15.01.2015 Views

A natron source at Pikrolimni Lake in Greece? Geochemical evidence

A natron source at Pikrolimni Lake in Greece? Geochemical evidence

A natron source at Pikrolimni Lake in Greece? Geochemical evidence

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

E. Dotsika et al. / Journal of <strong>Geochemical</strong> Explor<strong>at</strong>ion 103 (2009) 133–143<br />

137<br />

5. Chemical results<br />

5.1. Solute acquisition<br />

Four chemically different w<strong>at</strong>er types (Table 1) are recognized <strong>in</strong> the<br />

<strong>Pikrolimni</strong> area for diluted w<strong>at</strong>er and one type for the lake w<strong>at</strong>er. The<br />

four recognized groundw<strong>at</strong>er types, based on both chemical and TDS,<br />

are: Mg–HCO 3 ,Na–HCO 3 ,Ca–HCO 3 ,andNa–Cl type (only one sample).<br />

The two first types represent fresh w<strong>at</strong>er th<strong>at</strong> has flown from boreholes<br />

and spr<strong>in</strong>g <strong>in</strong> the old bottom of <strong>Lake</strong> <strong>Pikrolimni</strong>. The municipality w<strong>at</strong>er<br />

of <strong>Pikrolimni</strong> village is also Na–HCO 3 type although municipality w<strong>at</strong>er<br />

which w<strong>at</strong>ers the spa is Na–Cl type. The Ca–HCO 3 represents the aquifer<br />

of local groundw<strong>at</strong>er system <strong>in</strong> Philadelphia area. The lake w<strong>at</strong>ers are<br />

Na–Cl, however when the lake began to evapor<strong>at</strong>e until the evapor<strong>at</strong><strong>in</strong>g<br />

conditions were such th<strong>at</strong> lake w<strong>at</strong>er is nearly totally evapor<strong>at</strong>ed, then<br />

the residual w<strong>at</strong>er is Na–Cl(CO 3 –SO 4 ) type. Fig. 2 presents the<br />

<strong>Pikrolimni</strong> area w<strong>at</strong>er, groundw<strong>at</strong>er and <strong>Pikrolimni</strong> br<strong>in</strong>e, <strong>in</strong> terms of<br />

the major ions. The groundw<strong>at</strong>ers are predom<strong>in</strong>antly HCO 3 , whereas the<br />

c<strong>at</strong>ions are mixtures of Na, Ca and Mg. In contrast, the c<strong>at</strong>ions of the<br />

br<strong>in</strong>es are dom<strong>in</strong><strong>at</strong>ed by Na and the anions are a mixture. This d<strong>at</strong>a is <strong>in</strong><br />

agreement with the model proposed by Hardie and Eugster (1970).<br />

The <strong>Pikrolimni</strong> sal<strong>in</strong>e alkal<strong>in</strong>e lake is enriched <strong>in</strong> dissolved m<strong>in</strong>erals<br />

th<strong>at</strong> have accumul<strong>at</strong>ed <strong>in</strong> the br<strong>in</strong>es follow<strong>in</strong>g evapor<strong>at</strong>ion. Such br<strong>in</strong>es<br />

<strong>in</strong>dic<strong>at</strong>e a very considerable range <strong>in</strong> ionic composition and concentr<strong>at</strong>ion.<br />

The total sal<strong>in</strong>ity ranges from sal<strong>in</strong>e w<strong>at</strong>er to br<strong>in</strong>e: total dissolved<br />

solid (TDS) concentr<strong>at</strong>ions rang<strong>in</strong>g from 7.5 to 426 g/L. The pH ranges<br />

from 8.8 to 10.5 and <strong>in</strong>creases as sal<strong>in</strong>ity <strong>in</strong>creases. The surface w<strong>at</strong>er<br />

temper<strong>at</strong>ure is between 22 and 31 °C. All the sal<strong>in</strong>e lake w<strong>at</strong>ers are Na–<br />

Cl type, with Na + and Cl − represent<strong>in</strong>g about 95% and 70% respectively<br />

of the total c<strong>at</strong>ions and anions. Concentr<strong>at</strong>ions of Ca 2+ and Mg 2+ are<br />

very low <strong>in</strong> the br<strong>in</strong>es of 8/2002 and 9/2006.<br />

The two types of groundw<strong>at</strong>er of <strong>Pikrolimni</strong> area, Na–HCO 3 ,Mg–<br />

HCO 3 types, are tepid (temper<strong>at</strong>ure rang<strong>in</strong>g from 18 to 30 °C), nearneutral<br />

to alkal<strong>in</strong>e (pH rang<strong>in</strong>g from 6.3 to 9.8) and have total<br />

sal<strong>in</strong>ities th<strong>at</strong> range from fresh to brackish w<strong>at</strong>er: total dissolved solid<br />

(TDS) concentr<strong>at</strong>ions rang<strong>in</strong>g from 0.50 to 4.5 g/L. This variability of<br />

TDS is due to the HCO 3 − concentr<strong>at</strong>ions.<br />

The dom<strong>in</strong>ant ionic species <strong>in</strong> the Na–HCO 3 (soda) groundw<strong>at</strong>er<br />

are Na + and HCO 3 − –CO 3 2− with these two ions compris<strong>in</strong>g 70–80% of<br />

all ions <strong>in</strong> solution. The concentr<strong>at</strong>ion of other major ions is low, with<br />

Mg 2+ and Ca 2+ contents less than 2 mmol/L. The Cl − ,K + and SO 4<br />

2−<br />

concentr<strong>at</strong>ions are also low.<br />

In the Mg–HCO 3 type w<strong>at</strong>er the dom<strong>in</strong>ant ionic species are Mg 2+<br />

and HCO 3 − –CO 3 2− with these two ions compris<strong>in</strong>g 70–80% of all ions <strong>in</strong><br />

solution.<br />

The Na–HCO 3 w<strong>at</strong>ers were found <strong>in</strong> the <strong>Pikrolimni</strong>/Ker<strong>at</strong>ea area,<br />

approxim<strong>at</strong>ely 2 km away from <strong>Lake</strong> <strong>Pikrolimni</strong>, and these w<strong>at</strong>ers end up<br />

<strong>in</strong> the bas<strong>in</strong> of <strong>Lake</strong> <strong>Pikrolimni</strong>. Sample Ker<strong>at</strong>ea (IGME, unpublished d<strong>at</strong>a)<br />

belongs <strong>in</strong> this c<strong>at</strong>egory, which was measured with SiO 2 =31 mg/L and<br />

CO 2 =668 mg/L. The Mg–HCO 3 groundw<strong>at</strong>er was found with<strong>in</strong> the<br />

Holocene lacustr<strong>in</strong>e sediments of <strong>Pikrolimni</strong>. Sample <strong>Pikrolimni</strong>-mud of<br />

2000 (Manasis Mitrakas, unpublished d<strong>at</strong>a) belongs <strong>in</strong> this w<strong>at</strong>er type,<br />

which was measured SiO 2 =47 mg/L and CO 2 =1650 mg/L. These<br />

w<strong>at</strong>ers, of meteoric orig<strong>in</strong>, flow through the clay m<strong>in</strong>erals, rich <strong>in</strong> mica,<br />

altern<strong>at</strong><strong>in</strong>g with carbon<strong>at</strong>e rocks. The Mesozoic and Paleozoic basements<br />

<strong>in</strong> the area consist of basic–mafic rocks. When the aquifer m<strong>at</strong>rix<br />

is composed of alluvial fill, silic<strong>at</strong>e hydrolysis is the typically <strong>in</strong>voked<br />

explan<strong>at</strong>ion for the form<strong>at</strong>ion of Mg–HCO 3 groundw<strong>at</strong>er and Na–HCO 3<br />

groundw<strong>at</strong>er. So it is tempt<strong>in</strong>g to assume th<strong>at</strong> this process is controll<strong>in</strong>g<br />

the w<strong>at</strong>er chemistry. However, many other we<strong>at</strong>her<strong>in</strong>g reactions<br />

contribute to the solute load of <strong>in</strong>flow w<strong>at</strong>ers. Thus, reconsider<strong>in</strong>g the<br />

facts and d<strong>at</strong>a, it could be said th<strong>at</strong> generally ra<strong>in</strong> w<strong>at</strong>er and we<strong>at</strong>her<strong>in</strong>g<br />

reactions are the pr<strong>in</strong>cipal solute <strong>source</strong>s. Ra<strong>in</strong> w<strong>at</strong>er contributes to all<br />

pr<strong>in</strong>cipal solutes of dilute w<strong>at</strong>ers, except<strong>in</strong>g silica, but the most<br />

significant contribution will be to Na + , Cl − , SO 4 2− and HCO 3 − . The<br />

amounts of these solutes vary with the distance from seaw<strong>at</strong>er and<br />

pollution. Regard<strong>in</strong>g the we<strong>at</strong>her<strong>in</strong>g reactions, one of the most<br />

important is the congruent dissolution of soluble m<strong>in</strong>erals, e.g. gypsum<br />

or halite th<strong>at</strong> can load the solution with very high concentr<strong>at</strong>ion — this is<br />

a very important mechanism for recycl<strong>in</strong>g evaporites — and the silic<strong>at</strong>e<br />

hydrolysis. The alter<strong>at</strong>ion of feldspar to clay m<strong>in</strong>erals charges the w<strong>at</strong>ers<br />

with Na + ,HCO 3 − and silica. Other silic<strong>at</strong>es provide the additional c<strong>at</strong>ions<br />

Ca 2+ , Mg 2+ and K + but such w<strong>at</strong>ers are always dom<strong>in</strong><strong>at</strong>ed by<br />

bicarbon<strong>at</strong>e derived by <strong>at</strong>mosphere or from soil processes. The <strong>in</strong>crease<br />

<strong>in</strong> Ca 2+ ,Na + ,Mg 2+ versus HCO 3 − from the <strong>Pikrolimni</strong>/Ker<strong>at</strong>ea area<br />

(nr. 1,2,3,19) to boreholes (nr. 4 to 16) near <strong>Lake</strong> <strong>Pikrolimni</strong> seems to<br />

support silic<strong>at</strong>e hydrolysis as the we<strong>at</strong>her<strong>in</strong>g reactions th<strong>at</strong> contribute<br />

to the solute load of <strong>in</strong>flow w<strong>at</strong>er. However silic<strong>at</strong>e hydrolysis cannot be<br />

the only control on the w<strong>at</strong>er chemistry. Moreover, the critical control<br />

on the precipit<strong>at</strong>ion of trona, <strong>in</strong> <strong>Lake</strong> <strong>Pikrolimni</strong> w<strong>at</strong>ers, is the rel<strong>at</strong>ive<br />

amount of Ca 2+ and CO 3<br />

2−<br />

TOT ([CO 3 2− ]+[HCO 3 − ]+[H 2 CO 3 ], where<br />

bracketed symbols refer to concentr<strong>at</strong>ion) <strong>in</strong> the w<strong>at</strong>er to be<br />

evapor<strong>at</strong>ed. Accord<strong>in</strong>g to the conceptual model of Hardie–Eugster<br />

of evaporites form<strong>at</strong>ion (Hardie and Eugster, 1970), the first m<strong>in</strong>eral<br />

Fig. 2. Ternary diagrams of w<strong>at</strong>er samples from <strong>Pikrolimni</strong> area. White diamonds: Mg–HCO 3 groundw<strong>at</strong>ers; white circles: Na–HCO 3 groundw<strong>at</strong>ers; white squares: Ca–HCO 3<br />

groundw<strong>at</strong>ers; black diamonds: <strong>Pikrolimni</strong> <strong>Lake</strong> br<strong>in</strong>es.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!