16.01.2015 Views

Lecture 9: Controllability and Observability - Illinois Institute of ...

Lecture 9: Controllability and Observability - Illinois Institute of ...

Lecture 9: Controllability and Observability - Illinois Institute of ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Modern Control Systems<br />

Matthew M. Peet<br />

<strong>Illinois</strong> <strong>Institute</strong> <strong>of</strong> Technology<br />

<strong>Lecture</strong> 9: <strong>Controllability</strong> <strong>and</strong> <strong>Observability</strong>


<strong>Controllability</strong><br />

We would like to prove that<br />

To do this, we will prove that<br />

• Im(W t ) ⊂ R t<br />

• R t ⊂ Im(C(A, B))<br />

• Im(C(A, B)) ⊂ Im(W t )<br />

So far, we have show that<br />

R t = Im(W t ) = Im(C(A, B))<br />

Next, we will show that<br />

R t ⊂ C AB<br />

Im(W t ) ⊂ R t<br />

M. Peet <strong>Lecture</strong> 9: <strong>Controllability</strong> 2 / 15


This pro<strong>of</strong> M. Peet is especially useful, as it gives the<strong>Lecture</strong> control 9: <strong>Controllability</strong> input which will get us to x3 / 15<br />

<strong>Controllability</strong>: Im(W t ) ⊂ R t<br />

Theorem 1.<br />

Im(W t ) ⊂ R t<br />

Pro<strong>of</strong>.<br />

First, suppose that x ∈ Im(W t ) for some t > 0. Then x = W t z for some z.<br />

• Now let u(s) = B T e AT (t−s) z. Then<br />

Γ t u =<br />

=<br />

∫ t<br />

0<br />

∫ t<br />

= W t z = x<br />

• Thus x ∈ Im(Γ t ) = R t .<br />

We conclude that Im(W t ) ⊂ R t<br />

0<br />

e A(t−s) Bu(s)ds<br />

e A(t−s) BB T e AT (t−s) zds


Pro<strong>of</strong> by Contradiction: Im(C(A, B)) ⊂ Im(W t )<br />

The last pro<strong>of</strong> is a pro<strong>of</strong> by contradiction.<br />

Once you eliminate the impossible, whatever remains, no matter how<br />

improbable, must be the truth.<br />

There are two mutually exclusive possibilities<br />

1. x ∈ Im(C(A, B)) ⊂ Im(W t )<br />

2. There exists some x ∈ Im(C(A, B)) such that x ∉ Im(W t ) .<br />

We eliminate the second possibility by showing that:<br />

• If x ∉ Im(W t ) then x ∉ Im(C(A, B)).<br />

In shorth<strong>and</strong>:<br />

(¬2 ⇒ ¬1) ⇔ (1 → 2)<br />

An alternative would be to find an x which disproves the second possibility.<br />

M. Peet <strong>Lecture</strong> 9: <strong>Controllability</strong> 4 / 15


Pro<strong>of</strong> by Contradiction: Im(C(A, B)) ⊂ Im(W t )<br />

Theorem 2.<br />

Im(C(A, B)) ⊂ Im(W t ).<br />

Pro<strong>of</strong>.<br />

Suppose x ∉ Im(W t ). Then x ∈ Im(W t ) ⊥ .<br />

• As we have shown, this means x ∈ ker(W t ), so W t x = 0.<br />

• Thus<br />

x T W t x =<br />

=<br />

∫ t<br />

0<br />

∫ t<br />

0<br />

x T e A(t−s) BB T e AT (t−s) xds<br />

u(s) T u(s)ds = 0<br />

where u(s) = B T e AT (t−s) x.<br />

• This implies u(s) = B T e AT (t−s) x = 0 for all s ∈ [0, t].<br />

M. Peet <strong>Lecture</strong> 9: <strong>Controllability</strong> 5 / 15


Pro<strong>of</strong> by Contradiction: Im(C(A, B)) ⊂ Im(W t )<br />

Pro<strong>of</strong>.<br />

• This means that for all s ∈ [0, t],<br />

d k<br />

ds k BT e AT s x = B T ( A T ) k<br />

e<br />

A T s x = 0<br />

• At s = 0, this implies B T ( A T ) k<br />

x = 0 for all k.<br />

• We conclude that<br />

x T [ B AB · · · A n−1 B ] = 0<br />

• Thus C(A, B) T x = 0, so x ∈ ker C(A, B) T . As before, this means<br />

x ∈ Im(C(A, B)) ⊥ .<br />

• We conclude that x ∉ Im(C(A, B)). This proves by contradiction that<br />

Im(C(A, B)) ⊂ Im(W t ).<br />

M. Peet <strong>Lecture</strong> 9: <strong>Controllability</strong> 6 / 15


Summary: R t = Im(W t ) = Im(C(A, B))<br />

We have shown that<br />

R t = Im(W t ) = Im(C(A, B))<br />

Moreover, we have shown that for any x d ∈ R Tf , we can find a controller<br />

• Choose any z such that x d = W Tf z. (z = W −1<br />

T f<br />

x if W Tf is invertible)<br />

• Let u(t) = B T e AT (T f −t) z.<br />

• Then the system ẋ(t) = Ax(t) + B(t) with x(0) = 0 has solution with<br />

x(T f ) = x d .<br />

• x d = Γ Tf u.<br />

M. Peet <strong>Lecture</strong> 9: <strong>Controllability</strong> 7 / 15


Representation <strong>and</strong> <strong>Controllability</strong><br />

Question: Is the representation (A, B, C, D) <strong>of</strong> the system y = Gu,<br />

unique<br />

ẋ(t) = Ax(t) + Bu(t)<br />

y(t) = Cx(t) + Du(t)<br />

Question: Do there exist (Â, ˆB, Ĉ, ˆD) such that y <strong>and</strong> u also satisfy,<br />

ẋ(t) = Âx(t) + ˆBu(t)<br />

y(t) = Ĉx(t) + ˆDu(t)<br />

Answer: Of Course! Recall the similarity transform: z(t) = T x(t) for any<br />

invertible T . Then y <strong>and</strong> u also satisfy,<br />

ż(t) = T ẋ(t) = T Ax(t) + T Bu(t)<br />

= T AT −1 z(t) + T Bu(t)<br />

y(t) = Cx(t) + Du(t)<br />

= CT −1 x(t) + Du(t)<br />

M. Peet <strong>Lecture</strong> 9: <strong>Controllability</strong> 8 / 15


Representation <strong>and</strong> <strong>Controllability</strong><br />

Thus the pair (T AT −1 , T B, CT −1 , D) is also a representation <strong>of</strong> the map<br />

y = Gu.<br />

• Furthermore x(t) → 0 if <strong>and</strong> only if z(t) → 0.<br />

• So internal stability is unaffected.<br />

<strong>Controllability</strong> is Unaffected:<br />

C(T AT −1 , T B) = [ T B T AT −1 T B T AT −1 T AT −1 T B · · · T A n−1 B ]<br />

= T C(A, B)<br />

M. Peet <strong>Lecture</strong> 9: <strong>Controllability</strong> 9 / 15


Invariant Subspaces<br />

Definition 3.<br />

A subspace, W ⊂ X, is Invariant under the operator A : X → X if x ∈ W<br />

implies Ax ∈ W .<br />

For a linear operator, only subspaces can be invariant.<br />

Proposition 1.<br />

If W if A-invariant, then there exists an invertible T , such that<br />

]<br />

[ [Ā11<br />

T AT −1 Ā<br />

=<br />

12<br />

I<br />

<strong>and</strong> T W = Im<br />

Ā 21 Ā 22 0]<br />

That is, for any x ∈ W , T x =<br />

] [¯x1<br />

, which is clearly<br />

0<br />

Ā-invariant.<br />

M. Peet <strong>Lecture</strong> 9: <strong>Controllability</strong> 10 / 15


Invariant Subspaces<br />

Proposition 2.<br />

C AB is A-invariant.<br />

Pro<strong>of</strong>.<br />

The pro<strong>of</strong> is direct<br />

A · C(A, B) = A [ B AB · · · A n−1 B ] = [ AB A 2 B · · · A n B ]<br />

But, by Cayley-Hamilton,<br />

A n =<br />

n−1<br />

∑<br />

a i A i<br />

so if x ∈ C AB , there exists a z such that<br />

Ax = A [ B AB · · · A n−1 B ] z<br />

⎡<br />

⎤<br />

z n a 0<br />

= [ B · · · A n−1 B ] z 1 + z n a 1<br />

⎢<br />

⎥<br />

⎣ . ⎦ ∈ C AB<br />

z n+1 + z n a n−1<br />

i=0<br />

M. Peet <strong>Lecture</strong> 9: <strong>Controllability</strong> 11 / 15


<strong>Controllability</strong> Form<br />

Since C AB is an invariant subspace <strong>of</strong> A, there exists an invertible T such that<br />

]<br />

[Ā11<br />

T AT −1 Ā<br />

=<br />

12<br />

0 Ā 22<br />

[¯x<br />

<strong>and</strong> T x = for any x ∈ C<br />

0]<br />

AB .<br />

• Clearly B ∈ C AB .<br />

[ ] ¯B1<br />

• Thus T B = .<br />

0<br />

Definition 4.<br />

The pair (A, B) is in <strong>Controllability</strong> Form when<br />

[ ]<br />

A11 A<br />

A =<br />

12<br />

<strong>and</strong> B =<br />

0 A 22<br />

<strong>and</strong> the pair (A 11 , B 1 ) is controllable.<br />

[ ]<br />

B1<br />

,<br />

0<br />

M. Peet <strong>Lecture</strong> 9: <strong>Controllability</strong> 12 / 15


<strong>Controllability</strong> Form<br />

When a system is in controllability form, the dynamics have special structure<br />

ẋ 1 (t) = A 11 x 1 (t) + A 12 x 2 (t) + B 1 u(t)<br />

ẋ 2 (t) = A 22 x 2 (t)<br />

The uncontrolled dynamics are autonomous.<br />

• Cannot be stabilized or controlled.<br />

We can formulate a procedure for putting a system in <strong>Controllability</strong> Form<br />

1. Find an orthonormal basis, [ ]<br />

v 1 · · · v r for CAB .<br />

2. Complete the basis in R n : [ ]<br />

v r+1 · · · v n .<br />

3. Define T = [ ]<br />

v 1 · · · v n .<br />

4. Construct Ā = T AT −1 <strong>and</strong> ¯B = T B<br />

◮ Works for ANY invariant subspace.<br />

M. Peet <strong>Lecture</strong> 9: <strong>Controllability</strong> 13 / 15


<strong>Controllability</strong> Form<br />

Example<br />

Let<br />

⎡<br />

1 −1<br />

⎤<br />

0<br />

⎡ ⎤<br />

1<br />

A = ⎣−1 1 0 ⎦ <strong>and</strong> B = ⎣0⎦<br />

0 0 −1<br />

0<br />

Construct C(A, B) = [ B AB A 2 B ] .<br />

⎡<br />

1 −1<br />

⎤ ⎡ ⎤<br />

0 1<br />

⎡ ⎤<br />

1<br />

AB = ⎣−1 1 0 ⎦ ⎣0⎦ = ⎣−1⎦ ,<br />

0 0 −1 0 0<br />

⎡<br />

⎤ ⎡ ⎤ ⎡ ⎤<br />

1 −1 0 1 0<br />

A 2 B = A(AB) = ⎣−1 1 0 ⎦ ⎣−1⎦ = ⎣0⎦<br />

0 0 −1 0 0<br />

Thus<br />

⎡<br />

1 1<br />

⎤<br />

0<br />

C(A, B) = ⎣0 −1 0⎦<br />

0 0 0<br />

Thus rank C(A, B) = 2 < n = 3 which means not controllable.<br />

M. Peet <strong>Lecture</strong> 9: <strong>Controllability</strong> 14 / 15


<strong>Controllability</strong> Form<br />

Example Continued<br />

Using Gramm-Schmidt, we can construct an orthonormal basis for C AB<br />

⎧⎡<br />

⎤ ⎡ ⎤⎫<br />

⎧⎡<br />

⎤ ⎡ ⎤⎫<br />

⎨ 1 1 ⎬ ⎨ 1 0 ⎬<br />

C AB = span ⎣0⎦ , ⎣−1⎦<br />

⎩<br />

⎭ = span ⎣0⎦ , ⎣1⎦<br />

⎩ ⎭ = span {v 1, v 2 }<br />

0 0<br />

0 0<br />

Let v 3 = [ 0 0 1 ] T<br />

. Then<br />

⎡<br />

T −1 = ⎣ 1 0 0<br />

⎤<br />

0 1 0⎦ = I<br />

0 0 1<br />

So T = I, which is because the system is already in controllability form. We<br />

could also have used<br />

⎡<br />

0 1<br />

⎤<br />

0<br />

⎡<br />

1 −1<br />

⎤<br />

0<br />

T −1 = ⎣1 0 0⎦ to get T AT −1 = ⎣−1 1 0 ⎦ = A<br />

0 0 1<br />

0 0 −1<br />

M. Peet <strong>Lecture</strong> 9: <strong>Controllability</strong> 15 / 15

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!