20.01.2015 Views

Annual Report 2011 / 2012 - E21 - Technische Universität München

Annual Report 2011 / 2012 - E21 - Technische Universität München

Annual Report 2011 / 2012 - E21 - Technische Universität München

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Chapter 1. Magnetism and Superconductivity 7<br />

Magnetic Phase Diagram of MnSi Inferred from Magnetization and ac<br />

Susceptibility<br />

Andreas Bauer 1 , Christian Pfleiderer 1<br />

1 Physik-Department <strong>E21</strong>, <strong>Technische</strong> Universität München, D-85748 Garching, Germany.<br />

We report simultaneous measurements of the magnetization<br />

and the ac susceptibility across the magnetic phase<br />

diagram of single-crystal MnSi.[1] In our study we explore<br />

the importance of the excitation frequency, excitation amplitude,<br />

sample shape, and crystallographic orientation, see<br />

Fig. 1 and Fig. 2.<br />

a<br />

µ 0<br />

dM / dB, Re χ ac<br />

0.6<br />

0.4<br />

0.08<br />

0.04<br />

MnSi, Sample 1, B || <br />

B ac<br />

= 0.1 mT<br />

(1)<br />

(3)<br />

(2)(4) (7)<br />

(5) (6)<br />

(5)<br />

(7)<br />

(4)<br />

(1)<br />

(2)(3)<br />

(6)<br />

0.2<br />

b B ac<br />

= 0.1 mT<br />

0.12<br />

Im χ ac<br />

µ 0<br />

dM / dB<br />

27.5 K<br />

26.5 K<br />

10 Hz<br />

91 Hz<br />

911 Hz<br />

(8)<br />

(3)<br />

(1) (4) (5) (2) (6) (7) (8)<br />

27.5 K<br />

(1)<br />

(2) (3) (4) (5)(6) (7)<br />

26.5 K<br />

0.00<br />

0.0 0 0.1 0.2 0.3<br />

B (T)<br />

0.4<br />

(8)<br />

10 Hz<br />

91 Hz<br />

911 Hz<br />

Figure 1: AC susceptibility of MnSi for different excitation frequencies<br />

as a function of field along the 〈110〉 axis. µ 0dM/dB<br />

represents the susceptibility calculated from the dc magnetization.<br />

(a) Real Part. (b) Imaginary Part.<br />

a<br />

Re χ ac<br />

b<br />

Re χ ac<br />

0.3<br />

0.2<br />

0.1<br />

0.00<br />

0.3<br />

0.2<br />

0.1<br />

1 x 1 x 1 mm 3<br />

Sample 3 - B || <br />

Sample 2 - B || <br />

Sample 2 - B || <br />

(8)<br />

MnSi, f ac<br />

= 10 Hz, B ac<br />

= 1 mT<br />

27.5 K<br />

B || <br />

Sample 1 - 6 x 1 x 1 mm 3<br />

Sample 2 - 1 x 1 x 1 mm 3<br />

Sample 4 - 0.115 x 3 x 1 mm 3<br />

0.00<br />

0.0 0 0.1 0.2 0.3 0.4 0.5<br />

B (T)<br />

Figure 2: AC susceptibility of MnSi as a function of applied field.<br />

(a) For field along 〈110〉 and different sample geometries and<br />

hence demagnetization factors. (b) For field along the major crystallographic<br />

directions while keeping demagnatization unchanged.<br />

The susceptibility, µ 0 dM/dB, calculated from the magnetization,<br />

is dominated by pronounced maxima at the<br />

transition from the helical to the conical and the conical<br />

to the skyrmion lattice phase. The maxima in µ 0 dM/dB<br />

are not tracked by the ac susceptibility, which in addition<br />

varies sensitively with the excitation amplitude and frequency<br />

at the transition from the conical to the skyrmion lattice<br />

phase. The same differences between µ 0 dM/dB and<br />

the ac susceptibility exist for Mn 1−x Fe x Si (x = 0.04) and<br />

Fe 1−x Co x Si (x = 0.20).<br />

a<br />

B int<br />

(T)<br />

b<br />

B int<br />

(T)<br />

c<br />

B int<br />

(T)<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

conical<br />

helical<br />

conical<br />

helical<br />

conical<br />

helical<br />

FM<br />

A-phase<br />

FM<br />

A-phase<br />

FM<br />

A-phase<br />

MnSi<br />

B || <br />

IM<br />

B || <br />

IM<br />

B || <br />

IM<br />

26 28 30<br />

T (K)<br />

PM<br />

PM<br />

PM<br />

B c2<br />

- Re χ ac<br />

B c1<br />

- Re χ ac<br />

B -<br />

c1 & B+ c1 - µ 0 dM/dB<br />

B A1<br />

& B A2<br />

- Re χ ac<br />

B Ā1 & B+ A2 - Im χ ac<br />

B + A1 & BĀ2 - Im χ ac<br />

B Ā1 & B+ A2 - µ 0 dM/dB<br />

B + A1 & BĀ2 - µ 0 dM/dB<br />

T c2<br />

- Re χ ac<br />

T c1<br />

- Re χ ac<br />

T A1<br />

& T A2<br />

- Re χ ac<br />

T Ā1 - Im χ ac<br />

T + A1 - Im χ ac<br />

T Ā1 & T A2 - µ 0 ∆M/∆B<br />

T + A1 - µ 0 ∆M/∆B<br />

Figure 3: Magnetic phase diagram of MnSi for all major crystallographic<br />

directions.<br />

Taken together, as shown in Fig. 3 our study establishes<br />

consistently for all major crystallographic directions the<br />

existence of a single pocket of the skyrmion lattice phase<br />

in MnSi, suggestive of a universal characteristic of all B20<br />

transition metal compounds with helimagnetic order. These<br />

results strongly question a recent study[2] on FeGe where<br />

a complex phase diagram showing multiple phase pockets<br />

and meso-phases was inferred from measurements of the ac<br />

susceptibility at a single excitation frequency on an irregular<br />

shaped sample.<br />

References<br />

[1] A. Bauer and C. Pfleiderer, Phys. Rev. B 85, 214418 (<strong>2012</strong>).<br />

[2] H. Wilhelm, M. Baenitz, M. Schmidt, U. K. Rößler, A. A. Leonov,<br />

and A. N. Bogdanov, Phys. Rev. Lett. 107, 127203 (<strong>2011</strong>).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!