15.01.2015 Views

A natron source at Pikrolimni Lake in Greece? Geochemical evidence

A natron source at Pikrolimni Lake in Greece? Geochemical evidence

A natron source at Pikrolimni Lake in Greece? Geochemical evidence

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

134 E. Dotsika et al. / Journal of <strong>Geochemical</strong> Explor<strong>at</strong>ion 103 (2009) 133–143<br />

<strong>Lake</strong> <strong>Pikrolimni</strong> is loc<strong>at</strong>ed 20 km to the NW of the town of<br />

Thessaloniki, <strong>in</strong> the region of Macedonia, <strong>in</strong> Northern <strong>Greece</strong>, where a<br />

spa and <strong>in</strong>stall<strong>at</strong>ions for mud b<strong>at</strong>hs exist.<br />

In order to confirm Pl<strong>in</strong>y's description, we <strong>in</strong>vestig<strong>at</strong>ed the<br />

geochemical d<strong>at</strong>a of the area and the evapor<strong>at</strong>ive conditions, which<br />

are responsible for the form<strong>at</strong>ion of “Chalastraion nitron”.<br />

2. N<strong>at</strong>ron use<br />

Evaporitic rocks have been used s<strong>in</strong>ce the dawn of human history.<br />

Salt and br<strong>in</strong>es have been used <strong>in</strong> all cultures, i.e. Knossos Palace is built<br />

on Crete Island with big blocks, some of which were pure massive<br />

gypsum. Also <strong>in</strong> more “modern” civilis<strong>at</strong>ions, the salt was used for<br />

payments. The Romans paid a “salarium” <strong>in</strong> NaCl and therefore the<br />

actual word “salary” came up for wages, orig<strong>in</strong>ally mean<strong>in</strong>g salt money.<br />

Ancient use of sodium carbon<strong>at</strong>e is known s<strong>in</strong>ce 5500–4000 BC.<br />

However, f<strong>in</strong>d<strong>in</strong>gs of the m<strong>at</strong>erial are rare. In general, the ma<strong>in</strong> use of<br />

<strong>n<strong>at</strong>ron</strong> was as a purifier <strong>in</strong> mummific<strong>at</strong>ion. Herodotus provides the<br />

best description of the use of <strong>n<strong>at</strong>ron</strong> <strong>in</strong> mummific<strong>at</strong>ion.<br />

N<strong>at</strong>ron seems to have been used <strong>in</strong> glassmak<strong>in</strong>g <strong>in</strong> Egypt s<strong>in</strong>ce the<br />

Badarian Period (early 4th millennium BC), <strong>in</strong>dic<strong>at</strong>ed by the very low<br />

potash contents of glasses (Shortland et al., 2006). The use of <strong>n<strong>at</strong>ron</strong><br />

becomes apparent s<strong>in</strong>ce the 1st millennium BC. Reported glass from the<br />

tomb of Nesikhons <strong>in</strong> Egypt with low content <strong>in</strong> potash, magnesia and<br />

lime <strong>in</strong>dic<strong>at</strong>es th<strong>at</strong> the soda was derived from <strong>n<strong>at</strong>ron</strong> (Schlick-Nolte and<br />

Werthmann, 2003). Other <strong>evidence</strong> of <strong>n<strong>at</strong>ron</strong> use <strong>in</strong> the same period is<br />

the blue glasses from 8–9th century BC Nimrud, Iraq (Reade et al., 2005).<br />

The Roman glassmak<strong>in</strong>g <strong>in</strong>dustry seems to have been based on <strong>n<strong>at</strong>ron</strong>,<br />

<strong>in</strong>dic<strong>at</strong>ed by the low-magnesia content. Until the 9th century AD, <strong>n<strong>at</strong>ron</strong><br />

cont<strong>in</strong>ued to be the basic m<strong>at</strong>erial <strong>in</strong> glassmak<strong>in</strong>g <strong>in</strong> Levant, the<br />

Mediterranean and Europe. The use of <strong>n<strong>at</strong>ron</strong> as the flux <strong>in</strong> glass<br />

production decl<strong>in</strong>es <strong>in</strong> Near East and <strong>in</strong> Europe <strong>in</strong> the 9th century AD,<br />

when soda-rich plant ash replaced it (Shortland et al., 2006). However,<br />

<strong>at</strong> al-Barnuj <strong>in</strong> the Western Delta, Egypt, <strong>n<strong>at</strong>ron</strong> was collected dur<strong>in</strong>g<br />

periods th<strong>at</strong> w<strong>at</strong>ers were dried up until the 18th century AD (Mart<strong>in</strong> and<br />

Sauneron, 1982). From the 1920s and onwards <strong>n<strong>at</strong>ron</strong> was collected <strong>at</strong><br />

the same area by the Egypt Salt and Soda Company (Evelyn-White and<br />

Hauser, 1926–1933).<br />

In ancient <strong>Greece</strong> <strong>n<strong>at</strong>ron</strong> was mentioned for the first time by Pl<strong>at</strong>o<br />

<strong>in</strong> the 5th century <strong>in</strong> Republic (Testimonium 1).<br />

Today, sodium carbon<strong>at</strong>e is formed <strong>in</strong> the subtropical region of<br />

<strong>Lake</strong> N<strong>at</strong>ron <strong>in</strong> Tanzania and <strong>Lake</strong> Magadi <strong>in</strong> Kenya (Magadi means<br />

bitter, exactly as the name of <strong>Lake</strong> <strong>Pikrolimni</strong>, which means bitterlake).<br />

In Table 2, the m<strong>in</strong>eral sequence th<strong>at</strong> precipit<strong>at</strong>es dur<strong>in</strong>g mar<strong>in</strong>e<br />

w<strong>at</strong>er evapor<strong>at</strong>ion and lacustr<strong>in</strong>e w<strong>at</strong>er evapor<strong>at</strong>ion appears (<strong>Lake</strong><br />

N<strong>at</strong>ron, <strong>Lake</strong> Magadi, Deep Spr<strong>in</strong>gs <strong>Lake</strong> and Wadi N<strong>at</strong>run).<br />

3. Meteorological and geological sett<strong>in</strong>g<br />

<strong>Lake</strong> <strong>Pikrolimni</strong> is loc<strong>at</strong>ed <strong>in</strong> the bas<strong>in</strong> of Kilkis pla<strong>in</strong>, near Thessaloniki<br />

(23 km), <strong>in</strong> northern <strong>Greece</strong>. It is a small shallow lake which<br />

usually dries out dur<strong>in</strong>g summer. It has an average depth of about 0.5–<br />

0.7 m and covers an area about 4.5 km 2 when it is flooded. The mean<br />

annual precipit<strong>at</strong>ion <strong>in</strong> meteorological st<strong>at</strong>ion of Thessaloniki (dur<strong>in</strong>g<br />

1959–1997, Hellenic N<strong>at</strong>ional Meteorological service) is 448 mm, while<br />

the temper<strong>at</strong>ure ranges from 1.3 to 32 °C for the same period. Mean<br />

temper<strong>at</strong>ure dur<strong>in</strong>g July and August is 26.3 °C and mean precipit<strong>at</strong>ion is<br />

22 mm (1959–1997, Hellenic N<strong>at</strong>ional Meteorological service). The<br />

annual real evapotranspir<strong>at</strong>ion for Thessaloniki area (Thermi) <strong>in</strong> 2005<br />

was estim<strong>at</strong>ed 482.01 mm, with precipit<strong>at</strong>ion 481.8 mm and mean<br />

temper<strong>at</strong>ure 15.4 °C (An<strong>at</strong>oliki AE, 2006). Dur<strong>in</strong>g summer months, July<br />

and August (2005), mean temper<strong>at</strong>ure was 22.3 °C and 25.5 °C<br />

respectively, mean precipit<strong>at</strong>ion was 95 and 48 mm respectively while<br />

real evapotranspir<strong>at</strong>ion was 95 and 48 mm for the same months<br />

(An<strong>at</strong>oliki AE, 2006). Also Dalezios et al. (2002) report th<strong>at</strong> the maximum<br />

values of reference evapotranspir<strong>at</strong>ion r<strong>at</strong>es are observed ma<strong>in</strong>ly over<br />

the northern region and particularly over the pla<strong>in</strong>s surround<strong>in</strong>g the<br />

st<strong>at</strong>ions of Thessaloniki and Kilkis <strong>in</strong> the majority of months. This could<br />

be merely due to the fact th<strong>at</strong> ma<strong>in</strong>ly <strong>in</strong> summer months strong w<strong>in</strong>ds<br />

prevail over <strong>Greece</strong>, which along with the lack of precipit<strong>at</strong>ion cause a<br />

gre<strong>at</strong> deal of aridity variability among different sites. In particular, the<br />

observed maximum values of reference evapotranspir<strong>at</strong>ion r<strong>at</strong>es <strong>in</strong> the<br />

summer months over the Thessaloniki pla<strong>in</strong> could be due to a strong and<br />

dry N–NW w<strong>in</strong>d p<strong>at</strong>tern named Vartharis.<br />

Sediments of Neogene and Qu<strong>at</strong>ernary age are prevalent <strong>in</strong> the<br />

region of <strong>Lake</strong> <strong>Pikrolimni</strong> (Fig. 1). The Qu<strong>at</strong>ernary deposits are<br />

Holocene river and lake sediments, alluvial we<strong>at</strong>her<strong>in</strong>g m<strong>at</strong>erial<br />

composed ma<strong>in</strong>ly of schists and carbon<strong>at</strong>e sandy clays, sands and<br />

gravels of lower terrace system (carbon<strong>at</strong>es). Pleistocene deposits<br />

conta<strong>in</strong> gravels, red clays and sands with calcareous concretions and a<br />

big amount of mica. The prevalent Neogene form<strong>at</strong>ion (Mountrakis,<br />

1985) is the sandstone–marl series, <strong>in</strong>clud<strong>in</strong>g Hipparion mediterraneum,<br />

Mastodon sp., Gazella cf. deperdita.<br />

The bedrock <strong>in</strong> the region consists of Mesozoic rocks, ma<strong>in</strong>ly by<br />

conglomer<strong>at</strong>es from Upper Jurassic, <strong>in</strong>clud<strong>in</strong>g Ner<strong>in</strong>eae, Cladocoropsis sp.<br />

and Pseudocyclamm<strong>in</strong>a sp. (Mercier, 1966), with quartzite, greywacke<br />

(quartz and feldspars), quartz and limestone pebbles, basic rocks<br />

(gabbro) from Upper Jurassic with pyroxene, altered <strong>in</strong>to biotite and<br />

act<strong>in</strong>olite, hornblende, plagioclase feldspar and epidote and limestone<br />

from Middle–Upper Triassic. In a distance less than 10 km from <strong>Lake</strong><br />

<strong>Pikrolimni</strong>, the Paleozoic basement is uncovered consist<strong>in</strong>g of maficrocks<br />

(amphibolite with amphibole as hornblende) and plagioclase feldspars.<br />

4. Sampl<strong>in</strong>g and analysis<br />

<strong>Lake</strong> <strong>Pikrolimni</strong> is not fed by any major river and the hydrography<br />

of the area shows th<strong>at</strong> no perennial streams enter the lake directly. In<br />

the past, the major <strong>source</strong> of w<strong>at</strong>er to the lake was ground w<strong>at</strong>er<br />

(Pl<strong>in</strong>y; Many public testimonies vouch th<strong>at</strong> there were a lot of spr<strong>in</strong>gs<br />

<strong>in</strong> the middle of the lake, but after the big earthquake of 1981 these<br />

spr<strong>in</strong>gs have disappeared). Specifically, there were spr<strong>in</strong>gs very close<br />

to the lake and with<strong>in</strong> the lake itself. These percol<strong>at</strong><strong>in</strong>g groundw<strong>at</strong>ers<br />

probably brought the necessary ionic charge <strong>in</strong>to the lake. So dur<strong>in</strong>g<br />

the summer, accord<strong>in</strong>g to Pl<strong>in</strong>y, the precipit<strong>at</strong>ion of the salt was<br />

tak<strong>in</strong>g place. Actually, the ma<strong>in</strong> <strong>in</strong>put of fresh w<strong>at</strong>er to <strong>Pikrolimni</strong> is<br />

the ra<strong>in</strong>. Also, a number of wells and two spr<strong>in</strong>gs are loc<strong>at</strong>ed <strong>in</strong> the<br />

lake area (one spr<strong>in</strong>g is loc<strong>at</strong>ed <strong>in</strong> the south perimeter of the lake,<br />

nr. 21 <strong>in</strong> Table 1 and one spr<strong>in</strong>g emerges <strong>in</strong> the <strong>Pikrolimni</strong> Village).<br />

The spr<strong>in</strong>g w<strong>at</strong>er (nr. 21 <strong>in</strong> Table 1), ranges <strong>in</strong> temper<strong>at</strong>ure from 28 to<br />

30 °C and does not vary <strong>in</strong> discharge and concentr<strong>at</strong>ion. It emerges <strong>in</strong><br />

the ancient bas<strong>in</strong> of the lake and feeds the lagoon which is perennially<br />

wet marg<strong>in</strong>al lake areas. Dur<strong>in</strong>g the w<strong>in</strong>ter, when temper<strong>at</strong>ure is low,<br />

the <strong>in</strong>flow of w<strong>at</strong>er (ma<strong>in</strong>ly ra<strong>in</strong> w<strong>at</strong>er) <strong>in</strong>to <strong>Lake</strong> <strong>Pikrolimni</strong> exceeds<br />

the evapor<strong>at</strong>ion and the lake fills with w<strong>at</strong>er. Dur<strong>in</strong>g the summer,<br />

when the temper<strong>at</strong>ure and evapor<strong>at</strong>ion <strong>in</strong>crease, the level of the lake<br />

beg<strong>in</strong>s to fall, the concentr<strong>at</strong>ion of the ions <strong>in</strong>creases and evaporite<br />

m<strong>in</strong>erals beg<strong>in</strong> to precipit<strong>at</strong>e out of the solution. Dur<strong>in</strong>g some<br />

summers, when the lake w<strong>at</strong>er is exposed to very <strong>in</strong>tense evapor<strong>at</strong>ive<br />

concentr<strong>at</strong>ion, the br<strong>in</strong>es cover all the bottom of the lake. This br<strong>in</strong>e<br />

body vanishes dur<strong>in</strong>g the dry seasons expos<strong>in</strong>g salt deposit, as shown<br />

<strong>in</strong> Fig. 1. In the next year, dur<strong>in</strong>g the ra<strong>in</strong>y seasons, the lake refills with<br />

meteoric w<strong>at</strong>er and this w<strong>at</strong>er dissolves the salts and the shallow<br />

br<strong>in</strong>e body cover<strong>in</strong>g the ma<strong>in</strong> lake surface. This sequence of fill<strong>in</strong>g/<br />

depletion of the lake was observed dur<strong>in</strong>g the five years of this study.<br />

Therefore, evapor<strong>at</strong>ive concentr<strong>at</strong>ions dom<strong>in</strong><strong>at</strong>e the chemical composition<br />

of the lake w<strong>at</strong>er and it is the driv<strong>in</strong>g force for the evolution of<br />

<strong>Pikrolimni</strong> br<strong>in</strong>es, although only one segment is observed directly: the<br />

lake br<strong>in</strong>es. The spr<strong>in</strong>g is postul<strong>at</strong>ed as sub-surface flow.<br />

Samples were collected, <strong>in</strong> different times, from the borehole <strong>in</strong><br />

the thermal spa of <strong>Pikrolimni</strong> (which is loc<strong>at</strong>ed <strong>at</strong> the banks of <strong>Lake</strong><br />

<strong>Pikrolimni</strong>), from spr<strong>in</strong>g w<strong>at</strong>er and samples of br<strong>in</strong>e and salts from the<br />

lake itself. We also sampled fresh w<strong>at</strong>er of the region. The depth of the

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!