0.0022 0.0735 0.0021 0.8950 0.0135 0.204 1392 48 457 12 649 7 67<br />

El Sherana 14 El Sherana 1707 - 0.0843 0.0022 0.0657 0.0018 0.7582 0.0109 0.026 1300 50 410 11 573 6 68<br />

El Sherana 17 El Sherana 1087 - 0.0882 0.0015 0.0934 0.0044 1.1724 0.0593 0.924 1387 33 575 26 788 27 59<br />

El Sherana 18 El Sherana 1257 - 0.0920 0.0015 0.1394 0.0114 1.7701 0.1447 0.941 1467 32 841 64 1035 52 43<br />

El Sherana 19 El Sherana 1388 - 0.0886 0.0020 0.0808 0.0045 0.9891 0.0550 0.897 1395 42 501 27 698 28 64<br />

268


APPENDIX H<br />

Electron microprobe data and temperatures of various chlorite phases from deposits<br />

of the South Alligator River area<br />

Sample ID. Al 2O 3 CaO FeO K2O MgO MnO Na 2O SiO 2 TiO 2 Cl F Temp ( o )<br />

C29-217A-1 18.65 0.03 15.85 0.03 21.74 0.15 0.03 29.64 0.01 0.03 0.35 258<br />

C29-217A-2 18.79 0.05 15.68 0.00 22.59 0.13 0.05 29.48 0.02 0.02 0.26 271<br />

C29-217A-3 18.73 0.02 15.61 0.01 22.58 0.15 0.04 29.62 0.01 0.03 0.26 267<br />

C29-217A-4 18.85 0.05 15.23 0.02 22.26 0.15 0.00 30.21 0.00 0.03 0.14 252<br />

C29-217A-5 18.45 0.06 16.03 0.02 21.79 0.12 0.00 29.33 0.00 0.03 0.18 263<br />

C29-217A-6 19.26 0.06 14.05 0.08 21.52 0.15 0.04 31.08 0.02 0.04 0.59 227<br />

C29-217A-7 19.31 0.01 14.09 0.04 22.85 0.14 0.04 29.95 0.00 0.03 0.17 262<br />

C29-217A-8 19.03 0.05 16.66 0.02 20.88 0.11 0.00 29.37 0.01 0.03 0.15 263<br />

C29-217A-11 18.83 0.04 14.44 0.01 21.67 0.12 0.03 29.86 0.00 0.05 0.26 247<br />

C29-217A-12 19.06 0.10 14.01 0.17 20.48 0.08 0.04 30.59 0.00 0.06 0.34 258<br />

C29-217A-13 18.42 0.04 15.19 0.03 21.94 0.16 0.02 29.19 0.00 0.03 0.40 262<br />

C29-217A-14 19.11 0.02 16.48 0.01 21.28 0.19 0.05 29.70 0.00 0.02 0.52 262<br />

C29-217A-15 18.20 0.05 14.73 0.00 21.15 0.13 0.00 28.51 0.00 0.05 0.36 261<br />

C29-217A-16 19.07 0.05 15.05 0.00 22.23 0.07 0.00 29.61 0.00 0.04 0.25 264<br />

c29217a-27 20.84 0.09 3.28 0.18 26.41 0.04 0.03 32.89 0.02 0.08 0.31 203<br />

c29217a-25 20.69 0.09 3.46 0.16 25.68 0.01 0.02 33.08 0.04 0.07 0.39 191<br />

c29217a-24 20.06 0.09 3.43 0.20 26.21 0.04 0.05 33.06 0.03 0.06 0.35 190<br />

C29-217B-6 23.98 0.15 7.16 0.28 18.47 0.08 0.07 32.62 0.01 0.03 0.06 187<br />

c29217a-21 20.39 0.11 3.83 0.32 25.25 0.02 0.03 33.10 0.01 0.05 0.23 186<br />

C29-217B-15 22.15 0.22 8.63 0.15 18.95 0.13 0.03 32.26 0.00 0.02 0.21 184<br />

c29217a-29 20.42 0.08 3.21 0.27 25.31 0.02 0.06 33.23 0.00 0.06 0.45 180<br />

C29-217B-7 23.86 0.15 8.51 0.48 17.50 0.14 0.09 33.03 0.00 0.03 0.21 178<br />

c29217a-28 20.40 0.09 3.45 0.18 25.08 0.03 0.01 33.33 0.01 0.06 0.46 177<br />

C29-217B-5 24.52 0.15 6.59 0.31 17.57 0.08 0.10 33.14 0.00 0.05 0.18 173<br />

C29-214B-30 19.84 0.04 19.72 0.03 18.91 0.15 0.01 28.91 0.02 0.01 0.21 170<br />

C29-214B-50 19.25 0.05 16.08 0.05 20.68 0.12 0.04 29.00 0.00 0.02 0.50 167<br />

c29217a-31 20.21 0.12 3.83 0.37 24.89 0.03 0.05 33.91 0.00 0.06 0.40 166<br />

C29-217B-16 22.51 0.18 8.14 0.16 18.55 0.08 0.07 33.22 0.04 0.04 0.29 165<br />

C29-217B-13 21.30 5.87 5.82 0.78 14.38 0.31 0.01 31.62 0.01 0.03 0.05 164<br />

C29-214B-41 20.03 0.06 16.75 0.03 20.70 0.13 0.00 29.10 0.03 0.01 0.46 163<br />

C29-217B-2 25.05 0.16 6.91 0.49 16.01 0.07 0.08 33.33 0.00 0.04 0.00 162<br />

C29-217B-4 22.87 0.17 7.06 0.24 18.15 0.11 0.05 33.03 0.01 0.04 0.07 162<br />

C29-214B-40 19.27 0.03 17.64 0.00 20.68 0.14 0.03 29.19 0.02 0.02 0.37 160<br />

c29217a-22 20.81 0.11 3.71 0.52 23.73 0.00 0.04 34.34 0.02 0.05 0.49 154<br />

c29217a-23 20.77 0.12 3.75 0.63 23.34 0.05 0.07 34.34 0.02 0.05 0.43 150<br />

C29-214B-6 21.06 0.05 13.86 0.02 20.66 0.11 0.00 29.48 0.01 0.00 0.45 150<br />

C29-214B-42 20.16 0.02 17.24 0.02 20.59 0.14 0.03 29.46 0.00 0.01 0.34 150<br />

C29-214B-5 20.27 0.08 14.55 0.01 22.21 0.18 0.01 29.75 0.02 0.02 0.44 140<br />

C29-217B-1 24.45 0.18 6.74 0.48 16.59 0.11 0.03 34.52 0.00 0.05 0.12 139<br />

c29217a-17 19.45 0.10 5.15 0.58 23.36 0.09 0.01 34.63 0.01 0.05 0.05 137<br />

c29217a-26 19.62 0.13 4.19 0.41 23.26 0.09 0.04 34.30 0.00 0.05 0.26 137<br />

C29-214B-48 19.89 0.04 15.59 0.05 21.51 0.14 0.02 30.05 0.00 0.02 0.45 129<br />

C29-214B-11 24.61 0.10 2.82 0.13 21.40 0.00 0.04 30.22 0.01 0.12 0.46 123<br />

C29-214B-45 20.22 0.03 13.82 0.02 21.54 0.09 0.02 30.29 0.03 0.02 0.46 120<br />

C29-214B-34 22.62 0.11 11.91 0.12 18.25 0.08 0.00 30.31 0.02 0.03 0.41 119<br />

c29217a-30 20.73 0.12 3.31 0.63 22.33 0.05 0.06 35.47 0.00 0.06 0.34 117<br />

269


Sample ID. Al 2O 3 CaO FeO K2O MgO MnO Na 2O SiO 2 TiO 2 Cl F Temp ( o )<br />

c29217a-19 19.20 0.16 4.00 0.34 23.17 0.06 0.07 35.06 0.01 0.05 0.46 116<br />

c29217a-20 20.14 0.12 4.36 0.38 25.23 0.02 0.00 33.39 0.00 0.06 0.26 116<br />

C29-214B-36 20.21 0.04 14.01 0.03 23.34 0.13 0.03 30.46 0.01 0.01 0.37 114<br />

c29217a-32 18.81 0.16 5.04 0.81 22.33 0.07 0.05 34.92 0.02 0.05 0.23 112<br />

C29-214B-51 20.09 0.10 9.04 0.03 25.20 0.02 0.03 30.53 0.00 0.03 0.57 111<br />

C29-214B-19 23.93 0.10 4.44 0.10 23.79 0.01 0.01 30.58 0.00 0.03 0.37 110<br />

C29-217B-14 24.50 0.17 5.55 0.95 15.79 0.34 0.04 35.63 0.00 0.04 0.12 109<br />

C29-214B-25 21.13 0.08 10.77 0.03 23.90 0.03 0.00 30.64 0.00 0.04 0.44 107<br />

C29-217B-8 22.91 0.21 5.73 0.76 17.22 0.33 0.08 35.53 0.01 0.03 0.07 106<br />

C29-214B-21 23.38 0.09 6.70 0.04 24.40 0.07 0.04 30.73 0.03 0.01 0.64 104<br />

C29-217B-25 22.05 0.23 8.09 0.74 16.11 0.13 0.04 35.16 0.02 0.04 0.38 101<br />

C29-214B-32 23.83 0.04 4.15 0.04 27.15 0.00 0.00 30.81 0.02 0.01 0.50 101<br />

C29-214B-23 22.36 0.08 9.39 0.06 23.07 0.14 0.05 30.85 0.02 0.02 0.30 100<br />

C29-214B-33 23.93 0.11 3.35 0.03 26.38 0.01 0.01 30.84 0.01 0.02 0.29 100<br />

C29-217B-29 21.78 0.24 7.02 0.91 17.38 0.20 0.05 35.65 0.01 0.03 0.27 99<br />

C29-217B-10 23.73 0.20 6.10 0.47 17.93 0.40 0.03 37.36 0.02 0.03 0.13 98<br />

C29-214B-17 22.15 0.09 11.85 0.05 22.40 0.13 0.03 31.15 0.03 0.02 0.33 89<br />

C29-214B-2 24.44 0.05 3.11 0.06 25.97 0.02 0.03 31.21 0.00 0.02 0.42 86<br />

C29-214B-31 22.61 0.11 8.33 0.04 22.93 0.05 0.02 31.23 0.01 0.03 0.31 86<br />

C29-214B-3 22.38 0.05 11.05 0.07 20.89 0.11 0.04 31.26 0.01 0.03 0.46 85<br />

C29-214B-4 22.25 0.03 9.86 0.03 21.41 0.06 0.04 31.26 0.03 0.01 0.35 85<br />

C29-214B-38 24.82 0.08 5.67 0.03 24.72 0.01 0.03 31.24 0.03 0.02 0.51 85<br />

C29-214B-1 25.09 0.04 4.93 0.03 24.21 0.03 0.02 31.32 0.00 0.02 0.38 82<br />

C29-214B-18 22.83 0.09 8.82 0.06 23.27 0.08 0.01 31.33 0.05 0.04 0.26 82<br />

C29-214B-22 23.20 0.09 8.19 0.04 25.12 0.06 0.01 31.34 0.01 0.01 0.48 82<br />

C29-214B-26 21.69 0.13 9.97 0.16 21.85 0.09 0.06 31.34 0.00 0.03 0.40 82<br />

C29-217B-20 22.04 0.21 6.21 0.75 16.28 0.09 0.07 35.82 0.00 0.03 0.17 80<br />

C29-214B-46 22.80 0.10 11.25 0.03 19.49 0.07 0.03 31.45 0.01 0.02 0.56 78<br />

C29-214B-9 21.68 0.08 10.18 0.06 23.07 0.13 0.00 31.53 0.00 0.02 0.50 75<br />

C29-214B-7 25.18 0.07 4.17 0.07 24.13 0.06 0.02 31.55 0.01 0.02 0.47 74<br />

C29-214B-44 20.95 0.10 9.54 0.06 23.94 0.04 0.04 31.55 0.00 0.02 0.75 74<br />

C29-214B-12 25.44 0.08 6.46 0.09 22.83 0.02 0.00 31.63 0.04 0.04 0.30 71<br />

C29-214B-20 24.22 0.12 4.61 0.07 23.57 0.02 0.00 31.64 0.00 0.02 0.29 71<br />

C29-214B-27 24.97 0.06 7.96 0.10 20.13 0.07 0.01 31.66 0.06 0.02 0.26 70<br />

C29-214B-39 25.02 0.09 5.92 0.03 25.13 0.02 0.00 31.73 0.00 0.02 0.43 68<br />

C29-214B-29 22.24 0.12 10.06 0.03 21.59 0.03 0.05 31.87 0.01 0.05 0.32 62<br />

C29-217B-22 20.91 0.23 7.36 0.94 16.19 0.12 0.04 36.74 0.03 0.04 0.25 57<br />

C29-214B-35 25.48 0.05 6.75 0.12 21.31 0.04 0.02 32.02 0.03 0.03 0.51 57<br />

C29-214B-8 23.16 0.11 11.76 0.04 21.13 0.06 0.06 32.04 0.00 0.04 0.42 56<br />

C29-214B-43 22.98 0.10 8.96 0.03 20.63 0.05 0.04 32.13 0.01 0.03 0.46 53<br />

C29-214B-37 23.44 0.05 9.69 0.09 21.31 0.06 0.01 32.16 0.03 0.03 0.24 52<br />

C29-214B-15 24.29 0.08 8.58 0.10 20.62 0.07 0.01 32.18 0.02 0.04 0.45 51<br />

C29-214B-14 20.99 0.14 5.85 0.46 23.58 0.07 0.07 32.23 0.02 0.06 0.30 49<br />

C29-214B-28 25.71 0.03 3.48 0.06 23.72 0.02 0.00 32.29 0.02 0.03 0.34 47<br />

C29-214B-10 25.77 0.14 2.59 0.13 22.97 0.00 0.00 32.34 0.01 0.03 0.31 45<br />

C29-214B-13 24.98 0.12 5.71 0.08 21.56 0.03 0.06 32.35 0.05 0.04 0.48 45<br />

C29-214B-16 25.30 0.10 3.59 0.09 23.35 0.04 0.02 32.35 0.01 0.04 0.41 45<br />

C29-214B-24 21.06 0.19 6.42 0.30 24.07 0.07 0.05 32.96 0.01 0.04 0.75 23<br />

C29-217B-18 21.80 0.25 8.38 0.13 19.64 0.17 0.05 32.34 0.00 0.02 0.14<br />

E32-45B-46 19.68 0.03 33.71 0.01 9.27 0.01 0.04 27.53 0.01 0.01 0.24 285<br />

E32-45B-8 18.31 0.03 32.97 0.02 10.13 0.01 0.01 26.81 0.01 0.00 0.19 287<br />

E32-45B-23 18.49 0.02 34.32 0.06 9.31 0.00 0.02 26.92 0.04 0.01 0.13 287<br />

270


Sample ID. Al 2O 3 CaO FeO K2O MgO MnO Na 2O SiO 2 TiO 2 Cl F Temp ( o )<br />

E32-45B-41 18.48 0.02 36.09 0.03 7.92 0.05 0.01 26.69 0.01 0.01 0.19 287<br />

E32-45B-1 17.66 0.01 33.53 0.02 10.46 0.00 0.00 26.66 0.00 0.00 0.20 288<br />

E32-45B-10 18.31 0.02 32.89 0.02 10.14 0.00 0.01 26.72 0.01 0.00 0.07 288<br />

E32-45B-15 17.94 0.05 33.69 0.02 8.63 0.00 0.00 25.75 0.00 0.00 0.05 292<br />

E32-45B-40 18.01 0.02 33.95 0.00 10.26 0.03 0.04 26.70 0.00 0.00 0.15 292<br />

E32-45B-45 18.70 0.02 34.82 0.01 8.10 0.00 0.02 26.27 0.01 0.01 0.06 292<br />

E32-45B-20 18.61 0.05 34.33 0.06 9.10 0.01 0.00 26.50 0.00 0.01 0.02 294<br />

E32-45B-12 18.83 0.01 32.34 0.01 10.30 0.00 0.01 26.59 0.00 0.00 0.04 296<br />

E32-45B-21 18.06 0.02 33.84 0.03 9.81 0.02 0.02 26.14 0.02 0.01 0.19 299<br />

E32-45B-51 18.14 0.04 35.90 0.00 8.45 0.01 0.00 26.03 0.01 0.01 0.00 300<br />

E32-45B-47 18.62 0.04 36.62 0.02 7.47 0.03 0.01 25.94 0.03 0.02 0.00 302<br />

E32-45B-44 18.27 0.02 34.38 0.01 9.41 0.06 0.00 26.06 0.06 0.00 0.18 303<br />

E32-45B-48 17.87 0.03 34.18 0.05 10.09 0.00 0.00 26.07 0.01 0.01 0.25 303<br />

E32-45B-42 18.79 0.00 34.08 0.02 9.74 0.00 0.01 26.29 0.00 0.01 0.08 306<br />

E32-45B-43 19.16 0.00 33.31 0.01 8.95 0.02 0.06 25.91 0.01 0.01 0.16 306<br />

E32-45B-38 19.19 0.01 35.64 0.02 8.54 0.01 0.00 26.23 0.02 0.00 0.15 309<br />

E32-45B-37 18.74 0.00 33.30 0.00 9.75 0.00 0.00 25.68 0.01 0.01 0.10 313<br />

E32-45B-49 17.97 0.00 36.58 0.03 8.64 0.00 0.02 25.61 0.01 0.01 0.07 313<br />

E32-45B-19 16.96 0.04 35.29 0.05 9.59 0.02 0.00 24.93 0.03 0.01 0.11 318<br />

E32-45B-6 18.62 0.02 34.77 0.00 8.92 0.00 0.00 25.14 0.03 0.01 0.00 323<br />

E32-45B-50 17.41 0.03 35.75 0.00 8.94 0.01 0.02 24.67 0.00 0.01 0.00 324<br />

E32-41B-13 16.52 0.03 34.75 0.08 8.83 0.05 0.02 27.40 0.00 0.05 0.19 226<br />

E32-41B-42 16.89 0.05 35.98 0.03 8.84 0.01 0.00 27.18 0.03 0.03 0.15 234<br />

E32-41B-41 16.22 0.03 34.91 0.08 9.52 0.02 0.02 27.07 0.00 0.08 0.13 237<br />

E32-41B-25 18.82 0.04 36.50 0.05 7.57 0.00 0.00 27.07 0.02 0.01 0.00 238<br />

E32-41B-34 16.71 0.10 36.00 0.04 9.11 0.02 0.06 27.02 0.03 0.05 0.28 239<br />

E32-41B-44 16.26 0.02 34.18 0.05 10.01 0.00 0.09 27.03 0.03 0.06 0.04 239<br />

E32-41B-14 16.72 0.06 35.18 0.03 9.10 0.03 0.08 27.00 0.04 0.04 0.30 240<br />

E32-41B-17 16.32 0.05 35.27 0.04 9.54 0.00 0.00 27.00 0.03 0.03 0.01 240<br />

E32-41B-10 15.80 0.11 33.35 0.05 8.13 0.00 0.10 26.50 0.02 0.04 0.57 240<br />

E32-41B-37 16.93 0.02 35.20 0.02 9.47 0.01 0.03 26.82 0.01 0.03 0.14 247<br />

E32-41B-26 19.30 0.00 34.52 0.04 9.41 0.01 0.06 26.80 0.02 0.01 0.18 247<br />

E32-41B-5 16.20 0.05 35.29 0.01 8.57 0.00 0.00 27.21 0.04 0.05 0.19 248<br />

E32-41B 16.27 0.03 35.12 0.01 9.60 0.00 0.04 27.73 0.00 0.02 0.22 249<br />

E32-41B-19 17.49 0.00 34.08 0.02 9.64 0.00 0.03 26.75 0.03 0.02 0.03 249<br />

E32-41B-16 16.26 0.03 34.79 0.03 9.41 0.00 0.04 26.75 0.03 0.04 0.27 249<br />

E32-41B-12 16.39 0.02 34.82 0.07 9.36 0.03 0.04 26.72 0.00 0.03 0.05 250<br />

E32-41B-15 17.76 0.04 33.84 0.04 9.46 0.01 0.07 26.60 0.02 0.03 0.12 255<br />

E32-41B-43 17.13 0.01 34.63 0.03 9.17 0.03 0.05 26.55 0.00 0.08 0.05 256<br />

E32-41B-28 19.50 0.02 34.30 0.08 9.20 0.00 0.01 26.57 0.04 0.01 0.12 256<br />

E32-41B-18 16.90 0.00 33.96 0.03 9.79 0.01 0.04 26.51 0.01 0.02 0.27 258<br />

E32-41B-39 16.05 0.04 35.06 0.07 9.39 0.00 0.05 26.35 0.06 0.03 0.33 264<br />

E32-41B-3 16.96 0.04 35.19 0.02 9.23 0.00 0.01 27.10 0.03 0.02 0.18 267<br />

E32-41B-7 16.84 0.04 35.25 0.02 8.97 0.01 0.01 26.83 0.02 0.03 0.20 268<br />

E32-41B-1 16.75 0.03 35.11 0.02 8.69 0.00 0.00 26.49 0.00 0.02 0.10 270<br />

E32-41B-2 17.33 0.00 34.93 0.00 9.20 0.00 0.02 26.95 0.03 0.02 0.04 273<br />

E32-41B-8 17.21 0.00 34.82 0.00 8.62 0.02 0.03 26.50 0.01 0.02 0.04 273<br />

E32-41B-35 19.32 0.02 32.91 0.07 9.85 0.01 0.07 26.10 0.03 0.07 0.27 273<br />

E32-45B-27 15.69 0.02 27.03 0.04 15.25 0.01 0.03 28.64 0.00 0.02 0.22 236<br />

E32-41B 16.27 0.03 35.12 0.01 9.60 0.00 0.04 27.73 0.00 0.02 0.22 249<br />

E32-45B-26 17.28 0.01 31.92 0.07 11.25 0.06 0.00 28.01 0.01 0.00 0.15 255<br />

E32-45B-13 16.51 0.03 32.13 0.01 10.34 0.00 0.00 26.79 0.05 0.06 0.05 261<br />

271


Sample ID. Al 2O 3 CaO FeO K2O MgO MnO Na 2O SiO 2 TiO 2 Cl F Temp ( o )<br />

E32-45B-3 16.55 0.01 32.39 0.01 10.83 0.06 0.00 27.03 0.01 0.01 0.20 263<br />

E32-45B-30 17.12 0.01 33.93 0.01 10.28 0.01 0.01 27.49 0.00 0.01 0.07 265<br />

E32-45B-7 16.91 0.01 32.73 0.00 11.20 0.00 0.03 27.44 0.02 0.00 0.11 266<br />

E32-45B-5 16.17 0.00 36.08 0.02 9.32 0.00 0.00 26.90 0.05 0.00 0.20 267<br />

E32-45B-4 15.76 0.01 33.41 0.03 10.77 0.00 0.00 26.47 0.04 0.00 0.11 270<br />

E32-45B-11 17.46 0.05 31.79 0.01 11.66 0.01 0.00 27.59 0.01 0.01 0.27 270<br />

E32-45B-24 16.71 0.01 33.86 0.01 10.11 0.06 0.03 26.89 0.01 0.01 0.00 270<br />

E32-45B-32 17.45 0.02 29.84 0.05 12.83 0.00 0.00 27.59 0.01 0.02 0.28 270<br />

E32-41B-1 16.75 0.03 35.11 0.02 8.69 0.00 0.00 26.49 0.00 0.02 0.10 270<br />

E32-45B-25 17.54 0.05 30.62 0.02 12.91 0.00 0.00 27.88 0.00 0.02 0.33 271<br />

E32-45B-2 17.09 0.02 32.87 0.03 11.04 0.01 0.01 27.15 0.02 0.01 0.16 273<br />

E32-41B-2 17.33 0.00 34.93 0.00 9.20 0.00 0.02 26.95 0.03 0.02 0.04 273<br />

E32-45B-17 17.51 0.03 32.68 0.04 10.86 0.03 0.00 27.18 0.00 0.00 0.06 274<br />

E32-45B-9 17.75 0.03 33.68 0.01 10.19 0.00 0.00 27.24 0.00 0.00 0.07 275<br />

E32-41A-15 16.31 0.05 31.92 0.03 11.53 0.00 0.00 27.55 0.00 0.05 0.16 220<br />

E32-41A-22 16.31 0.05 36.41 0.02 9.52 0.02 0.07 27.53 0.02 0.02 0.08 221<br />

E32-41A-33 16.42 0.02 32.82 0.01 11.37 0.00 0.01 27.51 0.00 0.01 0.00 222<br />

E32-41A-29 16.77 0.00 33.43 0.01 10.71 0.05 0.03 27.45 0.00 0.01 0.08 224<br />

E32-41A-3 16.37 0.02 36.20 0.01 9.06 0.01 0.00 27.44 0.01 0.01 0.06 224<br />

E32-41A-21 16.17 0.09 35.82 0.02 9.22 0.03 0.03 27.43 0.00 0.04 0.02 225<br />

E32-41A-37 17.52 0.03 31.73 0.00 12.00 0.02 0.01 27.38 0.01 0.03 0.18 226<br />

E32-41A-23 16.39 0.05 36.20 0.02 9.78 0.00 0.02 27.39 0.01 0.03 0.32 226<br />

E32-41A-42 17.50 0.03 32.09 0.01 11.88 0.00 0.06 27.36 0.03 0.02 0.30 227<br />

E32-41A-41 17.00 0.02 31.84 0.00 11.59 0.00 0.04 27.31 0.03 0.01 0.23 229<br />

E32-41A-24 16.28 0.02 35.08 0.00 9.76 0.00 0.00 27.29 0.02 0.00 0.21 230<br />

E32-41A-10 16.95 0.02 32.66 0.02 11.11 0.00 0.04 27.26 0.01 0.06 0.18 231<br />

E32-41A-26 16.36 0.02 36.61 0.02 8.87 0.03 0.00 27.25 0.01 0.02 0.04 231<br />

E32-41A-30 16.87 0.06 31.45 0.01 11.75 0.00 0.02 27.12 0.01 0.03 0.07 236<br />

E32-41A-38 16.65 0.05 35.16 0.01 9.33 0.00 0.00 27.12 0.02 0.02 0.23 236<br />

E32-41A-14 16.79 0.03 35.31 0.02 9.38 0.00 0.03 27.11 0.00 0.02 0.15 236<br />

E32-41A-43 16.85 0.05 35.53 0.00 9.08 0.02 0.00 27.03 0.02 0.00 0.00 239<br />

E32-41A-57 16.51 0.02 36.01 0.00 9.09 0.02 0.02 27.00 0.03 0.00 0.00 240<br />

E32-41A-25 16.43 0.01 35.58 0.01 9.45 0.02 0.03 27.01 0.03 0.02 0.23 240<br />

E32-41A-19 16.95 0.00 35.96 0.00 9.15 0.00 0.03 26.98 0.03 0.01 0.10 241<br />

E32-41A-16 17.61 0.00 33.30 0.01 10.05 0.00 0.00 26.96 0.03 0.02 0.00 242<br />

E32-41A-20 16.63 0.02 35.59 0.00 9.48 0.03 0.00 26.89 0.02 0.01 0.10 244<br />

E32-41A-27 17.14 0.00 35.84 0.01 9.15 0.05 0.00 26.71 0.05 0.01 0.13 251<br />

E32-41A-53 16.69 0.02 35.95 0.01 8.92 0.04 0.03 26.67 0.02 0.01 0.14 252<br />

E32-41A-4 18.09 0.02 35.25 0.00 8.42 0.04 0.03 26.57 0.03 0.01 0.00 256<br />

E32-41A-56 17.51 0.01 35.76 0.00 8.82 0.00 0.00 26.52 0.07 0.01 0.14 258<br />

E32-41A-59 19.54 0.05 34.45 0.03 8.77 0.01 0.02 26.19 0.02 0.01 0.50 270<br />

E32-41A-54 16.02 0.08 34.84 0.01 8.64 0.00 0.00 26.13 0.01 0.02 0.22 272<br />

E32-41A-58 19.55 0.06 33.64 0.03 9.14 0.03 0.06 26.00 0.01 0.01 0.17 277<br />

E32-41A-52 19.61 0.02 34.76 0.01 8.14 0.02 0.00 25.95 0.00 0.01 0.11 278<br />

272


APPENDIX I<br />

Structural measurements (strike and dip) and stereoplot of different structures from<br />

the Cinch Lake deposit<br />

Mafic dykes<br />

Strike ( o ) Dip ( o )<br />

320 80<br />

240 80<br />

240 85<br />

245 80<br />

245 85<br />

320 85<br />

Mineralized veins<br />

Strike ( o ) Dip ( o )<br />

125 75<br />

320 78<br />

110 80<br />

130 85<br />

35 90<br />

335 85<br />

215 70<br />

20 60<br />

10 60<br />

15 80<br />

15 85<br />

65 80<br />

225 55<br />

280 90<br />

285 90<br />

270 90<br />

320 75<br />

270 80<br />

300 85<br />

310 90<br />

350 85<br />

280 75<br />

340 90<br />

310 75<br />

320 90<br />

270 85<br />

260 90<br />

305 80<br />

290 85<br />

280 90<br />

270 90<br />

310 90<br />

305 80<br />

315 90<br />

310 90<br />

318 90<br />

315 90<br />

320 90<br />

310 90<br />

310 90<br />

317 85<br />

316 90<br />

305 90<br />

270 90<br />

290 80<br />

280 55<br />

270 60<br />

272 60<br />

280 90<br />

280 70<br />

300 85<br />

270 80<br />

280 70<br />

278 75<br />

220 60<br />

320 90<br />

300 90<br />

305 85<br />

Foliation<br />

Strike ( o ) Dip ( o )<br />

245 40<br />

235 50<br />

240 55<br />

245 75<br />

250 60<br />

240 80<br />

240 80<br />

240 80<br />

245 75<br />

295 60<br />

290 35<br />

250 85<br />

Joints<br />

Strike ( o ) Dip ( o )<br />

315 80<br />

325 75<br />

345 75<br />

265 80<br />

235 80<br />

15 82<br />

295 75<br />

315 80<br />

255 90<br />

245 30<br />

275 80<br />

45 30<br />

20 30<br />

0 70<br />

80 85<br />

310 85<br />

125 80<br />

240 75<br />

110 75<br />

285 60<br />

285 60<br />

290 70<br />

290 75<br />

0 70<br />

65 75<br />

160 75<br />

125 50<br />

245 75<br />

295 60<br />

290 35<br />

350 60<br />

350 60<br />

70 80<br />

290 80<br />

10 80<br />

230 90<br />

10 75<br />

230 90<br />

10 75<br />

245 80<br />

200 80<br />

60 90<br />

273


250 85<br />

330 40<br />

145 70<br />

25 65<br />

30 30<br />

270 90<br />

290 60<br />

280 55<br />

270 60<br />

272 60<br />

280 90<br />

280 70<br />

300 85<br />

270 80<br />

270 80<br />

280 70<br />

278 75<br />

220 60<br />

320 90<br />

300 90<br />

305 75<br />

300 80<br />

325 70<br />

175 85<br />

295 70<br />

105 85<br />

285 69<br />

315 65<br />

310 70<br />

305 70<br />

305 85<br />

395 80<br />

250 80<br />

305 75<br />

250 75<br />

210 80<br />

310 70<br />

350 45<br />

305 75<br />

300 70<br />

240 85<br />

105 60<br />

215 60<br />

165 85<br />

150 60<br />

125 65<br />

110 65<br />

110 55<br />

100 85<br />

135 85<br />

40 65<br />

85 66<br />

320 70<br />

240 80<br />

105 60<br />

220 45<br />

Quartz veins<br />

Strike ( o ) Dip ( o )<br />

230 50<br />

240 50<br />

240 70<br />

240 40<br />

235 70<br />

250 60<br />

274


Foliations<br />

Mafic dykes<br />

275


Mineralized veins<br />

Quartz veins<br />

276


Shear zone<br />

Joints<br />

277

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!