20.01.2015 Views

Annual Report 2011 / 2012 - E21 - Technische Universität München

Annual Report 2011 / 2012 - E21 - Technische Universität München

Annual Report 2011 / 2012 - E21 - Technische Universität München

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

counts / stand. mon. counts / stand. mon. counts / stand. mon. counts / stand. mon.<br />

counts / stand. mon. counts / stand. mon. counts / stand. mon. counts / stand. mon.<br />

Chapter 1. Magnetism and Superconductivity 19<br />

the sample with respect to the field [Figs. (d) through (h)].<br />

We begin with panel (d) which demonstrates that the pattern<br />

for field perpendicular to the neutron beam is also perpendicular<br />

to the field. Further, Figs. (e) through (h) show<br />

the six-fold pattern for field parallel to the neutron beam.<br />

The six-fold pattern in the plane perpendicular to the field<br />

is thereby roughly aligned along 〈100〉, consistent with very<br />

weak magnetic anisotropy terms that are sixth order in spinorbit<br />

coupling and small demagnetizing fields (see, e.g., [3]<br />

[4]). As demonstrated for the binary P2 1 3 compounds, the<br />

six-fold pattern arises from a triple-k state, with Σ i k i = 0,<br />

coupled to the uniform magnetization and stabilized by thermal<br />

Gaussian fluctuations. The topology of the triple-k state<br />

is that of a skyrmion lattice, i.e., the winding number is 1<br />

per magnetic unit cell. This has been confirmed experimentally<br />

in MnSi by means of Renninger scans in SANS [11] and<br />

the topological Hall signal [12]. We therefore interpret the<br />

A-phase in Cu 2 OSeO 3 as a skyrmion lattice.<br />

q y<br />

(Å -1 )<br />

q y<br />

(Å -1 )<br />

0.02<br />

0.01<br />

0<br />

-0.01<br />

0.01<br />

0<br />

-0.01<br />

a)<br />

ᐸ100ᐳ<br />

-0.02<br />

0.02<br />

c)<br />

-0.02<br />

0.02<br />

e)<br />

q y<br />

(Å -1 )<br />

q y<br />

(Å -1 )<br />

0.01<br />

0<br />

0.01<br />

0<br />

-0.01<br />

-0.02<br />

-0.02<br />

ᐸ110ᐳ<br />

ᐸ100ᐳ<br />

B = 0<br />

T = 5.0 K<br />

B || ᐸ110ᐳ<br />

B = 58 mT<br />

T = 5.0 K<br />

ᐸ110ᐳ<br />

ᐸ100ᐳ<br />

-0.01<br />

B = 21 mT<br />

B || ᐸ100ᐳ T = 57.3 K<br />

-0.02<br />

0.02<br />

g)<br />

ᐸ110ᐳ<br />

50<br />

22.9<br />

10.5<br />

4.8<br />

2.2<br />

1<br />

50<br />

22.9<br />

10.5<br />

4.8<br />

2.2<br />

1<br />

10<br />

7.3<br />

5.3<br />

3.8<br />

2.8<br />

2<br />

10<br />

7.3<br />

5.3<br />

3.8<br />

2.8<br />

B = 24 mT<br />

B || ᐸ111ᐳ T = 57.0 K<br />

2<br />

-0.01 0 0.01 0.02<br />

q x<br />

(Å -1 )<br />

b)<br />

d)<br />

f)<br />

ᐸ100ᐳ<br />

h)<br />

ᐸ110ᐳ<br />

ᐸ100ᐳ<br />

B || ᐸ110ᐳ<br />

ᐸ110ᐳ<br />

ᐸ100ᐳ<br />

B = 0<br />

T = 5.0 K<br />

B || ᐸ110ᐳ<br />

ᐸ110ᐳ<br />

B = 19 mT<br />

T = 57.3 K<br />

ᐸ110ᐳ<br />

B = 19 mT<br />

T = 57.3 K<br />

ᐸ110ᐳ<br />

50<br />

22.9<br />

10.5<br />

4.8<br />

2.2<br />

1<br />

15<br />

12.5<br />

10.4<br />

8.7<br />

7.2<br />

6<br />

10<br />

7.3<br />

5.3<br />

3.8<br />

2.8<br />

2<br />

10<br />

7.3<br />

5.3<br />

3.8<br />

B = 22 mT<br />

2.8<br />

T = 57.0 K<br />

B random orientation<br />

2<br />

-0.02 -0.01 0 0.01 0.02<br />

q x<br />

(Å -1 )<br />

Figure 2: Typical integrated small-angle neutron scattering<br />

rocking scans in Cu 2OSeO 3. (a) Zero-field scattering pattern<br />

along 〈100〉, characteristic of helimagnetic order along 〈100〉. (b)<br />

Zero-field scattering pattern along 〈110〉, characteristic of helimagnetic<br />

order along 〈100〉. (c) Typical scattering pattern in the<br />

field range B c1 < B < B c2 for T < T c. (d) Scattering pattern<br />

in the A phase for magnetic field perpendicular to the neutron<br />

beam. Panels (e) through (h): Typical scattering pattern in the A<br />

phase for magnetic field parallel to the neutron beam for various<br />

orientations.<br />

Thus, bulk samples of Cu 2 OSeO 3 represent the first example<br />

of helimagnetic order in a structural sibling of the<br />

B20 compounds that is nonbinary, an oxide, a compound<br />

with a nonferromagnetic leading-order exchange interaction,<br />

and an insulator. Being an insulator, the skyrmion lattice in<br />

Cu 2 OSeO 3 thereby promises an emergent electrodynamics<br />

akin to that observed in its binary siblings [7] [8], where<br />

electric fields may now be used to manipulate the skyrmions.<br />

References<br />

[1] T. Adams, A. Chacon, M. Wagner, A. Bauer, G. Brandl, B. Pedersen,<br />

H. Berger, P. Lemmens, and C. Pfleiderer, Phys. Ref. Lett.<br />

108, 237204 (<strong>2012</strong>).<br />

[2] L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics<br />

(Pergamon Press, New York, 1980), Vol. 8.<br />

[3] S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A.<br />

Neubauer, R. Georgii, and P. Böni, Science 323, 915 (2009).<br />

[4] W. Münzer, A. Neubauer, T. Adams, S. Mühlbauer, C. Franz, F.<br />

Jonietz, R. Georgii, P. Böni, B. Pedersen, M. Schmidt et al., Phys.<br />

Rev. B 81, 041203(R) (2010).<br />

[5] X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han, Y.<br />

Matsui, N. Nagaosa, and Y. Tokura, Nature (London) 465, 901<br />

(2010).<br />

[6] X. Z. Yu, N. Kanazawa, Y. Onose, K. Kimoto, W. Z. Zhang, Y.<br />

Matsui, and Y. Tokura, Nature Mater. 10, 106 (<strong>2011</strong>), published<br />

online 05 December 2010.<br />

[7] T. Schulz, R. Ritz, A. Bauer, M. Halder, M. Wagner, C. Franz, C.<br />

Pfleiderer, K. Everschor, M. Garst, and A. Rosch, Nature Phys. 8,<br />

301 (<strong>2012</strong>).<br />

[8] F. Jonietz, S. Mühlbauer, C. Pfleiderer, A. Neubauer, W. Münzer,<br />

A. Bauer, T. Adams, R. Georgii, P. Böni, R. A. Duine et al.,<br />

Science 330, 1648 (2010).<br />

[9] P. Bak and M. H. Jensen, J. Phys. C 13, L881 (1980).<br />

[10] O. Nakanishi, A. Yanase, A. Hasegawa, and M. Kataoka, Solid<br />

State Commun. 35, 995 (1980).<br />

[11] T. Adams, S. Mühlbauer, C. Pfleiderer, F. Jonietz, A. Bauer, A.<br />

Neubauer, R. Georgii, P. Böni, U. Keiderling, K. Everschor et al.,<br />

Phys. Rev. Lett. 107, 217206 (<strong>2011</strong>).<br />

[12] A. Neubauer, C. Pfleiderer, B. Binz, A. Rosch, R. Ritz, P. G.<br />

Niklowitz, and P. Böni, Phys. Rev. Lett. 102, 186602 (2009).<br />

[13] A. Bauer, C. Pfleiderer, Magnetic Phase Diagram of MnSi Inferred<br />

from Magnetisation and AC Susceptibility Measurements,<br />

Phys. Rev. B 85 214418 (<strong>2012</strong>).<br />

[14] A. Bauer, A. Neubauer, C. Franz, W. Münzer, M. Garst, and C.<br />

Pfleiderer, Phys. Rev. B 82, 064404 (2010).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!