13.11.2012 Views

Studies on plant gums. Role of calcium in polysaccharide-protein ...

Studies on plant gums. Role of calcium in polysaccharide-protein ...

Studies on plant gums. Role of calcium in polysaccharide-protein ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

J. Biosci., Vol. 1, Number 1, March 1979, pp. 61–68. © Pr<strong>in</strong>ted <strong>in</strong> India.<br />

<str<strong>on</strong>g>Studies</str<strong>on</strong>g> <strong>on</strong> <strong>plant</strong> <strong>gums</strong>. <strong>Role</strong> <strong>of</strong> <strong>calcium</strong> <strong>in</strong> <strong>polysaccharide</strong>-prote<strong>in</strong><br />

<strong>in</strong>teracti<strong>on</strong> <strong>in</strong> the neem (Azadirachta <strong>in</strong>dica) gum<br />

Introducti<strong>on</strong><br />

B. RAMAKRISHNA NAYAK, B. C. SHENOY and<br />

T. N. PATTABIRAMAN<br />

Department <strong>of</strong> Biochemistry, Kasturba Medical College, Manipal 576 119<br />

MS received 10 November 1978<br />

Abstract. The partial removal <strong>of</strong> tightly bound Ca 2+<br />

from dialysed neem (Azadirachta<br />

<strong>in</strong>dica) gum, resulted <strong>in</strong> the release <strong>of</strong> a basic prote<strong>in</strong> from a highly ani<strong>on</strong>ic<br />

<strong>polysaccharide</strong>-prote<strong>in</strong> complex as evidenced by chromatographic studies <strong>on</strong> TEAEcellulose.<br />

Complete removal <strong>of</strong> Ca 2+ caused, <strong>in</strong> additi<strong>on</strong>, the release <strong>of</strong> a m<strong>in</strong>or<br />

hetero<strong>polysaccharide</strong> which was found <strong>in</strong> associati<strong>on</strong> with the basic prote<strong>in</strong>. These<br />

processes were reversed <strong>on</strong> the additi<strong>on</strong> <strong>of</strong> Ca 2+ . The gum, <strong>in</strong> additi<strong>on</strong>, c<strong>on</strong>ta<strong>in</strong>ed a<br />

prote<strong>in</strong>-rich comp<strong>on</strong>ent account<strong>in</strong>g for 35% prote<strong>in</strong> and 7·5% total carbohydrate.<br />

This comp<strong>on</strong>ent behaved as a dist<strong>in</strong>ct entity dur<strong>in</strong>g i<strong>on</strong>-exchange chromatography<br />

<strong>of</strong> the native gum soluti<strong>on</strong>s, or which were either partially or completely depleted <strong>of</strong><br />

bound Ca 2+ .<br />

Keywords. Neem; Azadirachta <strong>in</strong>dica gum; <strong>calcium</strong>; basic prote<strong>in</strong>; <strong>polysaccharide</strong>-<br />

prote<strong>in</strong> <strong>in</strong>teracti<strong>on</strong>s<br />

Neem (Azadirachta <strong>in</strong>dica) exudate gum which bel<strong>on</strong>gs to the family <strong>of</strong> galactan<br />

<strong>gums</strong> (Asp<strong>in</strong>al, 1969) has unusual structural features <strong>in</strong> that, it c<strong>on</strong>ta<strong>in</strong>s appreciable<br />

amounts <strong>of</strong> D-glucosam<strong>in</strong>e and prote<strong>in</strong>s (Ushalakshmi and Pattabiraman, 1967)<br />

unlike other <strong>plant</strong> <strong>gums</strong>. The present study is aimed at provid<strong>in</strong>g some <strong>in</strong>sight<br />

<strong>in</strong>to the nature <strong>of</strong> <strong>in</strong>teracti<strong>on</strong> between prote<strong>in</strong>s and hetero<strong>polysaccharide</strong>s <strong>in</strong> neem<br />

gum. Evidence is provided to show that Ca 2+ plays a role <strong>in</strong> such an <strong>in</strong>teracti<strong>on</strong>.<br />

Materials and methods<br />

Materials<br />

Neem gum samples were hand-picked and stored at room temperature. The<br />

powdered gum was dissolved <strong>in</strong> water, clarified by charcoal treatment and centrifuged<br />

at 12000 × g for 20 m<strong>in</strong>. The clear supernatant was extensively dialysed<br />

aga<strong>in</strong>st water and stored at – 5o C until use. A typical preparati<strong>on</strong> c<strong>on</strong>ta<strong>in</strong>ed<br />

61


62 Β Ramakrishna Nayak et al.<br />

40 mg <strong>of</strong> carbohydrate and 22 mg <strong>of</strong> prote<strong>in</strong> per ml. This is designated as native<br />

gum soluti<strong>on</strong>. TEAE-cellulose was purchased from Bio-Rad Laboratories,<br />

Richm<strong>on</strong>d, CA, USA. Sephadex G–15 and G–100 were obta<strong>in</strong>ed from Pharmacia<br />

F<strong>in</strong>e Chemicals, Uppsala, Sweden. All other reagents were <strong>of</strong> the analytical<br />

grade.<br />

Methods<br />

General methods: Total carbohydrate was estimated by the method <strong>of</strong> Dubois<br />

et al. (1956) with galactose as standard. Prote<strong>in</strong> was estimated by the method <strong>of</strong><br />

Lowry et al· (1951) us<strong>in</strong>g bov<strong>in</strong>e serum album<strong>in</strong> as standard. Ur<strong>on</strong>ic acid was<br />

determ<strong>in</strong>ed by carbazole method (Bitter and Muir, 1962) us<strong>in</strong>g glucur<strong>on</strong>ic acid as<br />

standard· Calcium was estimated by the method <strong>of</strong> Tr<strong>in</strong>der (1960). For the<br />

quantitative estimati<strong>on</strong> <strong>of</strong> basic am<strong>in</strong>o acids, the property <strong>of</strong> b<strong>in</strong>d<strong>in</strong>g <strong>of</strong> these am<strong>in</strong>o<br />

acids to Sephadex (Gelotte, 1960) was used. The neutralised hydrolysate (600 μg<br />

total am<strong>in</strong>o acid) was applied <strong>on</strong> a column <strong>of</strong> Sephadex G–15 (bed volume 18 ml,<br />

0·9 × 28 cm) and washed with 36 ml <strong>of</strong> water. The basic am<strong>in</strong>o acids were eluted<br />

with 0·1 Μ NaCl. Fracti<strong>on</strong>s <strong>of</strong> l·5 ml were collected. Fracti<strong>on</strong>s 8–10 were<br />

pooled and assayed by the n<strong>in</strong>hydr<strong>in</strong> method (Moore and Ste<strong>in</strong>, 1948) with leuc<strong>in</strong>e<br />

as standard.<br />

Removal from and rec<strong>on</strong>stituti<strong>on</strong> <strong>of</strong> Ca 2+ <strong>in</strong>to the gum: Weakly bound <strong>calcium</strong> was<br />

precipitated by mix<strong>in</strong>g equal volumes <strong>of</strong> the gum soluti<strong>on</strong> and 0·1 Μ phosphate<br />

buffer, pH 7·0. After stand<strong>in</strong>g for 15 m<strong>in</strong>, the soluti<strong>on</strong> was centrifuged and the<br />

supernatant soluti<strong>on</strong> was dialysed aga<strong>in</strong>st 50 vol. <strong>of</strong> water for 16 h with a change<br />

<strong>of</strong> water after 8 h. This soluti<strong>on</strong> is designated as phosphate treated (stage I) gum.<br />

Tightly bound <strong>calcium</strong> was partially removed by heat<strong>in</strong>g the above soluti<strong>on</strong> with<br />

equal volume <strong>of</strong> phosphate buffer at 95°C for 10 m<strong>in</strong> and by process<strong>in</strong>g as des-<br />

cribed above. This sample is designated as phosphate treated (stage II) gum·<br />

Complete removal <strong>of</strong> bound <strong>calcium</strong> was effected by dialys<strong>in</strong>g twice, the stage II<br />

gum soluti<strong>on</strong>, aga<strong>in</strong>st 50 vol. <strong>of</strong> 0·01 M EDTA for 6 h, followed by dialysis<br />

aga<strong>in</strong>st water. This sample is designated as metal-free (stage III) gum. Stage II<br />

and stage III <strong>gums</strong> were also prepared from native gum soluti<strong>on</strong> directly. Irres-<br />

pective <strong>of</strong> the method <strong>of</strong> preparati<strong>on</strong>, the modified gum soluti<strong>on</strong>s behaved simi-<br />

larly dur<strong>in</strong>g chromatographic studies. Rec<strong>on</strong>stituti<strong>on</strong> with <strong>calcium</strong> was performed<br />

by mix<strong>in</strong>g EDTA-treated gum soluti<strong>on</strong> with 9 mg <strong>of</strong> CaCl2. 2H2O. After 2 h,<br />

the soluti<strong>on</strong> was dialysed aga<strong>in</strong>st 600 vol. <strong>of</strong> water for 18 h with a change <strong>of</strong> water<br />

after 9 h.<br />

Results<br />

A typical sample <strong>of</strong> native gum soluti<strong>on</strong> c<strong>on</strong>ta<strong>in</strong>ed 12·4 mg <strong>of</strong> <strong>calcium</strong> per g<br />

dry wt. At stage I, 54% <strong>of</strong> the metal i<strong>on</strong> was removed. An additi<strong>on</strong>al 21% <strong>of</strong><br />

<strong>calcium</strong> was removed at stage II and the residual <strong>calcium</strong> was completely removed<br />

by EDTA treatment. There was no loss <strong>of</strong> carbohydrate or prote<strong>in</strong> dur<strong>in</strong>g the<br />

different stages <strong>of</strong> <strong>calcium</strong> removal.<br />

The chromatographic pattern <strong>of</strong> the native gum soluti<strong>on</strong> <strong>on</strong> TEAE-cellulose is<br />

Shown <strong>in</strong> figure l. A small fracti<strong>on</strong> (peak A) which was not reta<strong>in</strong>ed <strong>on</strong> the


Polysaccharide prote<strong>in</strong> <strong>in</strong>teracti<strong>on</strong> <strong>in</strong> the neem gum 63<br />

Figure 1. Chromatography <strong>of</strong> the native gum <strong>on</strong> TEAE-cellulose.<br />

One ml gum soluti<strong>on</strong> (40 mg carbohydrate and 22 mg prote<strong>in</strong>) was processed<br />

Column size 0·9 × 39 cm. Bed. volume 25 ml. Flow rate 20ml/h. Fracti<strong>on</strong><br />

volume 5·0 ml. Successive eluti<strong>on</strong> with 50 ml <strong>of</strong> 0·01 Μ phosphate buffer pH 7·0,<br />

0·1 Μ phosphate buffer pH 7·0 and 50 ml <strong>of</strong> 0·1 Μ phosphate pH 5·0 c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g<br />

1 Μ NaCl.<br />

column and which was eluted with the equilibrati<strong>on</strong> buffer accounted for 4·3%<br />

<strong>of</strong> carbohydrate and 7·5% <strong>of</strong> prote<strong>in</strong> <strong>in</strong> the gum. A prote<strong>in</strong>-rich fracti<strong>on</strong> (prote<strong>in</strong>:<br />

carbohydrate ratio, 2·7) was eluted with 0·1 Μ phosphate buffer pH 7·0 (peak B)<br />

It accounted for 7·6% <strong>of</strong> carbohydrate and 36% <strong>of</strong> prote<strong>in</strong> <strong>of</strong> the native gum. The<br />

bulk <strong>of</strong> the carbohydrate (74%) and the rema<strong>in</strong><strong>in</strong>g prote<strong>in</strong>, which was tightly bound<br />

to the column, was eluted with 0·1 Μ phosphate pH 5·0 c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g 1 Μ NaCl<br />

(peak C). The stage I gum and also gum soluti<strong>on</strong>, heat-treated at 95° C for 10 m<strong>in</strong><br />

showed similar eluti<strong>on</strong> pr<strong>of</strong>iles <strong>on</strong> chromatography (data not given).<br />

The chromatographic pattern <strong>of</strong> the metal i<strong>on</strong>-free gum <strong>on</strong> TEAE-cellulose is<br />

shown <strong>in</strong> figure 2. The middle fracti<strong>on</strong> was similar <strong>in</strong> compositi<strong>on</strong> to the corresp<strong>on</strong>d<strong>in</strong>g<br />

fracti<strong>on</strong> separated from native gum. A major difference between the<br />

eluti<strong>on</strong> pr<strong>of</strong>iles <strong>of</strong> the native and metal i<strong>on</strong>-free <strong>gums</strong> is with respect to fracti<strong>on</strong> A.<br />

In the case <strong>of</strong> the metal i<strong>on</strong>-free gum, a c<strong>on</strong>siderable amount <strong>of</strong> prote<strong>in</strong> (31%) and<br />

carbohydrate (20%) came out with the equilibrati<strong>on</strong> buffer. There was a corresp<strong>on</strong>d<strong>in</strong>g<br />

decrease <strong>in</strong> the prote<strong>in</strong> and carbohydrate c<strong>on</strong>tent <strong>of</strong> fracti<strong>on</strong> C as compared<br />

to native gum (compare figure 2 with figure 1). The data suggest that<br />

complete removal <strong>of</strong> <strong>calcium</strong> results <strong>in</strong> the release <strong>of</strong> a fracti<strong>on</strong> from the highly<br />

ani<strong>on</strong>ic complex (peak C, figure 1). This released fracti<strong>on</strong> does not b<strong>in</strong>d to TEAE-<br />

cellulose and hence comes <strong>in</strong> the ‘positi<strong>on</strong> <strong>of</strong> peak A up<strong>on</strong> TEAE-cellulose<br />

chromatography (peak A, figure 2). This fracti<strong>on</strong> was made up <strong>of</strong> more than <strong>on</strong>e<br />

comp<strong>on</strong>ent as <strong>in</strong>dicated by chromatographic studies <strong>of</strong> stage II treated <strong>on</strong> TEAE-<br />

cellulose. The results are shown <strong>in</strong> figure 3. It can be surmised that partial


64 Β. Ramakrishna Nayak et al.<br />

Figure 2. Chromatography <strong>of</strong> the metal i<strong>on</strong>-free gum <strong>on</strong> TEAE-cellulose.<br />

Two ml gum soluti<strong>on</strong> (40mg carbohydrate and 22·5 mg prote<strong>in</strong>) was processed.<br />

Details are as described <strong>in</strong> figure 1.<br />

Figure 3. Chromatography <strong>of</strong> the stage II gum <strong>on</strong> TEAE-cellulose.<br />

Two ml gum soluti<strong>on</strong> (39·5mg carbohydrate and 21·9 mg prote<strong>in</strong>) was processed.<br />

Details are as described <strong>in</strong> figure 1.


Polysaccharide prote<strong>in</strong> <strong>in</strong>teracti<strong>on</strong> <strong>in</strong> the neem gum 65<br />

removal <strong>of</strong> tightly bound <strong>calcium</strong> released a prote<strong>in</strong>-rich comp<strong>on</strong>ent from the<br />

ani<strong>on</strong>ic complex (peak C, figure 1), whereas complete removal <strong>of</strong> metal, resulted<br />

<strong>in</strong> the further release <strong>of</strong> a hetero<strong>polysaccharide</strong> unit that associated with the released<br />

prote<strong>in</strong> and was eluted with the equilibrati<strong>on</strong> buffer. The middle fracti<strong>on</strong> was<br />

similar <strong>in</strong> compositi<strong>on</strong> to corresp<strong>on</strong>d<strong>in</strong>g fracti<strong>on</strong>s obta<strong>in</strong>ed from native and metal<br />

i<strong>on</strong>-free gum soluti<strong>on</strong>s. The carbohydrate and prote<strong>in</strong> c<strong>on</strong>tents <strong>of</strong> the different<br />

gum fracti<strong>on</strong>s are shown <strong>in</strong> table 1.<br />

Table 1. Carbohydrate and prote<strong>in</strong> compositi<strong>on</strong> <strong>of</strong> neem gum fracti<strong>on</strong>s obta<strong>in</strong>ed<br />

by TEAE-cellulose chromatography.<br />

Stage II—Native gum treated with 0·1 Μ phosphate buffer pH 7·0 at 95° for 10 m<strong>in</strong>.<br />

Stage III—Native gum treated with 0·01 Μ EDTA for 6 h, followed by dialysis.<br />

Fracti<strong>on</strong>s A, B, C represent material with<strong>in</strong> peaks A, B, C from TEAE-cellulose chromatography<br />

<strong>of</strong> the native gum, stage II gum and stage III gum.<br />

The released prote<strong>in</strong> fracti<strong>on</strong> was found to be basic <strong>in</strong> nature. The total basic<br />

am<strong>in</strong>o acids <strong>in</strong> this fracti<strong>on</strong> was found to be 52% compared to 39% <strong>in</strong> the native<br />

gum based <strong>on</strong> sephadex sorpti<strong>on</strong> data (quantitative estimati<strong>on</strong>). The eluti<strong>on</strong> pr<strong>of</strong>ile<br />

<strong>of</strong> fracti<strong>on</strong> A <strong>of</strong> stage II gum <strong>on</strong> Sephadex G–100, with water as eluant, is shown <strong>in</strong><br />

figure 4. Retardati<strong>on</strong> <strong>of</strong> the bulk <strong>of</strong> the prote<strong>in</strong> is evident. It is well known that<br />

basic prote<strong>in</strong>s show anomalous eluti<strong>on</strong> behaviour <strong>on</strong> cross-l<strong>in</strong>ked dextrans due to<br />

i<strong>on</strong>ic <strong>in</strong>teracti<strong>on</strong>s (Glazer and Wellner 1962). Further studies to isolate and<br />

characterise this basic prote<strong>in</strong> fracti<strong>on</strong> are <strong>in</strong> progress. Glucur<strong>on</strong>ic acid c<strong>on</strong>tents


66 Β. Ramakrishna Nayak et al.<br />

<strong>of</strong> fracti<strong>on</strong>s Α, Β and C from the metal i<strong>on</strong>-free gum and the corresp<strong>on</strong>d<strong>in</strong>g frac-<br />

ti<strong>on</strong>s from the native gum were estimated. It was found that glucur<strong>on</strong>ic acid c<strong>on</strong>-<br />

tent <strong>in</strong> the <strong>in</strong>dividual fracti<strong>on</strong>s were not significantly different from that <strong>of</strong> the<br />

native gum (20% <strong>of</strong> total carbohydrate). This would suggest that the failure <strong>of</strong><br />

the m<strong>in</strong>or hetero<strong>polysaccharide</strong> released, <strong>on</strong> removal <strong>of</strong> the metal to b<strong>in</strong>d to<br />

TEAE-cellulose, is not due to the absence <strong>of</strong> glucur<strong>on</strong>ic acid. Presumably this<br />

hetero<strong>polysaccharide</strong> complexes with the basic prote<strong>in</strong> result<strong>in</strong>g <strong>in</strong> the neutralisati<strong>on</strong><br />

<strong>of</strong> its negative charge.<br />

Figure 4. Chromatography <strong>of</strong> TEAE-cellulose ‘fracti<strong>on</strong> A’ <strong>of</strong> stage II gum <strong>on</strong><br />

Sephadex G–100<br />

One ml soluti<strong>on</strong> (2·3 mg carbohydrate and 6·7 mg prote<strong>in</strong>) was processed<br />

Column size 0·9 × 59 cm. Bed volume 38 ml. The column was eluted with water.<br />

Further evidence for these observati<strong>on</strong>s are provided by gel chromatographic<br />

studies <strong>on</strong> Sephadex G–100. The eluti<strong>on</strong> pr<strong>of</strong>ile <strong>of</strong> the stage II treated gum with<br />

water as eluant is shown <strong>in</strong> figure 5. A prote<strong>in</strong> fracti<strong>on</strong> (fracti<strong>on</strong>s 14, 15), eluted.<br />

after the void volume (13 ml), approximately corresp<strong>on</strong>ds to the prote<strong>in</strong> peak <strong>in</strong> the<br />

eluti<strong>on</strong> pr<strong>of</strong>ile <strong>of</strong> fracti<strong>on</strong> A <strong>of</strong> the stage II gum <strong>on</strong> Sephadex G–100 (figure 4). The<br />

eluti<strong>on</strong> pr<strong>of</strong>ile <strong>in</strong>dicates the heterogeneity <strong>of</strong> the gum. The eluti<strong>on</strong> patterns <strong>of</strong><br />

stage II gum and stage III gum <strong>on</strong> Sephadex G–100 with 0·05 Μ NaCl as<br />

eluant is shown <strong>in</strong> figure 6. With the stage II gum, suppressi<strong>on</strong> <strong>of</strong> i<strong>on</strong>ic <strong>in</strong>teracti<strong>on</strong><br />

between the basic prote<strong>in</strong> and cross-l<strong>in</strong>ked dextran is not complete as <strong>in</strong>dicated<br />

by the shoulder. However, <strong>in</strong> the case <strong>of</strong> the metal i<strong>on</strong>-free gum, no trail<strong>in</strong>g <strong>of</strong><br />

prote<strong>in</strong> can be noticed. This could be expla<strong>in</strong>ed due to the decrease <strong>in</strong> the basicity<br />

<strong>of</strong> the prote<strong>in</strong> due to complex<strong>in</strong>g with the ur<strong>on</strong>ic acid c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g m<strong>in</strong>or hetero<strong>polysaccharide</strong>.<br />

The native gum also showed a similar pr<strong>of</strong>ile with 0·05 Μ Nacl<br />

as eluant.


Polysaccharide prote<strong>in</strong> <strong>in</strong>teracti<strong>on</strong> <strong>in</strong> the neem gum 67<br />

Figure 5. Chromatography <strong>of</strong> stage II gum <strong>on</strong> Sephadex G-100·<br />

The Gum soluti<strong>on</strong> (0 ·2 ml) was processed. Other details are as described<br />

<strong>in</strong> figure 4·<br />

Figure 6. Chromatography <strong>of</strong> stage II gum and stage III gum <strong>on</strong> Sephadex G-100<br />

The gum soluti<strong>on</strong>s (0·2 ml) each were processed. NaCl (0·05 M) was used for eluti<strong>on</strong>.<br />

Other details are as described <strong>in</strong> figure 4.


68 Β. Ramakrishna Nayak et al.<br />

The metal i<strong>on</strong>-free gum was rec<strong>on</strong>stituted with <strong>calcium</strong> and was subjected to<br />

chromatography <strong>on</strong> TEAE-cellulose. The eluti<strong>on</strong> pr<strong>of</strong>ile obta<strong>in</strong>ed was similar<br />

to that <strong>of</strong> the native gum (figure 1).<br />

Discussi<strong>on</strong><br />

Satya Narayan and Pattabiraman (1971) provided evidence for the heterogeneity<br />

<strong>of</strong> neem gum and for the presence <strong>of</strong> a prote<strong>in</strong>-rich comp<strong>on</strong>ent <strong>in</strong> this gum· The<br />

present studies c<strong>on</strong>firm this f<strong>in</strong>d<strong>in</strong>g. It was observed that this prote<strong>in</strong>-rich frac-<br />

ti<strong>on</strong> with a prote<strong>in</strong> carbohydrate ratio <strong>of</strong> 2·6:1 was bound to TEAE-cellulose<br />

and was eluted with 0·1 Μ phosphate buffer pH 7·0 dur<strong>in</strong>g chromatography <strong>of</strong><br />

the native gum and after partial and complete removal <strong>of</strong> the metal (peak B)<br />

The data show that Ca 2+ does not play a role <strong>in</strong> the <strong>in</strong>teracti<strong>on</strong> <strong>of</strong> this fracti<strong>on</strong> with<br />

the rema<strong>in</strong><strong>in</strong>g comp<strong>on</strong>ents <strong>of</strong> the gum. However, Ca 2+ appears to play a decisive<br />

role <strong>in</strong> <strong>polysaccharide</strong> prote<strong>in</strong> <strong>in</strong>teracti<strong>on</strong> with respect to the other comp<strong>on</strong>ents<br />

(peaks A and C) <strong>in</strong> neem gum. Partial removal <strong>of</strong> tightly bound Ca 2+ resulted<br />

<strong>in</strong> the release <strong>of</strong> a basic prote<strong>in</strong> as evidenced by chromatographic studies <strong>on</strong> TEAEcellulose<br />

and Sephadex G–100 and by the am<strong>in</strong>o acid compositi<strong>on</strong> <strong>of</strong> the released<br />

fracti<strong>on</strong>. Complete removal <strong>of</strong> Ca 2+ caused further release <strong>of</strong> a m<strong>in</strong>or hetero<strong>polysaccharide</strong><br />

unit which tends to associate with the basic prote<strong>in</strong>. The dissociati<strong>on</strong><br />

and reassociati<strong>on</strong> reacti<strong>on</strong>s due to step-wise Ca 2+ removal were found to be rever-<br />

sible as <strong>in</strong>dicated by chromatographic studies after additi<strong>on</strong> <strong>of</strong> Ca 2+ . The present<br />

studies, thus, provide evidence for the presence <strong>of</strong> at least two prote<strong>in</strong>-rich compo-<br />

nents and two <strong>polysaccharide</strong> comp<strong>on</strong>ents <strong>in</strong> neem gum. Further studies are<br />

needed to isolate and characterise the <strong>in</strong>dividual comp<strong>on</strong>ents <strong>in</strong> neem gum.<br />

Acknowledgements<br />

This work was supported by a grant from Council <strong>of</strong> Scientific and Industrial<br />

Research, New Delhi. The first author is the recipient <strong>of</strong> a Senior Research<br />

Fellowship. The authors acknowledge the encouragement <strong>of</strong> Dr A. Krishna<br />

Rao.<br />

References<br />

Asp<strong>in</strong>al, G. O. (1969) Advances <strong>in</strong> carbohydrate chemistry and biochemistry, eds M. L. Wolform,<br />

and R. S. Tips<strong>on</strong>, (New York: Academic Press), 24, 333.<br />

Bitter, T. and Muir, H. M. (1962) Anal. Biochem., 4, 330.<br />

Dubois, Μ., Killes, Κ. Α., Hamilt<strong>on</strong>, J. Κ., Rebers, P. A. and Smith, F. (1956) Anal. Chem.,<br />

28, 350.<br />

Gelotte, B. (1960) J. Chromatogr., 3, 330.<br />

Glazer, A. N. and Wellner, D. (1962) Nature (L<strong>on</strong>d<strong>on</strong>), 194, 862.<br />

Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. (1951) J. Biol. Chem., 193, 365.<br />

Moore, S. and Ste<strong>in</strong>, W. H. (1948) J. Biol. Chem., 176, 367.<br />

Satya Narayan, V. and Pattabiraman, T. N. (1973) Indian J. Biochem. Biophys., 10, 155<br />

Tr<strong>in</strong>der, P. (1960) Analyst, 85, 889.<br />

Ushalakshmi and Pattabiraman, T. N. (1967) Indian J. Biochem., 4, 181.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!