08.01.2015 Views

Resonant nonlinear magneto-optical effects in atoms∗ - The Budker ...

Resonant nonlinear magneto-optical effects in atoms∗ - The Budker ...

Resonant nonlinear magneto-optical effects in atoms∗ - The Budker ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

2<br />

1. Experiments 29<br />

2. <strong>The</strong>oretical analysis 30<br />

F. Gas discharge 30<br />

G. Atoms trapped <strong>in</strong> solid and liquid helium 30<br />

H. Laser-cooled and trapped atoms 31<br />

IX. Magneto-<strong>optical</strong> <strong>effects</strong> <strong>in</strong> selective reflection 31<br />

1. L<strong>in</strong>ear <strong>effects</strong> 31<br />

2. Nonl<strong>in</strong>ear <strong>effects</strong> 32<br />

k<br />

Polarizer<br />

L<strong>in</strong>ear<br />

polarization<br />

Circular<br />

components<br />

B ⊥ B||<br />

φ<br />

Medium<br />

Analyzer<br />

Detector<br />

X. L<strong>in</strong>ear and <strong>nonl<strong>in</strong>ear</strong> electro-<strong>optical</strong> <strong>effects</strong> 32<br />

XI. Experimental techniques 33<br />

A. A typical NMOE experiment 33<br />

B. Polarimetry 34<br />

C. Nonl<strong>in</strong>ear <strong>magneto</strong>-<strong>optical</strong> rotation with<br />

frequency-modulated light 34<br />

D. Magnetic shield<strong>in</strong>g 35<br />

E. Laser-frequency stabilization us<strong>in</strong>g <strong>magneto</strong>-<strong>optical</strong><br />

<strong>effects</strong> 35<br />

XII. Applications 36<br />

A. Magnetometry 36<br />

1. Quantum noise limits 36<br />

2. Experiments 37<br />

B. Electric-dipole moment searches 38<br />

C. <strong>The</strong> Aharonov-Casher phase shift 39<br />

D. Measurement of tensor electric polarizabilities 39<br />

E. Electromagnetic field tomography 40<br />

F. Parity violation <strong>in</strong> atoms 40<br />

XIII. Closely-related phenomena and techniques 41<br />

A. Dark and bright resonances 41<br />

B. “Slow” and “fast” light 41<br />

C. Self-rotation 42<br />

XIV. Conclusion 42<br />

Acknowledgments 42<br />

Appendices 42<br />

A. Description of light polarization <strong>in</strong> terms of the<br />

Stokes parameters 42<br />

B. Description of atomic polarization 43<br />

1. State multipoles 43<br />

2. Visualization of atomic polarization 43<br />

C. Abbreviations 44<br />

References 44<br />

I. INTRODUCTION<br />

Magneto-<strong>optical</strong> <strong>effects</strong> arise when light <strong>in</strong>teracts with<br />

a medium <strong>in</strong> the presence of a magnetic field. <strong>The</strong>se <strong>effects</strong><br />

have been studied and used s<strong>in</strong>ce the dawn of modern<br />

physics and have had a profound impact on its development.<br />

1 Most prom<strong>in</strong>ent among the <strong>magneto</strong>-<strong>optical</strong><br />

<strong>effects</strong> are the Faraday (1846a,b, 1855) and the Voigt<br />

1 Magneto-optics were listed among the most important topics <strong>in</strong><br />

Physics at the World Congress of Physics <strong>in</strong> Paris <strong>in</strong> 1900 (Guillaume<br />

and Po<strong>in</strong>caré, 1900).<br />

FIG. 1 <strong>The</strong> Faraday rotation effect. Light, after pass<strong>in</strong>g<br />

through a l<strong>in</strong>ear polarizer, enters a medium subjected to a<br />

longitud<strong>in</strong>al magnetic field B ‖ . Left- and right-circularly polarized<br />

components of the light (equal <strong>in</strong> amplitude for l<strong>in</strong>early<br />

polarized light) acquire different phase shifts, lead<strong>in</strong>g<br />

to <strong>optical</strong> rotation. A difference <strong>in</strong> absorption between the<br />

two components <strong>in</strong>duces ellipticity <strong>in</strong> the output light. A<br />

particular polarization of the transmitted light, depend<strong>in</strong>g on<br />

the orientation of the analyzer relative to the polarizer, is<br />

detected. Analyzer orientation varies with the type of experiment<br />

be<strong>in</strong>g performed. In forward-scatter<strong>in</strong>g experiments<br />

(Sec. II.B), the analyzer is crossed with the <strong>in</strong>put polarizer,<br />

so that only light of the orthogonal polarization is detected.<br />

In the “balanced polarimeter” arrangement (Sec. XI.B), a polariz<strong>in</strong>g<br />

beam splitter oriented at π/4 to the <strong>in</strong>put polarizer<br />

is used as an analyzer. <strong>The</strong> normalized differential signal<br />

between the two channels of the analyzer depends on the rotation<br />

of light polarization while be<strong>in</strong>g <strong>in</strong>sensitive to <strong>in</strong>duced<br />

ellipticity. <strong>The</strong> Voigt effect is similar except that <strong>in</strong>stead of a<br />

longitud<strong>in</strong>al magnetic field, a transverse field B ⊥ is applied.<br />

Here <strong>optical</strong> rotation and <strong>in</strong>duced ellipticity are due to differential<br />

absorption and phase shifts of orthogonal l<strong>in</strong>early<br />

polarized components of the <strong>in</strong>put light (Sec. VI).<br />

(1901) <strong>effects</strong>, i.e., rotation of light’s polarization plane as<br />

it propagates through a medium placed <strong>in</strong> a longitud<strong>in</strong>al<br />

or transverse magnetic field, respectively (Fig. I). <strong>The</strong><br />

l<strong>in</strong>ear (Secs. II, III) near-resonance Faraday effect is also<br />

known as the Macaluso-Corb<strong>in</strong>o (1898a; 1899; 1898b) effect.<br />

<strong>The</strong> Voigt effect is sometimes called the Cotton-<br />

Mouton (1907; 1911) effect, particularly <strong>in</strong> condensedmatter<br />

physics.<br />

<strong>The</strong> remarkable properties of resonant (and, particularly,<br />

<strong>nonl<strong>in</strong>ear</strong>) <strong>magneto</strong>-<strong>optical</strong> systems—as compared<br />

to the well-known transparent condensed-matter<br />

<strong>magneto</strong>-<strong>optical</strong> materials such as glasses and liquids—<br />

can be illustrated with the Faraday effect. <strong>The</strong> magnitude<br />

of <strong>optical</strong> rotation per unit magnetic field and<br />

unit length is characterized by the Verdet constant V .<br />

For typical dense fl<strong>in</strong>t glasses that are used <strong>in</strong> commercial<br />

Faraday polarization rotators and <strong>optical</strong> isolators,<br />

V ≃ 3 × 10 −5 rad G −1 cm −1 . In subsequent sections, we<br />

will describe experiments <strong>in</strong> which <strong>nonl<strong>in</strong>ear</strong> <strong>magneto</strong><strong>optical</strong><br />

rotation correspond<strong>in</strong>g to V ≃ 10 4 rad G −1 cm −1<br />

is observed <strong>in</strong> resonant rubidium vapor (whose density,<br />

∼3 × 10 9 cm −3 , satisfies the def<strong>in</strong>ition of very high vacuum).<br />

Tak<strong>in</strong>g <strong>in</strong>to account the difference <strong>in</strong> density between<br />

glass and the rarified atomic vapor, the latter can<br />

be thought of as a <strong>magneto</strong>-<strong>optical</strong> material with some

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!