15.01.2015 Views

A natron source at Pikrolimni Lake in Greece? Geochemical evidence

A natron source at Pikrolimni Lake in Greece? Geochemical evidence

A natron source at Pikrolimni Lake in Greece? Geochemical evidence

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Journal of <strong>Geochemical</strong> Explor<strong>at</strong>ion 103 (2009) 133–143<br />

Contents lists available <strong>at</strong> ScienceDirect<br />

Journal of <strong>Geochemical</strong> Explor<strong>at</strong>ion<br />

journal homepage: www.elsevier.com/loc<strong>at</strong>e/jgeoexp<br />

A <strong>n<strong>at</strong>ron</strong> <strong>source</strong> <strong>at</strong> <strong>Pikrolimni</strong> <strong>Lake</strong> <strong>in</strong> <strong>Greece</strong> <strong>Geochemical</strong> <strong>evidence</strong><br />

E. Dotsika a, ⁎, D. Poutoukis b , I. Tzavidopoulos a , Y. Mani<strong>at</strong>is a , D. Ign<strong>at</strong>iadou c , B. Raco d<br />

a Lab. of Archaeometry, NCSR “Demokritos”, 153 10 Aghia Paraskevi, Attiki, <strong>Greece</strong><br />

b General Secretari<strong>at</strong> for Research and Technology, 10-14 Messogion, Athens, <strong>Greece</strong><br />

c Archaeological Museum of Thessaloniki, 6 M. Andronikou Street, Thessaloniki, <strong>Greece</strong><br />

d Institute of Geosciences and Earth Re<strong>source</strong>s, Via G. Moruzzi 1, 56124 Pisa, Italy<br />

article<br />

<strong>in</strong>fo<br />

abstract<br />

Article history:<br />

Received 2 February 2009<br />

Accepted 6 August 2009<br />

Available onl<strong>in</strong>e 21 August 2009<br />

Keywords:<br />

Non-mar<strong>in</strong>e salt<br />

N<strong>at</strong>ron<br />

Br<strong>in</strong>e<br />

Alkal<strong>in</strong>e w<strong>at</strong>er<br />

<strong>Lake</strong> <strong>Pikrolimni</strong><br />

The geochemical conditions th<strong>at</strong> are responsible for the form<strong>at</strong>ion of “Chalastraion nitron” <strong>in</strong> the bas<strong>in</strong> of<br />

<strong>Lake</strong> <strong>Pikrolimni</strong> (Northern <strong>Greece</strong>) were <strong>in</strong>vestig<strong>at</strong>ed <strong>in</strong> this study. The goal of the study is to confirm Pl<strong>in</strong>y's<br />

description: “<strong>at</strong> Clitae <strong>in</strong> Macedonia it is found <strong>in</strong> abundance the best, called soda of Chalestra…” The ionspecific<br />

<strong>in</strong>teraction model based on Pitzer's equ<strong>at</strong>ions showed th<strong>at</strong> the lake br<strong>in</strong>e samples are s<strong>at</strong>ur<strong>at</strong>ed<br />

versus carbon<strong>at</strong>e–bicarbon<strong>at</strong>e sodium and sodium–chloride–sulf<strong>at</strong>e m<strong>in</strong>erals. The results of <strong>in</strong>dividual X-<br />

Ray Diffraction (XRD) analyses on the evapor<strong>at</strong>ive deposits showed th<strong>at</strong> the salts consist mostly of trona,<br />

burkeite, thenardite and halite confirm<strong>in</strong>g Pl<strong>in</strong>y's description.<br />

© 2009 Elsevier B.V. All rights reserved.<br />

1. Introduction<br />

Dur<strong>in</strong>g the last decades, the orig<strong>in</strong> of <strong>n<strong>at</strong>ron</strong> (Na 2 CO 3 ) has been a<br />

major issue among the researchers of ancient glassmak<strong>in</strong>g. N<strong>at</strong>ron<br />

was used dur<strong>in</strong>g the Greek–Roman period as a <strong>source</strong> of soda, which is<br />

one of the three basic components of glass. Its use was loc<strong>at</strong>ed <strong>in</strong><br />

Eastern Mediterranean, Egypt and Phoenicia, from the Bronze Age<br />

until the medieval time. In Mesopotamian glassmak<strong>in</strong>g, the ma<strong>in</strong><br />

<strong>source</strong> of soda was halophyte ash. The glasses made of plant ash have<br />

different composition <strong>in</strong> rel<strong>at</strong>ion to those made of <strong>n<strong>at</strong>ron</strong>, so it is<br />

practically possible to dist<strong>in</strong>guish the West Asian glass products from<br />

those from Mediterranean areas. Glasses from Archaic, Classical and<br />

Hellenistic times which have been found <strong>in</strong> <strong>Greece</strong> are all made of<br />

<strong>n<strong>at</strong>ron</strong> (Ign<strong>at</strong>iadou, 2002).<br />

N<strong>at</strong>ural <strong>n<strong>at</strong>ron</strong> deposits, cre<strong>at</strong>ed by evapor<strong>at</strong>ion and desicc<strong>at</strong>ion<br />

processes <strong>in</strong> isol<strong>at</strong>ed lakes, exist <strong>in</strong> Wadi N<strong>at</strong>run (De Cosson, 1936;<br />

Coulson and Leonard, 1979; Henderson, 1985), northwest of Cairo,<br />

Egypt. This <strong>source</strong> was used <strong>in</strong> antiquity but also until today and it is<br />

considered the ma<strong>in</strong> or even the only <strong>source</strong> of <strong>n<strong>at</strong>ron</strong> for glassmak<strong>in</strong>g.<br />

N<strong>at</strong>ron deposits also existed <strong>in</strong> <strong>Greece</strong>, <strong>in</strong> the region of Macedonia.<br />

N<strong>at</strong>ron is referred <strong>in</strong> liter<strong>at</strong>ure, with earliest the quot<strong>at</strong>ion of Pl<strong>at</strong>o,<br />

who refers to it as Chalastraion, used as detergent (Testimonium 1).<br />

Educ<strong>at</strong>ion, he says, must be like an <strong>in</strong>delible dye th<strong>at</strong> cannot be<br />

washed out by detergents. It must not be affected by pleasure, which<br />

is stronger than the most powerful chalastraion. One of his<br />

comment<strong>at</strong>ors added th<strong>at</strong> “Chalastra is a city <strong>in</strong> Macedonia and a lake<br />

⁎ Correspond<strong>in</strong>g author. Tel.: +30 2106503305; fax: +30 2106519430.<br />

E-mail address: edotsika@ims.demokritos.gr (E. Dotsika).<br />

where the Chalastraion nitron is formed or dissolved over a period of<br />

n<strong>in</strong>e days” (Testimonium 2). Others mention Chalastra as a city or lake<br />

<strong>in</strong> Macedonia where <strong>n<strong>at</strong>ron</strong> was be<strong>in</strong>g burned (Testimonium 3) or<br />

<strong>n<strong>at</strong>ron</strong> as Chalastraion nitron, named after Chalastra, the lake <strong>in</strong><br />

Macedonia (Testimonium 4).<br />

A rel<strong>at</strong>ively unknown quot<strong>at</strong>ion <strong>in</strong> <strong>in</strong>tern<strong>at</strong>ional studies about<br />

ancient glass is th<strong>at</strong> of Pl<strong>in</strong>y, the Elder, which <strong>in</strong>cludes the most<br />

thorough and enlighten<strong>in</strong>g reference to Chalastraion nitron, referr<strong>in</strong>g<br />

th<strong>at</strong> it abounds is the Macedonian city of Clitae (Testimonium 5). In<br />

this quot<strong>at</strong>ion, the follow<strong>in</strong>g are mentioned:<br />

“At Clitae <strong>in</strong> Macedonia it is found <strong>in</strong> abundance the best, called<br />

Chalastraion, white and pure like salt. There is an alkal<strong>in</strong>e lake<br />

there, with a little spr<strong>in</strong>g of fresh w<strong>at</strong>er ris<strong>in</strong>g up <strong>in</strong> the center.<br />

Nitron forms there when the Dog Star rises for n<strong>in</strong>e days, ceases<br />

for n<strong>in</strong>e days, comes to the surface aga<strong>in</strong> and then ceases”.<br />

Additional characteristics of the lake follow and the author cont<strong>in</strong>ues<br />

referr<strong>in</strong>g to the other famous nitron, the one from Egypt. “Here it is<br />

n<strong>at</strong>ural, but <strong>in</strong> Egypt it is made artificially and <strong>in</strong> much gre<strong>at</strong>er<br />

abundance but of <strong>in</strong>ferior quality, because it is darker and stony”.<br />

Based on the reference of Pl<strong>in</strong>y and other newer liter<strong>at</strong>ure <strong>source</strong>s,<br />

H<strong>at</strong>zopoulos and Loukopoulou (1989) suggested th<strong>at</strong> the lake<br />

Chalastra is the modern lake <strong>Pikrolimni</strong>.<br />

The whole issue is of gre<strong>at</strong> importance <strong>in</strong> studies of glassmak<strong>in</strong>g, as<br />

glass products were abundant <strong>in</strong> Macedonia dur<strong>in</strong>g the period of<br />

Pl<strong>in</strong>y. The possibility th<strong>at</strong> Chalastraion nitron was used for their<br />

manufacture can lead to the determ<strong>in</strong><strong>at</strong>ion of the orig<strong>in</strong> of the<br />

products, both Roman and pre-Roman.<br />

0375-6742/$ – see front m<strong>at</strong>ter © 2009 Elsevier B.V. All rights reserved.<br />

doi:10.1016/j.gexplo.2009.08.003


134 E. Dotsika et al. / Journal of <strong>Geochemical</strong> Explor<strong>at</strong>ion 103 (2009) 133–143<br />

<strong>Lake</strong> <strong>Pikrolimni</strong> is loc<strong>at</strong>ed 20 km to the NW of the town of<br />

Thessaloniki, <strong>in</strong> the region of Macedonia, <strong>in</strong> Northern <strong>Greece</strong>, where a<br />

spa and <strong>in</strong>stall<strong>at</strong>ions for mud b<strong>at</strong>hs exist.<br />

In order to confirm Pl<strong>in</strong>y's description, we <strong>in</strong>vestig<strong>at</strong>ed the<br />

geochemical d<strong>at</strong>a of the area and the evapor<strong>at</strong>ive conditions, which<br />

are responsible for the form<strong>at</strong>ion of “Chalastraion nitron”.<br />

2. N<strong>at</strong>ron use<br />

Evaporitic rocks have been used s<strong>in</strong>ce the dawn of human history.<br />

Salt and br<strong>in</strong>es have been used <strong>in</strong> all cultures, i.e. Knossos Palace is built<br />

on Crete Island with big blocks, some of which were pure massive<br />

gypsum. Also <strong>in</strong> more “modern” civilis<strong>at</strong>ions, the salt was used for<br />

payments. The Romans paid a “salarium” <strong>in</strong> NaCl and therefore the<br />

actual word “salary” came up for wages, orig<strong>in</strong>ally mean<strong>in</strong>g salt money.<br />

Ancient use of sodium carbon<strong>at</strong>e is known s<strong>in</strong>ce 5500–4000 BC.<br />

However, f<strong>in</strong>d<strong>in</strong>gs of the m<strong>at</strong>erial are rare. In general, the ma<strong>in</strong> use of<br />

<strong>n<strong>at</strong>ron</strong> was as a purifier <strong>in</strong> mummific<strong>at</strong>ion. Herodotus provides the<br />

best description of the use of <strong>n<strong>at</strong>ron</strong> <strong>in</strong> mummific<strong>at</strong>ion.<br />

N<strong>at</strong>ron seems to have been used <strong>in</strong> glassmak<strong>in</strong>g <strong>in</strong> Egypt s<strong>in</strong>ce the<br />

Badarian Period (early 4th millennium BC), <strong>in</strong>dic<strong>at</strong>ed by the very low<br />

potash contents of glasses (Shortland et al., 2006). The use of <strong>n<strong>at</strong>ron</strong><br />

becomes apparent s<strong>in</strong>ce the 1st millennium BC. Reported glass from the<br />

tomb of Nesikhons <strong>in</strong> Egypt with low content <strong>in</strong> potash, magnesia and<br />

lime <strong>in</strong>dic<strong>at</strong>es th<strong>at</strong> the soda was derived from <strong>n<strong>at</strong>ron</strong> (Schlick-Nolte and<br />

Werthmann, 2003). Other <strong>evidence</strong> of <strong>n<strong>at</strong>ron</strong> use <strong>in</strong> the same period is<br />

the blue glasses from 8–9th century BC Nimrud, Iraq (Reade et al., 2005).<br />

The Roman glassmak<strong>in</strong>g <strong>in</strong>dustry seems to have been based on <strong>n<strong>at</strong>ron</strong>,<br />

<strong>in</strong>dic<strong>at</strong>ed by the low-magnesia content. Until the 9th century AD, <strong>n<strong>at</strong>ron</strong><br />

cont<strong>in</strong>ued to be the basic m<strong>at</strong>erial <strong>in</strong> glassmak<strong>in</strong>g <strong>in</strong> Levant, the<br />

Mediterranean and Europe. The use of <strong>n<strong>at</strong>ron</strong> as the flux <strong>in</strong> glass<br />

production decl<strong>in</strong>es <strong>in</strong> Near East and <strong>in</strong> Europe <strong>in</strong> the 9th century AD,<br />

when soda-rich plant ash replaced it (Shortland et al., 2006). However,<br />

<strong>at</strong> al-Barnuj <strong>in</strong> the Western Delta, Egypt, <strong>n<strong>at</strong>ron</strong> was collected dur<strong>in</strong>g<br />

periods th<strong>at</strong> w<strong>at</strong>ers were dried up until the 18th century AD (Mart<strong>in</strong> and<br />

Sauneron, 1982). From the 1920s and onwards <strong>n<strong>at</strong>ron</strong> was collected <strong>at</strong><br />

the same area by the Egypt Salt and Soda Company (Evelyn-White and<br />

Hauser, 1926–1933).<br />

In ancient <strong>Greece</strong> <strong>n<strong>at</strong>ron</strong> was mentioned for the first time by Pl<strong>at</strong>o<br />

<strong>in</strong> the 5th century <strong>in</strong> Republic (Testimonium 1).<br />

Today, sodium carbon<strong>at</strong>e is formed <strong>in</strong> the subtropical region of<br />

<strong>Lake</strong> N<strong>at</strong>ron <strong>in</strong> Tanzania and <strong>Lake</strong> Magadi <strong>in</strong> Kenya (Magadi means<br />

bitter, exactly as the name of <strong>Lake</strong> <strong>Pikrolimni</strong>, which means bitterlake).<br />

In Table 2, the m<strong>in</strong>eral sequence th<strong>at</strong> precipit<strong>at</strong>es dur<strong>in</strong>g mar<strong>in</strong>e<br />

w<strong>at</strong>er evapor<strong>at</strong>ion and lacustr<strong>in</strong>e w<strong>at</strong>er evapor<strong>at</strong>ion appears (<strong>Lake</strong><br />

N<strong>at</strong>ron, <strong>Lake</strong> Magadi, Deep Spr<strong>in</strong>gs <strong>Lake</strong> and Wadi N<strong>at</strong>run).<br />

3. Meteorological and geological sett<strong>in</strong>g<br />

<strong>Lake</strong> <strong>Pikrolimni</strong> is loc<strong>at</strong>ed <strong>in</strong> the bas<strong>in</strong> of Kilkis pla<strong>in</strong>, near Thessaloniki<br />

(23 km), <strong>in</strong> northern <strong>Greece</strong>. It is a small shallow lake which<br />

usually dries out dur<strong>in</strong>g summer. It has an average depth of about 0.5–<br />

0.7 m and covers an area about 4.5 km 2 when it is flooded. The mean<br />

annual precipit<strong>at</strong>ion <strong>in</strong> meteorological st<strong>at</strong>ion of Thessaloniki (dur<strong>in</strong>g<br />

1959–1997, Hellenic N<strong>at</strong>ional Meteorological service) is 448 mm, while<br />

the temper<strong>at</strong>ure ranges from 1.3 to 32 °C for the same period. Mean<br />

temper<strong>at</strong>ure dur<strong>in</strong>g July and August is 26.3 °C and mean precipit<strong>at</strong>ion is<br />

22 mm (1959–1997, Hellenic N<strong>at</strong>ional Meteorological service). The<br />

annual real evapotranspir<strong>at</strong>ion for Thessaloniki area (Thermi) <strong>in</strong> 2005<br />

was estim<strong>at</strong>ed 482.01 mm, with precipit<strong>at</strong>ion 481.8 mm and mean<br />

temper<strong>at</strong>ure 15.4 °C (An<strong>at</strong>oliki AE, 2006). Dur<strong>in</strong>g summer months, July<br />

and August (2005), mean temper<strong>at</strong>ure was 22.3 °C and 25.5 °C<br />

respectively, mean precipit<strong>at</strong>ion was 95 and 48 mm respectively while<br />

real evapotranspir<strong>at</strong>ion was 95 and 48 mm for the same months<br />

(An<strong>at</strong>oliki AE, 2006). Also Dalezios et al. (2002) report th<strong>at</strong> the maximum<br />

values of reference evapotranspir<strong>at</strong>ion r<strong>at</strong>es are observed ma<strong>in</strong>ly over<br />

the northern region and particularly over the pla<strong>in</strong>s surround<strong>in</strong>g the<br />

st<strong>at</strong>ions of Thessaloniki and Kilkis <strong>in</strong> the majority of months. This could<br />

be merely due to the fact th<strong>at</strong> ma<strong>in</strong>ly <strong>in</strong> summer months strong w<strong>in</strong>ds<br />

prevail over <strong>Greece</strong>, which along with the lack of precipit<strong>at</strong>ion cause a<br />

gre<strong>at</strong> deal of aridity variability among different sites. In particular, the<br />

observed maximum values of reference evapotranspir<strong>at</strong>ion r<strong>at</strong>es <strong>in</strong> the<br />

summer months over the Thessaloniki pla<strong>in</strong> could be due to a strong and<br />

dry N–NW w<strong>in</strong>d p<strong>at</strong>tern named Vartharis.<br />

Sediments of Neogene and Qu<strong>at</strong>ernary age are prevalent <strong>in</strong> the<br />

region of <strong>Lake</strong> <strong>Pikrolimni</strong> (Fig. 1). The Qu<strong>at</strong>ernary deposits are<br />

Holocene river and lake sediments, alluvial we<strong>at</strong>her<strong>in</strong>g m<strong>at</strong>erial<br />

composed ma<strong>in</strong>ly of schists and carbon<strong>at</strong>e sandy clays, sands and<br />

gravels of lower terrace system (carbon<strong>at</strong>es). Pleistocene deposits<br />

conta<strong>in</strong> gravels, red clays and sands with calcareous concretions and a<br />

big amount of mica. The prevalent Neogene form<strong>at</strong>ion (Mountrakis,<br />

1985) is the sandstone–marl series, <strong>in</strong>clud<strong>in</strong>g Hipparion mediterraneum,<br />

Mastodon sp., Gazella cf. deperdita.<br />

The bedrock <strong>in</strong> the region consists of Mesozoic rocks, ma<strong>in</strong>ly by<br />

conglomer<strong>at</strong>es from Upper Jurassic, <strong>in</strong>clud<strong>in</strong>g Ner<strong>in</strong>eae, Cladocoropsis sp.<br />

and Pseudocyclamm<strong>in</strong>a sp. (Mercier, 1966), with quartzite, greywacke<br />

(quartz and feldspars), quartz and limestone pebbles, basic rocks<br />

(gabbro) from Upper Jurassic with pyroxene, altered <strong>in</strong>to biotite and<br />

act<strong>in</strong>olite, hornblende, plagioclase feldspar and epidote and limestone<br />

from Middle–Upper Triassic. In a distance less than 10 km from <strong>Lake</strong><br />

<strong>Pikrolimni</strong>, the Paleozoic basement is uncovered consist<strong>in</strong>g of maficrocks<br />

(amphibolite with amphibole as hornblende) and plagioclase feldspars.<br />

4. Sampl<strong>in</strong>g and analysis<br />

<strong>Lake</strong> <strong>Pikrolimni</strong> is not fed by any major river and the hydrography<br />

of the area shows th<strong>at</strong> no perennial streams enter the lake directly. In<br />

the past, the major <strong>source</strong> of w<strong>at</strong>er to the lake was ground w<strong>at</strong>er<br />

(Pl<strong>in</strong>y; Many public testimonies vouch th<strong>at</strong> there were a lot of spr<strong>in</strong>gs<br />

<strong>in</strong> the middle of the lake, but after the big earthquake of 1981 these<br />

spr<strong>in</strong>gs have disappeared). Specifically, there were spr<strong>in</strong>gs very close<br />

to the lake and with<strong>in</strong> the lake itself. These percol<strong>at</strong><strong>in</strong>g groundw<strong>at</strong>ers<br />

probably brought the necessary ionic charge <strong>in</strong>to the lake. So dur<strong>in</strong>g<br />

the summer, accord<strong>in</strong>g to Pl<strong>in</strong>y, the precipit<strong>at</strong>ion of the salt was<br />

tak<strong>in</strong>g place. Actually, the ma<strong>in</strong> <strong>in</strong>put of fresh w<strong>at</strong>er to <strong>Pikrolimni</strong> is<br />

the ra<strong>in</strong>. Also, a number of wells and two spr<strong>in</strong>gs are loc<strong>at</strong>ed <strong>in</strong> the<br />

lake area (one spr<strong>in</strong>g is loc<strong>at</strong>ed <strong>in</strong> the south perimeter of the lake,<br />

nr. 21 <strong>in</strong> Table 1 and one spr<strong>in</strong>g emerges <strong>in</strong> the <strong>Pikrolimni</strong> Village).<br />

The spr<strong>in</strong>g w<strong>at</strong>er (nr. 21 <strong>in</strong> Table 1), ranges <strong>in</strong> temper<strong>at</strong>ure from 28 to<br />

30 °C and does not vary <strong>in</strong> discharge and concentr<strong>at</strong>ion. It emerges <strong>in</strong><br />

the ancient bas<strong>in</strong> of the lake and feeds the lagoon which is perennially<br />

wet marg<strong>in</strong>al lake areas. Dur<strong>in</strong>g the w<strong>in</strong>ter, when temper<strong>at</strong>ure is low,<br />

the <strong>in</strong>flow of w<strong>at</strong>er (ma<strong>in</strong>ly ra<strong>in</strong> w<strong>at</strong>er) <strong>in</strong>to <strong>Lake</strong> <strong>Pikrolimni</strong> exceeds<br />

the evapor<strong>at</strong>ion and the lake fills with w<strong>at</strong>er. Dur<strong>in</strong>g the summer,<br />

when the temper<strong>at</strong>ure and evapor<strong>at</strong>ion <strong>in</strong>crease, the level of the lake<br />

beg<strong>in</strong>s to fall, the concentr<strong>at</strong>ion of the ions <strong>in</strong>creases and evaporite<br />

m<strong>in</strong>erals beg<strong>in</strong> to precipit<strong>at</strong>e out of the solution. Dur<strong>in</strong>g some<br />

summers, when the lake w<strong>at</strong>er is exposed to very <strong>in</strong>tense evapor<strong>at</strong>ive<br />

concentr<strong>at</strong>ion, the br<strong>in</strong>es cover all the bottom of the lake. This br<strong>in</strong>e<br />

body vanishes dur<strong>in</strong>g the dry seasons expos<strong>in</strong>g salt deposit, as shown<br />

<strong>in</strong> Fig. 1. In the next year, dur<strong>in</strong>g the ra<strong>in</strong>y seasons, the lake refills with<br />

meteoric w<strong>at</strong>er and this w<strong>at</strong>er dissolves the salts and the shallow<br />

br<strong>in</strong>e body cover<strong>in</strong>g the ma<strong>in</strong> lake surface. This sequence of fill<strong>in</strong>g/<br />

depletion of the lake was observed dur<strong>in</strong>g the five years of this study.<br />

Therefore, evapor<strong>at</strong>ive concentr<strong>at</strong>ions dom<strong>in</strong><strong>at</strong>e the chemical composition<br />

of the lake w<strong>at</strong>er and it is the driv<strong>in</strong>g force for the evolution of<br />

<strong>Pikrolimni</strong> br<strong>in</strong>es, although only one segment is observed directly: the<br />

lake br<strong>in</strong>es. The spr<strong>in</strong>g is postul<strong>at</strong>ed as sub-surface flow.<br />

Samples were collected, <strong>in</strong> different times, from the borehole <strong>in</strong><br />

the thermal spa of <strong>Pikrolimni</strong> (which is loc<strong>at</strong>ed <strong>at</strong> the banks of <strong>Lake</strong><br />

<strong>Pikrolimni</strong>), from spr<strong>in</strong>g w<strong>at</strong>er and samples of br<strong>in</strong>e and salts from the<br />

lake itself. We also sampled fresh w<strong>at</strong>er of the region. The depth of the


E. Dotsika et al. / Journal of <strong>Geochemical</strong> Explor<strong>at</strong>ion 103 (2009) 133–143<br />

135<br />

Fig. 1. Geological map of the area of <strong>Lake</strong> <strong>Pikrolimni</strong> and sampl<strong>in</strong>g sites (•).<br />

perfor<strong>at</strong>ion of the borehole <strong>in</strong> the thermal spa is approxim<strong>at</strong>ely 250 m.<br />

This w<strong>at</strong>er is n<strong>at</strong>urally sparkl<strong>in</strong>g, with a metallic aftertaste and a slight<br />

organic smell. Str<strong>at</strong>igraphic d<strong>at</strong>a are absent for the area, however<br />

reports of the borehole <strong>at</strong> the thermal spa mention th<strong>at</strong> across the<br />

totality of the borehole's depth, only lake sediments were drilled.<br />

The samples were taken twice dur<strong>in</strong>g the year: <strong>in</strong> summer and <strong>in</strong><br />

w<strong>in</strong>ter (2002, 2003, 2004, 2005, 2006 and 2007). The samples were taken<br />

<strong>in</strong> different seasons. Samples with codes PL-8/2002 and PL-9/2006 regard<br />

residual br<strong>in</strong>es on the lake bottom. The lake was totally dried out once, on<br />

2002, and never aga<strong>in</strong> until 2006. The samples from 2003 to 2005 concern<br />

mix<strong>in</strong>g between the residual br<strong>in</strong>es and meteoric w<strong>at</strong>er. The analytical<br />

scheme <strong>in</strong>cludes field measurements of temper<strong>at</strong>ure, conductivity and pH.<br />

Samples were also subjected to chemical analysis. Filtered<br />

(0.45 µm), acidified (with HNO 3 1:1) w<strong>at</strong>er samples were collected<br />

for determ<strong>in</strong><strong>at</strong>ion of c<strong>at</strong>ions (Ca 2+ ,Mg 2+ ,K + and Na + ). Untre<strong>at</strong>ed<br />

samples were collected for analyses of anions (Cl − ,SO 4 2− ,CO 3 2− and<br />

HCO 3 − ). The major chemical constituents were analyzed with<br />

standard methods described <strong>in</strong> Apha (1989). The anions and c<strong>at</strong>ions<br />

of the w<strong>at</strong>er samples were analyzed with ion chrom<strong>at</strong>ography and<br />

<strong>at</strong>omic absorption.


Table 1<br />

Chemical compositions (mmol/L) of w<strong>at</strong>ers from boreholes, spr<strong>in</strong>gs, w<strong>at</strong>er tubes and lake.<br />

a/a Sample name Sample description D<strong>at</strong>e T (°C) pH Cl −<br />

(mmol/L)<br />

SO 4<br />

2−<br />

(mmol/L)<br />

1 S/1/2002 Spr<strong>in</strong>g–<strong>Pikrolimni</strong> Vil. 1/2002 18 9.8 3.81 1.23 3.20 5.61 0.08 0.12 14.78 0.08 0.15 Na–HCO 3<br />

2 b/2/2002 Priv<strong>at</strong>e borehole–<strong>Pikrolimni</strong> Vil. 1/2008 19 8.7 1.69 0.18 0.47 3.43 0.13 0.70 4.35 0.13 0.00 Na–HCO 3<br />

3 b/3/2002 Priv<strong>at</strong>e borehole–<strong>Pikrolimni</strong> Vil. 1/2002 19 8.6 0.59 0.38 0.87 10.61 0.48 1.03 9.78 0.13 0.00 Na–HCO 3<br />

4 b/4/2002 Priv<strong>at</strong>e borehole–<strong>Pikrolimni</strong> Vil. 1/2002 18 8.4 4.01 0.30 0.87 22.26 0.55 10.66 5.52 0.23 0.00 Mg–HCO 3<br />

5 b/A/2002 Borehole–<strong>Pikrolimni</strong> Vil. 2002 21 6.6 0.79 0.11 0.80 5.20 1.05 1.93 1.26 0.03 Mg–HCO 3<br />

6 wt/B/2002 W<strong>at</strong>er tube 2002 22.5 6.8 3.70 0.30 51.00 7.60 11.60 15.43 0.18 Mg–HCO 3<br />

7 b/B/7/2004 Borehole 2004 15.5 6.3 2.60 0.21 48.52 8.28 14.44 15.30 0.46 Mg–HCO 3<br />

8 b/B/8/2004 Borehole 8/2004 22 6.6 3.10 0.27 55.25 9.78 14.73 17.35 1.82 0.16 Mg–HCO 3<br />

9 b/G/8/2002 Borehole 2002 21 6.6 3.19 0.23 53.00 3.85 16.17 15.87 0.20 Mg–HCO 3<br />

10 b/G/9/2002 Borehole 2002 18 6.6 3.02 0.24 55.51 3.98 16.67 14.57 0.18 0.18 Mg–HCO 3<br />

11 b/G/2003 Borehole 2003 18 6.8 3.67 0.28 48.11 3.80 16.05 14.78 0.18 0.29 Mg–HCO 3<br />

12 b/G/2004 Borehole 2004 18 6.3 3.05 0.28 41.72 7.33 10.78 15.17 0.28 Mg–HCO 3<br />

13 b/G/7/2004 Borehole 7/2004 19 7.7 1.44 0.92 6.20 1.63 2.18 2.70 0.33 1.48 Mg–HCO 3<br />

14 b/P1/7/2004 Borehole 7/2004 18 6.9 3.07 0.26 46.56 11.03 15.19 14.39 0.26 0.16 Mg–HCO 3<br />

15 b/SPA Borehole/SPA 3/2007 18.2 6.1 6.77 0.25 39.49 7.10 12.92 13.83 0.15 Mg–HCO 3<br />

16 wt/SPA W<strong>at</strong>er tube/SPA 7/2004 26.9 6.1 7.42 0.32 38.00 7.23 10.91 15.96 0.20 Mg–HCO 3<br />

17 MW/SPA Municipality w<strong>at</strong>er 7/2004 22.1 7.7 8.86 1.30 5.89 3.55 2.18 7.78 0.10 Na–Cl<br />

18 PB Priv<strong>at</strong>e borehole/Philadelphia 7/2004 18.1 6.9 3.81 1.02 9.89 4.23 2.14 4.83 0.00 Ca–HCO 3<br />

19 MWP-1 Municipality w<strong>at</strong>er <strong>Pikrolimni</strong> 7/2004 23 7.2 5.11 1.49 6.00 2.90 2.30 6.39 0.08 Na–HCO 3<br />

20 MWPh-1 Municipality w<strong>at</strong>er Philadelphia 7/2004 27.5 6.9 6.46 1.29 6.49 3.35 1.93 5.17 0.10 Ca–HCO 3<br />

21 S/IGME Spr<strong>in</strong>g/near lake 7/2004 28–30 6.5 13.79 1.18 34.89 3.98 5.97 30.74 5.81 Na–HCO 3<br />

21a Ker<strong>at</strong>ea a Spr<strong>in</strong>g 1977 23 6.5 13.79 1.19 34.90 3.98 5.97 30.70 0.59 Na–HCO 3<br />

21b <strong>Pikrolimni</strong>-mud a Borehole mud spa 2000/2000 6.1 4.46 0.30 46.10 8.05 10.08 14.48 0.19 Mg–HCO 3<br />

22 PL-8/2002 <strong>Lake</strong> <strong>Pikrolimni</strong> 8/2002 27.4 8.5 4146.69 331.98 826.67 609.84 0.09 0.29 5143.43 10.26 Na–Cl<br />

23 PL-1/2003 <strong>Lake</strong> <strong>Pikrolimni</strong> 1/2003 22 9.6 170.13 18.20 28.00 14.00 8.83 0.74 246.87 0.51 Na–Cl<br />

24 PL-3/2003 <strong>Lake</strong> <strong>Pikrolimni</strong> 3/2003 23 9 72.50 8.13 6.67 20.16 3.88 0.29 104.57 0.26 Na–Cl<br />

25 PL-5/2003 <strong>Lake</strong> <strong>Pikrolimni</strong> 5/2003 25 9.2 120.37 14.01 12.00 19.10 6.83 0.45 174.13 0.41 Na–Cl<br />

26 PL-8/2003 <strong>Lake</strong> <strong>Pikrolimni</strong> 8/2003 30.6 8.7 247.95 25.52 28.83 26.07 10.73 0.78 340.00 0.59 Na–Cl<br />

27 PL-4/2004 <strong>Lake</strong> <strong>Pikrolimni</strong> 4/2004 25 8 241.47 25.63 26.17 43.44 1.35 2.26 412.61 7.83 Na–Cl<br />

28 PL-5/2004 <strong>Lake</strong> <strong>Pikrolimni</strong> 5/2004 25.4 9.1 261.78 27.98 27.33 45.57 2.08 2.92 460.87 10.03 Na–Cl<br />

29 PL-7/2004 <strong>Lake</strong> <strong>Pikrolimni</strong> 7/2004 28 9.5 499.29 54.58 32.07 44.00 22.53 7.41 723.04 14.14 Na–Cl<br />

30 PL-8/2004 <strong>Lake</strong> <strong>Pikrolimni</strong> 8/2004 27.1 8.9 1357.97 150.21 36.83 40.74 13.48 7.94 1745.65 18.72 Na–Cl<br />

31 PL-1/2005 <strong>Lake</strong> <strong>Pikrolimni</strong> 1/2005 27.5 9.1 556.56 62.08 30.50 50.90 17.10 6.13 881.30 30.43 Na–Cl<br />

32 PL-9/2006 <strong>Lake</strong> <strong>Pikrolimni</strong> 9/2006 27.5 9.1 4100.00 527.92 2795.83 0.03 0.12 6321.74 20.03 Na–Cl<br />

33 PL-3/2007 <strong>Lake</strong> <strong>Pikrolimni</strong> 3/2007 23.3 9.2 442.00 47.15 111.00 0.43 1.60 590.96 1.56 Na–Cl<br />

34 PL-6/2007 <strong>Lake</strong> <strong>Pikrolimni</strong> 6/2007 34.2 8.9 603.50 68.24 142.00 0.35 1.65 838.57 2.25 Na–Cl<br />

a<br />

Unpublished d<strong>at</strong>a, <strong>source</strong>s <strong>in</strong> text.<br />

CO 3<br />

2−<br />

(mmol/L)<br />

HCO 3<br />

−<br />

(mmol/L)<br />

Ca 2+<br />

(mmol/L)<br />

Mg 2+<br />

(mmol/L)<br />

Na +<br />

(mmol/L)<br />

K +<br />

(mmol/L)<br />

NO 3<br />

−<br />

(mmol/L)<br />

Type<br />

136 E. Dotsika et al. / Journal of <strong>Geochemical</strong> Explor<strong>at</strong>ion 103 (2009) 133–143


E. Dotsika et al. / Journal of <strong>Geochemical</strong> Explor<strong>at</strong>ion 103 (2009) 133–143<br />

137<br />

5. Chemical results<br />

5.1. Solute acquisition<br />

Four chemically different w<strong>at</strong>er types (Table 1) are recognized <strong>in</strong> the<br />

<strong>Pikrolimni</strong> area for diluted w<strong>at</strong>er and one type for the lake w<strong>at</strong>er. The<br />

four recognized groundw<strong>at</strong>er types, based on both chemical and TDS,<br />

are: Mg–HCO 3 ,Na–HCO 3 ,Ca–HCO 3 ,andNa–Cl type (only one sample).<br />

The two first types represent fresh w<strong>at</strong>er th<strong>at</strong> has flown from boreholes<br />

and spr<strong>in</strong>g <strong>in</strong> the old bottom of <strong>Lake</strong> <strong>Pikrolimni</strong>. The municipality w<strong>at</strong>er<br />

of <strong>Pikrolimni</strong> village is also Na–HCO 3 type although municipality w<strong>at</strong>er<br />

which w<strong>at</strong>ers the spa is Na–Cl type. The Ca–HCO 3 represents the aquifer<br />

of local groundw<strong>at</strong>er system <strong>in</strong> Philadelphia area. The lake w<strong>at</strong>ers are<br />

Na–Cl, however when the lake began to evapor<strong>at</strong>e until the evapor<strong>at</strong><strong>in</strong>g<br />

conditions were such th<strong>at</strong> lake w<strong>at</strong>er is nearly totally evapor<strong>at</strong>ed, then<br />

the residual w<strong>at</strong>er is Na–Cl(CO 3 –SO 4 ) type. Fig. 2 presents the<br />

<strong>Pikrolimni</strong> area w<strong>at</strong>er, groundw<strong>at</strong>er and <strong>Pikrolimni</strong> br<strong>in</strong>e, <strong>in</strong> terms of<br />

the major ions. The groundw<strong>at</strong>ers are predom<strong>in</strong>antly HCO 3 , whereas the<br />

c<strong>at</strong>ions are mixtures of Na, Ca and Mg. In contrast, the c<strong>at</strong>ions of the<br />

br<strong>in</strong>es are dom<strong>in</strong><strong>at</strong>ed by Na and the anions are a mixture. This d<strong>at</strong>a is <strong>in</strong><br />

agreement with the model proposed by Hardie and Eugster (1970).<br />

The <strong>Pikrolimni</strong> sal<strong>in</strong>e alkal<strong>in</strong>e lake is enriched <strong>in</strong> dissolved m<strong>in</strong>erals<br />

th<strong>at</strong> have accumul<strong>at</strong>ed <strong>in</strong> the br<strong>in</strong>es follow<strong>in</strong>g evapor<strong>at</strong>ion. Such br<strong>in</strong>es<br />

<strong>in</strong>dic<strong>at</strong>e a very considerable range <strong>in</strong> ionic composition and concentr<strong>at</strong>ion.<br />

The total sal<strong>in</strong>ity ranges from sal<strong>in</strong>e w<strong>at</strong>er to br<strong>in</strong>e: total dissolved<br />

solid (TDS) concentr<strong>at</strong>ions rang<strong>in</strong>g from 7.5 to 426 g/L. The pH ranges<br />

from 8.8 to 10.5 and <strong>in</strong>creases as sal<strong>in</strong>ity <strong>in</strong>creases. The surface w<strong>at</strong>er<br />

temper<strong>at</strong>ure is between 22 and 31 °C. All the sal<strong>in</strong>e lake w<strong>at</strong>ers are Na–<br />

Cl type, with Na + and Cl − represent<strong>in</strong>g about 95% and 70% respectively<br />

of the total c<strong>at</strong>ions and anions. Concentr<strong>at</strong>ions of Ca 2+ and Mg 2+ are<br />

very low <strong>in</strong> the br<strong>in</strong>es of 8/2002 and 9/2006.<br />

The two types of groundw<strong>at</strong>er of <strong>Pikrolimni</strong> area, Na–HCO 3 ,Mg–<br />

HCO 3 types, are tepid (temper<strong>at</strong>ure rang<strong>in</strong>g from 18 to 30 °C), nearneutral<br />

to alkal<strong>in</strong>e (pH rang<strong>in</strong>g from 6.3 to 9.8) and have total<br />

sal<strong>in</strong>ities th<strong>at</strong> range from fresh to brackish w<strong>at</strong>er: total dissolved solid<br />

(TDS) concentr<strong>at</strong>ions rang<strong>in</strong>g from 0.50 to 4.5 g/L. This variability of<br />

TDS is due to the HCO 3 − concentr<strong>at</strong>ions.<br />

The dom<strong>in</strong>ant ionic species <strong>in</strong> the Na–HCO 3 (soda) groundw<strong>at</strong>er<br />

are Na + and HCO 3 − –CO 3 2− with these two ions compris<strong>in</strong>g 70–80% of<br />

all ions <strong>in</strong> solution. The concentr<strong>at</strong>ion of other major ions is low, with<br />

Mg 2+ and Ca 2+ contents less than 2 mmol/L. The Cl − ,K + and SO 4<br />

2−<br />

concentr<strong>at</strong>ions are also low.<br />

In the Mg–HCO 3 type w<strong>at</strong>er the dom<strong>in</strong>ant ionic species are Mg 2+<br />

and HCO 3 − –CO 3 2− with these two ions compris<strong>in</strong>g 70–80% of all ions <strong>in</strong><br />

solution.<br />

The Na–HCO 3 w<strong>at</strong>ers were found <strong>in</strong> the <strong>Pikrolimni</strong>/Ker<strong>at</strong>ea area,<br />

approxim<strong>at</strong>ely 2 km away from <strong>Lake</strong> <strong>Pikrolimni</strong>, and these w<strong>at</strong>ers end up<br />

<strong>in</strong> the bas<strong>in</strong> of <strong>Lake</strong> <strong>Pikrolimni</strong>. Sample Ker<strong>at</strong>ea (IGME, unpublished d<strong>at</strong>a)<br />

belongs <strong>in</strong> this c<strong>at</strong>egory, which was measured with SiO 2 =31 mg/L and<br />

CO 2 =668 mg/L. The Mg–HCO 3 groundw<strong>at</strong>er was found with<strong>in</strong> the<br />

Holocene lacustr<strong>in</strong>e sediments of <strong>Pikrolimni</strong>. Sample <strong>Pikrolimni</strong>-mud of<br />

2000 (Manasis Mitrakas, unpublished d<strong>at</strong>a) belongs <strong>in</strong> this w<strong>at</strong>er type,<br />

which was measured SiO 2 =47 mg/L and CO 2 =1650 mg/L. These<br />

w<strong>at</strong>ers, of meteoric orig<strong>in</strong>, flow through the clay m<strong>in</strong>erals, rich <strong>in</strong> mica,<br />

altern<strong>at</strong><strong>in</strong>g with carbon<strong>at</strong>e rocks. The Mesozoic and Paleozoic basements<br />

<strong>in</strong> the area consist of basic–mafic rocks. When the aquifer m<strong>at</strong>rix<br />

is composed of alluvial fill, silic<strong>at</strong>e hydrolysis is the typically <strong>in</strong>voked<br />

explan<strong>at</strong>ion for the form<strong>at</strong>ion of Mg–HCO 3 groundw<strong>at</strong>er and Na–HCO 3<br />

groundw<strong>at</strong>er. So it is tempt<strong>in</strong>g to assume th<strong>at</strong> this process is controll<strong>in</strong>g<br />

the w<strong>at</strong>er chemistry. However, many other we<strong>at</strong>her<strong>in</strong>g reactions<br />

contribute to the solute load of <strong>in</strong>flow w<strong>at</strong>ers. Thus, reconsider<strong>in</strong>g the<br />

facts and d<strong>at</strong>a, it could be said th<strong>at</strong> generally ra<strong>in</strong> w<strong>at</strong>er and we<strong>at</strong>her<strong>in</strong>g<br />

reactions are the pr<strong>in</strong>cipal solute <strong>source</strong>s. Ra<strong>in</strong> w<strong>at</strong>er contributes to all<br />

pr<strong>in</strong>cipal solutes of dilute w<strong>at</strong>ers, except<strong>in</strong>g silica, but the most<br />

significant contribution will be to Na + , Cl − , SO 4 2− and HCO 3 − . The<br />

amounts of these solutes vary with the distance from seaw<strong>at</strong>er and<br />

pollution. Regard<strong>in</strong>g the we<strong>at</strong>her<strong>in</strong>g reactions, one of the most<br />

important is the congruent dissolution of soluble m<strong>in</strong>erals, e.g. gypsum<br />

or halite th<strong>at</strong> can load the solution with very high concentr<strong>at</strong>ion — this is<br />

a very important mechanism for recycl<strong>in</strong>g evaporites — and the silic<strong>at</strong>e<br />

hydrolysis. The alter<strong>at</strong>ion of feldspar to clay m<strong>in</strong>erals charges the w<strong>at</strong>ers<br />

with Na + ,HCO 3 − and silica. Other silic<strong>at</strong>es provide the additional c<strong>at</strong>ions<br />

Ca 2+ , Mg 2+ and K + but such w<strong>at</strong>ers are always dom<strong>in</strong><strong>at</strong>ed by<br />

bicarbon<strong>at</strong>e derived by <strong>at</strong>mosphere or from soil processes. The <strong>in</strong>crease<br />

<strong>in</strong> Ca 2+ ,Na + ,Mg 2+ versus HCO 3 − from the <strong>Pikrolimni</strong>/Ker<strong>at</strong>ea area<br />

(nr. 1,2,3,19) to boreholes (nr. 4 to 16) near <strong>Lake</strong> <strong>Pikrolimni</strong> seems to<br />

support silic<strong>at</strong>e hydrolysis as the we<strong>at</strong>her<strong>in</strong>g reactions th<strong>at</strong> contribute<br />

to the solute load of <strong>in</strong>flow w<strong>at</strong>er. However silic<strong>at</strong>e hydrolysis cannot be<br />

the only control on the w<strong>at</strong>er chemistry. Moreover, the critical control<br />

on the precipit<strong>at</strong>ion of trona, <strong>in</strong> <strong>Lake</strong> <strong>Pikrolimni</strong> w<strong>at</strong>ers, is the rel<strong>at</strong>ive<br />

amount of Ca 2+ and CO 3<br />

2−<br />

TOT ([CO 3 2− ]+[HCO 3 − ]+[H 2 CO 3 ], where<br />

bracketed symbols refer to concentr<strong>at</strong>ion) <strong>in</strong> the w<strong>at</strong>er to be<br />

evapor<strong>at</strong>ed. Accord<strong>in</strong>g to the conceptual model of Hardie–Eugster<br />

of evaporites form<strong>at</strong>ion (Hardie and Eugster, 1970), the first m<strong>in</strong>eral<br />

Fig. 2. Ternary diagrams of w<strong>at</strong>er samples from <strong>Pikrolimni</strong> area. White diamonds: Mg–HCO 3 groundw<strong>at</strong>ers; white circles: Na–HCO 3 groundw<strong>at</strong>ers; white squares: Ca–HCO 3<br />

groundw<strong>at</strong>ers; black diamonds: <strong>Pikrolimni</strong> <strong>Lake</strong> br<strong>in</strong>es.


138 E. Dotsika et al. / Journal of <strong>Geochemical</strong> Explor<strong>at</strong>ion 103 (2009) 133–143<br />

to form from evapor<strong>at</strong><strong>in</strong>g w<strong>at</strong>er is calcite, and calcite precipit<strong>at</strong>ion<br />

cont<strong>in</strong>ues until either Ca 2+ or CO 3 2− is exhausted. W<strong>at</strong>ers with a<br />

low proportion of CO 3<br />

2−<br />

TOT rel<strong>at</strong>ive to Ca 2+ will be carbon<strong>at</strong>e depleted<br />

after calcite form<strong>at</strong>ion, and will thus not yield Na-carbon<strong>at</strong>e<br />

m<strong>in</strong>erals upon further evapor<strong>at</strong>ion. So the elev<strong>at</strong>ed alkal<strong>in</strong>ity/2[Ca 2+ ]<br />

r<strong>at</strong>io is a ma<strong>in</strong> requirement, accord<strong>in</strong>g to Hardie and Eugster (1970),for<br />

the form<strong>at</strong>ion of significant quantities of Na-carbon<strong>at</strong>e m<strong>in</strong>erals.<br />

Also, accord<strong>in</strong>g to Hardie and Eugster (1970) the appearance of sepiolite<br />

and gypsum determ<strong>in</strong>es the evapor<strong>at</strong>ive sequence. So, after the sepiolite<br />

precipit<strong>at</strong>ion the w<strong>at</strong>er can become carbon<strong>at</strong>e-enriched and alkal<strong>in</strong>e<br />

earth-poor or vice versa. If alkal<strong>in</strong>ity is higher than 2[Ca 2+ +Mg 2+ ]<br />

then the sepiolite precipit<strong>at</strong>ion is not capable to modify the evolution of<br />

the solution along the p<strong>at</strong>h of alkal<strong>in</strong>e facies (Risacher, 1992). The<br />

significantly high proportion of CO 3<br />

2−<br />

TOT rel<strong>at</strong>ive to 2[Ca 2+ +Mg 2+ ]<br />

<strong>in</strong> <strong>Pikrolimni</strong> area w<strong>at</strong>ers causes them to move along the p<strong>at</strong>h,<br />

<strong>in</strong> the Hardie–Eugster model, of alkal<strong>in</strong>e faces, form<strong>in</strong>g Na–CO 3<br />

m<strong>in</strong>erals.<br />

However, because the r<strong>at</strong>io of alkal<strong>in</strong>ity to Ca 2+ and Mg 2+ controls<br />

the types of evaporite m<strong>in</strong>erals formed, and specially the deposition of<br />

trona m<strong>in</strong>eral, it is very important to determ<strong>in</strong>e the potential<br />

processes th<strong>at</strong> affected the HCO 3 − contents <strong>in</strong> these w<strong>at</strong>ers.<br />

5.2. Potential processes affected the concentr<strong>at</strong>ion of HCO 3<br />

−<br />

There are a number of processes th<strong>at</strong> can affect the HCO − 3 contents <strong>in</strong><br />

groundw<strong>at</strong>er [these w<strong>at</strong>ers are rich <strong>in</strong> HCO − 3 (about 1.50–3 g/L)].<br />

Eugster (1980) described <strong>in</strong> detail processes th<strong>at</strong> can affect the<br />

concentr<strong>at</strong>ion of alkal<strong>in</strong>ity <strong>in</strong> groundw<strong>at</strong>er: dissolution or precipit<strong>at</strong>ion<br />

of carbon<strong>at</strong>e m<strong>in</strong>erals, chemical we<strong>at</strong>her<strong>in</strong>g of silic<strong>at</strong>es, redox reactions,<br />

especially the reduction of NO − 3 to NH + 4 and SO 2− 4 to HS − , microbial<br />

respir<strong>at</strong>ion or anaerobic decay and the conversion of CO 2 of deep orig<strong>in</strong><br />

to HCO − 3 <strong>in</strong> the aquifer. The dissolution/precipit<strong>at</strong>ion of carbon<strong>at</strong>e<br />

m<strong>in</strong>eral is a common control of HCO − 3 contents <strong>in</strong> groundw<strong>at</strong>er. These<br />

w<strong>at</strong>ers show an important over-s<strong>at</strong>ur<strong>at</strong>ion with respect to calcite<br />

(Parkhurst and Appelo, 1999). In Fig. 3a the rel<strong>at</strong>ionship Ca 2+ versus<br />

alkal<strong>in</strong>ity (HCO − 3 +2CO 2− 3 ) is shown. For the Mg–HCO 3 -type w<strong>at</strong>ers it is<br />

observed th<strong>at</strong>, from <strong>Pikrolimni</strong> village (Na–HCO 3 ) to boreholes near<br />

<strong>Pikrolimni</strong> <strong>Lake</strong> (Mg–HCO 3 ), <strong>in</strong>crease of HCO 3 contents takes place: the<br />

Mg–HCO 3 groundw<strong>at</strong>er th<strong>at</strong> was sampled with<strong>in</strong> the Holocene<br />

lacustr<strong>in</strong>e sediments of <strong>Pikrolimni</strong> has HCO − 3 contents higher than<br />

38 mmol/L. It is also observed th<strong>at</strong> the HCO − 3 <strong>in</strong>creases with rel<strong>at</strong>ively<br />

slight change <strong>in</strong> Ca 2+ , suggest<strong>in</strong>g th<strong>at</strong> carbon<strong>at</strong>e m<strong>in</strong>eral dissolution/<br />

precipit<strong>at</strong>ion reactions are not an important control on HCO − 3 .Alsothe<br />

absence of chloride <strong>in</strong> the soda and Mg–HCO 3 type w<strong>at</strong>ers suggest th<strong>at</strong><br />

the dissolution of mar<strong>in</strong>e carbon<strong>at</strong>es is not the only <strong>source</strong> of the carbon.<br />

Furthermore, these w<strong>at</strong>ers are plotted to the right of the 2(Ca 2+ )=<br />

(HCO − 3 ) equilibrium l<strong>in</strong>e (Fig. 3a). If the dissolution of the calcite was the<br />

dom<strong>in</strong>ant process produc<strong>in</strong>g CO 2 <strong>in</strong> the system then these w<strong>at</strong>ers would<br />

plot along the 2(Ca 2+ )=(HCO − 3 ) equilibrium l<strong>in</strong>e.<br />

Chemical we<strong>at</strong>her<strong>in</strong>g of silic<strong>at</strong>es is another major <strong>in</strong>fluence on<br />

groundw<strong>at</strong>er. The Na/HCO 3 r<strong>at</strong>io of dilute Na–HCO 3 <strong>in</strong>flow is very close<br />

to unity. When accompanied by the absence of Ca–HCO 3 groundw<strong>at</strong>er,<br />

this shows th<strong>at</strong> these Na–HCO 3 w<strong>at</strong>ers do not evolve from Ca–HCO 3<br />

groundw<strong>at</strong>er th<strong>at</strong> undergoes normal ion exchange. Therefore the r<strong>at</strong>io<br />

Na/HCO 3 , very close to unity, suggests th<strong>at</strong> the chemistry of soda w<strong>at</strong>er<br />

is controlled by simple we<strong>at</strong>her<strong>in</strong>g reactions like Na-feldspars:<br />

Na–AlSi 3 O 8 þ H 2 CO 3 þ 4; 5H 2 O→Na þ þ HCO − 3 þ 2H 4 SiO 4<br />

þ 1=2Al 2 Si 2 O 5 ðOHÞ 4<br />

:<br />

The hydrolysis of silic<strong>at</strong>e m<strong>in</strong>erals takes place rapidly produc<strong>in</strong>g<br />

bicarbon<strong>at</strong>e rich w<strong>at</strong>er with high silica content (sample Ker<strong>at</strong>ea,<br />

nr. 21a). Probably this fresh w<strong>at</strong>er is from the deep cell of the local<br />

groundw<strong>at</strong>er system and probably circul<strong>at</strong>es <strong>in</strong> the bedrock. On the<br />

contrary, the Na/HCO 3 r<strong>at</strong>io of dilute Mg–Na–HCO 3 <strong>in</strong>flow (Fig. 3b)<br />

Fig. 3. Ca 2+ versus alkal<strong>in</strong>ity of all groundw<strong>at</strong>ers (a) and Na + versus HCO 3 − of Mg–HCO 3<br />

groundw<strong>at</strong>ers (b). Same symbols as Fig. 2.<br />

<strong>in</strong>dic<strong>at</strong>es th<strong>at</strong> not only silic<strong>at</strong>e alter<strong>at</strong>ion but also more processes are<br />

<strong>in</strong>volved <strong>in</strong> the chemistry of these w<strong>at</strong>ers. The correl<strong>at</strong>ion between<br />

HCO 3 − and Mg 2+ <strong>in</strong>dic<strong>at</strong>es th<strong>at</strong> basic rocks become a major target of<br />

we<strong>at</strong>her<strong>in</strong>g reactions <strong>in</strong> the Mg–HCO 3 − w<strong>at</strong>ers. In summary, as referred<br />

by Eugster (1980), the composition of <strong>in</strong>flow w<strong>at</strong>er depends largely on<br />

the m<strong>in</strong>erals present <strong>in</strong> the w<strong>at</strong>ershed: basic and ultrabasic rocks are<br />

probable to give Mg-HCO 3 w<strong>at</strong>ers.<br />

Redox reactions are an additional possible control on HCO 3 − <strong>in</strong><br />

particular the reduction of NO 3 − to NH 4 + and SO 4 2− to HS − ,bothofwhich<br />

produce CO 2 . So, concern<strong>in</strong>g the reduction reactions as a possible control<br />

of HCO 3 − , although Eh was not measured, the high SO 4 2− and NO 3 − contents<br />

<strong>in</strong> these w<strong>at</strong>ers suggest th<strong>at</strong> these reactions are not likely to be occurr<strong>in</strong>g.<br />

Also the microbial respir<strong>at</strong>ion or anaerobic decay process (potential<br />

<strong>source</strong>s of CO 2 th<strong>at</strong> could be converted to HCO 3 − ) appears unlikely to<br />

apply significant control on the ground w<strong>at</strong>er chemistry because the<br />

m<strong>at</strong>erial th<strong>at</strong> would <strong>in</strong>dic<strong>at</strong>e large accumul<strong>at</strong>ion of organic m<strong>at</strong>ter <strong>in</strong> the<br />

borehole logs is absent.<br />

The f<strong>in</strong>al major reaction th<strong>at</strong> could <strong>in</strong>fluence the HCO 3 − contents <strong>in</strong><br />

the deep aquifer is the addition <strong>in</strong> the system of CO 2 of deep orig<strong>in</strong>. The<br />

pCO 2 values of the most Mg–Na–HCO 3 type w<strong>at</strong>ers (10 − 0.5 –10 − 1 )<br />

are higher than the <strong>at</strong>mospheric value (10 − 3.5 ) and the value of the<br />

soil (10 − 2.5 –10 − 1.5 ), suggest<strong>in</strong>g th<strong>at</strong> <strong>in</strong>put of <strong>at</strong>mospheric/soil is not a<br />

major <strong>source</strong> and evidenc<strong>in</strong>g th<strong>at</strong> gas is be<strong>in</strong>g added to the aquifer<br />

from the deep. The highest values are observed for the Mg–HCO 3 type<br />

w<strong>at</strong>ers emerg<strong>in</strong>g <strong>in</strong> the Holocene lacustr<strong>in</strong>e sediments of <strong>Lake</strong><br />

<strong>Pikrolimni</strong>. These w<strong>at</strong>ers present also the highest Na + ,Mg 2+ and<br />

HCO 3 − contents, from <strong>Pikrolimni</strong> area (<strong>Pikrolimni</strong> Village) to <strong>Lake</strong><br />

<strong>Pikrolimni</strong> (borehole near <strong>Pikrolimni</strong>), suggest<strong>in</strong>g probably th<strong>at</strong> basic<br />

m<strong>in</strong>eral hydrolysis driven by <strong>in</strong>jection of deep (mantle or metamorphism<br />

<strong>source</strong>) CO 2 is act<strong>in</strong>g to control the concentr<strong>at</strong>ion of HCO 3 − <strong>in</strong><br />

the lacustr<strong>in</strong>e bas<strong>in</strong>.


E. Dotsika et al. / Journal of <strong>Geochemical</strong> Explor<strong>at</strong>ion 103 (2009) 133–143<br />

139<br />

5.3. Br<strong>in</strong>e evolution<br />

The plot of Na + ,SO 4 2− ,CO 3 2− ,HCO 3 − versus Cl − contents of the<br />

borehole sample <strong>in</strong> the thermal spa of <strong>Lake</strong> <strong>Pikrolimni</strong> and the doma<strong>in</strong> of<br />

br<strong>in</strong>e from <strong>Lake</strong> <strong>Pikrolimni</strong> are illustr<strong>at</strong>ed <strong>in</strong> Fig. 4. In these diagrams we<br />

also put published d<strong>at</strong>a for <strong>Lake</strong> N<strong>at</strong>ron <strong>in</strong> Tanzania (Gueddari, 1984)<br />

and <strong>Lake</strong> Magadi <strong>in</strong> Kenya (Gueddari, 1984), where the <strong>n<strong>at</strong>ron</strong> actually<br />

precipit<strong>at</strong>es and for Wadi N<strong>at</strong>run which was the <strong>n<strong>at</strong>ron</strong> <strong>source</strong> <strong>in</strong><br />

antiquity (Taher, 1999). Accord<strong>in</strong>g to all diagrams, it is concluded th<strong>at</strong><br />

the chemical composition of <strong>Lake</strong> <strong>Pikrolimni</strong>'s w<strong>at</strong>er is similar to th<strong>at</strong> of<br />

the lakes th<strong>at</strong> precipit<strong>at</strong>e <strong>n<strong>at</strong>ron</strong> today. Such solute concentr<strong>at</strong>ions<br />

support th<strong>at</strong> the evapor<strong>at</strong>ive concentr<strong>at</strong>ion is the dom<strong>in</strong>ant process <strong>in</strong><br />

the chemical evolution of these lake w<strong>at</strong>ers. The Na–Cl rel<strong>at</strong>ion (Fig. 4a)<br />

illustr<strong>at</strong>es <strong>in</strong> general the stability of Na/Cl r<strong>at</strong>io <strong>in</strong> the lake br<strong>in</strong>e. The Na/<br />

Cl r<strong>at</strong>io of <strong>Lake</strong> N<strong>at</strong>ron and <strong>Lake</strong> Magadi, as well as of Wadi N<strong>at</strong>run which<br />

was <strong>n<strong>at</strong>ron</strong> <strong>source</strong> <strong>in</strong> antiquity, rema<strong>in</strong>s stable between diluted w<strong>at</strong>ers<br />

and concentr<strong>at</strong>ed br<strong>in</strong>es. Compar<strong>at</strong>ively to the w<strong>at</strong>ers of <strong>Lake</strong> N<strong>at</strong>ron<br />

(Na/Cl r<strong>at</strong>io=3.3) and Magadi (Na/Cl r<strong>at</strong>io=2), the w<strong>at</strong>er of <strong>Lake</strong><br />

<strong>Pikrolimni</strong> presents a lower Na/Cl r<strong>at</strong>io (Na/Cl r<strong>at</strong>io from 1.2 to 1.7),<br />

almost two times. The Na/Cl r<strong>at</strong>ios of <strong>Lake</strong> N<strong>at</strong>ron, <strong>Lake</strong> Magadi and<br />

Wadi N<strong>at</strong>run tend to unity, close to <strong>Pikrolimni</strong> br<strong>in</strong>es, only <strong>in</strong> the most<br />

concentr<strong>at</strong>e br<strong>in</strong>es (Gueddari, 1984) show<strong>in</strong>g a very small devi<strong>at</strong>ion<br />

from the evapor<strong>at</strong>ive trend (from diluted to br<strong>in</strong>e w<strong>at</strong>ers), until with<strong>in</strong><br />

the concentr<strong>at</strong>ion range appropri<strong>at</strong>e for trona s<strong>at</strong>ur<strong>at</strong>ion. Once trona<br />

precipit<strong>at</strong>es, the Na + extraction from the solution enriches the br<strong>in</strong>e <strong>in</strong><br />

chloride and thus, Na/Cl r<strong>at</strong>io decreases. In fact <strong>in</strong> the diagram log Na/Cl<br />

versus Cl (Fig. 4b) the values of diluted w<strong>at</strong>ers and br<strong>in</strong>es from <strong>Lake</strong><br />

Magadi are given as well as the correspond<strong>in</strong>g d<strong>at</strong>a from <strong>Lake</strong> <strong>Pikrolimni</strong>.<br />

As precisely referred by Eugster and Jones (1979), “from groundw<strong>at</strong>ers<br />

to all but the most concentr<strong>at</strong>es br<strong>in</strong>es Na/Cl rema<strong>in</strong>s constant, because<br />

no fraction<strong>at</strong>ion occur. The most concentr<strong>at</strong>ed br<strong>in</strong>es are s<strong>at</strong>ur<strong>at</strong>ed<br />

with respect to trona and precipit<strong>at</strong>ion clearly leads to a decrease <strong>in</strong><br />

Na/Cl”. In <strong>Lake</strong> Pikrol<strong>in</strong>i the most concentr<strong>at</strong>ed br<strong>in</strong>e (8/2002)<br />

shows a decrease <strong>in</strong> Na/Cl <strong>in</strong> rel<strong>at</strong>ion to the most groundw<strong>at</strong>ers th<strong>at</strong><br />

are rel<strong>at</strong>ed to trona precipit<strong>at</strong>ion. Between groundw<strong>at</strong>er and lake<br />

br<strong>in</strong>es, a decrease of Ca/Cl, Mg/Cl and HCO 3 /Cl r<strong>at</strong>ios is observed<br />

(Table 1). Carbon<strong>at</strong>e species are subject to removal from solution by<br />

different mechanisms. In Fig. 4c, the gre<strong>at</strong>er than 1:1 slope of the<br />

regression l<strong>in</strong>e for Cl − versus CO 3 2− +HCO 3 − contents illustr<strong>at</strong>es the<br />

gradual loss of carbon<strong>at</strong>e species, accompany<strong>in</strong>g evapor<strong>at</strong>ive concentr<strong>at</strong>ion<br />

of <strong>Lake</strong> Magadi (Jones et al., 1977). The same is observed for the<br />

w<strong>at</strong>ers from <strong>Pikrolimni</strong> area. This loss is <strong>at</strong>tributed to equilibr<strong>at</strong>ion with<br />

the <strong>at</strong>mosphere [2HCO 3 − (aq) → CO 3 2− (aq)+CO 2 (gas)+H 2 O], calcite<br />

precipit<strong>at</strong>ion from diluted w<strong>at</strong>ers [Ca 2+ (aq)+HCO 3 − (aq) → CaCO 3<br />

(sol)+H + ] and trona precipit<strong>at</strong>ion from s<strong>at</strong>ur<strong>at</strong>ed br<strong>in</strong>e [3Na + (aq)+<br />

HCO 3 − (aq)+CO 3 2− (aq)+2H 2 O → Na 2 CO 3 ,NaHCO 3 ,2H 2 O (sol)]. In<br />

most diluted lake w<strong>at</strong>ers, the carbon<strong>at</strong>e loss is probably rel<strong>at</strong>ed to both<br />

degass<strong>in</strong>g and carbon<strong>at</strong>e precipit<strong>at</strong>ion. Loss to <strong>at</strong>mosphere is expected<br />

for pCO 2 gre<strong>at</strong>er than 10 −3.5 <strong>at</strong>m (Jones et al., 1977). In fact, <strong>in</strong> these<br />

diluted w<strong>at</strong>ers the pCO 2 is lower than 10 −3.2 . In the lake br<strong>in</strong>es, the<br />

Fig. 4. Na + versus Cl − (a), log (Na/Cl) versus log Cl (b), Cl − versus CO 3 2− +HCO 3 − (c), and SO 4 2− versus Cl − (d). Black diamonds: <strong>Pikrolimni</strong> br<strong>in</strong>es; white diamonds: groundw<strong>at</strong>ers;<br />

black circles: <strong>Lake</strong> N<strong>at</strong>ron spr<strong>in</strong>gs (Gueddari, 1984); white circles: <strong>Lake</strong> N<strong>at</strong>ron br<strong>in</strong>es (Gueddari, 1984); crosses: Wadi N<strong>at</strong>run (Shortland, 2004); white squares: <strong>Lake</strong> Magadi<br />

(Gueddari, 1984; Jones et al., 1977); white triangles: Wadi N<strong>at</strong>run (Taher, 1999).


140 E. Dotsika et al. / Journal of <strong>Geochemical</strong> Explor<strong>at</strong>ion 103 (2009) 133–143<br />

carbon<strong>at</strong>e loss is probably rel<strong>at</strong>ed to calcium and sodium carbon<strong>at</strong>e<br />

precipit<strong>at</strong>ion. An additional mechanism is also associ<strong>at</strong>ed with efflorescent<br />

crust (Eugster, 1966). These crusts are the products of complete<br />

desicc<strong>at</strong>ion of lake w<strong>at</strong>er and consist predom<strong>in</strong>antly of soluble salts.<br />

When ra<strong>in</strong> or dilute runoff comes <strong>in</strong> contact with these crusts only the<br />

most soluble salts, such chlorides, carbon<strong>at</strong>es and sulf<strong>at</strong>es are resolved<br />

<strong>in</strong>to solution and <strong>in</strong>creas<strong>in</strong>g the solute load, while the less soluble phases<br />

like the alkal<strong>in</strong>e earth carbon<strong>at</strong>es and silica rema<strong>in</strong> <strong>in</strong> the crust. The<br />

dissolution of these crusts leads to high alkal<strong>in</strong>e w<strong>at</strong>er with a specifically<br />

lower HCO 3 /CO 3 r<strong>at</strong>io. The high pH (9.6) of some w<strong>at</strong>ers of <strong>Lake</strong><br />

<strong>Pikrolimni</strong> (like PL-1/2003) can be <strong>at</strong>tributed to recycl<strong>in</strong>g of residual<br />

br<strong>in</strong>es (PL-8/2002) from the fresh w<strong>at</strong>er. The f<strong>in</strong>d<strong>in</strong>g of abundant calcite<br />

precipit<strong>at</strong>ion <strong>in</strong> lake beds th<strong>at</strong> are covered by crusts, consist<strong>in</strong>g of trona,<br />

burkeite, thenardite and halite m<strong>in</strong>erals, as shown by the XRD analysis<br />

(Table 2) of <strong>Pikrolimni</strong> crusts, shows th<strong>at</strong> the above play a competitive<br />

role <strong>in</strong> the geochemistry processes of <strong>Pikrolimni</strong> br<strong>in</strong>es. In fact, salt<br />

analyses from different parts of the lake showed th<strong>at</strong> they consist of<br />

carbon<strong>at</strong>es (calcite, dolomite), trona, burckeite and halite. Salts from<br />

Wadi N<strong>at</strong>run show similar m<strong>in</strong>eral composition (Shortland et al., 2006).<br />

In the graph of SO 4 2− versus Cl − (Fig. 4d), the molar SO 4 2− /Cl − r<strong>at</strong>io<br />

<strong>in</strong>dic<strong>at</strong>es generally neither loss nor ga<strong>in</strong> of SO 4 2− between diluted and<br />

br<strong>in</strong>e w<strong>at</strong>ers. The rel<strong>at</strong>ions SO 4 2− versus Cl − suggest a possible<br />

<strong>in</strong>cipient precipit<strong>at</strong>ion of a sulph<strong>at</strong>e m<strong>in</strong>eral only for PL-8/2002. All<br />

the other lake w<strong>at</strong>ers <strong>in</strong>dic<strong>at</strong>e an excellent conserv<strong>at</strong>ive behaviour of<br />

sulph<strong>at</strong>e rel<strong>at</strong>ive to chloride. This also suggests th<strong>at</strong> sulf<strong>at</strong>e reduction<br />

is not a major process <strong>at</strong> <strong>Lake</strong> <strong>Pikrolimni</strong>.<br />

6. <strong>Geochemical</strong> model<br />

6.1. Thermodynamic calcul<strong>at</strong>ion model for groundw<strong>at</strong>ers and lake w<strong>at</strong>er<br />

An ion-specific <strong>in</strong>teraction model based on Pitzer's equ<strong>at</strong>ions has been<br />

used (EQL/EVP by Risacher and Clement, 2001) to calcul<strong>at</strong>e the s<strong>at</strong>ur<strong>at</strong>ion<br />

<strong>in</strong>dex versus different solid phases, of the <strong>Pikrolimni</strong> w<strong>at</strong>ers and br<strong>in</strong>es.<br />

The lake br<strong>in</strong>e samples are put <strong>in</strong> ionic strength diagram versus the<br />

s<strong>at</strong>ur<strong>at</strong>ion <strong>in</strong>dex (Fig. 5a, b, c) and <strong>in</strong> Table 3 the m<strong>in</strong>erals th<strong>at</strong> are<br />

supers<strong>at</strong>ur<strong>at</strong>ed <strong>in</strong> the lakes <strong>Pikrolimni</strong>, Magadi, N<strong>at</strong>ron and Deep<br />

Spr<strong>in</strong>gs are given. The calcul<strong>at</strong>ion of s<strong>at</strong>ur<strong>at</strong>ion <strong>in</strong>dex versus different<br />

carbon<strong>at</strong>e and/or bicarbon<strong>at</strong>e sodium m<strong>in</strong>erals shows th<strong>at</strong> the borehole<br />

w<strong>at</strong>ers are s<strong>at</strong>ur<strong>at</strong>ed <strong>in</strong> calcium m<strong>in</strong>erals. The lake w<strong>at</strong>ers are s<strong>at</strong>ur<strong>at</strong>ed<br />

<strong>in</strong> Na/Ca carbon<strong>at</strong>e m<strong>in</strong>erals and only the lake br<strong>in</strong>es are s<strong>at</strong>ur<strong>at</strong>ed also<br />

<strong>in</strong> Na–carbon<strong>at</strong>e and bicarbon<strong>at</strong>e, Na–sulf<strong>at</strong>e and Na–chloride m<strong>in</strong>erals.<br />

Indeed, the br<strong>in</strong>es of PL-8/2002 and PL-9/2006 are s<strong>at</strong>ur<strong>at</strong>ed <strong>in</strong><br />

sodium carbon<strong>at</strong>e–bicarbon<strong>at</strong>e m<strong>in</strong>erals like nahcolite, trona and <strong>n<strong>at</strong>ron</strong>.<br />

Τhe calcul<strong>at</strong>ion of ionic strengths versus different sodium–sulf<strong>at</strong>e<br />

and sodium–chloride m<strong>in</strong>erals show th<strong>at</strong> the br<strong>in</strong>es with Ι>6 are<br />

s<strong>at</strong>ur<strong>at</strong>ed <strong>in</strong> halite (NaCl), thenardite (Na 2 SO 4 ) and mirabilite (Na 2-<br />

SO 4 ⁎10H 2 O) confirm<strong>in</strong>g th<strong>at</strong> <strong>in</strong> such lakes, the Ca–Na–HCO 3 salts<br />

precipit<strong>at</strong>e first and the SO 4 –HCO 3 salts follow. The results of<br />

measurement of Na + and Cl − show <strong>in</strong>deed th<strong>at</strong> only the s<strong>at</strong>ur<strong>at</strong>ion<br />

<strong>in</strong> halite, thenardite and mirabilite is achieved.<br />

6.2. Simul<strong>at</strong>ion of evapor<strong>at</strong>ion of groundw<strong>at</strong>ers<br />

Us<strong>in</strong>g geochemical program (EQL/EVP by Risacher and Clement,<br />

2001), it is possible to <strong>in</strong>vestig<strong>at</strong>e the m<strong>in</strong>eralogical composition of<br />

the m<strong>in</strong>erals th<strong>at</strong> precipit<strong>at</strong>e from the w<strong>at</strong>er, with different <strong>in</strong>itial<br />

chemical compositions, as they evapor<strong>at</strong>e. All sampled w<strong>at</strong>ers from<br />

boreholes and the spr<strong>in</strong>g were evapor<strong>at</strong>ed <strong>in</strong> order to check if sodium<br />

carbon<strong>at</strong>es could precipit<strong>at</strong>e by evapor<strong>at</strong>ion of these w<strong>at</strong>ers theoretically.<br />

As shown <strong>in</strong> Table 4, most w<strong>at</strong>ers can give nahcolite (NaHCO 3 )<br />

and thenardite (Na 2 SO 4 ) precipit<strong>at</strong>es <strong>in</strong> the last phase of evapor<strong>at</strong>ion.<br />

Ιn Table 4, the evapor<strong>at</strong>ed samples th<strong>at</strong> can give trona and <strong>n<strong>at</strong>ron</strong><br />

precipit<strong>at</strong>es are shown. In the same table, a diluted w<strong>at</strong>er from <strong>Lake</strong><br />

<strong>Pikrolimni</strong> (PL-5/2003) is also shown. It is observed th<strong>at</strong> three<br />

samples, S/1/2002; b/2/2002; PL-5/2003, give Na–carbon<strong>at</strong>e–bicarbon<strong>at</strong>e<br />

m<strong>in</strong>erals [gaylussite Na 2 Ca⁎(CO 3 ) 2 ⁎5H 2 O; pirssonite Na 2-<br />

Ca⁎ (CO 3 ) 2 ⁎ 2H 2 O; trona Na 2 CO 3 ⁎ NaHCO 3 ⁎ 2H 2 O and <strong>n<strong>at</strong>ron</strong><br />

Na 2 CO 3 ⁎10H 2 O], Na–sulf<strong>at</strong>e m<strong>in</strong>erals (burkeite Na 2 CO 3 ⁎2Na 2 SO 4 ;<br />

thenardite Na 2 SO 4 ) and Na–chloride m<strong>in</strong>erals [halite NaCl]. W<strong>at</strong>er<br />

samples S/1/2002, b/2/2002 and PL-5/2003 give similar m<strong>in</strong>erals<br />

with those found by XRD analysis <strong>in</strong> collected salt samples but also<br />

similar m<strong>in</strong>erals referred <strong>in</strong> liter<strong>at</strong>ure (Shortland et al., 2006; Taher,<br />

1999; Gueddari, 1984). However, only the w<strong>at</strong>er sample coded S/1/<br />

2002 and b/2/2002, Na–ΗCO 3 type, could give <strong>n<strong>at</strong>ron</strong> and trona.<br />

Fig. 6 shows the results of S/1/2002 sample when the <strong>in</strong>itial<br />

chemical composition of this w<strong>at</strong>er was modeled. As it can be seen, as<br />

the w<strong>at</strong>er is concentr<strong>at</strong>ed about 250 times of the <strong>in</strong>itial chemical<br />

composition, the first Na–carbon<strong>at</strong>e m<strong>in</strong>eral, gaylussite, deigns to<br />

precipit<strong>at</strong>e. After a concentr<strong>at</strong>ion of 395 times of the <strong>in</strong>itial chemical<br />

composition, <strong>n<strong>at</strong>ron</strong>, pirssonite, and mirabilite precipit<strong>at</strong>e. The gaylussite<br />

and the pirssonite are among the first salts th<strong>at</strong> precipit<strong>at</strong>eand their<br />

form<strong>at</strong>ion is rel<strong>at</strong>ed to calcite. The gaylussite [Na 2 Ca⁎(CO 3 ) 2 ⁎5H 2 O]<br />

generally forms by the reaction of primary calcite (CaCO 3 )andthesodic<br />

carbon<strong>at</strong>e solution, accord<strong>in</strong>g to the reaction<br />

CaCO 3 þ 2Na þ CO 3 þ 5H 2 O↔Na 2 Ca⁎ðCO 3 Þ 2<br />

⁎5H 2 O:<br />

The pirssonite is usually found <strong>in</strong> the presence of gaylussite or of<br />

calcite crystals. The direct precipit<strong>at</strong>ion of pirssonite takes place<br />

accord<strong>in</strong>g to the reaction<br />

Na 2 Ca⁎ðCO 3 Þ 2<br />

⁎2H 2 O↔2Na þ Ca þ 2CO 3 þ 2H 2 O:<br />

Secondarily, pirssonite forms either by the dehydr<strong>at</strong>ion of<br />

gaylussite or by the reaction of Ca–Na solutions with calcite accord<strong>in</strong>g<br />

to the follow<strong>in</strong>g equ<strong>at</strong>ions<br />

Na 2 Ca⁎ðCO 3 Þ 2<br />

⁎5H 2 O↔Na 2 Ca⁎ðCO 3 Þ 2<br />

⁎2H 2 O þ 3H 2 O<br />

Table 2<br />

XRD results on evaporites from different lakes.<br />

<strong>Lake</strong> <strong>Pikrolimni</strong> 2002 Wadi N<strong>at</strong>run a <strong>Lake</strong> N<strong>at</strong>ron, Tanzania b <strong>Lake</strong> Magadi, Kenya b The Deep Spr<strong>in</strong>gs <strong>Lake</strong>, California b<br />

Calcite (CaCO 3 )<br />

Dolomite c Calcite (CaCO 3 ) Calcite (CaCO 3 )<br />

Dolomite [Ca(Mg)CO 3 )<br />

Pirsonnite Na 2 Ca⁎(CO 3 ) 2 ⁎2H 2 O Pirsonnite Na 2 Ca⁎(CO 3 ) 2 ⁎2H 2 O<br />

Nahcolite (NaHCO 3 )<br />

Trona (Na 2 CO 3 ⁎NaHCO 3 ⁎2H 2 O) Trona (Na 2 CO 3 ⁎NaHCO 3 ⁎2H 2 O) Trona (Na 2 CO 3 ⁎NaHCO 3 ⁎2H 2 O) Trona (Na 2 CO 3 ⁎NaHCO 3 ⁎2H 2 O) Trona (Na 2 CO 3 ⁎NaHCO 3 ⁎2H 2 O)<br />

Thermon<strong>at</strong>rite (Na 2 CO 3 ⁎H 2 O), Thermon<strong>at</strong>rite (Na 2 CO 3 ⁎H 2 O),<br />

Burkeite (Na 2 CO 3 ⁎2Na 2 SO 4 ) Burkeite (Na 2 CO 3 ⁎2Na 2 SO 4 Burkeite (Na 2 CO 3 ⁎2Na 2 SO 4 )<br />

Kogarkoite (Na 2 SO 4 ⁎NaF)<br />

Thenardite (Na 2 SO 4 ) not detected Thenardite (Na 2 SO 4 ) Thenardite (Na 2 SO 4<br />

<strong>in</strong> 2006 salt<br />

Halite (NaCl) Halite (NaCl) Halite (NaCl) Halite (NaCl) Halite (NaCl)<br />

a Shortland A.J. (2004).<br />

b Gueddari M. (1984).<br />

c Wenigswieser (1992).


E. Dotsika et al. / Journal of <strong>Geochemical</strong> Explor<strong>at</strong>ion 103 (2009) 133–143<br />

141<br />

64% of all salts th<strong>at</strong> precipit<strong>at</strong>e, while halite only 10%. On the contrary,<br />

Fig. 6 shows the results of PL-5/2003 sample when the <strong>in</strong>itial chemical<br />

composition of this w<strong>at</strong>er was modeled. It seems th<strong>at</strong> when the model<br />

stops halite is more abundant <strong>in</strong> the precipit<strong>at</strong>es than trona: trona<br />

represents only 0.5% of all salts th<strong>at</strong> precipit<strong>at</strong>e, while halite 60%.<br />

These two models show the change which may have happened <strong>in</strong> the<br />

w<strong>at</strong>er chemistry of the lake's spr<strong>in</strong>gs and why trona is so hard to f<strong>in</strong>d<br />

<strong>in</strong> <strong>Lake</strong> <strong>Pikrolimni</strong> when the models reaches their lowest po<strong>in</strong>t: trona<br />

salts are hoarded by the deposition of large quantities of halite, as<br />

shown by Shortland et al. (2006) <strong>in</strong> their study about Wadi N<strong>at</strong>run.<br />

The aliment<strong>at</strong>ion of the lake <strong>in</strong> the past had happened ma<strong>in</strong>ly from<br />

deep spr<strong>in</strong>gs with similar chemistry while today is arisen ma<strong>in</strong>ly from<br />

meteoric w<strong>at</strong>ers and irrig<strong>at</strong>ion groundw<strong>at</strong>ers (Pl<strong>in</strong>y; Many public<br />

testimonies vouch th<strong>at</strong> there were a lot of spr<strong>in</strong>gs <strong>in</strong> the middle of<br />

the lake, but after the big earthquake of 1981 these spr<strong>in</strong>gs have<br />

disappeared).<br />

The chemical composition of the residual w<strong>at</strong>er and of three samples<br />

(S/1/2002; b/2/2002; PL-5/2003) after the simul<strong>at</strong>ion of evapor<strong>at</strong>ion<br />

was similar with the chemical composition of the lake's w<strong>at</strong>er <strong>in</strong><br />

conditions of <strong>in</strong>tense evapor<strong>at</strong>ion (Table 5).<br />

Especially the chemical composition of the residual w<strong>at</strong>er, coded<br />

S/1/2002, after the evapor<strong>at</strong>ion simul<strong>at</strong>ion, is similar to th<strong>at</strong> of the<br />

lake br<strong>in</strong>e PL-9/2006 (Table 5). Furthermore, the model shows th<strong>at</strong><br />

<strong>n<strong>at</strong>ron</strong> starts to precipit<strong>at</strong>e when Cl − content is 1417 mmol/L [when<br />

the concentr<strong>at</strong>ion factor (CF) is about 395 times: 395⁎3.8 mmol/L<br />

(<strong>in</strong>itial Cl of s/1/2002)=1500 mmol/L] while trona starts to precipit<strong>at</strong>e<br />

when Cl − content is approxim<strong>at</strong>ely 2500 mmol/L [when the<br />

concentr<strong>at</strong>ion factor (CF) is about 720 times: 700⁎3.8 mmol/L (<strong>in</strong>itial Cl<br />

of s/1/2002)=2651 mmol/L]. The lake w<strong>at</strong>er reaches similar concentr<strong>at</strong>ions<br />

only dur<strong>in</strong>g the summer, August (but not every summer), as<br />

observed by sampl<strong>in</strong>g. Accord<strong>in</strong>g to Pl<strong>in</strong>y, <strong>n<strong>at</strong>ron</strong> was collected <strong>in</strong><br />

Macedonia only <strong>in</strong> the ris<strong>in</strong>g of the Dog Star for n<strong>in</strong>e days. This tim<strong>in</strong>g<br />

places this event <strong>at</strong> the beg<strong>in</strong>n<strong>in</strong>g of the hottest part of the summer,<br />

when the lake is found <strong>at</strong> the peak of evapor<strong>at</strong>ion and trona starts to<br />

precipit<strong>at</strong>e. However, the lake does not reach such high concentr<strong>at</strong>ions<br />

every year, a fact th<strong>at</strong> is due to the we<strong>at</strong>her (temper<strong>at</strong>ure,<br />

humidity, precipit<strong>at</strong>ion). Therefore, the collection would have been<br />

tak<strong>in</strong>g place only dur<strong>in</strong>g particularly hot and dry summers.<br />

7. Conceptual model<br />

Fig. 5. S<strong>at</strong>ur<strong>at</strong>ion Index (Log s<strong>at</strong>ur<strong>at</strong>ion r<strong>at</strong>io) versus ionic strength (logarithmic). White<br />

triangles: nahcolite; x: gaylussite; –: pirssonite; white diamonds: <strong>n<strong>at</strong>ron</strong>; black<br />

squares: trona; white circles: halite; crosses: mirabilite; white squares: thenardite;<br />

crossed x: thermon<strong>at</strong>rite.<br />

CaCO 3 þ 2Na þ CO 3 þ 2H 2 O↔Na 2 Ca⁎ðCO 3 Þ 2<br />

⁎2H 2 O:<br />

Also when the concentr<strong>at</strong>ion factor (CF) is about 700 times of the<br />

<strong>in</strong>itial chemical composition, burkeite and trona precipit<strong>at</strong>ion <strong>in</strong>iti<strong>at</strong>es.<br />

Much l<strong>at</strong>er, when the w<strong>at</strong>er is concentr<strong>at</strong>ed by about a factor of<br />

1200, halite beg<strong>in</strong>s to precipit<strong>at</strong>e. When the models stop, halite and<br />

trona are the more abundant precipit<strong>at</strong>es. Trona is more abundant <strong>in</strong><br />

the precipit<strong>at</strong>es than halite: trona (50%) and <strong>n<strong>at</strong>ron</strong> (14%) represent<br />

The Na/Cl r<strong>at</strong>io <strong>in</strong> <strong>Lake</strong> <strong>Pikrolimni</strong> supports evapor<strong>at</strong>ive concentr<strong>at</strong>ions<br />

as the dom<strong>in</strong>ant process <strong>in</strong> the chemical evolution of these lake<br />

w<strong>at</strong>ers th<strong>at</strong> have high proportions of Na + and HCO 3 − . The derived high<br />

Na + and HCO 3 − contents are due to silic<strong>at</strong>e hydrolysis. The comput<strong>in</strong>g<br />

program has shown th<strong>at</strong> the dilute spr<strong>in</strong>g <strong>in</strong>flow was concentr<strong>at</strong>ed (by<br />

the assumption of Cl − conserv<strong>at</strong>ion <strong>in</strong> solution throughout evapor<strong>at</strong>ion)<br />

about 12000 times to obta<strong>in</strong> the most sal<strong>in</strong>e residual actual lake w<strong>at</strong>er,<br />

PL-8/2002; PL-9/2006). However, this evapor<strong>at</strong>ion budget calcul<strong>at</strong>ion<br />

(Table 5), if compared with the actual analysis of the most sal<strong>in</strong>e<br />

<strong>Pikrolimni</strong> br<strong>in</strong>e, shows th<strong>at</strong> some constituents are not conserv<strong>at</strong>ive,<br />

due to different removal mechanisms. Therefore, it is believed th<strong>at</strong> <strong>in</strong> the<br />

past, the solute composition of such w<strong>at</strong>ers, which are controlled by<br />

silic<strong>at</strong>e hydrolysis and evapor<strong>at</strong>ive concentr<strong>at</strong>ion, gave the <strong>n<strong>at</strong>ron</strong> salts<br />

of <strong>Lake</strong> <strong>Pikrolimni</strong>. Namely, <strong>in</strong> the past, after acquisition of solutes from<br />

<strong>at</strong>mospheric precipit<strong>at</strong>ion, hydrolysis of silic<strong>at</strong>e and possibly CO 2 of<br />

deep orig<strong>in</strong>, the w<strong>at</strong>ers are subjected to evapor<strong>at</strong>ion (<strong>at</strong> the surface or by<br />

capillarity). Initially, the concentr<strong>at</strong>ions of all constituents <strong>in</strong>crease until<br />

the m<strong>in</strong>eral precipit<strong>at</strong>ion occurs. The precipit<strong>at</strong>ion may take the form of<br />

efflorescent crusts on top of the surface or of <strong>in</strong>tergranural caliche-type<br />

films and cements. The efflorescent crusts are the product of complete<br />

desicc<strong>at</strong>ion and they are subjected to complete or differential solution<br />

byra<strong>in</strong>.Thisrecycl<strong>in</strong>gofsaltsisobservedactually<strong>at</strong><strong>Lake</strong><strong>Pikrolimni</strong>.<br />

Thus, dur<strong>in</strong>g summer when the w<strong>at</strong>er level of the lake is low or there is<br />

no w<strong>at</strong>er <strong>at</strong> all (total desicc<strong>at</strong>ion), the first ra<strong>in</strong>s dissolve the residual<br />

br<strong>in</strong>es (or salts) and get charged by solutes. This recycl<strong>in</strong>g of salts is also


142 E. Dotsika et al. / Journal of <strong>Geochemical</strong> Explor<strong>at</strong>ion 103 (2009) 133–143<br />

Table 3<br />

Thermodynamic calcul<strong>at</strong>ion model: sequence of m<strong>in</strong>erals precipit<strong>at</strong>ion.<br />

<strong>Lake</strong> <strong>Pikrolimni</strong> 8/2002 <strong>Lake</strong> <strong>Pikrolimni</strong> 9/2006 <strong>Lake</strong> Magadi, Kenya a <strong>Lake</strong> N<strong>at</strong>ron, Tanzania a The Deep Spr<strong>in</strong>gs <strong>Lake</strong>, California a<br />

Calcite (CaCO 3 )<br />

Dolomite [Ca(Mg)CO 3 )]<br />

Calcite (CaCO 3 )<br />

Dolomite [Ca(Mg)CO 3 )]<br />

Calcite (CaCO 3 ) Calcite–Mg [Ca(Mg)CO 3 ]<br />

Dolomite (MgCO 3 )<br />

Gaylussite [Na 2 Ca⁎<br />

(CO 3 ) 2 ⁎5H 2 O]<br />

Gaylussite [Na 2 Ca⁎<br />

(CO 3 ) 2 ⁎5H 2 O]<br />

Gaylussite [Na 2 Ca⁎<br />

(CO 3 ) 2 ⁎5H 2 O]<br />

Pirssonite [Na 2 Ca⁎<br />

(CO 3 ) 2 ⁎2H 2 O]<br />

Pirssonite [Na 2 Ca⁎<br />

(CO 3 ) 2 ⁎2H 2 O]<br />

Pirssonite [Na 2 Ca⁎<br />

(CO 3 ) 2 ⁎2H 2 O]<br />

Nahcolite (NaHCO 3 ) Nacholite (NaHCO 3 ) Nahcolite (NaHCO 3 ) Nahcolite (NaHCO 3 ) Nahcolite (NaHCO 3 )<br />

N<strong>at</strong>ron (Na 2 CO 3 ⁎10H 2 O) N<strong>at</strong>ron (Na 2 CO 3 ⁎10H 2 O)<br />

Trona (Na 2 CO 3 ⁎NaHCO 3 ⁎2H 2 O Trona (Na 2 CO 3 ⁎NaHCO 3 ⁎2H 2 O Trona (Na 2 CO 3 ⁎NaHCO 3 ⁎2H 2 O) Trona (Na 2 CO 3 ⁎NaHCO 3 ⁎2H 2 O Trona (Na 2 CO 3 ⁎NaHCO 3 ⁎2H 2 O<br />

Thermon<strong>at</strong>rite (Na 2 CO 3 ⁎H 2 O) Thermon<strong>at</strong>rite (Na 2 CO 3 ⁎H 2 O)<br />

Gypsum (CaSO 4 ⁎2H 2 O)<br />

Glauberite [Na 2 Ca(SO 4 )]<br />

Burkeite (Na 2 CO 3 ⁎2Na 2 SO 4 )<br />

Mirabilite (Na 2 SO 4 ⁎10H 2 O) Mirabilite (Na 2 SO 4 ⁎10H 2 O)<br />

Thenardite (Na 2 SO 4 ) Thenardite (Na 2 SO 4 )) Thenardite (Na 2 SO 4 )<br />

Halite (NaCl) Halite (NaCl) Halite (NaCl) Halite (NaCl) Halite (NaCl)<br />

a Gueddari M. (1984).<br />

Table 4<br />

Simul<strong>at</strong>ion of evapor<strong>at</strong>ion of groundw<strong>at</strong>er.<br />

Label<br />

S/1_/2002<br />

b/2/2002<br />

b/3/2002<br />

b/4/2002<br />

b/A/2002<br />

wt/B/2002<br />

b/G/2003<br />

b/G/2004<br />

b/P1/7/2004<br />

b/G/7/2004<br />

b/B/8/2004<br />

b/SPA<br />

wt/SPA<br />

MWP-1<br />

MWPh-1<br />

Pl-5/2003<br />

M<strong>in</strong>erals<br />

BURKEITE_CALCITE_GAYLUSSITE_GLASERITE_HALITE_MAGNESITE_MIRABILITE_NATRON_PIRSSONITE_TRONA<br />

CALCITE_GAYLUSSITE_GLASERITE_HALITE_MAGNESITE_PIRSSONITE_THENARDITE_TRONA<br />

CALCITE_GAYLUSSITE_GLASERITE_HALITE_MAGNESITE_MIRABILITE_NAHCOLITE_PIRSSONITE_THENARDITE<br />

CALCITE_GLASERITE_HALITE_MAGNESITE_NAHCOLITE_THENARDITE<br />

CALCITE_GLASERITE_HALITE_MAGNESITE_NAHCOLITE_THENARDITE<br />

CALCITE_GLASERITE_HALITE_MAGNESITE_NAHCOLITE_THENARDITE<br />

CALCITE_GLASERITE_HALITE_MAGNESITE_NAHCOLITE_SYLVITE<br />

CALCITE_GLASERITE_HALITE_MAGNESITE_NAHCOLITE_THENARDITE<br />

CALCITE_GLASERITE_GLAUBERITE_GYPSUM_HALITE_MAGNESITE_MIRABILITE_SYNGENITE_THENARDITE<br />

CALCITE_GLASERITE_HALITE_MAGNESITE_NAHCOLITE_THENARDITE<br />

CALCITE_GLASERITE_HALITE_MAGNESITE_NAHCOLITE_THENARDITE<br />

CALCITE_GLASERITE_HALITE_MAGNESITE_NAHCOLITE_THENARDITE<br />

CALCITE_GLASERITE_HALITE_MAGNESITE_NAHCOLITE_THENARDITE<br />

CALCITE_GLASERITE_HALITE_MAGNESITE_NAHCOLITE_THENARDITE<br />

CALCITE_GLASERITE_HALITE_MAGNESITE_NAHCOLITE_THENARDITE<br />

HALITE_PIRSSONITE_THENARDITE_TRONA<br />

In each l<strong>in</strong>e, the list of m<strong>in</strong>erals corresponds to the whole sequence of precipit<strong>at</strong>ed m<strong>in</strong>erals dur<strong>in</strong>g concentr<strong>at</strong>ive evapor<strong>at</strong>ion.<br />

the way of <strong>in</strong>creas<strong>in</strong>g the solute load of the groundw<strong>at</strong>er. Precipit<strong>at</strong>ion<br />

and re-solution <strong>in</strong>evitably lead to strong segreg<strong>at</strong>ion of the <strong>in</strong>itial<br />

solutes. Therefore, sorption ion exchange and reduction reaction on<br />

m<strong>in</strong>eral surface may also remove certa<strong>in</strong> solute.<br />

8. Conclusions<br />

<strong>Lake</strong> <strong>Pikrolimni</strong> is a sal<strong>in</strong>e lake th<strong>at</strong> is characterized by alkal<strong>in</strong>e<br />

br<strong>in</strong>e, poor <strong>in</strong> Ca 2+ and Mg 2+ . The dilute HCO 3 − spr<strong>in</strong>g fresh w<strong>at</strong>er<br />

(350 g/L dissolved solid). Such br<strong>in</strong>es show a considerable<br />

range <strong>in</strong> ionic composition and concentr<strong>at</strong>ion. High solute concentr<strong>at</strong>ion<br />

due to solar evapor<strong>at</strong>ion of w<strong>at</strong>er, m<strong>in</strong>eral precipit<strong>at</strong>ion,<br />

fractional dissolution and solute recycl<strong>in</strong>g are the ma<strong>in</strong> processes<br />

responsible for these br<strong>in</strong>es form<strong>at</strong>ion. In particular, these evapor<strong>at</strong><strong>in</strong>g<br />

conditions were such th<strong>at</strong> <strong>in</strong>curred a hydrogeochemical environment<br />

th<strong>at</strong> was responsible for the lake to provide, <strong>in</strong> dry periods,<br />

“nitrum chalestricum” (trona). Besides, the progressive concentr<strong>at</strong>ion<br />

of br<strong>in</strong>es <strong>in</strong> alkal<strong>in</strong>e lakes leads to a preferential precipit<strong>at</strong>ion of<br />

sodium carbon<strong>at</strong>e followed by sulf<strong>at</strong>es and chlorides. This conclusion<br />

comes <strong>in</strong> agreement with the results. Also, the m<strong>in</strong>eralogical analysis<br />

(X-Ray Diffraction of salts), the evapor<strong>at</strong>ion simul<strong>at</strong>ion and the<br />

thermodynamic model showed th<strong>at</strong> salts of trona, burkeite and halite,<br />

deposit from these br<strong>in</strong>es. So, the conditions th<strong>at</strong> are responsible for<br />

the form<strong>at</strong>ion of soda seem to be present <strong>in</strong> the bas<strong>in</strong> and confirm<br />

Pl<strong>in</strong>y's description.<br />

Fig. 6. M<strong>in</strong>erals molarity versus concentr<strong>at</strong>ion factor.


E. Dotsika et al. / Journal of <strong>Geochemical</strong> Explor<strong>at</strong>ion 103 (2009) 133–143<br />

143<br />

Table 5<br />

Chemical composition (mmol/L) of the residual w<strong>at</strong>er, after evapor<strong>at</strong>ion, when the models stop.<br />

Label CF alk Cl SO 4 Na K Ca Mg TDS<br />

S/1/2002 12,300 1913 4300 610 6590 845 0 0.02 455,699<br />

b/2/2002 6850 1057 4510 780 6320 820 0 0.02 448,892<br />

PL-5/2003 2700 182 4830 840 5870 830 0.2 0.45 431,224<br />

S/1/2002 chemical composition of residual w<strong>at</strong>er when <strong>n<strong>at</strong>ron</strong> starts to precipit<strong>at</strong>e 395 3143 1417 459 5448 30 0.004 0.03 318,000<br />

S/1/2002 chemical composition of residual w<strong>at</strong>er when trona starts to precipit<strong>at</strong>e 720 3246 2500 790 7273 53 0.001 0.02 434,000<br />

Testimonia<br />

Testimonium 1. Pl<strong>at</strong>o, 5th century BC, Republic 430a (ed. I. Burnet,<br />

1963).<br />

Testimonium 2. Scolia <strong>in</strong> Pl<strong>at</strong>onem, 159 (ed. Ruhnken).<br />

Testimonium 3. Etymologicum Magnum, Halastri.<br />

Testimonium 4. Stephanus Byzantius, Halastra.<br />

Testimonium 5. Pl<strong>in</strong>y, N<strong>at</strong>uralis Historiae 31, 46 (ed. W.H.S. Jones,<br />

Loeb 1963). Chapter on soda, esp. 106–109.<br />

Acknowledgements<br />

The authors would like to express their gr<strong>at</strong>itude to Mr. Aggelakis<br />

for his help dur<strong>in</strong>g sampl<strong>in</strong>g sessions as well as to Dr. Risacher F. and<br />

Dr. Fritz B. for their contribution of the geochemical program EQL/<br />

EVP. F<strong>in</strong>ally, special thanks go to the two unknown reviewers for their<br />

really contributory remarks and suggestions of the manuscript and to<br />

the editor of this journal for his helpful guidance.<br />

References<br />

An<strong>at</strong>oliki, A.E., 2006. Public Particip<strong>at</strong>ion <strong>in</strong> W<strong>at</strong>er Re<strong>source</strong>s' Management <strong>at</strong> a Greek<br />

River Bas<strong>in</strong>. Project W<strong>at</strong>er Agenda, LIFE04/ENV/GR/000099.<br />

Apha, 1989. Standard Methods for the Exam<strong>in</strong><strong>at</strong>ion of W<strong>at</strong>er and Wastew<strong>at</strong>er, 19th<br />

end. American Public Health Associ<strong>at</strong>ion, Wash<strong>in</strong>gton, DC.<br />

Coulson, W.D.E., Leonard Jr., A., 1979. A prelim<strong>in</strong>ary study of the Naukr<strong>at</strong>is region <strong>in</strong> the<br />

western Nile Delta. Journal of Field Archaeology 6.2, 151–168.<br />

Dalezios, N., Loukas, A., Bampzelis, D., 2002. The role of agrometeorological and<br />

agrohydrological <strong>in</strong>dices <strong>in</strong> the phenology of whe<strong>at</strong> <strong>in</strong> central <strong>Greece</strong>. Physics and<br />

Chemistry of the Earth 27, 1031–1038.<br />

De Cosson, F.C., 1936. El Barnugi. Bullet<strong>in</strong> de Societe Royale d'Archeologie — Alexandrie<br />

30 (N.S. IX-1), 113–116.<br />

Eugster, H.P., 1966. Sodium carbon<strong>at</strong>e–bicarbon<strong>at</strong>e m<strong>in</strong>erals as <strong>in</strong>dic<strong>at</strong>ors of pCO 2 .<br />

Journal of Geophysical Research 71, 3369–3377.<br />

Eugster, H.P., 1980. Geochemistry of evaporitic lacustr<strong>in</strong>e deposits. Annual Review of<br />

Earth and Planetary Sciences 8, 35–63.<br />

Eugster, H.P., Jones, B.F., 1979. Behavior of major solutes dur<strong>in</strong>g closed-bas<strong>in</strong> br<strong>in</strong>e<br />

evolution. American Journal of Science 279 (6), 609–631.<br />

Evelyn-White, H.G., Hauser, W., 1926–1933. The Monasteries of the Wadi 'n N<strong>at</strong>run, 3<br />

volumes, Public<strong>at</strong>ions of the Metropolitan Museum of Art Egyptian Expedition 2, 4,<br />

8, New York.<br />

Gueddari, M., 1984. Geochimie et thermodynamique des evaporites cont<strong>in</strong>entales, etude<br />

du lac N<strong>at</strong>ron en Tanzanie et du chott El Jerid en Tunisie. Sciences Geologiques<br />

Universite Louis Pasteur de Strasbourg, Institute de Geologie, Mémoire 76, 144.<br />

Hardie, L., Eugster, H., 1970. The evolution of closed-bas<strong>in</strong> br<strong>in</strong>es. M<strong>in</strong>eral. Soc. Amer.<br />

Spec. Pap. 3, 273–290.<br />

H<strong>at</strong>zopoulos, M.B., Loukopoulou, L.D., 1989. Morrylos. Athenes, Centre de Recherches<br />

de l'Antiquite Grecque et Roma<strong>in</strong>e.<br />

Henderson, J., 1985. The raw m<strong>at</strong>erials of early glass production. Oxford Journal of<br />

Archaeology 4 (3), 267–291.<br />

Ign<strong>at</strong>iadou, D., 2002. Research on the Nitrum Chalestricum. Proceed<strong>in</strong>gs of Archaeological<br />

Work <strong>in</strong> Macedonia and Thrace 16, Thessaloniki, <strong>Greece</strong>.<br />

Jones, B.F., Eugster, H.P., Rettig, S.L., 1977. Hydrochemistry of the <strong>Lake</strong> Magadi bas<strong>in</strong>,<br />

Kenya. Geochimica et Cosmochimica Acta 41, 53–72.<br />

Mart<strong>in</strong>, M., Sauneron, S. (Eds.), 1982. Claude Sicard. In: Bibliotheque d'etudes, vols. 3. Le<br />

Caire, pp. 83–85.<br />

Mercier, J., 1966. Etude géologique des zones <strong>in</strong>ternes des Hellénides en Macédo<strong>in</strong>e<br />

centrale (Grèce). Contribution a l'étude du métamorphisme et de l'évolution<br />

magm<strong>at</strong>ique des zones <strong>in</strong>ternes des Hellénides, Thèses, Paris 1966, Ann. geol. Pays.<br />

Hellen., 20, 1–792.<br />

Mountrakis, D., 1985. Geology of <strong>Greece</strong>. InUniversity Studio Press, pp. 50–72.<br />

Thessaloniki.<br />

Parkhurst, D.L., Appelo, C.A.J., 1999. User's guide to PHREEQC—a computer program for<br />

speci<strong>at</strong>ion, reaction-p<strong>at</strong>h, 1D-ransport, and <strong>in</strong>verse geochemical calcul<strong>at</strong>ion: US<br />

Geological Survey. W<strong>at</strong>er-re<strong>source</strong>s Investig<strong>at</strong>ions Report 99, 4259–4312.<br />

Reade, W., Freestone, I.C., St Simpson, J., 2005. Innov<strong>at</strong>ion or cont<strong>in</strong>uity Early first<br />

millennium BCE glass <strong>in</strong> the Near East: the cobalt blue glasses from Assyrian<br />

Nimrud. In: Cool, H. (Ed.), Annales du 16e Congres de l'Associ<strong>at</strong>ion Interntionale<br />

pour l'Histoire du Verre-London, 2003, pp. 23–27.<br />

Risacher, F., 1992. Geochimie. Sciences Géologiques Bullet<strong>in</strong> 45 (3–4), 135–214.<br />

Risacher, F., Clement, Α., 2001. A computer program for the simul<strong>at</strong>ion of evapor<strong>at</strong>ion of<br />

n<strong>at</strong>ural w<strong>at</strong>ers to high concentr<strong>at</strong>ion. Computers and Geosciences 27, 191–201.<br />

Schlick-Nolte, L.A., Werthmann, R., 2003. Glass vessels from the Burial of Nesikhons.<br />

Journal of Glass Studies 45, 11–34.<br />

Shortland, A., 2004. Evaporites of the Wadi N<strong>at</strong>run: seasonal and annual vari<strong>at</strong>ion and<br />

its implic<strong>at</strong>ion for ancient exploit<strong>at</strong>ion. Archaeometry 46, 497–516.<br />

Shortland, A., Schachner, L., Freestone, I., Tite, M., 2006. N<strong>at</strong>ron as a flux <strong>in</strong> the early<br />

vitreous m<strong>at</strong>erials <strong>in</strong>dustry: <strong>source</strong>s, beg<strong>in</strong>n<strong>in</strong>gs and reasons for decl<strong>in</strong>e. Journal of<br />

Archaeological Science 33, 521–530.<br />

Taher, A.G., 1999. Inland sal<strong>in</strong>e lakes of Wadi el N<strong>at</strong>run depression, Egypt. Intern<strong>at</strong>ional<br />

Journal of Salt <strong>Lake</strong> Research 8 (2), 149–169.<br />

Wenigswieser, S., 1992. M<strong>in</strong>eralogische untersuchungen an den Evaporiten und Tonen<br />

des Wadi El-N<strong>at</strong>run, Fakul<strong>at</strong> fur Bio- und Geowissenschaften, Universit<strong>at</strong> Karlsruhe,<br />

Unpublished thesis.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!