27.01.2015 Views

I. Analytical Solutions in Conduction Heat Transfer I. Analytical ...

I. Analytical Solutions in Conduction Heat Transfer I. Analytical ...

I. Analytical Solutions in Conduction Heat Transfer I. Analytical ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

I. <strong>Analytical</strong> <strong>Solutions</strong> <strong>in</strong> <strong>Conduction</strong> <strong>Heat</strong> <strong>Transfer</strong><br />

G. Instantaneous and Cont<strong>in</strong>uous Sources<br />

1. Application to heat treatment of surfaces with lasers and to<br />

weld<strong>in</strong>g<br />

power<br />

<strong>in</strong>put q (W)<br />

melt pool<br />

fusion zone<br />

y<br />

z<br />

x<br />

What is size and shape of<br />

melt pool How is it affected<br />

by power <strong>in</strong>put and velocity<br />

plate velocity u<br />

Assume cont<strong>in</strong>uous po<strong>in</strong>t source<br />

fixed at orig<strong>in</strong> <strong>in</strong> a semi-<strong>in</strong>f<strong>in</strong>ite solid<br />

that moves with steady velocity u <strong>in</strong><br />

x-direction.<br />

lesson 7<br />

I. <strong>Analytical</strong> <strong>Solutions</strong> <strong>in</strong> <strong>Conduction</strong> <strong>Heat</strong> <strong>Transfer</strong><br />

1. Application to heat treatment of surfaces with laser and to<br />

weld<strong>in</strong>g (cont.)<br />

power<br />

<strong>in</strong>put q (W)<br />

y<br />

fusion zone<br />

melt pool<br />

x<br />

z<br />

plate velocity u<br />

Additional assumptions<br />

•po<strong>in</strong>t heat source<br />

•constant thermal properties<br />

•no melt<strong>in</strong>g or solidification<br />

•no heat loss from surface of plate<br />

Approach<br />

•<strong>in</strong>stantaneous planar source<br />

•<strong>in</strong>stantaneous po<strong>in</strong>t source<br />

•surface treatment of mov<strong>in</strong>g<br />

solid<br />

lesson 7<br />

1


I. <strong>Analytical</strong> <strong>Solutions</strong> <strong>in</strong> <strong>Conduction</strong> <strong>Heat</strong> <strong>Transfer</strong><br />

2. The fundamental solution - one-dimensional, <strong>in</strong>stantaneous,<br />

planar source<br />

a. pulse of thermal energy released uniformly over plane at<br />

x = 0 <strong>in</strong> <strong>in</strong>f<strong>in</strong>ite solid with <strong>in</strong>itial temperature T = 0.<br />

Let Q = strength of source, K⋅m, where Qρc (=) J/m 2<br />

(I.G.1)<br />

(I.G.2)<br />

We want to f<strong>in</strong>d T(x,t) where x ranges from -∞ to +∞.<br />

By conservation of energy,<br />

Q ρc<br />

=<br />

∫ ∞ −∞<br />

ρcT(x,t)<br />

dx<br />

(I.G.3)<br />

lesson 7<br />

I. <strong>Analytical</strong> <strong>Solutions</strong> <strong>in</strong> <strong>Conduction</strong> <strong>Heat</strong> <strong>Transfer</strong><br />

b. govern<strong>in</strong>g equations<br />

2<br />

∂T<br />

∂ T<br />

= α<br />

∂t<br />

2<br />

∂x<br />

at t = 0, T(x,0) = Qδ(x)<br />

at x = ±∞,<br />

T( ±∞,t)<br />

= 0<br />

(I.G.4)<br />

(I.G.5)<br />

(I.G.6)<br />

∞<br />

δ(x)dx<br />

= 1<br />

−∞<br />

∞<br />

f(x) δ(x)dx<br />

= f(x)<br />

−∞<br />

∫<br />

∫<br />

(I.G.7)<br />

(I.G.8)<br />

c. solution (see Lesson 12 of Farlow)<br />

Also known as<br />

Green’s function,<br />

the fundamental<br />

solution, and the<br />

impulse response<br />

function.<br />

lesson 7<br />

2<br />

Q ⎛ x ⎞<br />

T( x,t ) = exp<br />

1 / 2<br />

2( παt<br />

)<br />

⎜ −<br />

4αt<br />

⎟ (I.G.9)<br />

⎝ ⎠<br />

2<br />

x = 2αt<br />

(I.G.10)<br />

r<br />

r<br />

2<br />

2<br />

=<br />

=<br />

x<br />

x<br />

2<br />

2<br />

+<br />

+<br />

y<br />

y<br />

2<br />

2<br />

= 4αt<br />

2<br />

+ z = 6αt<br />

(I.G.11)<br />

(I.G.12)<br />

2


I. <strong>Analytical</strong> <strong>Solutions</strong> <strong>in</strong> <strong>Conduction</strong> <strong>Heat</strong> <strong>Transfer</strong><br />

3. Three-dimensional, <strong>in</strong>stantaneous, po<strong>in</strong>t source<br />

a. statement of problem for po<strong>in</strong>t source <strong>in</strong> <strong>in</strong>f<strong>in</strong>ite solid<br />

Let S = strength of source, K⋅m 3 , where Sρc (=) J<br />

(I.G.13)<br />

We want to f<strong>in</strong>d T(x,y,z,t) where x, y, and z range from -∞ to +∞.<br />

By conservation of energy,<br />

S ρc<br />

=<br />

∫ ∞ −∞<br />

ρcT(x,y,z,t)<br />

dxdydz<br />

(I.G.14)<br />

lesson 7<br />

I. <strong>Analytical</strong> <strong>Solutions</strong> <strong>in</strong> <strong>Conduction</strong> <strong>Heat</strong> <strong>Transfer</strong><br />

3. Three-dimensional, <strong>in</strong>stantaneous, po<strong>in</strong>t source (cont.)<br />

b. govern<strong>in</strong>g equations<br />

2 2 2<br />

∂T<br />

⎛ T T T ⎞<br />

⎜ ∂ ∂ ∂<br />

= α + + ⎟<br />

∂t<br />

⎜ 2 2 2<br />

x y z ⎟<br />

⎝ ∂ ∂ ∂ ⎠<br />

at t = 0, T(x,y,z,0) = Sδ(x)<br />

δ(y)<br />

δ(z)<br />

at x,y,z = ±∞,<br />

T( ±∞ , ±∞ , ±∞,t)<br />

= 0<br />

(I.G.15)<br />

Then<br />

lesson 7<br />

c. solution<br />

Let T(x,y,z,t)=T x (x,t)T y (y,t)T z (z,t)<br />

2<br />

∂Tx<br />

∂ T<br />

= α x<br />

∂t<br />

2<br />

∂x<br />

1/ 3<br />

and<br />

at t = 0, Tx<br />

(x,0) = S δ(x)<br />

at x = ±∞,<br />

Tx<br />

( ±∞,t)<br />

= 0<br />

(I.G.17)<br />

T(r ,t )<br />

where<br />

(I.G.16)<br />

2<br />

=<br />

πα<br />

exp<br />

3 / 2<br />

⎜<br />

α<br />

r<br />

8(<br />

2<br />

= x<br />

S<br />

t )<br />

2<br />

+ y<br />

2<br />

(I.G.18)<br />

+ z<br />

⎛ r ⎞ −<br />

4 t<br />

⎟<br />

⎝ ⎠<br />

2<br />

3


I. <strong>Analytical</strong> <strong>Solutions</strong> <strong>in</strong> <strong>Conduction</strong> <strong>Heat</strong> <strong>Transfer</strong><br />

4. Solution to heat treatment or weld<strong>in</strong>g problem<br />

a. govern<strong>in</strong>g equations for <strong>in</strong>f<strong>in</strong>ite solid<br />

Recall<br />

⎛ ∂T<br />

c V ~ ⎞<br />

ρ ⎜ + ⋅∇T⎟<br />

= ∇ ⋅ +<br />

⎝ ∂t<br />

⎠<br />

( k∇T) u'' '<br />

(I.B.18)<br />

For our problem, (I.B.18) becomes<br />

2 2 2<br />

∂T<br />

⎛ T T T ⎞<br />

⎜ ∂ ∂ ∂ ∂T<br />

= α + + ⎟ − u<br />

∂t<br />

⎜ 2 2 2<br />

x y z ⎟<br />

⎝ ∂ ∂ ∂ ⎠<br />

∂x<br />

at t = 0, T(x,y,z,0) = Sδ(x)<br />

δ(y)<br />

δ(z)<br />

at x,y,z = ±∞,<br />

T( ±∞ , ±∞ , ±∞,t)<br />

= 0<br />

(I.G.19)<br />

(I.G.19) is the diffusion-advection or diffusion-convection equation.<br />

lesson 7<br />

I. <strong>Analytical</strong> <strong>Solutions</strong> <strong>in</strong> <strong>Conduction</strong> <strong>Heat</strong> <strong>Transfer</strong><br />

x’ = x - ut<br />

y’ = y<br />

z’ = z<br />

t’ = t<br />

lesson 7<br />

4. Solution to heat treatment or weld<strong>in</strong>g problem (cont.)<br />

b. solution - def<strong>in</strong>e coord<strong>in</strong>ates that move with the solid (x’,<br />

y’, z’, t’) so that the source is always at the orig<strong>in</strong>. Solve<br />

the problem <strong>in</strong> these coord<strong>in</strong>ates (mak<strong>in</strong>g use of (I.G.18))<br />

and then transform back to x, y, z, t coord<strong>in</strong>ates. See<br />

Lesson 15 <strong>in</strong> Farlow.<br />

Hot spot<br />

at t = 0<br />

S<br />

z<br />

x<br />

ut<br />

x’ = x - ut<br />

The solution for <strong>in</strong>stantaneous pulse of strength S <strong>in</strong><br />

primed coord<strong>in</strong>ates is (I.G.18):<br />

T(x',y',z',t' )<br />

u<br />

Hot spot<br />

at time t<br />

⎛ 2 2 2<br />

S<br />

⎞<br />

⎜ (x')<br />

+ (y')<br />

+ (z' )<br />

=<br />

exp −<br />

⎟<br />

3 / 2<br />

8( παt'<br />

) ⎜<br />

⎟ (I.G.20)<br />

⎝<br />

4αt'<br />

⎠<br />

4


I. <strong>Analytical</strong> <strong>Solutions</strong> <strong>in</strong> <strong>Conduction</strong> <strong>Heat</strong> <strong>Transfer</strong><br />

b. solution (cont.)<br />

In stationary coord<strong>in</strong>ates (I.G.20) becomes<br />

⎛ 2 2 2<br />

S<br />

⎞<br />

⎜ (x − ut) + (y) + (z)<br />

T(x,y,z,t) = exp −<br />

⎟<br />

3 / 2<br />

8( παt)<br />

⎜<br />

⎟<br />

⎝<br />

4αt<br />

⎠<br />

c. solution with cont<strong>in</strong>uous source<br />

Suppose S is zero until time t > w, then it has value S.<br />

The new temperature field becomes<br />

⎧0,<br />

t ≤ w<br />

φ(x,y,z,t)<br />

= ⎨<br />

⎩T(x,y,z,t<br />

− w), t > w<br />

(I.G.21)<br />

∴if ρcS = qdt, q = constant (W), and q is switched on at t = w,<br />

and left on, temperature at time t is (see Lesson 10)<br />

(I.G.22)<br />

t<br />

2 2 2<br />

q ⎛ [x u(t w)] (y) (z) ⎞ dw<br />

T(x,y,z,t)<br />

exp⎜<br />

− − + +<br />

= ⎟<br />

3 / 2 ∫ −<br />

0<br />

4 (t w)<br />

3 / 2<br />

lesson 7 8ρc(<br />

πα)<br />

⎜<br />

⎟<br />

⎝<br />

α −<br />

⎠ (t − w)<br />

I. <strong>Analytical</strong> <strong>Solutions</strong> <strong>in</strong> <strong>Conduction</strong> <strong>Heat</strong> <strong>Transfer</strong><br />

c. solution with cont<strong>in</strong>uous source (cont.)<br />

Now let t→∞ <strong>in</strong> (I.G.22) to give<br />

T (x,y,z)<br />

= q ⎡ u<br />

exp⎢−<br />

4πkr<br />

⎣ 2α<br />

x<br />

⎤<br />

( r − ) ⎥⎦<br />

(I.G.23)<br />

d. now consider heat treatment on surface of semi-<strong>in</strong>f<strong>in</strong>ite<br />

solid and neglect all heat losses from surface. (I.G.23)<br />

becomes<br />

T (x,y,z)<br />

= q ⎡ u<br />

exp⎢−<br />

2πkr<br />

⎣ 2α<br />

x<br />

⎤<br />

( r − ) ⎥⎦<br />

(I.G.24)<br />

lesson 7<br />

5


I. <strong>Analytical</strong> <strong>Solutions</strong> <strong>in</strong> <strong>Conduction</strong> <strong>Heat</strong> <strong>Transfer</strong><br />

d. heat treatment on surface of semi-<strong>in</strong>f<strong>in</strong>ite solid (cont.)<br />

= q ⎡ u<br />

T(x,y,z) exp⎢−<br />

2πkr<br />

⎣ 2α<br />

x<br />

(I.G.24)<br />

⎤<br />

( r − ) ⎥⎦<br />

Pe = ua/α (Peclet no., a<br />

dimensionless velocity)<br />

Pe = 0, 2,10, 50<br />

a = q/(2 k π T M )<br />

T M = melt<strong>in</strong>g po<strong>in</strong>t of solid<br />

lesson 7<br />

I. <strong>Analytical</strong> <strong>Solutions</strong> <strong>in</strong> <strong>Conduction</strong> <strong>Heat</strong> <strong>Transfer</strong><br />

d. heat treatment on surface of semi-<strong>in</strong>f<strong>in</strong>ite solid (cont.)<br />

T (x,y,z)<br />

= q ⎡ u<br />

exp⎢−<br />

2πkr<br />

⎣ 2α<br />

x<br />

⎤<br />

( r − ) ⎥⎦<br />

(I.G.24)<br />

Typical laser treatment conditions:<br />

12-by-12-mm uniform square beam<br />

5.7 kW<br />

u = 38 mm/s<br />

Consider T(x,0,0) = 850 C (Actual T = 850 + T 0 )<br />

lesson 7<br />

q<br />

T(x,0,0) =<br />

2πkr<br />

q 5700 W<br />

x = =<br />

= 21 mm<br />

2πkT<br />

2π(50<br />

W /(m K)850 C<br />

6

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!