19.01.2015 Views

Olivo, G.R., Chang, F., and Kyser, T.K., 2006. Formation of the ...

Olivo, G.R., Chang, F., and Kyser, T.K., 2006. Formation of the ...

Olivo, G.R., Chang, F., and Kyser, T.K., 2006. Formation of the ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

©2006 Society <strong>of</strong> Economic Geologists, Inc.<br />

Economic Geology, v. 101, pp. 607–631<br />

<strong>Formation</strong> <strong>of</strong> <strong>the</strong> Auriferous <strong>and</strong> Barren North Dipper Veins in <strong>the</strong> Sigma Mine,<br />

Val d’Or, Canada: Constraints from Structural, Mineralogical, Fluid Inclusion,<br />

<strong>and</strong> Isotopic Data<br />

GEMA RIBEIRO OLIVO, † FELICIA CHANG, AND T. KURTIS KYSER<br />

Department <strong>of</strong> Geological Sciences <strong>and</strong> Geological Engineering, Queen’s University, Kingston, Ontario K7L 3N6, Canada<br />

Abstract<br />

The Sigma-Lamaque mine (>100 metric tons (t) <strong>of</strong> gold) is an example <strong>of</strong> an Archean greenstone belt gold<br />

deposit formed by processes related to multistage hydro<strong>the</strong>rmal fluid circulation. The earliest recognized vein<br />

systems are steeply to moderately dipping fault-fill veins within shear zones <strong>and</strong> contemporaneous subhorizontal<br />

veins, which were overprinted by <strong>the</strong> late North Dipper vein system. The latter strikes east-west, dips<br />

moderately to <strong>the</strong> north, <strong>and</strong> exhibits complex internal geometry with features similar to fault-fill <strong>and</strong> extensional<br />

veins, <strong>and</strong> <strong>the</strong>refore is interpreted as extensional shear veins. This late vein system was considered one<br />

<strong>of</strong> <strong>the</strong> major sources <strong>of</strong> gold in <strong>the</strong> shallow underground <strong>and</strong> open-pit ore reserve estimations.<br />

These late North Dipper veins were studied in detail in <strong>the</strong> Sigma pit where <strong>the</strong>y contain ore-grade gold<br />

<strong>and</strong> are hosted by <strong>the</strong> calc-alkaline tuffs <strong>of</strong> <strong>the</strong> Val d’Or <strong>Formation</strong> <strong>and</strong> in <strong>the</strong> North zone where <strong>the</strong>y are barren<br />

<strong>and</strong> hosted by <strong>the</strong> tholeiitic volcanic rocks <strong>of</strong> <strong>the</strong> Jacola <strong>Formation</strong>. In <strong>the</strong> Sigma pit, <strong>the</strong>se veins have<br />

apparent thicknesses <strong>of</strong> 0.8 to 3 m <strong>and</strong> very irregular contacts with <strong>the</strong> vein walls. They comprise irregular<br />

zones <strong>of</strong> milky quartz filling, disrupted blocks <strong>of</strong> layered quartz <strong>and</strong> tourmaline <strong>and</strong> slabs <strong>of</strong> foliated pyriterich<br />

wall rock. Layers with tourmaline <strong>and</strong> quartz crystals oriented perpendicular to <strong>the</strong> vein walls are<br />

observed close to <strong>the</strong> vein walls. The veins contain minor amounts <strong>of</strong> calcite, pyrite, rutile, <strong>and</strong> traces <strong>of</strong> chlorite,<br />

muscovite, pyrrhotite, chalcopyrite, galena, bismuth tellurides, <strong>and</strong> gold. Locally, <strong>the</strong> sulfide content can<br />

attain 10 modal percent <strong>of</strong> <strong>the</strong> vein mineralogy. In <strong>the</strong> veins, native gold (with 6 wt % Ag) occurs rarely associated<br />

with <strong>the</strong> main vein-filling minerals, commonly as inclusions in pyrite (main vein-filling stage), <strong>and</strong> most<br />

commonly filling fractures in pyrite, tourmaline, <strong>and</strong> quartz, where it is alloyed with 8 to 17 wt percent Ag<br />

<strong>and</strong> is associated with calcite <strong>and</strong> Bi tellurides (late auriferous stage). The proximal wall-rock alteration related<br />

to <strong>the</strong> auriferous North Dipper veins overprints <strong>the</strong> metamorphic assemblage <strong>and</strong> is characterized by abundant<br />

fine-grained plagioclase, calcite, quartz <strong>and</strong> minor chlorite, tourmaline, <strong>and</strong> pyrite in <strong>the</strong> tuffs <strong>and</strong> more<br />

abundant muscovite in <strong>the</strong> intrusive feldspar porphyry. In <strong>the</strong> wall rock, gold with 6 to 28 wt percent Ag is<br />

found locally filling fractures in pyrite, where it is associated with a late generation <strong>of</strong> calcite. The barren<br />

North Dipper vein also comprises mainly quartz <strong>and</strong> tourmaline but lacks calcite <strong>and</strong> gold, has a very low content<br />

<strong>of</strong> sulfides (100 metric tons (t) <strong>of</strong> Au) quartz-carbonate vein deposits,<br />

accounting for about 13 percent <strong>of</strong> <strong>the</strong> world gold production.<br />

In Canada, <strong>the</strong> Archean Abitibi subprovince is <strong>the</strong> main<br />

source <strong>of</strong> gold (4,470 t Au <strong>and</strong> 72.4% <strong>of</strong> Canadian production)<br />

<strong>and</strong> hosts <strong>the</strong> world-class Hollinger-McIntyre-Coniarum,<br />

0361-0128/06/3589/607-25 $6.00 607


608 OLIVO ET AL.<br />

Kirkl<strong>and</strong> Lake, Dome, Kerr Addison, Sigma-Lamaque, <strong>and</strong><br />

Pamour mines (Jenkins et al., 1997). These deposits formed<br />

through complex <strong>and</strong> multistage processes, allowing for concentration<br />

<strong>of</strong> gold at average grades typically around 10 g/t<br />

<strong>and</strong> locally attaining more than 100 g/t.<br />

Most studies <strong>of</strong> <strong>the</strong> processes related to <strong>the</strong> gold concentration<br />

in <strong>the</strong>se world-class deposits have focused on <strong>the</strong> ore<br />

zones with less attention on <strong>the</strong> related veins <strong>and</strong> alteration<br />

systems that are barren. The youngest vein system in <strong>the</strong><br />

Sigma deposit in <strong>the</strong> Abitibi greenstone belt, <strong>the</strong> North Dipper<br />

system (Gaboury et al., 2001), provides an opportunity to<br />

evaluate <strong>the</strong> processes related to ore formation because this<br />

system is relatively young <strong>and</strong> less deformed than early systems,<br />

<strong>and</strong> auriferous <strong>and</strong> barren veins are well exposed in <strong>the</strong><br />

Sigma pit <strong>and</strong> in <strong>the</strong> North zone, respectively, allowing for detailed<br />

mapping <strong>and</strong> sampling.<br />

In this study, detailed field observations reveal that <strong>the</strong><br />

geometry <strong>of</strong> <strong>the</strong> plumbing system <strong>and</strong> its position relative to<br />

<strong>the</strong> major fluid conduit are fundamental for formation <strong>of</strong> <strong>the</strong><br />

auriferous zones. Petrographic descriptions, micro<strong>the</strong>rmometry,<br />

crush-leach chemical analyses, <strong>and</strong> time-<strong>of</strong>-flight laser ablation<br />

induced coupled plasma-mass spectrometry (TOF-LA-<br />

ICPMS) <strong>of</strong> fluid inclusions, <strong>and</strong> stable isotope data also show<br />

that <strong>the</strong> mechanisms for gold precipitation in <strong>the</strong> North Dipper<br />

<strong>and</strong> related veins changed during <strong>the</strong> evolution <strong>of</strong> <strong>the</strong> system.<br />

Comparisons <strong>of</strong> <strong>the</strong> elements enriched in <strong>the</strong> auriferous<br />

fluids versus <strong>the</strong> barren fluids suggest various sources for <strong>the</strong><br />

metals associated with <strong>the</strong> gold, <strong>and</strong> <strong>the</strong> isotopic composition<br />

<strong>of</strong> <strong>the</strong> fluids that carried <strong>the</strong> gold indicates low fluid/rock<br />

ratios.<br />

Regional Geologic <strong>and</strong> Tectonic Setting<br />

The Val d’Or district is located in <strong>the</strong> eastern segment <strong>of</strong><br />

<strong>the</strong> sou<strong>the</strong>rn Volcanic zone (Daigneault et al., 2002) <strong>of</strong> <strong>the</strong><br />

Archean Abitibi subprovince at <strong>the</strong> boundary with <strong>the</strong> Pontiac<br />

subprovince (Fig. 1). This boundary is characterized by<br />

an extensive deformation zone, referred to as <strong>the</strong> Larder<br />

Lake-Cadillac break, which is interpreted as a suture zone between<br />

<strong>the</strong>se two subprovinces (Robert et al., 1995). The<br />

Larder Lake-Cadillac break major fault zone dips to <strong>the</strong> north<br />

<strong>and</strong> is spatially associated with numerous gold deposits <strong>and</strong><br />

occurrences (Robert, 1989, 1994). The geology <strong>of</strong> <strong>the</strong> Val<br />

d’Or district has been described by Gunning <strong>and</strong> Ambrose<br />

(1940), Norman 1947), Latulippe (1966), Dimroth et al.<br />

(1982, 1983a, b), Imreh (1984), Desrochers et al. (1993),<br />

Desrochers <strong>and</strong> Hubert (1996), <strong>and</strong> recently reviewed by Pilote<br />

et al. (1997, 1998, 1999, 2000) <strong>and</strong> Scott et al. (2002). Information<br />

from <strong>the</strong>se sources, as well as from specific studies<br />

in <strong>the</strong> area, is briefly summarized below.<br />

The Val d’Or district comprises a complex sequence <strong>of</strong> volcanic-sedimentary<br />

<strong>and</strong> intrusive rocks that evolved from<br />

2714 to 2611 Ma. The volcanic-sedimentary sequences are<br />

part <strong>of</strong> <strong>the</strong> Malartic Group (i.e., La Motte-Vasson, Dubuisson,<br />

Lac Caste, <strong>and</strong> Jacola <strong>Formation</strong>s) <strong>and</strong> <strong>the</strong> Louvicourt<br />

Group (Val d’Or <strong>and</strong> Héva <strong>Formation</strong>s: Scott et al., 2002).<br />

The Malartic Group comprises mainly ocean floor komatiite<br />

<strong>and</strong> tholeiitic basalt flows <strong>and</strong> sills, with minor sedimentary<br />

rocks, which are interpreted to be formed in an extensional<br />

environment related to mantle plumes. The Louvicourt<br />

Group is composed mainly <strong>of</strong> mafic to felsic volcanic rocks<br />

that formed in a subduction-related deep marine volcanic<br />

arc. The studied barren <strong>and</strong> auriferous veins are hosted in <strong>the</strong><br />

transition zone between <strong>the</strong> Jacola <strong>and</strong> Val d’Or <strong>Formation</strong>s,<br />

which are described below.<br />

The Jacola <strong>Formation</strong> extends for more than 5 km <strong>and</strong> consists<br />

<strong>of</strong> a 1- to 2-km-thick sequence <strong>of</strong> pillowed, brecciated,<br />

<strong>and</strong> massive tholeiitic basalts, intercalated with komatiite <strong>and</strong><br />

massive to pillowed komatiite flows (100–200 m thick). Discontinuous<br />

interflow volcaniclastic deposits occur locally <strong>and</strong><br />

have been dated at 2703.08 ± 1.3 Ma (Pilote et al., 1999). This<br />

sequence is interpreted to represent fissure-style eruptions<br />

formed in a proto-arc environment. The contact between <strong>the</strong><br />

Jacola <strong>and</strong> Val d’Or <strong>Formation</strong>s to <strong>the</strong> south is gradational <strong>and</strong><br />

interefingers laterally (Dimroth et al., 1982), being characterized<br />

by a significant increase in <strong>the</strong> volume <strong>of</strong> volcaniclastic<br />

deposits <strong>and</strong> a change to intermediate <strong>and</strong> felsic composition<br />

at <strong>the</strong> base <strong>of</strong> <strong>the</strong> Val d’Or <strong>Formation</strong> (Scott et al., 2002).<br />

The overlying Val d’Or <strong>Formation</strong> is composed <strong>of</strong> a 3- to 5-<br />

km-thick sequence <strong>of</strong> discontinuous, interstratified, massive to<br />

pillowed lavas <strong>and</strong> volcaniclastic deposits <strong>of</strong> <strong>and</strong>esite (50%),<br />

dacite (30%), <strong>and</strong> rhyolite (20%). The lower units are tholeiitic<br />

to intermediate, <strong>and</strong> <strong>the</strong> upper units are intermediate to<br />

calc-alkaline in composition. The dacitic <strong>and</strong> rhyolitic units<br />

have an age <strong>of</strong> 2704 ± 2 Ma (Wong et al., 1991; Machado et al.,<br />

1992; Pilote et al., 1998). The distribution <strong>and</strong> composition <strong>of</strong><br />

<strong>the</strong> Val d’Or <strong>Formation</strong> rocks suggest that <strong>the</strong>y formed as numerous<br />

small volcanic vents analogous to a modern arc setting<br />

(Scott et al., 2002). Primary volcanic features in both formations<br />

indicate younging directions toward <strong>the</strong> south.<br />

These volcanic <strong>and</strong> sedimentary sequences are intruded by<br />

felsic to mafic bodies that have been grouped into three<br />

classes (Pilote et al., 2000): (1) 2700 Ma synvolcanic (Wong et<br />

al., 1991) stocks <strong>and</strong> batholiths, (2) 2680 Ma syn- to late-tectonic<br />

intrusions (Jemielita et al., 1990; Pilote et al., 1998), <strong>and</strong><br />

(3) late- to post-tectonic, undeformed <strong>and</strong> unmetamorphosed<br />

stocks <strong>and</strong> dikes intruded between 2675 <strong>and</strong> 2611 Ma (Feng<br />

<strong>and</strong> Kerrich, 1991; Ducharme et al., 1997).<br />

All <strong>the</strong>se units, with <strong>the</strong> exception <strong>of</strong> <strong>the</strong> late stocks <strong>and</strong><br />

dikes, have been metamorphosed to greenschist facies <strong>and</strong><br />

multiply deformed in three major phases (Robert, 1990a, b;<br />

Desrochers <strong>and</strong> Hubert, 1996). The first phase <strong>of</strong> deformation<br />

(D 1 ) is recognized only locally; <strong>the</strong> second phase (D 2 ) is<br />

<strong>the</strong> dominant structural trend in <strong>the</strong> area <strong>and</strong> is characterized<br />

by tight <strong>and</strong> isoclinal folds, a regionally penetrative subvertical<br />

east-west foliation, faults, <strong>and</strong> shear zones. Gold deposits<br />

in <strong>the</strong> Val d’Or disctrict are hosted or spatially associated with<br />

<strong>the</strong>se faults <strong>and</strong> shear zones. The D 2 deformation event is estimated<br />

to have occurred after 2672 Ma, <strong>the</strong> age <strong>of</strong> <strong>the</strong> detrital<br />

zircons in sedimentary units folded by D 2 (Robert, 2001,<br />

<strong>and</strong> references <strong>the</strong>rein). The D 3 phase <strong>of</strong> deformation is characterized<br />

by steep, open folds <strong>and</strong> associated east-nor<strong>the</strong>ast<br />

crenulation cleavage <strong>and</strong> also involved <strong>the</strong> reactivation <strong>of</strong> <strong>the</strong><br />

D 1 <strong>and</strong> D 2 faults <strong>and</strong> shear zones.<br />

Sigma Mine Geology: Host Rocks <strong>and</strong> Vein Systems<br />

The geology <strong>and</strong> auriferous vein systems <strong>of</strong> <strong>the</strong> Sigma mine<br />

have been described by Robert (1983), Robert <strong>and</strong> Brown<br />

(1986a, b), Robert et al. (1995), Gar<strong>of</strong>alo (2000), <strong>and</strong> Gaboury<br />

et al. (2001). The relevant features observed by <strong>the</strong> authors,<br />

integrated with previous studies, are presented below.<br />

0361-0128/98/000/000-00 $6.00 608


FORMATION OF THE AURIFEROUS AND BARREN VEINS IN THE SIGMA MINE, VAL D’OR 609<br />

FIG. 1. Simplified geologic map <strong>of</strong> <strong>the</strong> Val d’Or mining district, showing <strong>the</strong> location <strong>of</strong> <strong>the</strong> Sigma mine <strong>and</strong> <strong>the</strong> North<br />

zone, which host <strong>of</strong> <strong>the</strong> barren veins. Twelve o<strong>the</strong>r gold deposits are also shown (after Imreh, 1984; Robert, 1989; Sauvé et<br />

al., 1993; <strong>and</strong> Pilote et al., 2000).<br />

0361-0128/98/000/000-00 $6.00 609


610 OLIVO ET AL.<br />

Host rocks<br />

The auriferous veins <strong>of</strong> <strong>the</strong> Sigma mine are hosted exclusively<br />

in <strong>the</strong> Val d’Or <strong>Formation</strong> <strong>and</strong> <strong>the</strong>ir intrusive rocks<br />

(Fig. 2). The Val d’Or <strong>Formation</strong> in <strong>the</strong> mine site comprises<br />

mainly calc-alkaline, <strong>and</strong>esitic, massive to pillow lavas intercalated<br />

with volcaniclastic horizons <strong>and</strong> porphyritic phases<br />

(Robert, 1983). The host rocks <strong>of</strong> <strong>the</strong> studied auriferous veins<br />

in <strong>the</strong> Sigma open pit are mainly lapilli tuffs <strong>and</strong> minor lapilli<br />

tuff breccias (West zone) <strong>and</strong> crystal tuffs (Central zone; Fig.<br />

3A-B), described in detail by <strong>Chang</strong> (2002).<br />

The studied barren North Dipper vein system crops out in<br />

<strong>the</strong> North zone property (Fig. 4), located about 500 m north<br />

<strong>of</strong> <strong>the</strong> Sigma mine open pit (Fig. 2). The rocks in this property<br />

comprise mainly pillowed basaltic <strong>and</strong>esite with minor<br />

massive flows <strong>and</strong> lapilli tuff. Preserved primary volcanic<br />

structures indicate south-facing directions. The pillows are<br />

deformed, showing an elongated shape, averaging 0.3 m in<br />

width <strong>and</strong> 1.5 m in length, with weak foliation striking eastwest<br />

<strong>and</strong> dipping steeply to <strong>the</strong> north. Based on <strong>the</strong>ir chemical<br />

composition, <strong>the</strong>se pillowed units are interpreted as part<br />

<strong>of</strong> <strong>the</strong> Jacola <strong>Formation</strong> <strong>and</strong> are classified as tholeiitic,<br />

basaltic <strong>and</strong>esite to <strong>and</strong>esite (<strong>Chang</strong>, 2002), according to <strong>the</strong><br />

criteria <strong>of</strong> Winchester <strong>and</strong> Floyd (1977) <strong>and</strong> Barrett <strong>and</strong><br />

MacLean (1999), respectively.<br />

Three types <strong>of</strong> feldspar porphyritic intrusive rocks were<br />

identified in <strong>the</strong> study areas. Type 1 feldspar porphyry is<br />

found in <strong>the</strong> Central pit <strong>and</strong> North zones, where it forms irregular<br />

bodies (3–5 m thick), cutting <strong>the</strong> volcanic <strong>and</strong> volcaniclastic<br />

rocks. These dikes are correlated with C porphyry<br />

(mine nomenclature, Robert, 1983), also referred to as porphyritic<br />

diorite (Gaboury et al., 2001). Feldspar porphyry<br />

type 2 was observed only east <strong>of</strong> <strong>the</strong> North zone, where it cuts<br />

feldspar porphyry 1, strikes east-west, dips 84º to <strong>the</strong> south,<br />

FIG. 2. Geology <strong>of</strong> <strong>the</strong> Sigma-Lamaque deposit, showing <strong>the</strong> various host rocks, major shear zones, <strong>and</strong> quartz tourmaline<br />

veins. The zones mapped in detail are indicated by “W” <strong>and</strong> “C” (auriferous West <strong>and</strong> Central zones, respectively) <strong>and</strong><br />

“NZ” (North zone which hosts <strong>the</strong> barren North Dipper vein). Modified after Gaboury et al. (2001).<br />

0361-0128/98/000/000-00 $6.00 610


FORMATION OF THE AURIFEROUS AND BARREN VEINS IN THE SIGMA MINE, VAL D’OR 611<br />

FIG. 3. Detailed geologic sections <strong>of</strong> <strong>the</strong> Sigma pit benches, showing <strong>the</strong> geometry <strong>of</strong> <strong>the</strong> North Dipper <strong>and</strong> North<br />

Dipper-related veins <strong>and</strong> <strong>the</strong>ir host rocks <strong>and</strong> local structures. A. Composite section <strong>of</strong> <strong>the</strong> West zone looking west (<strong>the</strong> left<br />

side) <strong>and</strong> looking north (right side); see coordinates indicating bench direction. B. In <strong>the</strong> Central zone (NE-SW section).<br />

<strong>and</strong> is up to 1.5 m thick. Based on mineralogical <strong>and</strong> textural<br />

features (<strong>Chang</strong>, 2002), this rock is correlated with G porphyry<br />

(mine nomenclature, Gaboury et al., 2001). Type 3<br />

feldspar porphyry occurs as a very weakly foliated, irregular<br />

intrusive massive body in <strong>the</strong> lapilli tuff <strong>of</strong> <strong>the</strong> North zone<br />

(Fig. 4).<br />

The main foliation observed in <strong>the</strong> volcanic, volcaniclastic,<br />

<strong>and</strong> type 1 feldspar porphyry trends east-west, dips steeply to<br />

<strong>the</strong> north (72°–89°), <strong>and</strong> is correlated with <strong>the</strong> regional S 2 foliation<br />

described by Robert (1983) <strong>and</strong> Robert <strong>and</strong> Brown<br />

(1986a, b). The mineral assemblages found in <strong>the</strong> studied<br />

host rocks (plagioclase + chlorite + epidote + rutile; <strong>Chang</strong>,<br />

2002) are compatible with greenschist facies metamorphic<br />

conditions in mafic rocks. These metamorphic phases were<br />

replaced by late muscovite <strong>and</strong> calcite, as observed mainly in<br />

<strong>the</strong> feldspar porphyry type 2 (<strong>Chang</strong>, 2002).<br />

Vein systems<br />

The auriferous veins <strong>of</strong> <strong>the</strong> Sigma mine can be grouped in<br />

four distinct types based on <strong>the</strong>ir structural controls <strong>and</strong> internal<br />

geometries: (1) steeply to moderately dipping fault-fill<br />

veins within shear zones, (2) subhorizontal extensional veins,<br />

0361-0128/98/000/000-00 $6.00 611


612 OLIVO ET AL.<br />

FIG. 4. Geologic map <strong>of</strong> <strong>the</strong> North zone, which hosts <strong>the</strong> barren North Dipper vein. Modified from J. Brault (2000,<br />

unpub. report for Les Mines McWatters, Val d’Or, Quebec, Canada).<br />

(3) arrays <strong>of</strong> subhorizontal veins within <strong>the</strong> feldspar-porphyry<br />

dikes (dike stringers), <strong>and</strong> (4) moderately north dipping extensional<br />

shear veins (North Dipper veins). The first three<br />

types were well documented by Robert (1983) <strong>and</strong> Robert<br />

<strong>and</strong> Brown (1986a, b) <strong>and</strong> <strong>the</strong> fourth type (North Dipper<br />

veins) was structurally characterized by Gaboury et al. (2001)<br />

<strong>and</strong> is <strong>the</strong> subject <strong>of</strong> this detailed research. The various types<br />

<strong>of</strong> mineralized veins are composed mainly <strong>of</strong> quartz <strong>and</strong> tourmaline<br />

with variable amounts <strong>of</strong> carbonate (mainly calcite),<br />

pyrite, chalcopyrite, <strong>and</strong> scheelite <strong>and</strong> formed contemporaneously<br />

with <strong>the</strong> development <strong>of</strong> second- <strong>and</strong> third-order<br />

shear zones during an advanced stage <strong>of</strong> D 2 deformation<br />

(Robert, 1990a, b, 1994; Couture et al., 1994, Gaboury et al.,<br />

2001). Their major characteristics are summarized in Table 1.<br />

The North Dipper Systems<br />

The North Dipper veins exhibit complex internal geometry<br />

with features similar to fault-fill <strong>and</strong> extensional subhorizontal<br />

veins <strong>and</strong> are interpreted by Gaboury et al (2001) to be extensional<br />

shear veins. They strike east-west <strong>and</strong> dip moderately<br />

(35 º–65º) toward <strong>the</strong> north, are relatively continuous<br />

along strike for more than 1 km, <strong>and</strong> occur more commonly<br />

within a 100-m-wide zone between <strong>the</strong> Main <strong>and</strong> A-F dike<br />

swarm corridors (Gaboury et al., 2001, fig. 4). Their spatial<br />

distributions <strong>and</strong> relationships with <strong>the</strong> extensional <strong>and</strong> shear<br />

veins suggest that <strong>the</strong>y may represent linking structures between<br />

subhorizontal veins, which are related to a conjugate<br />

pair <strong>of</strong> low-angle reverse faults formed during a more advanced<br />

stage <strong>of</strong> fracture development (Gaboury et al., 2001).<br />

The North Dipper system has recently been recognized as<br />

one <strong>of</strong> <strong>the</strong> four major types <strong>of</strong> auriferous veins in <strong>the</strong> evaluation<br />

<strong>of</strong> <strong>the</strong> ore reserves by G. A. Armbrust, P. E. S<strong>and</strong>efir, <strong>and</strong><br />

K. L. Meyer (unpub. report for Century Mining Corp., Val<br />

d’Or, Quebec, 2005). However, <strong>the</strong> reserve estimations do not<br />

explicitly outline <strong>the</strong> contributions <strong>of</strong> each vein type because<br />

<strong>the</strong> various types commonly occur in <strong>the</strong> same area.<br />

The North Dipper veins <strong>and</strong> <strong>the</strong>ir related veins systems<br />

were studied in detail at two ore-bearing areas in <strong>the</strong> Sigma<br />

open pit (West <strong>and</strong> Central pit zones, referred to as “Sigma<br />

North Dipper” veins), with average gold grades <strong>of</strong> 5 to10 g/t<br />

(locally 120 g/t Au), <strong>and</strong> one barren area outside <strong>of</strong> <strong>the</strong> open<br />

pit zones, <strong>the</strong> North zone (referred to as “North zone North<br />

Dipper” veins), where <strong>the</strong> vein has gold grades lower than detection<br />

limit (


FORMATION OF THE AURIFEROUS AND BARREN VEINS IN THE SIGMA MINE, VAL D’OR 613<br />

TABLE 1. Summary <strong>of</strong> <strong>the</strong> Characteristics <strong>of</strong> Auriferous Veins <strong>of</strong> <strong>the</strong> Sigma Mine 1<br />

Vein type Host rocks Geometry <strong>and</strong> dimension Mineralogy/texture<br />

Fault-fill (shear) vein Volcanic <strong>and</strong> Occur in stepping pattern within ductile shear Quartz, tourmaline, carbonate, scheelite,<br />

volcanclastics rocks <strong>of</strong> zones, commonly layered <strong>and</strong> containing pyrite; minor chalcopyrite <strong>and</strong> pyrrhotite<br />

<strong>the</strong> Val d’Or <strong>Formation</strong> slivers <strong>of</strong> hydro<strong>the</strong>rmally altered wall rock; <strong>and</strong> tellurides; layers with main vein-filling<br />

<strong>and</strong> intrusive rocks strike 070°–100°, dip 50°–90° S, 2-m width, minerals parallel <strong>the</strong> vein margins; locally<br />

200-m vertical <strong>and</strong> lateral extent <strong>and</strong> 2 cm to brecciated<br />

3 m thick<br />

.<br />

Extensional (flat, Volcanic <strong>and</strong> Occur in en echelon patterns with rock bridges, Quartz, tourmaline, carbonate, minor<br />

tension, subhorizontal) volcaniclastics rocks <strong>of</strong> commonly proximal to fault-fill veins; variable scheelite, sulfides, <strong>and</strong> tellurides, showing<br />

<strong>the</strong> Val d’Or <strong>Formation</strong> strike, dip shallow, 1-mm to 1-m width, up to open-filling textures with quartz <strong>and</strong><br />

<strong>and</strong> intrusive rocks 75 m N-S extent or 300 m E-W extent, tourmaline fibers perpendicular to <strong>the</strong> vein<br />

2–3 m thick walls<br />

Dike stringer Feldspar porphyry Occur en echelon <strong>and</strong> pinch out abruptly, Quartz, tourmaline, carbonate, minor<br />

dikes only almost perpendicular to dike margins; strike: scheelite, sulfides, <strong>and</strong> tellurides, showing<br />

NW-SE, dip 35° SW, 10s <strong>of</strong> meters lateral open-filling textures with quartz <strong>and</strong><br />

extent, up to 1 m thick<br />

tourmaline fibers perpendicular to <strong>the</strong> vein<br />

walls<br />

Shear-extension Volcanic <strong>and</strong> Complex internal geometry, with layered Mainly quartz <strong>and</strong> tourmaline <strong>and</strong> minor<br />

(oblique-tension vein, volcaniclastics rocks <strong>of</strong> segments; strike E-W, dip moderate, calcite, pyrite, chalcopyrite, <strong>and</strong> tellurides;<br />

North Dipper <strong>and</strong> <strong>the</strong> Val d’Or <strong>Formation</strong> up to 1 km vertical <strong>and</strong> lateral extent, early vein-filling minerals are deformed<br />

North Dipper-related) up to 3 m thick <strong>and</strong> rotated parallel to <strong>the</strong> vein margins;<br />

late phases form fibers perpendicular to<br />

vein walls<br />

1 Based on Audet (1979), Robert et al. (1983), Robert <strong>and</strong> Brown (1986a, b), Gaboury et al. (2001), <strong>and</strong> this study<br />

FIG. 5. A-C: Photographs <strong>of</strong> <strong>the</strong> North Dipper veins in <strong>the</strong> Sigma pit in <strong>the</strong> West zone, looking northwest. A. Detail <strong>of</strong><br />

<strong>the</strong> complex shape <strong>and</strong> internal geometry <strong>of</strong> <strong>the</strong> North Dipper vein, with irregular <strong>and</strong> disrupted layers <strong>of</strong> quartz (Qtz) <strong>and</strong><br />

tourmaline (To) that formed during <strong>the</strong> various stages <strong>of</strong> <strong>the</strong> North Dipper vein opening <strong>and</strong> filling. B. Detail <strong>of</strong> <strong>the</strong> contact<br />

<strong>of</strong> <strong>the</strong> North Dipper vein with <strong>the</strong> wall rock, illustrating <strong>the</strong> irregular distribution <strong>of</strong> <strong>the</strong> proximal alteration. C. North Dipper-related<br />

veins in <strong>the</strong> sou<strong>the</strong>astern margin <strong>of</strong> <strong>the</strong> North Dipper vein. D. View looking toward <strong>the</strong> north <strong>of</strong> <strong>the</strong> Central zone<br />

North Dipper vein. In this zone, <strong>the</strong> vein is layered, with most <strong>of</strong> quartz <strong>and</strong> tourmaline layers parallel to <strong>the</strong> vein walls.<br />

0361-0128/98/000/000-00 $6.00 613


614 OLIVO ET AL.<br />

layers <strong>of</strong> quartz <strong>and</strong> tourmaline <strong>and</strong> centimeter-sized slabs <strong>of</strong><br />

foliated, pyrite-rich wall rock. Elongated crystals <strong>of</strong> quartz<br />

<strong>and</strong> tourmaline oriented at high angle to <strong>the</strong> vein margins<br />

occur locally, close to <strong>the</strong> footwall contact. In <strong>the</strong> Central<br />

zone, <strong>the</strong> North Dipper vein is mainly layered with tourmaline<br />

<strong>and</strong> quartz ribbons oriented parallel to subparallel to <strong>the</strong><br />

vein margins (Fig. 5D). The North Dipper vein in <strong>the</strong> Sigma<br />

mine pit comprises calcite (5 vol %), pyrite (2–5 vol %), rutile<br />

(1–3 vol %), <strong>and</strong> minor amounts <strong>of</strong> chlorite, muscovite,<br />

pyrrhotite, chalcopyrite, galena, bismuth tellurides, <strong>and</strong> gold.<br />

Locally <strong>the</strong> sulfide content can be as high as 10 vol percent<br />

(mainly pyrite). The modes <strong>of</strong> occurrence <strong>of</strong> <strong>the</strong> vein filling<br />

minerals are described below <strong>and</strong> illustrated in Figure 6A-F,<br />

<strong>and</strong> <strong>the</strong> interpreted paragenetic sequence is summarized in<br />

Figure 7A.<br />

In <strong>the</strong> milky irregular zones, quartz occurs ei<strong>the</strong>r as grains<br />

up to 5 mm long or as fine-grained (


FORMATION OF THE AURIFEROUS AND BARREN VEINS IN THE SIGMA MINE, VAL D’OR 615<br />

FIG. 6. Photomicrographs <strong>of</strong> <strong>the</strong> auriferous North Dipper (A-E) <strong>and</strong> North Dipper-related veins (F) <strong>and</strong> <strong>the</strong>ir host rocks<br />

(G-H). A. First recognized generation <strong>of</strong> tourmaline (To1)aligned parallel to <strong>the</strong> layer margins, with interstitial quartz (Qtz).<br />

B. Tourmaline layers cut by late quartz veinlets, both showing corroded zones filled with calcite (CC). C. Radially oriented<br />

tourmaline grains that postdate <strong>the</strong> aligned grains shown in (A) <strong>and</strong> are associated with weakly deformed quartz grains, both<br />

minerals being replaced by calcite. D. Rare poikiloblastic grains <strong>of</strong> pyrite with inclusions <strong>of</strong> rutile (Rt), pyrrhotite (Po), chalcopyrite<br />

(Cp), <strong>and</strong> gold (Au). E. Typical mode <strong>of</strong> occurrence <strong>of</strong> gold-filling fractures in pyrite where it is associated with Bi<br />

tellurides (BiTe). F. Gold associated with calcite-filling late fractures in quartz <strong>and</strong> tourmaline in <strong>the</strong> North Dipper-related<br />

vein. G. Gold, galena (Gn), chalcopyrite, pyrrhotite <strong>and</strong> Bi teluride included in pyrite from <strong>the</strong> proximal alteration zone <strong>of</strong><br />

<strong>the</strong> North Dipper vein. H. Gold associated with chalcopyrite-filling fractures in a second generation <strong>of</strong> pyrite that occurs in<br />

<strong>the</strong> wall-rock alteration <strong>of</strong> <strong>the</strong> North Dipper-related vein.<br />

0361-0128/98/000/000-00 $6.00 615


616 OLIVO ET AL.<br />

FIG. 7. Paragenetic sequence for (A) Sigma (North Dipper) <strong>and</strong> North zone North Dipper veins <strong>and</strong> (B) North Dipperrelated<br />

veins.<br />

Dipper vein in order to characterize <strong>the</strong> different fluids associated<br />

with <strong>the</strong> mineralized <strong>and</strong> barren North Dipper systems.<br />

Micro<strong>the</strong>rmometric measurements were conducted on<br />

more than 400 fluid inclusions hosted in quartz (from barren<br />

<strong>and</strong> mineralized veins) <strong>and</strong> on a few inclusions hosted by<br />

scheelite (from <strong>the</strong> barren vein only), using <strong>the</strong> Linkam<br />

THMS-G-600 heating-freezing stage at Queen’s University.<br />

The stage was calibrated using <strong>the</strong> Synflinc syn<strong>the</strong>tic fluid inclusion<br />

st<strong>and</strong>ards. The error associated with temperature<br />

measured below 30º <strong>and</strong> above 100ºC was ±0.2º <strong>and</strong> ±2ºC, respectively,<br />

following <strong>the</strong> equipment specifications <strong>and</strong> st<strong>and</strong>ard<br />

measurements.<br />

Distribution, nature, <strong>and</strong> morphology <strong>of</strong> fluid inclusions<br />

Fluid inclusions are abundant in quartz <strong>and</strong> scheelite <strong>and</strong><br />

occur mainly along healed fractures <strong>of</strong> various orientations<br />

that transect quartz grain boundaries <strong>and</strong> reworked grains or<br />

in clusters close to <strong>the</strong>se fractures (Fig. 9A). Three compositional<br />

types <strong>of</strong> fluid inclusions were identified: (1) H 2 O-CO 2 ,<br />

(2) CO 2 -rich, (3) monophase, two-phase, <strong>and</strong> three-phase<br />

H 2 O-rich. Fluid inclusions in scheelite are commonly very<br />

small (


FORMATION OF THE AURIFEROUS AND BARREN VEINS IN THE SIGMA MINE, VAL D’OR 617<br />

FIG. 8. Features <strong>of</strong> <strong>the</strong> barren North zone North Dipper vein. A. Outcrop <strong>of</strong> <strong>the</strong> barren North zone North Dipper vein,<br />

showing its geometry <strong>and</strong> contact with <strong>the</strong> host rocks. B. Detail showing <strong>the</strong> tourmaline fibers in <strong>the</strong> vein margin, indicative<br />

<strong>of</strong> late extension. C. <strong>and</strong> D. Photomicrographs showing <strong>the</strong> complex internal geometry <strong>of</strong> <strong>the</strong> vein with various generations<br />

<strong>of</strong> tourmaline <strong>and</strong> quartz. Early generations are strongly deformed, however, <strong>the</strong> late generations show open-space<br />

filling textures.<br />

<strong>and</strong> high birefringence were observed in two- (AQ SL ) <strong>and</strong><br />

three-phase (AQ SLV ) fluid inclusions <strong>and</strong> are interpreted to be<br />

carbonate crystals. Because <strong>the</strong>se crystals have an uneven distribution,<br />

vary in proportion, <strong>and</strong> do not change <strong>the</strong>ir morphology<br />

during cooling <strong>and</strong> heating experiments, <strong>the</strong>y are interpreted<br />

as trapped crystals. Monophase aqueous fluid<br />

inclusions (AQ M ) are most common in <strong>the</strong> barren North zone<br />

North Dipper vein <strong>and</strong> minor or rare in <strong>the</strong> auriferous North<br />

Dipper <strong>and</strong> North Dipper-related veins. They occur mainly<br />

along intersections <strong>of</strong> healed fractures or close to grain<br />

boundaries.<br />

Micro<strong>the</strong>rmometry: Data <strong>and</strong> interpretation<br />

The results <strong>of</strong> <strong>the</strong> micro<strong>the</strong>rmometric analyses are summarized<br />

in Appendix 1, represented graphically in Figure 10A-<br />

B, <strong>and</strong> interpreted below. Temperatures related to phase<br />

changes vary slightly along single healed fractures or in<br />

clusters <strong>of</strong> inclusions <strong>and</strong> more significantly between samples<br />

<strong>of</strong> a given vein type or from different vein types.<br />

H 2 O-CO 2 fluid inclusions (AC): Most <strong>of</strong> <strong>the</strong> aqueous-carbonic<br />

(AC LL <strong>and</strong> AC LLV ) fluid inclusions decrepitated before<br />

homogenization (90% in North Dipper <strong>and</strong> about 60% in<br />

North Dipper-related veins). Where observed, homogenization<br />

was to <strong>the</strong> liquid phase at a wide range <strong>of</strong> temperatures<br />

varying from 228° to 440°C, but most inclusions homogenized<br />

between 228° <strong>and</strong> 270°C. The highest temperatures<br />

were documented in <strong>the</strong> North Dipper-related veins (App. 1,<br />

Fig. 10B). Melting <strong>of</strong> <strong>the</strong> carbonic phase (T m(CO2 )) in inclusions<br />

from <strong>the</strong> North Dipper-related veins occurred at lower<br />

temperatures than for <strong>the</strong> inclusions from <strong>the</strong> North Dipper<br />

veins (–58.3°C), which indicates <strong>the</strong> presence <strong>of</strong> small concentrations<br />

<strong>of</strong> o<strong>the</strong>r gases, most likely methane (Kerkh<strong>of</strong>,<br />

1990, <strong>Olivo</strong> <strong>and</strong> Williams-Jones, 2002). Homogenization <strong>of</strong><br />

<strong>the</strong> CO 2 (T h(CO2 )) to <strong>the</strong> liquid phase occurred from –10° to<br />

0361-0128/98/000/000-00 $6.00 617


618 OLIVO ET AL.<br />

FIG. 9. Photomicrographs showing fluid inclusions in <strong>the</strong> North Dipper <strong>and</strong> North Dipper-related veins. A. Fluid inclusions<br />

in healed fractures <strong>of</strong> various orientations; most <strong>of</strong> <strong>the</strong> inclusions trails transect quartz grains boundaries <strong>and</strong> reworked<br />

grains. They are rarely intragranular. B. Deformed, necked down, <strong>and</strong> decrepitated fluid inclusions along grain boundaries.<br />

C. Two- (AC LL) <strong>and</strong> three-phase (AC LLV) aqueous-carbonic subtypes with variable volumetric proportions coexisting in <strong>the</strong><br />

same healed fracture. D. Two-phase <strong>and</strong> monophase carbonic fluid inclusions in <strong>the</strong> same healed fracture.<br />

30°C, with <strong>the</strong> lower temperatures measured in <strong>the</strong> North<br />

Dipper vein. The densities <strong>of</strong> <strong>the</strong> carbonic phase, which were<br />

calculated from <strong>the</strong> graphs <strong>of</strong> Valadovich <strong>and</strong> Altunin (1968)<br />

<strong>and</strong> Swanenberg (1979), using values <strong>of</strong> T h(CO2 ), are high for<br />

liquid H 2 O <strong>and</strong> liquid CO 2 inclusions (avg 0.85 g/cm 3 , AC LL )<br />

<strong>and</strong> moderate for all liquid H 2 O, liquid CO 2 , <strong>and</strong> vapor CO 2 -<br />

H 2 O inclusions (avg 0.65g/cm 3 , AC LLV ). The molar proportions<br />

<strong>of</strong> CH 4 are estimated to be less than 0.2 mol percent,<br />

based on <strong>the</strong> Heyen et al. (1982) method, which uses <strong>the</strong> relationship<br />

between T m(CO2 ) <strong>and</strong> T h(CO2 ), <strong>and</strong> <strong>the</strong> highest values<br />

were obtained in <strong>the</strong> North Dipper-related veins. Most <strong>of</strong> <strong>the</strong><br />

clathrates melted between 7° <strong>and</strong> 8°C (T m(C) ) in both North<br />

Dipper <strong>and</strong> North Dipper-related veins, yielding average<br />

salinities <strong>of</strong> 4 to 5 wt percent NaCl equiv, according to <strong>the</strong><br />

method outlined in Colins (1979). Although some inclusions<br />

in <strong>the</strong> North Dipper-related veins with high T m(C) (<strong>and</strong> consequently<br />

<strong>the</strong> lowest salinities) had low T m(CO2 ) values, o<strong>the</strong>r inclusions<br />

with equally low T m(CO2 ) yielded average T m(C) . The<br />

first <strong>and</strong> last ice-melting temperatures were very difficult to<br />

document due to <strong>the</strong> formation <strong>of</strong> large clathrates during<br />

cooling experiments.<br />

CO 2 -rich fluid inclusions (C): The temperatures <strong>of</strong> melting<br />

<strong>of</strong> <strong>the</strong> carbonic phase (T m(CO2 )) in <strong>the</strong> CO 2 -rich inclusions<br />

from <strong>the</strong> North zone North Dipper, North Dipper, <strong>and</strong> North<br />

Dipper-related veins are consistently –56.7° ± 0.2°C, indicating<br />

pure CO 2 . However, in inclusions from <strong>the</strong> North Dipperrelated<br />

veins, T m(CO2 ) values less than –57°C are commonly<br />

observed, suggesting <strong>the</strong> presence <strong>of</strong> minor CH 4 , similar to<br />

<strong>the</strong> aqueous-carbonic fluid inclusions. T h(CO2 ) is commonly<br />

greater than –10°C in carbonic inclusions (C) <strong>and</strong> carbonic<br />

inclusions with a small amount <strong>of</strong> H 2 O (C AQ ) from North Dipper<br />

veins <strong>and</strong> as low as –45°C in inclusions from North Dipper-related<br />

veins. The calculated densities <strong>of</strong> <strong>the</strong> carbonic<br />

phase average 0.86 <strong>and</strong> 0.80 g/cm 3 for <strong>the</strong> C <strong>and</strong> C AQ types,<br />

respectively, <strong>and</strong> <strong>the</strong> CH 4 molar proportion is low (


FORMATION OF THE AURIFEROUS AND BARREN VEINS IN THE SIGMA MINE, VAL D’OR 619<br />

TABLE 2. Summary <strong>of</strong> <strong>the</strong> Distribution <strong>and</strong> Morphology <strong>of</strong> Fluid Inclusion Types in <strong>the</strong> North Zone North Dipper, North Dipper,<br />

<strong>and</strong> North Dipper-Related Veins<br />

Inclusion types North zone North Dipper veins North Dipper veins North Dipper-related veins<br />

H 2O-CO 2<br />

(AC)<br />

2%: mostly in clusters, rare in healed<br />

fractures<br />

AC LLV: 100%<br />

Size: 5 to 7 µm<br />

Shape: elliptical<br />

Volumetric proportion <strong>of</strong> CO 2 phase: 15%<br />

Volumetric proportion <strong>of</strong> vapor CO 2 phase:<br />

5%<br />

28%: commonly in healed fractures,<br />

clusters, <strong>and</strong> individual inclusions<br />

AC LL: 53%; AC LLV: 47%<br />

Size: 4 to 17 µm, most from 5 to 10 µm<br />

Shape: rounded, elliptical, negative crystal<br />

Volumetric proportion <strong>of</strong> CO 2 phase: 10 to<br />

40%, mostly 20%<br />

Volumetric proportion <strong>of</strong> vapor CO 2 phase:<br />

5 to 20%<br />

12%: commonly in healed fractures, <strong>and</strong><br />

clusters, some occur as individual<br />

inclusions<br />

AC LL: 53%; AC LLV: 47%<br />

Size: 3 to 13 µm, most from 3 to 6 µm<br />

Shape: rounded, elliptical, negative crystal<br />

Volumetric proportion <strong>of</strong> CO 2 phase: 5 to<br />

45%, most from 10 to 25%<br />

Volumetric proportion <strong>of</strong> vapor CO 2 phase:<br />

5 to 25%, most from 15 to 20%<br />

CO 2-rich<br />

(C)<br />

8%: mainly in clusters <strong>and</strong> healed fractures,<br />

rare as individual inclusions<br />

Phases: monophase, two-phase<br />

C AQ : dominant CO 2-rich type<br />

Size: 2 to 7 µm<br />

Shape: irregular, elliptical, negative crystal<br />

Volumetric proportion <strong>of</strong> vapor CO 2 phase:<br />

15%<br />

25%: mostly in clusters<br />

Phases: monophase, two-phase<br />

C AQ


620 OLIVO ET AL.<br />

FIG. 10. Binary plots <strong>of</strong> fluid inclusion micro<strong>the</strong>rmometric data <strong>and</strong> <strong>the</strong> calculated parameters for aqueous carbonic, carbonic,<br />

<strong>and</strong> aqueous fluid inclusions. A. Salinity vs. temperature <strong>of</strong> melting <strong>of</strong> <strong>the</strong> carbonic phase (Tm CO2 ). B. Temperature <strong>of</strong><br />

total homogenization (T h) vs. salinity. See text for discussion.<br />

veins <strong>and</strong> barren North zone North Dipper veins: (1) a<br />

crush-leach technique accompanied by high resolution-inductively<br />

coupled plasma mass spectrometry (HR-ICPMS),<br />

<strong>and</strong> (2) analysis <strong>of</strong> single fluid inclusions or clusters <strong>of</strong> fluid<br />

inclusions <strong>of</strong> <strong>the</strong> same type using laser-ablation time-<strong>of</strong> flight<br />

inductively coupled plasma-mass spectrometry (LA-TOF-<br />

ICPMS). This is <strong>the</strong> first time <strong>the</strong> latter technique has been<br />

systematically applied in conjunction with micro<strong>the</strong>rmometric<br />

<strong>and</strong> crush-leach analyses to determine <strong>the</strong> composition <strong>of</strong><br />

fluid inclusions.<br />

Clusters or healed fractures representative <strong>of</strong> particular<br />

inclusion types (e.g., carbonic or aqueous-carbonic dominant)<br />

were selected after petrography <strong>and</strong> micro<strong>the</strong>rmometry<br />

investigations, <strong>and</strong> millimeter-sized hosting segments<br />

were cut out as individual chips for preparation in <strong>the</strong> clean<br />

lab. Although <strong>the</strong> samples were carefully selected to contain<br />

dominantly one type, some mixing <strong>of</strong> inclusion types may<br />

have occurred. In total, 12 samples were selected: one sample<br />

from <strong>the</strong> North zone North Dipper vein representing<br />

predominantly aqueous inclusions, seven samples from <strong>the</strong><br />

North Dipper vein representing ei<strong>the</strong>r predominantly carbonic<br />

or aqueous-carbonic populations, <strong>and</strong> three samples<br />

from <strong>the</strong> North Dipper-related vein representing predominantly<br />

carbonic inclusions; a procedure blank was added to<br />

<strong>the</strong> analysis for comparison. The preparation involves three<br />

steps: (1) washing <strong>the</strong> chips with deionized (DI) water,<br />

ethanol, <strong>the</strong>n 50 percent HNO 3 ; (2) crushing <strong>the</strong> chips using<br />

a mortar <strong>and</strong> pestle in a DI water-10 percent HNO 3 solution;<br />

<strong>and</strong> (3) centrifuging <strong>and</strong> decanting <strong>the</strong> liquid into Savillex ®<br />

containers for evaporation. The collected precipitate is <strong>the</strong>n<br />

diluted with approximately 1 to 2 g <strong>of</strong> 2 percent HNO 3 <strong>and</strong><br />

<strong>the</strong> solutions were analyzed using <strong>the</strong> Finnigan MAT Element<br />

HR-ICP-MS at Queen’s Facility for Isotope Research.<br />

Elements that were selected for analyses (Na, Mg, K, Ca, Ni,<br />

Cu, Zn, Pb, As, Sb, Ag, Au, <strong>and</strong> Bi) were chosen because <strong>of</strong><br />

<strong>the</strong>ir typical association with fluids related to auriferous<br />

quartz veins. Specific isotopes <strong>of</strong> each element to be measured<br />

were selected in order to avoid isobaric interferences<br />

0361-0128/98/000/000-00 $6.00 620


FORMATION OF THE AURIFEROUS AND BARREN VEINS IN THE SIGMA MINE, VAL D’OR 621<br />

present during low-, medium-, <strong>and</strong> high-resolution analysis.<br />

Based on <strong>the</strong> size, abundance, <strong>and</strong> density <strong>of</strong> inclusions<br />

within each vein, an estimated 5 × 10 –6 g <strong>of</strong> inclusion fluid<br />

was released into 1 g <strong>of</strong> acid solution. This estimate was used<br />

to approximate <strong>the</strong> concentrations <strong>of</strong> each element in <strong>the</strong><br />

fluid inclusion, <strong>and</strong> <strong>the</strong> results expressed in concentration<br />

(ppm; ng/g) were multiplied by <strong>the</strong> weight <strong>of</strong> each solution to<br />

obtain <strong>the</strong> actual weight <strong>of</strong> <strong>the</strong> element released from fluid<br />

inclusions (Table 3).<br />

Each element is normalized to Na (Table 4) <strong>and</strong> <strong>the</strong> ratios<br />

<strong>of</strong> each sample are normalized to those obtained for <strong>the</strong> barren<br />

North zone North Dipper vein sample, which contained<br />

only aqueous inclusions (NZND-AQ100) in order to evaluate<br />

enrichments or depletions <strong>of</strong> each element in fluids from <strong>the</strong><br />

auriferous veins with respect to <strong>the</strong> aqueous fluids in <strong>the</strong> barren<br />

vein (Fig. 11). Procedural blanks for <strong>the</strong> crush-leach had<br />

high background values in Ca <strong>and</strong> Zn (>100 ng), consequently<br />

<strong>the</strong>se elements were not considered in <strong>the</strong> discussion below.<br />

Aqueous-carbonic <strong>and</strong> carbonic-dominant inclusions from<br />

<strong>the</strong> auriferous North Dipper <strong>and</strong> North Dipper-related vein<br />

samples have consistently higher Ni/Na, Cu/Na, <strong>and</strong> Sb/Na<br />

ratios than <strong>the</strong> aqueous inclusions from <strong>the</strong> barren North<br />

zone North Dipper sample (Fig. 11). One sample <strong>of</strong> <strong>the</strong> auriferous<br />

North Dipper vein <strong>and</strong> one from <strong>the</strong> North Dipperrelated<br />

vein have anomalously high values <strong>of</strong> As/Na; <strong>the</strong> latter<br />

sample also has high Ag/Na <strong>and</strong> Au/Na ratios.<br />

LA-TOF-ICPMS was chosen because it has <strong>the</strong> ability to<br />

quickly analyze multiple elements in <strong>the</strong> transient signal that<br />

results from opening <strong>of</strong> a single fluid inclusion by laser ablation.<br />

In addition, contamination using <strong>the</strong> LA-TOF-ICPMS is<br />

smaller than crush-leach because in <strong>the</strong> latter, part <strong>of</strong> <strong>the</strong> host<br />

mineral (e.g., sulfides <strong>and</strong> carbonates within quartz) can be<br />

incorporated during sample crushing <strong>and</strong> dissolution to liberate<br />

fluids from <strong>the</strong> inclusions. These can be avoided in <strong>the</strong><br />

LA-TOF-ICPMS because <strong>of</strong> <strong>the</strong> spatial resolution <strong>of</strong> <strong>the</strong> laser<br />

beam.<br />

In TOF-ICPMS, ions representing various isotopes have<br />

mass-dependent velocities, which enables <strong>the</strong> detector to<br />

measure <strong>the</strong> signal intensity <strong>of</strong> each isotope based on its arrival<br />

time (Balcerzak, 2003, <strong>and</strong> references <strong>the</strong>rein). This<br />

technique allows for high data-acquisition speed, high ion<br />

transmission, <strong>and</strong> quasisimultaneous measurement <strong>of</strong> all<br />

masses for each ion extracted from <strong>the</strong> ion source. These results<br />

cannot be achieved by high resolution or quadruple LA-<br />

ICPMS. The typical detection limit <strong>and</strong> error associated with<br />

this technique are on <strong>the</strong> order <strong>of</strong> 10 ppb <strong>and</strong> less than 10<br />

percent, respectively (Mahoney et al., 1996; Leach <strong>and</strong><br />

Hieftje, 2001; Balcerzak, 2003).<br />

Because <strong>the</strong> minimum size <strong>of</strong> <strong>the</strong> laser beam is approximately<br />

10 µm, samples for analysis were selected based on<br />

<strong>the</strong> size <strong>of</strong> <strong>the</strong>ir fluid inclusions <strong>and</strong> <strong>the</strong> potential to isolate<br />

each type along healed fractures <strong>and</strong> clusters. The auriferous<br />

North Dipper veins contain <strong>the</strong> most suitable fluid inclusions<br />

for LA-TOF-ICPMS analysis because <strong>of</strong> <strong>the</strong>ir large sizes <strong>and</strong><br />

low abundances. Three chip segments were selected to represent<br />

aqueous, carbonic, <strong>and</strong> aqueous-carbonic-dominant<br />

inclusion populations in <strong>the</strong> auriferous veins. Data were collected<br />

using a Renaissance LA-TOF-ICPMS (LECO Corporation),<br />

with 266-nm (UV) laser system. During ablation, individual<br />

fluid inclusions in clusters <strong>of</strong> fluid inclusions <strong>of</strong> <strong>the</strong><br />

same type were targeted. Major (Na, Mg, K, <strong>and</strong> Ca) <strong>and</strong><br />

minor (Ni, Cu, Zn, Pb, As, Sb, Ba, Ag) elements that were<br />

most abundant in <strong>the</strong> inclusion fluids from <strong>the</strong> auriferous<br />

veins determined by crush-leaching analyses were selected.<br />

Element data are expressed in counts per second for <strong>the</strong><br />

largest peak <strong>and</strong> as element ratios normalized to Na (Table 5).<br />

The results obtained with <strong>the</strong> LA-TOF-ICPMS were normalized<br />

using <strong>the</strong> crush-leach data for <strong>the</strong> aqueous fluid inclusions<br />

in <strong>the</strong> barren North zone North Dipper vein (sample<br />

NZND-AQ100 data in Table 4 <strong>and</strong> Fig. 11). The data indicate<br />

that <strong>the</strong> inclusion fluids in <strong>the</strong> auriferous North Dipper <strong>and</strong><br />

North Dipper-related veins have consistently higher Ni/Na,<br />

Cu/Na, Sb/Na, Pb/Na, <strong>and</strong> Ag/Na ratios than <strong>the</strong> aqueous fluids<br />

in <strong>the</strong> barren veins. This finding is similar to <strong>the</strong> data obtained<br />

with <strong>the</strong> crush-leach technique, with exception <strong>of</strong> <strong>the</strong><br />

Ag/Na <strong>and</strong> Pb/Na ratios. In addition, aqueous-carbonic fluids<br />

FIG. 11. Logarithmic plot showing <strong>the</strong> enrichment factor calculated from element/Na ratios <strong>of</strong> crush-leach <strong>and</strong> LA-TOF-<br />

ICPMS analyses <strong>of</strong> auriferous North Dipper <strong>and</strong> North Dipper-related vein samples normalized to <strong>the</strong> crush-leach analyses<br />

<strong>of</strong> <strong>the</strong> barren North zone North Dipper vein, which contains mainly aqueous inclusions.<br />

0361-0128/98/000/000-00 $6.00 621


622 OLIVO ET AL.<br />

TABLE 3. Composition <strong>of</strong> Fluids Obtained for North Zone North Dipper, North Dipper, <strong>and</strong> North Dipper-Relatded Vein Samples Using Crush-Leach Results (in nanograms)<br />

North zone Procedure<br />

North Dipper North Dipper North Dipper-related blank<br />

Sample name AQ100 AC55C35 AC55AQ40 AC50AQ45 AC70AQ30 AC65AQ30 C60AQ38 C80AQ15 C80AQ15 C50AC40 C60AQ38 PB<br />

Proportion (%) 1 AQ(66) AC(55) AC(55) AC(50) AC(70) AC(65) C(60) C(62) C(80) C(50) C(60) none<br />

mAQ(26) C(27) AQC(19) AQC(22) AQC(15) AQC(15) AQC(19) CAQ(18) AQ(12) AC(40) AQ(30)<br />

AQC(8) CAQ(8) AQ(14) AQ(16) AQ(10) AQ(10) AQ(13) AQC(8) AQC(3) AQC(8)<br />

mAQ(7) mAQ(7) mAQ(5) mAQ(5) mAQ(6) AQ(5)<br />

mAQ(2)<br />

Acid wt (ng) 1.21 1.10 0.87 1.29 0.85 0.89 0.87 0.85 0.85 0.99 0.93 1.38<br />

Major elements<br />

Na-23 (LR)<br />

Mg-25 (MR)<br />

K-39 (HR)<br />

Ca-43 (MR)<br />

Minor elements<br />

Ni-60 (MR)<br />

Cu-63 (MR)<br />

Zn-68 (MR)<br />

Pb-208 (LR)<br />

As-75 (HR)<br />

Sb-121 (HR)<br />

Ag-107 (HR)<br />

Au-197 (HR)<br />

Bi-209 (HR)<br />

772.94<br />

71.94<br />

404.21<br />

3687.61<br />

18.46<br />

8.54<br />

337.90<br />

2.70<br />

1.62<br />

0.22<br />

0.44<br />

0.08<br />

0.03<br />

208.57<br />

5.43<br />

320.25<br />

1610.57<br />

7.13<br />

5.29<br />

283.59<br />

1.74<br />

0.02<br />

3.22<br />

nd<br />

nd<br />

0.01<br />

142.16<br />

12.05<br />

138.42<br />

787.25<br />

9.02<br />

4.13<br />

326.03<br />

0.38<br />

0.02<br />

0.21<br />

nd<br />

0.01<br />

nd<br />

182.63<br />

18.63<br />

182.97<br />

408.05<br />

10.25<br />

7.49<br />

236.13<br />

0.56<br />

0.08<br />

1.34<br />

nd<br />

0.01<br />

nd<br />

163.02<br />

20.20<br />

129.53<br />

528.85<br />

11.15<br />

4.62<br />

495.88<br />

0.34<br />

1.53<br />

0.06<br />

0.06<br />

nd<br />

nd<br />

101.51<br />

7.01<br />

106.58<br />

252.49<br />

9.06<br />

4.71<br />

153.42<br />

0.31<br />

nd<br />

0.03<br />

nd<br />

nd<br />

nd<br />

104.36<br />

10.17<br />

152.84<br />

536.39<br />

13.19<br />

4.21<br />

246.51<br />

0.85<br />

0.02<br />

0.35<br />

nd<br />

nd<br />

nd<br />

119.26<br />

10.18<br />

115.48<br />

391.88<br />

8.79<br />

4.97<br />

259.71<br />

0.31<br />

0.00<br />

0.00<br />

nd<br />

nd<br />

nd<br />

125.83<br />

19.89<br />

42.35<br />

484.47<br />

10.79<br />

2.20<br />

335.84<br />

0.32<br />

0.04<br />

1.51<br />

nd<br />

nd<br />

nd<br />

186.24<br />

34.31<br />

31.79<br />

309.21<br />

13.31<br />

9.99<br />

210.63<br />

0.62<br />

13.63<br />

4.57<br />

2.04<br />

2.77<br />

nd<br />

170.37<br />

16.63<br />

116.98<br />

403.91<br />

10.19<br />

6.98<br />

132.22<br />

0.29<br />

0.46<br />

0.06<br />

nd<br />

nd<br />

nd<br />

78.73<br />

5.48<br />

61.82<br />

268.75<br />

9.73<br />

1.89<br />

100.20<br />

0.53<br />

nd<br />

nd<br />

nd<br />

nd<br />

nd<br />

1 Numbers in brackets indicate <strong>the</strong> proportion <strong>of</strong> each subtype <strong>of</strong> fluid inclusions in <strong>the</strong> analyzed chip, including AC = aqueous carbonic, AQ = aqueous, mAQ = monophase aqueous, AQC = aqueous<br />

with small amounts <strong>of</strong> dissolved CO2, <strong>and</strong> C = carbonic; LR, MR, <strong>and</strong> HR = low, medium, <strong>and</strong> high resolution; nd = not detected<br />

0361-0128/98/000/000-00 $6.00 622


FORMATION OF THE AURIFEROUS AND BARREN VEINS IN THE SIGMA MINE, VAL D’OR 623<br />

TABLE 4. Element/Na Ratios <strong>of</strong> Fluids Obtained for North Zone North Dipper, North Dipper, <strong>and</strong> North Dipper-Related Vein Samples Using Crush-Leach Results<br />

North zone Procedure<br />

Ratio North Dipper North Dipper North Dipper-related blank<br />

Sample name AQ100 AC55C35 AC55AQ40 AC50AQ45 AC70AQ30 AC65AQ30 C60AQ38 C80AQ15 C80AQ15 C50AC40 C60AQ38 PB<br />

Proportion (%) 1 AQ(66) AC(55) AC(55) AC(50) AC(70) AC(65) C(60) C(62) C(80) C(50) C(60) None<br />

mAQ(26) C(27) AQC(19) AQC(22) AQC(15) AQC(15) AQC(19) CAQ(18) AQ(12) AC(40) AQ(30)<br />

AQC(8) CAQ(8) AQ(14) AQ(16) AQ(10) AQ(10) AQ(13) AQC(8) AQC(3) AQC(8)<br />

mAQ(7) mAQ(7) mAQ(5) mAQ(5) mAQ(6) AQ(5)<br />

mAQ(2)<br />

Na (ppm) 36780 22304 30446 31941 32161 27457 31233 24900 22186 20376 25923 N/A<br />

Major elements<br />

Mg/Na<br />

K/Na<br />

Ca/Na<br />

Minor elements<br />

Ni/Na<br />

Cu/Na<br />

Zn/Na<br />

Pb/Na<br />

As/Na<br />

Sb/Na<br />

Ag/Na<br />

Au/Na<br />

Bi/Na<br />

0.093<br />

0.523<br />

4.771<br />

0.024<br />

0.011<br />

0.437<br />

0.003<br />

0.002<br />


624 OLIVO ET AL.<br />

TABLE 5. TOF-ICPMS Results Showing Composition <strong>of</strong> Aqueous,<br />

Carbonic, <strong>and</strong> Aqueous-Carbonic Fluid Inclusion Populations for<br />

North Zone North Dipper, North Dipper, <strong>and</strong> North Dipper-Related Veins<br />

Aqueous-<br />

Fluids Aqueous Carbonic carbonic<br />

Elements Major<br />

(cps)<br />

Na<br />

Mg<br />

K<br />

Ca<br />

Minor (cps)<br />

Ni<br />

Cu<br />

Zn<br />

Pb<br />

As<br />

Sb<br />

Ag<br />

Bi<br />

Ba<br />

Element/Na<br />

Major<br />

Mg/Na<br />

K/Na<br />

Ca/Na<br />

Minor<br />

Ni/Na<br />

Cu/Na<br />

Zn/Na<br />

Pb/Na<br />

As/Na<br />

Sb/Na<br />

Ag/Na<br />

Bi/Na<br />

Ba/Na<br />

4592.4<br />

322.1<br />

711.5<br />

132.3<br />

476.4<br />

529.7<br />

100.2<br />

275.3<br />

bg<br />

bg<br />

1419.5<br />

bg<br />

308.8<br />

0.070<br />

0.155<br />

0.029<br />

0.104<br />

0.115<br />

0.087<br />

0.060<br />

nc<br />

nc<br />

0.309<br />

nc<br />

0.067<br />

5809.5<br />

543.5<br />

2213.4<br />

62.5<br />

bg<br />

406.4<br />

175.2<br />

500.2<br />

bg<br />

bg<br />

68.3<br />

bg<br />

bg<br />

0.094<br />

0.391<br />

0.011<br />

nc<br />

0.070<br />

0.030<br />

0.086<br />

nc<br />

nc<br />

0.012<br />

nc<br />

nc<br />

16201.8<br />

2389.7<br />

3574.9<br />

693.9<br />

1280.2<br />

4305.0<br />

956.4<br />

980.5<br />

67.8<br />

60.9<br />

62.3<br />

bg<br />

107.0<br />

0.148<br />

0.221<br />

0.043<br />

0.079<br />

0.266<br />

0.059<br />

0.061<br />

0.004<br />

0.004<br />

0.004<br />

nc<br />

0.007<br />

Abbreviations: bg = background values, cps = counts per second, nc = not<br />

calculated because <strong>of</strong> high background values; see text for explanation<br />

in <strong>the</strong> auriferous North Dipper <strong>and</strong> North Dipper-related<br />

veins have higher As/Na ratios than <strong>the</strong> fluids in <strong>the</strong> barren<br />

North zone North Dipper vein system.<br />

Stable Isotopes<br />

Sampling <strong>and</strong> methodology<br />

The δ 18 O values <strong>of</strong> quartz, tourmaline, calcite, <strong>and</strong> scheelite<br />

from <strong>the</strong> auriferous North Dipper <strong>and</strong> North Dipper-related<br />

veins <strong>and</strong> <strong>the</strong> barren North zone North Dipper vein<br />

were determined to fur<strong>the</strong>r constrain <strong>the</strong> temperatures during<br />

vein formation <strong>and</strong> <strong>the</strong> isotopic compositions <strong>of</strong> <strong>the</strong> mineralizing<br />

fluids. The δ 13 C values <strong>of</strong> carbonates also were measured<br />

to determine <strong>the</strong> possible sources for CO 2 . The samples<br />

were collected from surface exposures, with <strong>the</strong> exception <strong>of</strong><br />

SDC-OI-1, which is from drill core near <strong>the</strong> center or footwall<br />

<strong>of</strong> <strong>the</strong> North Dipper vein (at 40-m depth). Quartz-tourmaline<br />

pairs that exhibit textural equilibrium were chosen for<br />

<strong>the</strong> calculation <strong>of</strong> isotopic equilibration temperatures.<br />

The selected portions <strong>of</strong> <strong>the</strong> veins containing <strong>the</strong> minerals<br />

<strong>of</strong> interest were crushed <strong>and</strong> sieved down to


FORMATION OF THE AURIFEROUS AND BARREN VEINS IN THE SIGMA MINE, VAL D’OR 625<br />

TABLE 6. Oxygen <strong>and</strong> Carbon Isotope Compositions <strong>of</strong> Mineral Separates from Barren North Zone North Dipper <strong>and</strong><br />

Auriferous North Dipper <strong>and</strong> North Dipper-Related Veins (all δ values are reported in ‰)<br />

δ 18 O δ 18 O δ 18 O Apparent δ 18 O δ 13 C<br />

quartz tourmaline scheelite equilibration 1 calcite calcite<br />

Sample no. (VSMOW) (VSMOW) (VSMOW) Temp. (°C) (VSMOW) (V-PDB) Comments<br />

North Zone 11.1 Quartz: deformed grains with subgrains<br />

North Dipper<br />

Tourmaline: deformed grains parallel to vein<br />

vein<br />

margins <strong>and</strong> radial open-space filling grains<br />

NZND-OI-1a<br />

NZND-OI-1b 9.2<br />

NZND-OI-2 11.1 3.3 176 Quartz: highly deformed <strong>and</strong> fractured milky<br />

quartz oriented perpendicular to <strong>the</strong> vein<br />

margin near <strong>the</strong> footwall <strong>of</strong> <strong>the</strong> North zone<br />

North Dipper vein <strong>and</strong> in sharp contact with<br />

euhedral scheelite crystal<br />

North Dipper 11.2 Quartz: milky quartz (analyzed) adjacent to<br />

vein<br />

smoky quartz;<br />

SND-OI-1 12.4 –6.5 Calcite: white crystals filling corroded zones<br />

in quartz <strong>and</strong> tourmaline<br />

SND-OI-2 11.4 8.6 371 Quartz <strong>and</strong> tourmaline from early shear<br />

layers; milky quartz is recrystallized <strong>and</strong> in<br />

equilibrium with preferentially oriented<br />

tourmaline (indicates shearing)<br />

SND-OI-3 11.5 8.3 323 Deformed quartz grains with subgrains<br />

associated with tourmaline crystals oriented<br />

parallel to <strong>the</strong> vein layers<br />

SND-OI-4 10.8 Quartz: Two generations (smoky <strong>and</strong> milky)<br />

9.1 Tourmaline: late radial aggregates filling<br />

SND-OI-5 11.2 8.4 371 Quartz: smoky intergrown with tourmaline<br />

crystals oriented perpendicular to vein margin<br />

SND-OI-6 10.7 Deformed <strong>and</strong> fractured milky quartz<br />

SND-OI-7 10.6<br />

North Dipper- 11.7 Highly deformed <strong>and</strong> fractured milky quartz<br />

related vein<br />

SNDR-OI-1<br />

SNDR-OI-2 10.6<br />

1 Equilibrium temperature calculated using fractionation factors <strong>of</strong> Kotzer et al. (1993)<br />

(AC) <strong>and</strong> aqueous fluid inclusions with a small amount <strong>of</strong> CO 2<br />

(AQc) from North Dipper <strong>and</strong> North Dipper-related veins.<br />

They also agree with equilibration temperatures reported for<br />

quartz-tourmaline fault vein <strong>and</strong> extensional veins in <strong>the</strong> Val<br />

d’Or camp (Beaudoin <strong>and</strong> Pitre, 2005). These data suggest<br />

that <strong>the</strong> temperature <strong>of</strong> <strong>the</strong> hydro<strong>the</strong>rmal system did not<br />

change much during <strong>the</strong> various stages <strong>of</strong> quartz-tourmaline<br />

vein filling or during <strong>the</strong> late North Dipper <strong>and</strong> North Dipper-related<br />

veins mineralizing stage.<br />

Using <strong>the</strong> fractionation factors <strong>of</strong> Zheng (1992), an isotopic<br />

equilibration temperature <strong>of</strong> 176°C was calculated from δ 18 O<br />

values for a single quartz-scheelite mineral pair from <strong>the</strong> barren<br />

vein, suggesting that <strong>the</strong>y formed at a lower temperature<br />

than <strong>the</strong> quartz-tourmaline assemblage or were not in equilibrium.<br />

The δ 18 O H2 O values for <strong>the</strong> auriferous fluid in <strong>the</strong> North<br />

Dipper <strong>and</strong> North Dipper-related veins are about 9.5 per mil,<br />

based on <strong>the</strong> δ 18 O <strong>of</strong> calcite (12.4‰) associated with visible<br />

gold in <strong>the</strong> late fractures, <strong>the</strong> temperature <strong>of</strong> decripitation <strong>of</strong><br />

aqueous-carbonic fluid inclusions (350° <strong>and</strong> 390°C), <strong>and</strong><br />

using <strong>the</strong> fractionation factors <strong>of</strong> O’Neil et al. (1969). These<br />

values are higher than those calculated for <strong>the</strong> quartz-tourmaline<br />

fault-fill <strong>and</strong> extensional veins (Beaudoin <strong>and</strong> Pitre,<br />

2005) but consistent with <strong>the</strong> low water/rock ratios characteristic<br />

<strong>of</strong> high-grade metamorphism or magmatic fluids.<br />

Discussion<br />

Comparison between auriferous <strong>and</strong> barren<br />

North Dipper veins: Implications for processes<br />

<strong>of</strong> gold transport <strong>and</strong> deposition<br />

The barren <strong>and</strong> auriferous veins have similar structural attitude,<br />

internal geometry, <strong>and</strong> δ 18 O values for quartz <strong>and</strong><br />

tourmaline, but <strong>the</strong>y are hosted by different rock units, have<br />

distinct wall-rock alteration <strong>and</strong> host fluid inclusions with different<br />

compositions. Although both vein types comprise<br />

mainly quartz <strong>and</strong> tourmaline, <strong>the</strong> barren vein lacks calcite<br />

<strong>and</strong> has lower sulfide content.<br />

0361-0128/98/000/000-00 $6.00 625


626 OLIVO ET AL.<br />

The fact that most <strong>of</strong> <strong>the</strong> gold in <strong>the</strong> North Dipper <strong>and</strong><br />

North Dipper-related veins occurs with calcite filling late<br />

fractures that cut quartz <strong>and</strong> tourmaline suggests that most <strong>of</strong><br />

<strong>the</strong> gold postdated <strong>the</strong> main stage <strong>of</strong> vein filling <strong>and</strong> likely was<br />

transported by CO 2 -bearing aqueous fluids. Significantly, <strong>the</strong><br />

auriferous veins have higher abundances <strong>of</strong> CO 2 -rich <strong>and</strong><br />

H 2 O-CO 2 fluid inclusions in healed fractures (i.e., <strong>the</strong> same<br />

paragenesis as gold <strong>and</strong> calcite) than <strong>the</strong> barren vein (Table<br />

2). Gold was detected only in <strong>the</strong> CO 2 -bearing fluid inclusion<br />

<strong>of</strong> <strong>the</strong> North Dipper-related vein (Table 3, Fig. 11).<br />

A small proportion <strong>of</strong> gold, which occurs locally as micrometer-sized<br />

inclusions in pyrite, precipitated early, during <strong>the</strong><br />

main vein-filling stage in <strong>the</strong> North Dipper veins. The composition<br />

<strong>of</strong> this gold also differs from <strong>the</strong> late gold (i.e., <strong>the</strong><br />

early gold contains 6 wt % Ag, whereas <strong>the</strong> late gold contains<br />

8–17 wt % Ag). If gold is transported as Au (HS) – 2 complexes<br />

in <strong>the</strong>se systems, as postulated by Benning <strong>and</strong> Seward (1996)<br />

<strong>and</strong> Mikucki (1998), gold precipitation in <strong>the</strong> main vein-filling<br />

stage <strong>and</strong> in <strong>the</strong> wall rock may have been caused by a decrease<br />

<strong>of</strong> <strong>the</strong> H 2 S concentration in <strong>the</strong> hydro<strong>the</strong>rmal fluid<br />

caused by <strong>the</strong> precipitation <strong>of</strong> pyrite. However, in <strong>the</strong> barren<br />

North zone North Dipper vein <strong>and</strong> its wall rock, <strong>the</strong> content<br />

<strong>of</strong> sulfide is very low (


FORMATION OF THE AURIFEROUS AND BARREN VEINS IN THE SIGMA MINE, VAL D’OR 627<br />

in <strong>the</strong> late auriferous North Dipper <strong>and</strong> North Dipper-related<br />

veins, but all fluid inclusions in <strong>the</strong> late veins homogenize to<br />

<strong>the</strong> liquid phase <strong>and</strong> show little variation in <strong>the</strong> density <strong>of</strong> <strong>the</strong><br />

carbonic phase, which is commonly high. Although <strong>the</strong> types<br />

<strong>of</strong> fluids <strong>and</strong> vein minerals do not allow precise determination<br />

<strong>of</strong> pressure during vein formation, <strong>the</strong>se observations suggest<br />

that unmixing did not occur, that <strong>the</strong> pressure fluctuation was<br />

not significant, <strong>and</strong> that <strong>the</strong> pressure <strong>of</strong> fluids was relatively<br />

high during <strong>the</strong> trapping phase. This raises <strong>the</strong> question<br />

whe<strong>the</strong>r a fault-valve model is applicable to <strong>the</strong> principal<br />

stage <strong>of</strong> gold precipitation in <strong>the</strong> North Dipper <strong>and</strong> North<br />

Dipper-related veins. Fluid pressure was probably high<br />

enough to facilitate some deformation by microcracking (Cox<br />

et al., 2001, <strong>and</strong> references <strong>the</strong>rein), enhancing <strong>the</strong> permeability<br />

<strong>of</strong> <strong>the</strong> North Dipper <strong>and</strong> North Dipper-related veins<br />

<strong>and</strong> host rocks, <strong>the</strong>reby allowing for focused or enhanced<br />

fluid flow in <strong>the</strong>se veins.<br />

Conclusions<br />

Structural, mineralogical, isotopic, <strong>and</strong> fluid inclusion investigations<br />

<strong>of</strong> <strong>the</strong> late barren (North zone North Dipper<br />

vein) <strong>and</strong> auriferous (North Dipper <strong>and</strong> North Dipper-related<br />

veins) at Sigma indicate that <strong>the</strong>y have similar structural<br />

controls, internal geometry, main vein-filling mineralogy, <strong>and</strong><br />

isotopic signatures. However, <strong>the</strong>ir minor vein-filling phases,<br />

wall-rock alteration, <strong>and</strong> fluid inclusion compositions are very<br />

different. The barren vein does not exhibit proximal wall-rock<br />

alteration, has lower sulfide content, lacks calcite, <strong>and</strong> contains<br />

mainly aqueous fluid inclusions that were trapped at<br />

lower temperatures (125º–225ºC). The auriferous veins contain<br />

mainly aqueous-carbonic fluid inclusions trapped at high<br />

temperatures (228º–440ºC), <strong>and</strong> <strong>the</strong>se fluids have higher Ni,<br />

Cu, Sb, Pb, <strong>and</strong> Ag than <strong>the</strong> fluids extracted from <strong>the</strong> barren<br />

vein. The model proposed to explain <strong>the</strong> differences between<br />

<strong>the</strong> auriferous <strong>and</strong> barren veins involves circulation <strong>of</strong> hydro<strong>the</strong>rmal<br />

fluids in secondary structures that may have<br />

become more restricted at <strong>the</strong> margins <strong>of</strong> <strong>the</strong> hydro<strong>the</strong>rmal<br />

system as it evolved. Thus, during <strong>the</strong> late stages <strong>of</strong> <strong>the</strong> hydro<strong>the</strong>rmal<br />

system, <strong>the</strong> auriferous aqueous-carbonic fluids<br />

may have had more restricted circulation, promoting precipitation<br />

proximal to <strong>the</strong> regional upflow zones (e.g., between<br />

<strong>the</strong> major break <strong>and</strong> <strong>the</strong> North zone). This interpretation is<br />

consistent with <strong>the</strong> fact <strong>the</strong> fluids observed in <strong>the</strong> barren veins<br />

<strong>of</strong> <strong>the</strong> North zone far<strong>the</strong>r from <strong>the</strong> major regional fluid conduit<br />

(i.e., <strong>the</strong> Larder Lake-Cadillac break) are mainly aqueous<br />

<strong>and</strong> <strong>of</strong> lower temperature. The hydro<strong>the</strong>rmal fluids most<br />

likely originated in deeper zones that were undergoing highgrade<br />

metamorphism or from deep magmatic bodies. Trace<br />

element data suggest that gold <strong>and</strong> associated elements may<br />

have been derived from a variety <strong>of</strong> rock types. Gold may<br />

have precipitated due to a decrease <strong>of</strong> <strong>the</strong> H 2 S concentration<br />

in <strong>the</strong> auriferous fluid caused by pyrite precipitation during<br />

main vein-filling stages <strong>and</strong> by dilution <strong>of</strong> <strong>the</strong> CO 2 -rich fluids<br />

by nonauriferous aqueous fluids in <strong>the</strong> late auriferous stage.<br />

Acknowledgments<br />

This project was funded mainly by <strong>the</strong> NSERC discovery<br />

grant #227487, <strong>and</strong> <strong>the</strong> facilities used for fluid inclusion<br />

analyses were acquired through <strong>the</strong> New Opportunities grants<br />

<strong>of</strong> <strong>the</strong> Canadian Foundation for Innovation <strong>and</strong> Ontario<br />

Innovation Trust to G.R. <strong>Olivo</strong>. D. Chipley, K. Klassen <strong>and</strong> P.<br />

Polito are thanked for <strong>the</strong>ir assistance during bulk leach <strong>and</strong><br />

LA-ICP-MS analysis, H. Poulsen for his mentoring during<br />

field work, <strong>and</strong> F. Robert for discussions in <strong>the</strong> early stages <strong>of</strong><br />

<strong>the</strong> project. We thank D. Gaboury, G. Chi, B. Dubé <strong>and</strong> M.<br />

Hannington for <strong>the</strong>ir constructive comments, which helped<br />

to improve this manuscript significantly. We also thank <strong>the</strong><br />

McWatters Inc geologists, in particular, A. Carrier <strong>and</strong> C. Pelletier<br />

(now at INOVEXEXPLO), for logistical <strong>and</strong> technical<br />

support during field work <strong>and</strong> M. Badham for helping on <strong>the</strong><br />

preparation <strong>of</strong> <strong>the</strong> figures. F. <strong>Chang</strong> acknowledges <strong>the</strong> funding<br />

<strong>of</strong> <strong>the</strong> Society <strong>of</strong> Economic Geologist Student Grant <strong>and</strong><br />

Queen’s graduate scholarship.<br />

REFERENCES<br />

Audet, A.J., 1979, Geology <strong>of</strong> <strong>the</strong> Sigma gold deposit, in Ltulippe, M., <strong>and</strong><br />

Germain, M., eds.: Gold, Geology <strong>and</strong> Metallogeny in <strong>the</strong> Abitibi area, Quebec:<br />

Geological Association <strong>of</strong> Canada Excursion Guidebook A-1, p. 66–73.<br />

Balcerzak, M., 2003, An overview <strong>of</strong> analytical applications <strong>of</strong> time <strong>of</strong> flightmass<br />

spectrometric (TOF-MS) analysers <strong>and</strong> an inductively coupled<br />

plasma-TOF-MS technique: Analytical Sciences, v. 19, p. 979–989.<br />

Barrett, T.J., <strong>and</strong> MacLean, W.H., 1999, Volcanic sequences, lithogeochemistry<br />

<strong>and</strong> hydro<strong>the</strong>rmal alteration in some bimodal VMS systems: Reviews<br />

in ECONOMIC GEOLOGY, v. 8, p. 101–131.<br />

Beaudoin, G., <strong>and</strong> Pitre, D., 2005, Stable isotope geochemistry <strong>of</strong> <strong>the</strong><br />

Archean Val d’Or (Canada) orogenic gold vein field: Mineralium Deposita,<br />

v. 40, p. 59–75.<br />

Benning, L.G., <strong>and</strong> Seward, T.M., 1996, Hydrosulphide complexing <strong>of</strong> gold<br />

(I) in hydro<strong>the</strong>rmal solutions from 150 to 500°C <strong>and</strong> 500 to 1500 bars:<br />

Geochimica et Cosmochimica Acta, v. 60, p. 1849–1871.<br />

Bodnar, R.J., <strong>and</strong> Vityk, M.O., 1994, Interpretation <strong>of</strong> micro<strong>the</strong>rmometric<br />

data for H 2O-NaCl fluid inclusions, in DeVivo, B., <strong>and</strong> Frezzotti, M.L.,<br />

eds., Fluid inclusions in minerals: Methods <strong>and</strong> applications: Blacksburg,<br />

VA, Virginia Polytechnic Institute <strong>and</strong> State University Press, p. 117–130.<br />

Boullier, A.M., <strong>and</strong> Robert F., 1992, Paleoseismic events recorded in<br />

Archean gold-quartz vein networks, Val d’Or, Abitibi, Quebec: Journal <strong>of</strong><br />

Structural Geology, v. 14, p. 161–179.<br />

Boullier, A.M., Firdaous, K., <strong>and</strong> Robert, F., 1998, On <strong>the</strong> significance <strong>of</strong><br />

aqueous fluid inclusions in gold-bearing quartz vein deposit from <strong>the</strong><br />

sou<strong>the</strong>astern Abitibi subprovince (Quebec, Canada): ECONOMIC GEOLOGY,<br />

v. 93, p. 216–223.<br />

Bowers, T.S., <strong>and</strong> Helgeson, H.C., 1983, Calculation <strong>of</strong> <strong>the</strong> <strong>the</strong>rmodynamic<br />

<strong>and</strong> geochemical consequences <strong>of</strong> nonideal mixing in <strong>the</strong> system H 2O-<br />

CO 2–NaCl on phase relations in geological systems; equation <strong>of</strong> state <strong>of</strong><br />

H 2O-CO 2–NaCl fluids at high pressures <strong>and</strong> temperatures: Geochimica et<br />

Cosmochimica Acta, v. 47, 1247–1275.<br />

<strong>Chang</strong>, F., 2002, Characterization <strong>of</strong> <strong>the</strong> auriferous <strong>and</strong> barren North Dipper<br />

veins at <strong>the</strong> Sigma mine, Val d’Or, Quebec, based on structural, mineralogical,<br />

fluid inclusion <strong>and</strong> isotopic investigations: Unpublished M.Sc. <strong>the</strong>sis,<br />

Kingston, Ontario, Queen’s University, 186 p.<br />

Clayton, R.N., <strong>and</strong> Mayeda, T.K., 1963, The use <strong>of</strong> bromine pentafluoride in<br />

<strong>the</strong> extraction <strong>of</strong> oxygen from oxides <strong>and</strong> silicates for isotopic analysis:<br />

Geochimica et Cosmochimica Acta, v. 27, p, 43–52.<br />

Colins, P.L.F., 1979, Gas hydrate in CO 2–bearing fluid inclusions <strong>and</strong> <strong>the</strong> use<br />

<strong>of</strong> freezing data for estimation <strong>of</strong> salinity: ECONOMIC GEOLOGY, v. 74, p.<br />

1435–1444.<br />

Couture, J.-P, Pilote, P., Machado, N., <strong>and</strong> Desrochers, J.-P., 1994, Timing <strong>of</strong><br />

gold mineralization in <strong>the</strong> Val d’Or district, sou<strong>the</strong>rn Abitibi belt: Evidence<br />

for two distinct mineralizing events: ECONOMIC GEOLOGY, v. 89, p.<br />

1542–1551.<br />

Cox, S.F., E<strong>the</strong>ridge, M.A., Cas, R.A., <strong>and</strong> Clifford, B.A., 2001, Deformation<br />

style <strong>of</strong> <strong>the</strong> Castlemaine area, Bendigo-Ballarat zone: Implications for evolution<br />

<strong>of</strong> crustal structure in central Victoria: Australian Journal <strong>of</strong> Earth<br />

Sciences, v. 38, p.151–170.<br />

Daigneault, R., Mueller, W.U., <strong>and</strong> Chown, E.H., 2002, Oblique Archean<br />

subduction: accretion <strong>and</strong> exhumation <strong>of</strong> an oceanic arc during dextral<br />

transpression, Sou<strong>the</strong>rn volcanic zone, Abitibi subprovince, Canada: Precambrian<br />

Research, v. 115, p. 261–290.<br />

0361-0128/98/000/000-00 $6.00 627


628 OLIVO ET AL.<br />

Desrocher, J.-P., <strong>and</strong> Hubert, C., 1996, Structural evolution <strong>and</strong> early accretion<br />

<strong>of</strong> <strong>the</strong> Archean Malartic composite block, sou<strong>the</strong>rn Abitibi greenstone belt,<br />

Quebec, Canada: Canadian Journal <strong>of</strong> Earth Sciences, v. 33, p. 1556–1569.<br />

Desrochers, J.-P, Hubert, C, <strong>and</strong> Pilote, P., 1993, Géologie du secteur du lac<br />

De Montigny (phase 3), region de Val d’Or: Ministère de l’Énergie et des<br />

Ressources, Québec MB 93–15, 47 p.<br />

Dimroth, E. Imreh, L., Rocheleau, M., <strong>and</strong> Goulet, N., 1982, Evolution <strong>of</strong><br />

<strong>the</strong> south-central segment <strong>of</strong> <strong>the</strong> Archean Abitibi belt, Quebec: Part I:<br />

Stratigraphic <strong>and</strong> paleogeographic model: Canadian Journal <strong>of</strong> Earth Sciences,<br />

v. 19, p. 1729–1758.<br />

Dimroth, E., Imreh, L., Goulet, N., <strong>and</strong> Rocheleau, M., 1983a, Evolution <strong>of</strong><br />

<strong>the</strong> south-central segment <strong>of</strong> <strong>the</strong> Archean Abitibi belt, Quebec. Part II:<br />

Tectonic evolution <strong>and</strong> geomechanical model: Canadian Journal <strong>of</strong> Earth<br />

Sciences, v.20, p.1355–1373<br />

——1983b, Evolution <strong>of</strong> <strong>the</strong> south-central part <strong>of</strong> <strong>the</strong> Archean Abitibi belt,<br />

Quebec: Part III: Plutonic <strong>and</strong> metamorphic evolution <strong>and</strong> geotectonic<br />

model: Canadian Journal <strong>of</strong> Earth Sciences, v. 20, p. 1374–1388.<br />

Ducharme, Y. Stevenson, R.K., <strong>and</strong> Machado, N., 1997, Sm-Nd geochemistry<br />

<strong>and</strong> U-Pb geochronology <strong>of</strong> <strong>the</strong> Preissac <strong>and</strong> La Motte leucogranites,<br />

Abitibi subprovince: Canadian Journal <strong>of</strong> Earth Sciences, v. 34,<br />

p.1059–1071<br />

Feng, R., <strong>and</strong> Kerrich, R., 1991, Single zircon age constraints on <strong>the</strong> tectonic<br />

juxtaposition <strong>of</strong> <strong>the</strong> Archean Abitibi belt <strong>and</strong> Pontiac subprovince, Quebec,<br />

Canada: Geochimica et Cosmochimica Acta, v. 55, p. 3437–3441.<br />

Gaboury, D., Carrier, A., Crevier, M., Pelletier, C., <strong>and</strong> Sketchley, D.A., 2001,<br />

Predictive distribution <strong>of</strong> fault-fill <strong>and</strong> extensional veins: Example from <strong>the</strong><br />

Sigma gold mine, Abitibi subprovince, Canada: ECONOMIC GEOLOGY, v. 96,<br />

p. 1397–1405.<br />

Gar<strong>of</strong>alo, P., 2000, Gold precipitation <strong>and</strong> hydro<strong>the</strong>rmal alteration during<br />

fluid flow through <strong>the</strong> vein network <strong>of</strong> <strong>the</strong> meso<strong>the</strong>rmal gold deposit <strong>of</strong><br />

Sigma (Abitibi belt, Canada): Unpublished Ph.D. <strong>the</strong>sis, Zurich, Swiss Federal<br />

Institute <strong>of</strong> Technology, 246 p.<br />

Gunning, H.C., <strong>and</strong> Ambrose J.W., 1940, Malartic area, Quebec: Geological<br />

Survey <strong>of</strong> Canada Memoir 22, 142 p.<br />

Heyen, R.W, Ramboz, C., <strong>and</strong> Dubessy, J., 1982, Simulation des équilibres<br />

de phases dans le système CO 2-CH 4 en-dessous de 50°C et de 100 bar: Applications<br />

aux inclusions fluides: Comptes-Rendus des Séances de l’Academie<br />

des Sciences, Serie 2: Mécanique-Physique, Chimie, Sciences de l’Univers,<br />

Sciences de la Terre, v. 294, p. 203–206.<br />

Imreh, L., 1984, Sillon de La Motte-Vassan et son avant-pays méridional:<br />

Synthèse volcanologique, lithostratigraphique et gîtologique: Ministère de<br />

l’Énergie et des Ressources, Québec, ET 87–04, 72 p.<br />

Jemielita, R.A., Davis, D.W., <strong>and</strong> Krogh, T.E., 1990, U/Pb evidence for<br />

Abitibi gold mineralization postdating greenstone magmatism <strong>and</strong> metamorphism:<br />

Nature, v. 346, p. 831–834.<br />

Jenkins, C.L., Vincent, R., Robert F., Poulsen, K.H., Garson, D.F., <strong>and</strong><br />

Blondé, J.A., 1997, Index-level database for lode gold deposits <strong>of</strong> <strong>the</strong> world:<br />

Geological Survey <strong>of</strong> Canada Open File 3490, 18 p. (with map <strong>and</strong> CD).<br />

Kerkh<strong>of</strong>, van den, A.M., 1990, Isochoric phase diagram in <strong>the</strong> systems CO 2-<br />

CH 4 <strong>and</strong> CO 2-N 2: Applications to fluid inclusions: Geochimica et Cosmochimica<br />

Acta, v. 54, p. 621–629.<br />

Kerrich, R., 1989, Archean gold: Relation to granulite formation or felsic intrusions:<br />

Geology, v. 17, p. 1011–1015.<br />

Kotzer, T.G., <strong>Kyser</strong>, T.K., King, R.W., <strong>and</strong> Kerrich, R., 1993, An empirical<br />

oxygen <strong>and</strong> hydrogen isotope geo<strong>the</strong>rmometer for quartz-tourmaline <strong>and</strong><br />

tourmaline-water: Geochimica et Cosmochimica Acta, v. 57, p. 3421–3426.<br />

Latulippe, M., 1966, The relationship <strong>of</strong> mineralization to Precambrian<br />

stratigraphy in <strong>the</strong> Matagami Lake <strong>and</strong> Val d’Or districts <strong>of</strong> Quebec: Geological<br />

Association <strong>of</strong> Canada Special Volume 3, p. 21–42.<br />

Leach, A.M. <strong>and</strong> Hieftje, G.M., 2001, St<strong>and</strong>ardless semiquantitative analysis<br />

<strong>of</strong> metals using single-shot laser ablation inductively coupled plasma time<strong>of</strong>-flight<br />

mass spectrometry: Analytical Chemistry, v. 73, p. 2959–2967.<br />

Machado, N., David, J., <strong>and</strong> Gariépy, C., 1992, U-Pb geochronology <strong>of</strong> <strong>the</strong><br />

Quebec area, Part I: Abitibi <strong>and</strong> Pontiac subprovinces: Ministry <strong>of</strong> Energy<br />

<strong>and</strong> Resources Report, Quebec, 21 p.<br />

Mahoney, P., Li, G., <strong>and</strong> Hieftje, G.M., 1996, Laser ablation-inductively coupled<br />

plasma mass spectrometry with a time-<strong>of</strong>-flight analyzer: Journal <strong>of</strong><br />

Analytical Atomic Spectrometry, v. 11, p. 401–405.<br />

McCrea, J.M., 1950, On <strong>the</strong> isotope chemistry <strong>of</strong> carbonates <strong>and</strong> a paleotemperature<br />

scale: Journal <strong>of</strong> Chemical Physics, v. 18, p. 849–857.<br />

McCuaig, T.C., <strong>and</strong> Kerrich, R., 1994, P-T-t-deformation-fluid characteristics<br />

<strong>of</strong> lode gold deposits: Evidence from alteration systematics: Geological<br />

Association <strong>of</strong> Canada Short Course Notes, v. 11, p. 339–379.<br />

Mikucki, E.J., 1998, Hydro<strong>the</strong>rmal transport <strong>and</strong> depositional processes in<br />

Archean lode gold deposits: A review: Ore Geology Reviews, v. 13, p.<br />

307–321.<br />

Norman, G.W.H., 1947, Dubuisson, Bourlamaque, Louvicourt: Geological<br />

Survey <strong>of</strong> Canada Paper 47–20, p. 39–60.<br />

<strong>Olivo</strong>, G.R., <strong>and</strong> Williams-Jones, A.E., 2002, Genesis <strong>of</strong> <strong>the</strong> auriferous C<br />

quartz-tourmaline vein <strong>of</strong> <strong>the</strong> Siscoe mine, Val d’Or district, Abitibi subprovince,<br />

Canada: Structural, mineralogical <strong>and</strong> fluid inclusion constraints:<br />

ECONOMIC GEOLOGY, v. 97, p. 929–947.<br />

O’Neil, J.R., Clayton, R.N., <strong>and</strong> Mayeda, T.K., 1969, Oxygen isotope fractionation<br />

in divalent metal carbonates: Journal <strong>of</strong> Chemical Physics, v. 51,<br />

p. 5547–5558.<br />

Phillips, G.N, <strong>and</strong> Evans, K.A, 2004. Role <strong>of</strong> CO 2 in <strong>the</strong> formation <strong>of</strong> gold deposits:<br />

Nature, v. 429, p. 860–863.<br />

Pilote, P., Mueller, W., Moorhead, J, Scott, C., <strong>and</strong> Lavoie, S., 1997, Geology,<br />

volcanology <strong>and</strong> lithogeochemistry <strong>of</strong> <strong>the</strong> Val d’Or <strong>and</strong> Heva <strong>Formation</strong>s,<br />

Val d’Or district, Abitibi subprovince: Ministry <strong>of</strong> Natural Resources, Quebec,<br />

DV 97-01, 47 p.<br />

Pilote, P., Mueller, W., Scott, C., Lavoie, S., Champagne, C., <strong>and</strong> Moorhead,<br />

J., 1998, Volcanology <strong>of</strong> <strong>the</strong> Val d’Or <strong>Formation</strong> <strong>of</strong> <strong>the</strong> Malartic Group,<br />

Abitibi subprovince: Geochemical <strong>and</strong> geochronological constraints: Ministry<br />

<strong>of</strong> Natural Resources, Quebec, DV 98-05, 48 p.<br />

Pilote, P., Mueller, W., Lavoie, S., <strong>and</strong> Riopel, P., 1999, Géologie des <strong>Formation</strong>s<br />

Val d’Or, Héva et Jacola—nouvelle interprétations du Groupe de<br />

Malartic: Ministère des Ressources Naturelles du Québec, DV 99-03, 19<br />

p.<br />

Pilote, P., Moorhead, J., <strong>and</strong> Mueller, W., 2000, Partie A. Dévelopment d’un<br />

arc volcanique, La région de Val d’Or, ceinture de l’Abitibi: volcanologie<br />

physique et évolution métallogénique: Ministère des Ressources Naturelles<br />

du Québec, MB 2000-09, 110 p.<br />

Ramboz, C., Pichavant, M., <strong>and</strong> Weisbrod, A., 1982, Fluid immiscibility in<br />

natural processes: Use <strong>and</strong> misuse <strong>of</strong> fluid inclusion data: Chemical Geology,<br />

v. 37, p. 29–48.<br />

Rimistidt, J.D., 1997, Gangue mineral transport <strong>and</strong> deposition, in Barnes,<br />

H.L., ed.: Geochemistry <strong>of</strong> hydro<strong>the</strong>rmal ore deposits, 3 rd ed.: New York,<br />

John Willy <strong>and</strong> Sons, p. 487–515<br />

Robert, F., 1983, Etude du mode de mise en place des veines auriferes de la<br />

mine Sigma, Val d’Or, Quebec: Unpublished Ph.D. <strong>the</strong>sis, Ecole Polytechnique,<br />

University <strong>of</strong> Montreal, 295 p.<br />

——1989, Internal structure <strong>of</strong> <strong>the</strong> Cadillac tectonic zone sou<strong>the</strong>ast <strong>of</strong> Val<br />

d’Or, Abitibi greenstone belt, Quebec: Canadian Journal <strong>of</strong> Earth Sciences,<br />

v. 26, p. 2661–2675.<br />

——1990a, Structural setting <strong>and</strong> control <strong>of</strong> gold-quartz veins <strong>of</strong> <strong>the</strong> Val d’Or<br />

area, sou<strong>the</strong>astern Abitibi subprovince: University <strong>of</strong> Western Australia<br />

Special Publication, v. 24, p. 167–209.<br />

——1990b, An overview <strong>of</strong> gold deposits in <strong>the</strong> eastern Abitibi belt: Canadian<br />

Institute <strong>of</strong> Mining <strong>and</strong> Metallurgy Special Volume 43, p. 93–106.<br />

——1994, Vein fields in gold districts: The example <strong>of</strong> Val d’Or, sou<strong>the</strong>astern<br />

Abitibi subprovince: Geological Survey <strong>of</strong> Canada Current Research, v.<br />

1994c, p. 295–302.<br />

——2001, Syenite-associated disseminated gold deposits in <strong>the</strong> Abitibi<br />

greenstone belt, Canada: Mineralium Deposita, v. 36, p. 503–516.<br />

Robert, F., <strong>and</strong> Brown, A.C., 1986a, Archean gold-bearing quartz veins at <strong>the</strong><br />

Sigma mine, Abitibi greenstone belt, Quebec. Part I. Geological relations<br />

<strong>and</strong> formation <strong>of</strong> vein system: ECONOMIC GEOLOGY, v. 81, p. 578–592.<br />

——1986b, Archean gold-bearing quartz veins at <strong>the</strong> Sigma mine, Abitibi<br />

greenstone belt, Quebec. Part II. Vein paragenesis <strong>and</strong> hydro<strong>the</strong>rmal alteration:<br />

ECONOMIC GEOLOGY, v. 81, p. 593–616.<br />

Robert, F., <strong>and</strong> Kelly, W.C., 1987, Ore-forming fluids in Archean gold-bearing<br />

quartz veins at <strong>the</strong> Sigma mine, Abitibi greenstone belt, Quebec,<br />

Canada: ECONOMIC GEOLOGY, v. 82, p. 1464–1482.<br />

Robert, F., Boullier, A.-M., <strong>and</strong> Firdaous, K., 1995, Gold-quartz veins in<br />

metamorphic terranes <strong>and</strong> <strong>the</strong>ir bearing on <strong>the</strong> role <strong>of</strong> fluids in faults: Journal<br />

<strong>of</strong> Geophysical Research, v. 100, p. 12861–12879.<br />

Sauvé, P., Imreh, L., <strong>and</strong> Trudel, P., 1993, Description des gîtes d’or de la region<br />

de Val d’Or: Ministère de l’Énergie et des Ressources du Quebec,<br />

MM91, 163 p.<br />

Scott, C.R., Mueller, W.U., <strong>and</strong> Pilote, P., 2002, Physical volcanology, stratigraphy,<br />

<strong>and</strong> lithogeochemistry <strong>of</strong> an Archean volcanic arc: Evolution from<br />

plume-related volcanism to arc rifting <strong>of</strong> SE Abitibi greenstone belt, Val<br />

d’Or, Canada: Precambrian Research, v. 115, p. 223–260.<br />

Shepard, T.J., Rankin, A.H., <strong>and</strong> Alderton, D.H.M., 1985, A practical guide<br />

to fluid inclusion studies: New York, Chapman <strong>and</strong> Hall, 283 p.<br />

0361-0128/98/000/000-00 $6.00 628


FORMATION OF THE AURIFEROUS AND BARREN VEINS IN THE SIGMA MINE, VAL D’OR 629<br />

Sherlock, R.L., Jowett, E.C., Smith, B.D., <strong>and</strong> Irish, D.E., 1993, Distinguishing<br />

barren <strong>and</strong> auriferous veins in <strong>the</strong> Sigma mine, Val d’Or, Quebec:<br />

Canadian Journal <strong>of</strong> Earth Sciences, v. 30, p. 413–419.<br />

Spooner, E.T.C., 1990, Archean intrusion-hosted, stockwork gold-quartz vein<br />

mineralization, Lamaque mine, Val d’Or, Quebec, Part II: Light stable isotope<br />

(H, O, C, <strong>and</strong> S) characteristics <strong>and</strong> enriched calc-alkaline/shoshonitic<br />

igneous geochemistry [abs.]: Greenstone Gold <strong>and</strong> Crustal Evolution, Geological<br />

Association <strong>of</strong> Canada, Val d’Or Québec, May 24–27, NUNA Conference<br />

Volume, p. 205.<br />

Swanenberg, H.E.C., 1979, Phase equilibria in carbonic systems, <strong>and</strong> <strong>the</strong>ir<br />

application to freezing studies <strong>of</strong> fluid inclusions: Contributions to Mineralogy<br />

<strong>and</strong> Petrology, v. 68, p. 303–306.<br />

Valadovich, M.P., <strong>and</strong> Altunin, U.V., 1968, Thermophysical properties <strong>of</strong> carbon<br />

dioxide: London, Collets, 57 p.<br />

Winchester, J.A., <strong>and</strong> Floyd, P.A., 1977, Geochemical discrimination <strong>of</strong> different<br />

magma series <strong>and</strong> <strong>the</strong>ir differentiation products using immobile elements:<br />

Chemical Geology, v. 20, p. 325–343.<br />

Wong, L., Davis, D.W., Krogh, T.E., <strong>and</strong> Robert, F., 1991, U-Pb zircon <strong>and</strong><br />

rutile chronology <strong>of</strong> Archean greenstone formation <strong>and</strong> gold mineralization<br />

in <strong>the</strong> Val d’Or region, Quebec—discussion: Earth <strong>and</strong> Planetary Science<br />

Letters, v. 104, p. 325–336.<br />

Zheng Y.F., 1992, Oxygen isotope fractionation in wolframite: European<br />

Journal <strong>of</strong> Mineralogy, v. 4, p. 1331–1335.<br />

0361-0128/98/000/000-00 $6.00 629


630 OLIVO ET AL.<br />

APPENDIX<br />

Summary <strong>of</strong> Micro<strong>the</strong>rmometric Data <strong>of</strong> H2O-rich (AQ, AQC, AQSL, <strong>and</strong> AQSLV), CO2-rich (C <strong>and</strong> CAQ), <strong>and</strong> H2O-CO2 (ACLL <strong>and</strong> ACLLV) Fluid Inclusions<br />

in Quartz from <strong>the</strong> North Zone North Dipper, North Dipper, <strong>and</strong> North Dipper-Related Veins 1<br />

Fluid inclusion data North zone North Dipper veins North Dipper veins North Dipper-related veins<br />

Homogenization (Th)<br />

<strong>and</strong> decrepitation (TD)<br />

temperatures<br />

AC Th(liquid): >350°C<br />

AQ Th(liquid) : 137° to 303°C<br />

AQ Th(critical): 144° <strong>and</strong> 202°C<br />

AQC Th(liquid): 176° to 280°C<br />

TD: 345°C<br />

AC Th(liquid) : mainly 228° to 270°C<br />

AQ Th(liquid): 110° to 262°C; bimodal distribution at<br />

175° to 225°C <strong>and</strong> 300° to 375°C<br />

TD: 207° to 360°C<br />

AC Th(liquid) : 242° to 440°C<br />

Th(critical): 315° to 320°C<br />

AQ Th(liquid) : 86.2° to 395°C; bimodal distribution at<br />

175° to 225°C <strong>and</strong> 300° to 375°C<br />

AQ Th(critical): 140° to 258°C<br />

AQSLV Th: 16.4° to 327°C; AQSL Th: 195°C TD: 293° to<br />

400°C<br />

First melting<br />

temperature (TFM)<br />

AQ TFM: > –30°C, few –30° to –49.2°C<br />

Monophase AQ TFM: –55.6° to –18.5°C, avg –30.8°C<br />

AC TFM: –50° to –3.2°C<br />

AQ TFM: >–30°C, few –30° to –48°C<br />

Monophase AQ TFM: –48° to –18.5°C, avg –34.8°C<br />

AC TFM: –29° to –11°C<br />

AQ TFM: > –30°C, few –30° to –52.6°C<br />

AQSL <strong>and</strong> AQSLV TFM: –69.4° to –55°C<br />

Monophase AQ TFM: –26.2°C<br />

Final ice-melting<br />

temperature (TM)<br />

AC TM: not observed<br />

AQ TM: –33.9° to 0°C, most > –6°C<br />

Monophase AQ TM: –33.9° to –5°C, avg –13.2°C<br />

AC TM: –18° to 0°C<br />

AQ TM: –19.1° to –3.3°C, most > –5°C<br />

Monophase AQ TM: –21° to –0.1°C, avg –12.5°C<br />

AC TM: –11.2° to –0.5°C<br />

AQ TM: –31.6° to –0.4°C, most > –10°C<br />

AQSLV <strong>and</strong> AQSL TM: –55° to –28.7°C<br />

Monophase AQ TM: –8.9°C<br />

Clathrate-melting<br />

temperature (Tm(clathrate))<br />

CAQ Tm(clathrate): 8.9°C<br />

AC Tm(clathrate): 6° to 10°C, most from 7° to 8°C<br />

AQC Tm(clathrate): 6.7° to 9.7°C, avg 8°C<br />

CAQ Tm(clathrate): 4.6° to 8.4°C<br />

AC Tm(clathrate): 6° to 10°C, most from 7° to 8°C<br />

AQC Tm(clathrate): 3.75° to 9.8°C, avg 6.5°C<br />

CAQ Tm(clathrate): 5.7° to 9°C<br />

Salinity<br />

AC: 1.3 wt % NaCl<br />

Aqueous: 0 to 23 wt % NaCl, avg 9.4 wt % NaCl<br />

AQC: 0 to 5.7 wt % NaCl, avg 2.7 wt % NaCl<br />

Monophase AQ: avg 12.8 wt % NaCl<br />

CAQ: 2.6 wt % NaCl<br />

AC: avg from 4 to 5 wt % NaCl<br />

Aqueous: 0 to 23 wt % NaCl, avg 12.3 wt % NaCl<br />

AQC: 0.9 to 7 wt % NaCl, avg 3.4 wt % NaCl<br />

Monophase AQ: avg 14.4 wt % NaCl<br />

CAQ: 3.1 to 10 wt % NaCl<br />

AC: avg 4 to 5 wt % NaCl<br />

Aqueous: 0 to 23 wt % NaCl, 9.1 wt % NaCl<br />

AQC: 0.2 to 11.2 wt% NaCl, avg 6.5 wt% NaCl<br />

Monophase AQ: avg 12.7 wt % NaCl<br />

CAQ: 2.1 to 8.1 wt % NaCl<br />

Solid CO2 melting<br />

temperature (Tm(CO 2<br />

))<br />

AC Tm(CO 2<br />

): –56.8°C<br />

Carbonic Tm(CO 2<br />

): –56.6° ± 0.2°C.<br />

AC Tm(CO 2<br />

): –57° to –56.2°C<br />

Carbonic Tm(CO 2<br />

) Tm(CO 2<br />

): –57.5° to –56.3°C, most<br />

from –57° to –56.6°C<br />

AC Tm(CO 2<br />

): –58.3° to –56.3°C<br />

Carbonic Tm(CO 2<br />

): –57.5° to –56.3°C<br />

CO2 homogenization<br />

temperature (Th(CO 2<br />

))<br />

Not observed AC Th(CO 2<br />

): –9.8° to 30°C, most from 20° to 30°C<br />

Carbonic Th(CO 2<br />

): –11.3° to 30°C, most from 12° to<br />

29°C<br />

CAQ Th(CO 2<br />

): 5.2° to 29.1°C<br />

AC Th(CO 2<br />

): 7.3° to 30°C, most from 20° to 30°C<br />

Carbonic Th(CO 2<br />

): –42.5° to 28.6°C, most around –2°C<br />

CAQ Th(CO 2<br />

): around 25°C<br />

CO2 density 2<br />

ACLLV: 0.70 g/cm 3 ACLL [1] : 0.58 to 0.86 g/cm 3 , avg 0.84 g/cm 3<br />

ACLL [2] : 0.76 to 0.91 g/cm 3 , avg 0.85 g/cm 3<br />

ACLL [2] : 0.74 to 0.87 g/cm 3 , avg 0.83 g/cm 3<br />

ACLL [1] : 0.72 to 0.88 g/cm 3 , avg 0.82 g/cm 3<br />

ACLLV [1] : 0.74 to 0.98 g/cm 3 , avg 0.69 g/cm 3<br />

ACLLV [1] : 0.59 to 0.73 g/cm 3 , avg 0.66 g/cm 3<br />

C [1] : 0.58 to 0.99 g/cm 3 , avg 0.81 g/cm 3<br />

C [1] : 0.64 to 1.0 g/cm 3 , avg 0.92 g/cm 3<br />

C [2] : 0.82 to 0.91 g/cm 3 , avg 0.86 g/cm 3<br />

C [2] : 0.62 to 1.045 g/cm 3 , avg 0.91g/cm 3<br />

CAQ [1} : 0.62 to 0.90 g/cm 3 , avg 0.80 g/cm 3<br />

CAQ [1] : 0.71 to 0.72 g/cm 3<br />

XCH 4<br />

3<br />

Not calculated ACLL: 0.003 to 0.006, avg 0.004<br />

Equiv CO2 density: 0.82 to 0.91<br />

Equiv CO2 density: 0.77 to 0.91<br />

C: 0.006 to 0.007<br />

ACLL: 0.02 to 0.037<br />

Equiv CO2 density: 0.62 to 1.045<br />

Equiv CO2 density: 0.74 to 0.87<br />

C: 0.001 to 0.013, avg 0.006<br />

CAQ: 0.007<br />

0361-0128/98/000/000-00 $6.00 630


FORMATION OF THE AURIFEROUS AND BARREN VEINS IN THE SIGMA MINE, VAL D’OR 631<br />

APPENDIX (Cont.)<br />

Fluid inclusion data North zone North Dipper veins North Dipper veins North Dipper-related veins<br />

CH4 molar proportion 4<br />

ACLLV : 0.028%<br />

C: 0.019 to 0.092%, avg 0.062%<br />

CAQ: 0.032 to 0.07%, avg 0.043%<br />

ACLL: 0.029 to 0.191%, 0.083%<br />

ACLLV : 0.017%<br />

C: 0.0105 to 0.242%, avg 0.087%<br />

Bulk CO2 density<br />

<strong>and</strong> wt % CO2 5<br />

ACLLV: 0.96 g/cm 3 , 10.99 wt % CO2 ACLL: 0.91 to 1.0 g/cm 3 , avg 0.96 g/cm 3 ; 9.82 to 38.02<br />

wt % CO2, avg 23.26 wt % CO2<br />

ACLLV : 0.86 to 0.97 g/cm 3 , avg 0.93 g/cm 3 ; 8.62 to<br />

31.82 wt % CO2, avg 16.78 wt % CO2<br />

ACLL: 0.8875 to 0.994 g/cm 3 , avg 0.96 g/cm 3 ; 3.99 to<br />

38.03 wt % CO2, avg 16.96 wt % CO2<br />

ACLLV : 0.88 to 0.967 g/cm 3 , avg 0.94 g/cm 3 ; 6.15 to<br />

31.82 wt % CO2, avg 14.74 wt % CO2<br />

Abbreviations <strong>of</strong> fluid inclusions types: AC = aqueous-carbonic, ACLL = aqueous-carbonic with liquid phases, ACLLV = aqueous-carbonic with liquid <strong>and</strong> vapor phases, AQ = aqueous, AQC = aqueous<br />

with small amounts <strong>of</strong> dissolved CO2, AQSL = aqueous with solid <strong>and</strong> liquid phases, AQSLV = aqueous with solid, liquid, <strong>and</strong> vapor phases, C = carbonic, CAQ =carbonic with small proportion <strong>of</strong> water<br />

ACLLV: 0.03% ACLL: 0.04 to 0.082%, avg 0.063%<br />

1 Complete data set <strong>and</strong> histograms are reported in <strong>Chang</strong> (2002)<br />

2 Valadovich <strong>and</strong> Altunin (1968)<br />

3 Swanenberg (1979)<br />

4 Heyen et al. (1982)<br />

5 Shepard et al. (1985)<br />

0361-0128/98/000/000-00 $6.00 631

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!