14.11.2012 Views

ADC 10-bit 2 Gsps Evaluation Board - TSEV83102G0B User Guide

ADC 10-bit 2 Gsps Evaluation Board - TSEV83102G0B User Guide

ADC 10-bit 2 Gsps Evaluation Board - TSEV83102G0B User Guide

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>ADC</strong> <strong>10</strong>-<strong>bit</strong> 2 <strong>Gsps</strong> <strong>Evaluation</strong><br />

<strong>Board</strong> - TSEV83<strong>10</strong>2G0B<br />

..............................................................................................<br />

<strong>User</strong> <strong>Guide</strong>


Table of Contents<br />

Section 1<br />

Overview............................................................................................... 1-1<br />

1.1 Description ................................................................................................1-1<br />

1.2 TSEV83<strong>10</strong>2G0B <strong>Evaluation</strong> <strong>Board</strong> ...........................................................1-2<br />

1.3 <strong>Board</strong> Mechanical Characteristics.............................................................1-3<br />

1.4 Analog Input, Clock Input and De-embedding Fixture Accesses..............1-4<br />

1.5 Digital Outputs Accesses ..........................................................................1-4<br />

1.6 Power Supplies and Ground Accesses.....................................................1-4<br />

1.7 <strong>ADC</strong> Function Setting Accesses ...............................................................1-4<br />

Section 2<br />

Layout Information ................................................................................ 2-1<br />

2.1 <strong>Board</strong> ........................................................................................................2-1<br />

2.2 AC Inputs/Digital Outputs..........................................................................2-1<br />

2.3 DC Function Settings ................................................................................2-1<br />

2.4 Power Supplies .........................................................................................2-2<br />

Section 3<br />

Operating Procedures and<br />

Characteristics ...................................................................................... 3-1<br />

3.1 Introduction ...............................................................................................3-1<br />

3.2 Operating Procedure (ECL Mode) ............................................................3-1<br />

3.3 Use with DMUX <strong>Evaluation</strong> <strong>Board</strong> ............................................................3-2<br />

3.4 Electrical Characteristics...........................................................................3-3<br />

3.5 Operating Characteristics..........................................................................3-4<br />

Section 4<br />

Application Information ......................................................................... 4-1<br />

4.1 Introduction ...............................................................................................4-1<br />

4.2 Analog Inputs ............................................................................................4-1<br />

4.3 Clock Inputs ..............................................................................................4-1<br />

4.4 Setting the Digital Output Data Format .....................................................4-1<br />

4.5 <strong>ADC</strong> Gain Adjust.......................................................................................4-2<br />

4.6 SMA Connectors and Microstrip Lines De-embedding Fixture .................4-2<br />

4.7 Die Junction Temperature Monitoring.......................................................4-3<br />

4.8 Decimation Function .................................................................................4-5<br />

4.9 Pattern Generator Enable .........................................................................4-5<br />

4.<strong>10</strong> Data Ready Output Signal Reset..............................................................4-6<br />

4.11 Sampling Delay Adjusting .........................................................................4-6<br />

4.12 Test Bench Description.............................................................................4-7<br />

TSEV83<strong>10</strong>2G0B - <strong>Evaluation</strong> <strong>Board</strong> <strong>User</strong> <strong>Guide</strong> i<br />

2166D–BDC–01/04


Table of Contents<br />

ii TSEV83<strong>10</strong>2G0B - <strong>Evaluation</strong> <strong>Board</strong> <strong>User</strong> <strong>Guide</strong><br />

2166D–BDC–01/04<br />

Section 5<br />

Package Description............................................................................. 5-1<br />

5.1 TS83<strong>10</strong>2G0B Pinout .................................................................................5-1<br />

5.2 Thermal Characteristics ............................................................................5-3<br />

5.2.1 Thermal Resistance from Junction to Ambient: Rthja ........................5-3<br />

5.2.2 Thermal Resistance from Junction to Case: Rthjc .............................5-4<br />

5.2.3 Heatsink..............................................................................................5-4<br />

5.3 Ordering Information .................................................................................5-5<br />

Section 6<br />

Schematics ........................................................................................... 6-1<br />

6.1 TSEV83<strong>10</strong>2G0B Electrical Schematic ......................................................6-1


Section 1<br />

Overview<br />

1.1 Description The TSEV83<strong>10</strong>2G0B <strong>Evaluation</strong> <strong>Board</strong> (EB) is a prototype board which has been<br />

designed in order to facilitate the evaluation and the characterization of the<br />

TS83<strong>10</strong>2G0B device (in CBGA152) up to its 3 GHz full power bandwidth at up to 2 <strong>Gsps</strong><br />

in the extended temperature range.<br />

The high speed of the TS83<strong>10</strong>2G0B requires careful attention to circuit design and layout<br />

to achieve optimal performance. This four metal layer board with an internal ground<br />

plane has the functions that allow a quick and simple evaluation of the TS83<strong>10</strong>2G0B<br />

<strong>ADC</strong> performances over the temperature range.<br />

The TS83<strong>10</strong>2G0B <strong>Evaluation</strong> <strong>Board</strong> (EB) is very straightforward as it only implements<br />

the TS83<strong>10</strong>2G0B <strong>ADC</strong> device, SMA connectors for input/output accesses and a<br />

2.54 mm pitch connector compatible with high speed acquisition system high frequency<br />

probes.<br />

The board has been designed to be fully compatible with Atmel’s DMUX evaluation<br />

board (TSEV81<strong>10</strong>2G0).<br />

The board also implements a de-embedding fixture in order to facilitate the evaluation of<br />

the high frequency insertion loss of the input microstrip lines.<br />

The board is constructed like a sandwich of two dielectric layers, featuring low insertion<br />

loss and enhanced thermal characteristics for operation in the high frequency domain<br />

and extended temperature range.<br />

The board dimensions are 120 mm x 150 mm.<br />

The board set comes fully assembled and tested, with the TS83<strong>10</strong>2G0B installed and<br />

with a heatsink.<br />

TSEV83<strong>10</strong>2G0B - <strong>Evaluation</strong> <strong>Board</strong> <strong>User</strong> <strong>Guide</strong> 1-1<br />

Rev. 2166D–BDC–01/04


Overview<br />

1.2 TSEV83<strong>10</strong>2G0B<br />

<strong>Evaluation</strong> <strong>Board</strong><br />

Figure 1-1. TSEV83<strong>10</strong>2G0B Block Diagram<br />

1-2 TSEV83<strong>10</strong>2G0B - <strong>Evaluation</strong> <strong>Board</strong> <strong>User</strong> <strong>Guide</strong><br />

2166D–BDC–01/04<br />

CLK<br />

Differential<br />

Clock inputs<br />

CLKB<br />

VIN<br />

Differential<br />

analog inputs<br />

VINB<br />

TEST<br />

CAL1<br />

CAL2<br />

VCC<br />

VEE<br />

GND<br />

DVEE<br />

GAIN<br />

SDA<br />

OA<br />

+5V<br />

-5V<br />

-5V<br />

Z0 = 50Ω<br />

Z0 = 50Ω<br />

Z0 = 50Ω<br />

Z0 = 50Ω<br />

VEE<br />

CLK<br />

CLKB<br />

VIN<br />

VINB<br />

GA<br />

PGEB<br />

SDA<br />

SDAEN<br />

TS83<strong>10</strong>2G0B<br />

DRRB<br />

VCC<br />

GND<br />

VPLUSD<br />

VEE<br />

DVEE<br />

DIODE<br />

L = 50 mm typ<br />

LVIN/VINb = LCLK/CLKb = 43 mm typ<br />

Loutputs = 58 mm typ<br />

Short-circuit<br />

possibility<br />

here<br />

DR/DRB<br />

D0/D0B<br />

D7/D7B<br />

PC/PCB<br />

VCC = +5V<br />

GND = 0V<br />

VEE<br />

Z0 = 50Ω<br />

Z0 = 50Ω<br />

Z0 = 50Ω<br />

Z0 = 50Ω<br />

VPLUSD = -0.8V (ECL)<br />

VPLUSD = 1.6V (LVDS)<br />

VEE = -5V<br />

DVEE = -5V<br />

DRRB<br />

B/BG<br />

J - diode<br />

V - diode<br />

V-GND<br />

I-GND


1.3 <strong>Board</strong><br />

Mechanical<br />

Characteristics<br />

Overview<br />

The board’s layer number, thickness, and functions are given below, from top to bottom.<br />

Table 1-1. <strong>Board</strong>’s Layer Thickness Profile<br />

Layer Characteristics<br />

Layer 1<br />

Copper layer<br />

Layer 2<br />

RO4003 dielectric layer<br />

(Hydrocarbon/Wovenglass)<br />

Layer 3<br />

Copper layer<br />

Layer 4<br />

BT/Epoxy dielectric layer<br />

Layer 5<br />

Copper layer<br />

Layer 6<br />

BT/Epoxy dielectric layer<br />

Layer 7<br />

Copper layer<br />

Layer 8<br />

BT/Epoxy dielectric layer<br />

Layer 9<br />

Copper layer<br />

Layer <strong>10</strong><br />

BT/Epoxy dielectric layer<br />

Layer 11<br />

Copper layer<br />

Copper thickness = 40 µm<br />

AC signal traces = 50Ω microstrip lines<br />

DC signal traces (B/GB, GAIN, DIODE, OA, TEST, SDA)<br />

Layer thickness = 200 µm<br />

Dielectric constant = 3.4 at <strong>10</strong> GHz<br />

-0.044 dB/inch insertion loss at 2.5 GHz<br />

-0.318 dB/inch insertion loss at 18 GHz<br />

Copper thickness = 39 µm<br />

Ground plane = reference plane 50Ω microstrip return<br />

Layer thickness = 330 µm<br />

Copper thickness = 35 µm<br />

Power and ground planes<br />

Layer thickness = 330 µm<br />

Copper thickness = 35 µm<br />

Power and ground planes (identical to layer 5)<br />

Layer thickness = 330 µm<br />

Copper thickness = 35 µm<br />

Ground planes (identical to layer 3)<br />

Layer thickness = 200 µm<br />

Copper thickness = 35 µm<br />

Power and ground planes<br />

The TSEV83<strong>10</strong>2G0B is an eleven layer PCB made of six copper layers and five dielectric<br />

layers. The six metal layers correspond respectively from top to bottom to the AC<br />

and DC signals layer (layer 1), two ground layers (layers 3 and 5), and one supply layer<br />

(layer 7).<br />

Considering the severe mechanical constraints due to the wide temperature range and<br />

the high frequency domain in which the board is to operate, it is necessary to use a<br />

sandwich of two different dielectric materials, with specific characteristics:<br />

� A low insertion loss RO4003 Hydrocarbon/Wovenglass dielectric layer of 200 µm<br />

thickness, chosen for its low loss (-0.318 dB/inch) and enhanced dielectric<br />

consistency in the high frequency domain. The RO4003 dielectric layer is dedicated to<br />

the routing of the 50Ω impedance signal traces (the RO4003 typical dielectric<br />

constant is 3.4 at <strong>10</strong> GHz). The RO4003 dielectric layer characteristics are very close<br />

to PTFE in terms of insertion loss characteristics.<br />

� A BT/Epoxy dielectric layer of 0.9 mm total thickness which is sandwiched between<br />

the upper ground plane and the back-side supply layer.<br />

TSEV83<strong>10</strong>2G0B - <strong>Evaluation</strong> <strong>Board</strong> <strong>User</strong> <strong>Guide</strong> 1-3<br />

2166D–BDC–01/04


Overview<br />

1.4 Analog Input,<br />

Clock Input and<br />

De-embedding<br />

Fixture Accesses<br />

1.5 Digital Outputs<br />

Accesses<br />

1.6 Power Supplies<br />

and Ground<br />

Accesses<br />

1.7 <strong>ADC</strong> Function<br />

Setting Accesses<br />

1-4 TSEV83<strong>10</strong>2G0B - <strong>Evaluation</strong> <strong>Board</strong> <strong>User</strong> <strong>Guide</strong><br />

2166D–BDC–01/04<br />

The BT/Epoxy layer has been chosen because of its enhanced mechanical characteristics<br />

for elevated temperature operation. The typical dielectric constant is 4.5 at 1 MHz.<br />

More precisely, the BT/Epoxy dielectric layer offers enhanced characteristics compared<br />

to FR4 Epoxy, namely:<br />

� Higher operating temperature values: 170° C (125° C for FR4).<br />

� Better withstanding of thermal shocks (-65° C up to 170° C).<br />

The total board thickness is 1.6 mm. The previously described mechanical and frequency<br />

characteristics makes the board particularly suitable for device evaluation and<br />

characterization in the high frequency domain and in military temperature ranges.<br />

The differential active inputs (Analog, Clock, De-embedding fixture) are provided by<br />

SMA connectors.<br />

Reference: VITELEC 142-0701-851.<br />

Connector mounting plates have been used for fastening the SMA connectors.<br />

Access to the differential output data port is provided by a 2.54 mm pitch connector,<br />

compatible with the high speed digital acquisition system. It enables access to the converter<br />

output data, as well as proper 50Ω differential termination.<br />

The power supply accesses are provided by five 2 mm section banana jacks respectively<br />

for DVEE , VEET , VDD , VPLUSD and VCC .<br />

The power supply access is provided by one 4 mm section banana jack for VEE .<br />

The Ground accesses are provided by four 2 mm and one 4 mm banana jacks.<br />

For <strong>ADC</strong> function setting accesses (B/GB, Die junction temp., Test), 2 mm section<br />

banana jacks are provided.<br />

Three potentiometers are provided for <strong>ADC</strong> gain adjust, Sampling delay adjust and Offset<br />

adjust.<br />

One sub-screw is provided for Asynchronous data ready reset.


Section 2<br />

Layout Information<br />

2.1 <strong>Board</strong> The TS83<strong>10</strong>2G0B requires proper board layout for optimum full speed operation.<br />

The following explains the board layout recommendations and demonstrates how the<br />

<strong>Evaluation</strong> <strong>Board</strong> fulfills these implementation constraints.<br />

A single low impedance ground plane is recommended, since it allows the user to lay<br />

out signal traces and power planes without interrupting the ground plane.<br />

Therefore a multi-layer board structure has been retained for the TSEV83<strong>10</strong>2G0B.<br />

Six copper metal layers are used, dedicated respectively (from top to bottom) to the signal<br />

traces, ground planes and power supplies.<br />

2.2 AC Inputs/Digital<br />

Outputs<br />

2.3 DC Function<br />

Settings<br />

The board uses 50Ω impedance microstrip lines for the differential analog inputs, clock<br />

inputs, and differential digital outputs.<br />

The input signals and clock signals must be routed on one layer only, without using any<br />

through-hole vias. The line lengths are matched to within 2 mm.<br />

The digital output lines are 50Ω differentially terminated.<br />

The output data trace lengths are matched to within 0.25 inch (6 mm) to minimize the<br />

data output delay skew.<br />

For the TSEV83<strong>10</strong>2G0B the propagation delay is approximately 6.1 ps/mm<br />

(155 ps/inch). The RO4003 typical dielectric constant is 3.4 at <strong>10</strong> GHz.<br />

For more informations about different output termination options refer to the specification<br />

application notes.<br />

The DC signal traces are low impedance.<br />

They have been routed with a 50Ω impedance near the device because of space<br />

restriction.<br />

TSEV83<strong>10</strong>2G0B - <strong>Evaluation</strong> <strong>Board</strong> <strong>User</strong> <strong>Guide</strong> 2-1<br />

Rev. 2166D–BDC–01/04


Layout Information<br />

2.4 Power Supplies The bottom metal layers 5 and 7 and 11 are dedicated to power supply traces (VEE, DVEE, VEET, VDD, VPLUSD and VCC). The supply traces are approximately 6 mm wide in order to present low impedance, and<br />

are surrounded by a ground plane connected to the two inner ground planes.<br />

The analog and digital negative power supply traces are independent, but the possibility<br />

exists to short-circuit both supplies on the top metal layer).<br />

No difference in <strong>ADC</strong> high speed performance is observed when connecting both negative<br />

supply planes together. Obviously one single negative supply plane could be used<br />

for the circuit.<br />

Each power supply incoming is bypassed by a 1 µF Tantalum capacitor in parallel with<br />

1 nF chip capacitor.<br />

Each power supply access is decoupled very close to the device by <strong>10</strong> nF and <strong>10</strong>0 pF<br />

surface mount chip capacitors in parallel.<br />

Note: The decoupling capacitors are superposed. In this configuration, the <strong>10</strong>0 pF capacitors<br />

must be mounted first.<br />

2-2 TSEV83<strong>10</strong>2G0B - <strong>Evaluation</strong> <strong>Board</strong> <strong>User</strong> <strong>Guide</strong><br />

2166D–BDC–01/04


Section 3<br />

Operating Procedures and<br />

Characteristics<br />

3.1 Introduction This section describes a typical single-ended configuration for analog inputs and clock<br />

inputs.<br />

The single-ended configuration is preferable, as it corresponds to the most straightforward<br />

and quickest TSEV83<strong>10</strong>2G0B board setting for evaluating the TS83<strong>10</strong>2G0B at full<br />

speed in its temperature range.<br />

The inverted analog input VINB and clock input CLKB common mode level is Ground<br />

(on-chip 50Ω terminated). In this configuration, no balun transformer is needed to convert<br />

properly the single-ended mixer output to balanced differential signals for the<br />

analog inputs.<br />

In the same way, no balun is necessary to feed the TS83<strong>10</strong>2G0B clock inputs with balanced<br />

signals.<br />

Directly connect the RF sources to the in-phase analog and clock inputs of the<br />

converter.<br />

However, dynamic performances can be somewhat improved by entering either analog<br />

or clock inputs in differential mode.<br />

3.2 Operating<br />

Procedure (ECL<br />

Mode)<br />

1. Connect the power supplies and Ground accesses<br />

(V CC = +5V, GND = 0V, V PLUSD = 0V, V EE = DV EE = -5V) through the dedicated<br />

banana jacks.<br />

The -5V power supplies should be turned on first.<br />

Note: one single -5V power supply can be used for supplying the digital DV EE and<br />

analog V EE power planes.<br />

2. The board is set by default for digital outputs in binary format.<br />

3. Connect the CLK clock signal.<br />

The inverted phase clock input CLKB may be left open (as on-chip 50Ω terminated).<br />

Use a low phase noise RF source. The clock input level is typically<br />

4 dBm and should not exceed +<strong>10</strong> dBm into the 50Ω termination resistor (maximum<br />

ratings for the clock input power level is 15 dBm).<br />

TSEV83<strong>10</strong>2G0B - <strong>Evaluation</strong> <strong>Board</strong> <strong>User</strong> <strong>Guide</strong> 3-1<br />

Rev. 2166D–BDC–01/04


Operating Procedures and Characteristics<br />

3.3 Use with DMUX<br />

<strong>Evaluation</strong> <strong>Board</strong><br />

3-2 TSEV83<strong>10</strong>2G0B - <strong>Evaluation</strong> <strong>Board</strong> <strong>User</strong> <strong>Guide</strong><br />

2166D–BDC–01/04<br />

4. Connect the analog signal V IN . The inverted phase clock input V INB may be left<br />

open (as on cavity 50Ω terminated). Use a low phase noise RF source. Full<br />

scale range is 0.5V peak to peak around 0V, (±250 mV), or -2 dBm into 50Ω.<br />

Input frequency can range from DC up to 1.8 GHz. At 3.0 GHz, the <strong>ADC</strong> attenuates<br />

the input signal by -3 dB. The board insertion loss (S21) will be furnished in<br />

the definitive document release.<br />

5. Connect the high speed data acquisition system probes to the output connector.<br />

The connector pitch (2.54 mm) is compatible with high speed digital acquisition<br />

system probes. The digital data are on-board differentially terminated. However,<br />

the output data can be picked up either in single-ended or differential mode.<br />

The TSEV81<strong>10</strong>2G0 DMUX evaluation board has been designed to be fully compatible<br />

with the TSEV83<strong>10</strong>2G0B <strong>ADC</strong> evaluation board.<br />

The DEMUX input configuration has been optimized to be connected to the<br />

TS83<strong>10</strong>2G0B <strong>ADC</strong> (CBGA152 package).<br />

When using the DEMUX board with the <strong>ADC</strong> board, do not forget to set, for proper use,<br />

CLKINTYPE in mode DR/2 (jumper on-board).<br />

The power-up sequence should be:<br />

1. Supply the <strong>ADC</strong> first<br />

2. Supply the DMUX<br />

3. Perform an asynchronous reset on the DMUX board<br />

When this power up sequence has been completed, the synchronization between the<br />

DEMUX and <strong>ADC</strong> boards can be achieved via the DEMUXDelADjCtrl potentiometer on<br />

the DEMUX evaluation board. To achieve a good synchronization between the two<br />

boards, it is recommended to run the <strong>ADC</strong> at its full speed (max sampling rate) and tune<br />

the DEMUX Delay Adjust Control potentiometer to the left and take down the settings for<br />

which the boards are de-synchronized and similarly to the right to see the loss of synchronization<br />

at the other extremity. The right setting of the potentiometer is in the middle<br />

of these two settings and should be right for all sampling rates of the <strong>ADC</strong>.<br />

Please refer to the "<strong>ADC</strong>s and Demux Application Notes" document for more<br />

information.


3.4 Electrical<br />

Characteristics<br />

Table 3-1. Absolute Maximum Ratings<br />

Operating Procedures and Characteristics<br />

Parameter Symbol Comments Value Unit<br />

Positive supply voltage V CC GND to 5.5 V<br />

Digital negative supply voltage DV EE GND to -5.5 V<br />

Digital positive supply voltage V PLUSD GND -1.1 to 2.0 V<br />

Negative supply voltage V EE GND to -5.5 V<br />

Maximum difference between negative supply voltages DV EE to V EE 0.3 V<br />

Analog input voltages V IN or V INB -1.5 to +1.5 V<br />

Maximum difference between V IN and V INB V IN - V INB -1.5 to +1.5 V<br />

Clock input voltage V CLK or V CLKB -1 to +1 V<br />

Maximum difference between V CLK and V CLKB V CLK - V CLKB -1 to +1 V<br />

Static input voltage VD GA/SDA -5 to +0.8 V<br />

Digital input voltage VD SDAEN, DRRB,<br />

B/GB, PGEB<br />

-5 to +0.8 V<br />

Digital output voltage VO VPLUSD -2.2 to VPLUSD +0.3 V<br />

Maximum junction temperature T j +125 ° C<br />

Storage temperature T stg -65 to +150 ° C<br />

Lead temperature (soldering <strong>10</strong>s) Tleads +300 ° C<br />

Note: Absolute maximum ratings are limiting values (referenced to GND = 0V), to be applied individually, while other parameters are<br />

within specified operating conditions. Long exposure to maximum rating may affect device reliability. The use of a thermal heat<br />

sink is mandatory.<br />

TSEV83<strong>10</strong>2G0B - <strong>Evaluation</strong> <strong>Board</strong> <strong>User</strong> <strong>Guide</strong> 3-3<br />

2166D–BDC–01/04


Operating Procedures and Characteristics<br />

3.5 Operating<br />

Characteristics<br />

Table 3-2. Electrical Operating Characteristics<br />

Parameter Symbol<br />

Positive supply voltage<br />

(dedicated to TS83<strong>10</strong>2G0B <strong>ADC</strong> only)<br />

Positive supply current<br />

(dedicated to TS83<strong>10</strong>2G0B <strong>ADC</strong> only)<br />

Positive supply voltage not used by default – installed<br />

(dedicated to MC<strong>10</strong>0EL16 differential receivers)<br />

Positive supply current not used by default – installed<br />

(dedicated to MC<strong>10</strong>0EL16 differential receivers)<br />

3-4 TSEV83<strong>10</strong>2G0B - <strong>Evaluation</strong> <strong>Board</strong> <strong>User</strong> <strong>Guide</strong><br />

2166D–BDC–01/04<br />

The power supplies denoted by VCC, VEE, DVEE and VPLUSD are dedicated to the<br />

TS83<strong>10</strong>2G0B <strong>ADC</strong>.<br />

The power supplies denoted VEET, VDD are dedicated to the optional MC<strong>10</strong>0EL16 asynchronous<br />

differential receivers.<br />

Value<br />

Min Typ Max<br />

V CC 4.75 5 5.25 V<br />

V PLUSD<br />

–<br />

ECL: -0.8<br />

LVDS: 1.6<br />

V EEA -5.25 -5 -4.75 V<br />

V EED -5.25 -5 -4.75 V<br />

–<br />

Unit<br />

I CC – 144 205 mA<br />

I PLUSD – 164 – mA<br />

I EEA – 514 630 mA<br />

I EED – 170 180 mA<br />

V EET -5.25 -5 -4.75 V<br />

V DD -2.15 -2 -185 V<br />

I EET – 180 – mA<br />

I DD – 480 – mA<br />

Nominal power dissipation (without receivers) PD – 4.6<br />

5.1<br />

(TJ = 125° C)<br />

W<br />

Analog input impedance ZIN – 50 – Ω<br />

Full power analog input bandwidth (-3 dB) – – 3.0 – GHz<br />

Analog input voltage range (differential mode) V IN -125 – 125 mV<br />

Clock input impedance – – 50 – Ω<br />

Clock input voltage compatibility (single-ended or<br />

differential) (See Application Notes)<br />

– ECL levels or 4 dBm (typ) into 50Ω –<br />

Clock input power level into 50Ω termination resistor – -2 2 4 dBm<br />

V<br />

V


Section 4<br />

Application Information<br />

4.1 Introduction For this section, also refer to the product "Main features" (TS83<strong>10</strong>2G0B Datasheet).<br />

More particularly, refer to sections related to single-ended and differential input<br />

configurations.<br />

4.2 Analog Inputs The analog inputs can be entered in differential or single-ended mode without any high<br />

speed performance degradation.<br />

The board digitizes single-ended signals by choosing either input and leaving the other<br />

input open, as the latter is on-board 50Ω terminated. The nominal in-phase inputs are<br />

VIN (See Section 3).<br />

4.3 Clock Inputs The clock inputs can be entered in differential or single-ended mode without any performance<br />

degradation for a clock frequency up to 500 MHz. At higher rates, it is<br />

recommended to drive the clock inputs differentially. Moreover, the typical in phase<br />

clock input amplitude is 1V peak to peak, centered on 0V (Ground), or -1.3V (ECL) on<br />

common mode.<br />

As for the analog input, either clock input can be chosen (if the single-ended output<br />

mode is used), leaving the other input open, as both clock inputs are on-chip 50Ω terminated.<br />

The nominal in-phase clock input is CLK (Section 3).<br />

4.4 Setting the<br />

Digital Output<br />

Data Format<br />

For this section, refer to the <strong>Evaluation</strong> <strong>Board</strong> Electrical schematic and to the components<br />

placement document (respectively Figure 6-2 on page 6-3 and Figure 6-8 on page<br />

6-4).<br />

Refer also to the TS83<strong>10</strong>2G0B specification about digital output coding.<br />

The TS83<strong>10</strong>2G0B delivers data in natural binary code or in Gray code. If the B/GB input<br />

is left floating or tied to GND the data format selected will be natural binary, if this input<br />

is tied to VEE the data will follow the Gray code.<br />

Use the jumper denoted B/GB to select the output data port format:<br />

� If B/GB is left floating or tied to GND, the data output format is true binary.<br />

� If B/GB is tied to V EE or driven with ECL low level, the data outputs are in the Gray<br />

format.<br />

TSEV83<strong>10</strong>2G0B - <strong>Evaluation</strong> <strong>Board</strong> <strong>User</strong> <strong>Guide</strong> 4-1<br />

Rev. 2166D–BDC–01/04


Application Information<br />

4-2 TSEV83<strong>10</strong>2G0B - <strong>Evaluation</strong> <strong>Board</strong> <strong>User</strong> <strong>Guide</strong><br />

2166D–BDC–01/04<br />

The VPLUSD positive supply voltage allows the adjustment of the output common mode<br />

level from -1.05V (VPLUSD = -0.8V for ECL output compatibility) to +1.35V (VPLUSD = 1.6V<br />

for LVDS output compatibility).<br />

Each output voltage varies between -0.9V and -1.2V (respectively +1.2V and +1.5V),<br />

leading to ±0.3V = 660 mV in differential for VPLUSD = -0.8V (respectively 1.6V).<br />

4.5 <strong>ADC</strong> Gain Adjust The <strong>ADC</strong> gain is adjustable by the means of pin R9 (pad input impedance is 1 MΩ in<br />

parallel with 2 pF). A jumper denoted GAIN has been foreseen in order to have access<br />

to the <strong>ADC</strong> gain adjust pin.<br />

The GAIN potentiometer is dedicated to adjusting the <strong>ADC</strong> gain from approximately<br />

0.85 up to 1.15.<br />

The gain adjust transfer function is given below.<br />

4.6 SMA Connectors<br />

and Microstrip<br />

Lines Deembedding<br />

Fixture<br />

Figure 4-1. <strong>ADC</strong> Gain Adjust<br />

<strong>ADC</strong> Gain<br />

1.20<br />

1.15<br />

1.<strong>10</strong><br />

1.05<br />

1.00<br />

0.95<br />

0.90<br />

0.85<br />

0.80<br />

-600 -400 -200 0 200 400 600<br />

Vgain (command voltage) (mV)<br />

Attenuation in microstrip lines can be found by taking the difference in the log magnitudes<br />

of the S21 scattering parameters measured on two different lengths of<br />

meandering transmission lines.<br />

Such a measurement also removes common losses such as those due to transitions<br />

and connectors.<br />

The S21 scattering parameter corresponds to the amount of power transmitted through<br />

a two-port network.<br />

The characteristic impedance of the microstrip meander lines must be close to 50Ω to<br />

minimize impedance mismatch with the 50Ω network analyzer test ports.<br />

Impedance mismatch will cause ripples in the S21 parameter as a function of both the<br />

degree of mismatch and the length of the line.


4.7 Die Junction<br />

Temperature<br />

Monitoring<br />

Application Information<br />

Figure 4-2 and Figure 4-3 illustrate the recommanded implementation of the die junction<br />

temperature monitoring function for the Revision B of the <strong>10</strong>-<strong>bit</strong> 2 <strong>Gsps</strong> <strong>ADC</strong>.<br />

The user has the choice between two possible configurations:<br />

1. The <strong>ADC</strong> decimation test mode is NOT ALLOWED.<br />

Because of the use of 1 internal diode-mounted transistors, the user has to implement<br />

2 x 2 head-to-tail protection diodes to avoid potential reverse current flows to damage<br />

the diode pin.<br />

Note that Atmel usually recommends the use of 2 x 3 head-to-tail protection diodes but<br />

in this particular case, it is necessary to have exactly 2 diodes in the A<strong>10</strong> to ground<br />

direction of conduction.<br />

Figure 4-2. Recommended Die Junction Temperature Monitoring Function Implementation,<br />

Test Mode Not Allowed<br />

<strong>ADC</strong> Pin<br />

A<strong>10</strong><br />

2. The <strong>ADC</strong> test mode can be allowed<br />

In case the user wants to still be able to switch from the normal mode to the test mode or<br />

to the die junction temperature monitoring, the protection diode configuration is slightly<br />

different and takes into account the fact that the test mode can be activated by applying<br />

VEE = -5V to the diode pin.<br />

This explains why 7 protection diodes are needed in the other direction, as described in<br />

Figure 4-3.<br />

Figure 4-3. Recommended Diode Pin Implementation Allowing for Both Die Junction<br />

Temperature Monitoring Function and Test Mode<br />

TSEV83<strong>10</strong>2G0B - <strong>Evaluation</strong> <strong>Board</strong> <strong>User</strong> <strong>Guide</strong> 4-3<br />

GND<br />

<strong>ADC</strong> Pin<br />

A<strong>10</strong><br />

GND<br />

IGND<br />

Idiode<br />

Vdiode<br />

VGND<br />

IGND<br />

Idiode<br />

Vdiode<br />

VGND<br />

V<br />

V<br />

1 mA<br />

1 mA<br />

2166D–BDC–01/04


Application Information<br />

4-4 TSEV83<strong>10</strong>2G0B - <strong>Evaluation</strong> <strong>Board</strong> <strong>User</strong> <strong>Guide</strong><br />

2166D–BDC–01/04<br />

For Revision B, the VDIODE characteristic corresponds to a single diode characteristic<br />

over temperature, thus starting at 0.9V, as illustrated in Figure 4-4, which is only an<br />

interpolated VDIODE characteristic (to be confirmed by future measurements).<br />

This modification in Revision B devices implies the modification of the processing of the<br />

VDIODE characteristic if any but above all, it allows the user to implement a digital temperature<br />

sensor to be interfaced with the ASIC (DSP, FPGA, etc...) loading the <strong>ADC</strong>.<br />

Figure 4-4. Diode Pin Implementation in Test Mode<br />

A typical configuration with a standard digital temperature sensor is depicted in<br />

Figure 4-5.<br />

Figure 4-5. Typical Configuration with a Digital Temperature Sensor<br />

A<strong>10</strong><br />

GND<br />

<strong>ADC</strong> Pin<br />

A<strong>10</strong><br />

GND<br />

DXT<br />

DXN<br />

Temperature<br />

Sensor<br />

VEE = -5V


4.8 Decimation<br />

Function<br />

4.9 Pattern<br />

Generator<br />

Enable<br />

Application Information<br />

The expected diode mounted transistors V DIODE value (including chip parasitic resistance)<br />

versus junction temperature is given in Figure 4-6 (I DIODE = 1 mA).<br />

Figure 4-6. Junction Temperature Versus Diode Voltage for I = 1 mA<br />

Diode Voltage (mV)<br />

940<br />

930<br />

920<br />

9<strong>10</strong><br />

900<br />

890<br />

880<br />

870<br />

860<br />

850<br />

840<br />

830<br />

820<br />

8<strong>10</strong><br />

800<br />

790<br />

-<strong>10</strong> 0 <strong>10</strong> 20 30 40 50 60 70 80 90 <strong>10</strong>0 1<strong>10</strong><br />

Junction Temperature (°C)<br />

Note: The operating die junction temperature must be kept below 125° C; therefore, an adequate<br />

cooling system has to be set up.<br />

The decimation function can be used for debug of the <strong>ADC</strong> at initial stages. This function<br />

indeed allows to reduce the <strong>ADC</strong> output rate by 32, thus allowing for a quick debug<br />

phase of the <strong>ADC</strong> at maximum speed rate.<br />

When active, this fuction makes the <strong>ADC</strong> output only 1 out of 32 data, thus resulting in a<br />

data rate which is 32 times slower than the clock rate.<br />

The TS83<strong>10</strong>2G0B is able to generate by itself (without any analog input signal) a serie<br />

of patterns. If the TEST input is left floating or tied to GND the TS83<strong>10</strong>2G0B will digitize<br />

the analog input signal according to B/GB. If this input is driven with ECL low level or<br />

tied to VEE, TS83<strong>10</strong>2G0B will generate Checker <strong>Board</strong> patterns.<br />

Use the jumper denoted TEST for enabling the pattern generator.<br />

TSEV83<strong>10</strong>2G0B - <strong>Evaluation</strong> <strong>Board</strong> <strong>User</strong> <strong>Guide</strong> 4-5<br />

2166D–BDC–01/04


Application Information<br />

4.<strong>10</strong> Data Ready<br />

Output Signal<br />

Reset<br />

4.11 Sampling Delay<br />

Adjusting<br />

Figure 4-7. Sampling Delay Adjust<br />

Delay<br />

400p<br />

300p<br />

200p<br />

4-6 TSEV83<strong>10</strong>2G0B - <strong>Evaluation</strong> <strong>Board</strong> <strong>User</strong> <strong>Guide</strong><br />

2166D–BDC–01/04<br />

A sub-screw connector is provided for the DRRB command.<br />

The Data Ready signal is reset on the falling edge of the DRRB input command, on ECL<br />

logical low level (-1.8V). DRRB may also be tied to VEE = -5V for Data Ready output signal<br />

master reset. As long as DRRB remains at a logical low level, (or tied to VEE = -5V),<br />

the Data Ready output remains at logical zero and is independent of the external free<br />

running encoding clock.<br />

The Data Ready output signal (DR, DRB) is reset to logical zero after TRDR = 720 ps<br />

typically.<br />

TRDR is measured between the -1.3V point of the falling edge of the DRRB input command<br />

and the zero crossing point of the differential Data Ready output signal (DR,<br />

DRB).<br />

The Data Ready Reset command may be a pulse of 1 ns minimum time width.<br />

The Data Ready output signal restarts on the DRRB command rising edge, ECL logical<br />

high levels (-0.8V).<br />

DRRB may also be grounded, or is allowed to float, for normal free running of the Data<br />

Ready output signal.<br />

One delay adjust, controlled by SDA potentiometer, is available in order to add a delay<br />

to the input clock of the <strong>ADC</strong>. This allows the user to tune the instant of the internal sampling.<br />

To enable this delay adjustment there is an SDAEN pin on the chip. In the current<br />

revision, the SDAEN function corresponds to the OA labels (OA jumper and OA<br />

potentiometer).<br />

The OA potentiometer has been removed and short-circuited to VEE. Use the jumper denoted OA to enable the sampling delay adjustment:<br />

� If OA is left floating or tied to GND, the SDA is disabled<br />

� If OA is tied to V EE , the SDA is enabled<br />

The SDA input varies from -0.5 to 0.5V, according to the SDA potentiometer position.<br />

The variation of the delay around its nominal value as a function of the SDA voltage is<br />

more or less linear, as shown in Figure 4-7 (simulation results).<br />

: (cross(clip((VT("delop") - VT("delon")) 4e-<strong>10</strong> 2e-09) 0 2 "rising") - cross(clip((VT("delip") - VT("delin")) 2.5e-<strong>10</strong> 2e-09) 0 2 "rising")) (60°C)<br />

Delay in the variable delay cell at 60°C<br />

<strong>10</strong>0p<br />

-500m -400m -300m -200m -<strong>10</strong>0m 0m<br />

SDAVAL<br />

<strong>10</strong>0m<br />

200m 300m 400m 500m<br />

Note: The variation of the delay as a function of temperature is insignificant.


4.12 Test Bench<br />

Description<br />

Figure 4-8. Differential Analog and Clock Input Configuration<br />

Synchro <strong>10</strong> MHz<br />

Figure 4-9. Single-ended Analog and Clock Input Configuration<br />

Synchro <strong>10</strong> MHz<br />

RF Generator<br />

-121 dBc/Hz at 1 KHz<br />

offset from fc<br />

RF Generator<br />

-117 dBc/Hz at 20 KHz<br />

offset from fc<br />

GPIB<br />

Data Acquisition<br />

System<br />

PC<br />

Data Acquisition<br />

System<br />

GPIB<br />

RF Generator<br />

RF Generator<br />

PC<br />

0 − 180°<br />

Hybrid<br />

Application Information<br />

0 − 180°<br />

Hybrid<br />

TSEV83<strong>10</strong>2G0B - <strong>Evaluation</strong> <strong>Board</strong> <strong>User</strong> <strong>Guide</strong> 4-7<br />

BPF<br />

<strong>10</strong> Data<br />

BPF<br />

<strong>10</strong> Data<br />

DR<br />

CLKB CLK<br />

TS83<strong>10</strong>2G0B<br />

<strong>ADC</strong><br />

Tunable delay line<br />

(50Ω) CLKB CLK<br />

DR<br />

TS83<strong>10</strong>2G0B<br />

<strong>ADC</strong><br />

Tunable delay line<br />

VINB<br />

VIN<br />

VINB (50Ω)<br />

VIN<br />

2166D–BDC–01/04


Application Information<br />

4-8 TSEV83<strong>10</strong>2G0B - <strong>Evaluation</strong> <strong>Board</strong> <strong>User</strong> <strong>Guide</strong><br />

2166D–BDC–01/04


5.1 TS83<strong>10</strong>2G0B<br />

Pinout<br />

Figure 5-1. TS83<strong>10</strong>2G0B Pinout of CBGA152 Package<br />

16<br />

15<br />

14<br />

13<br />

12<br />

11<br />

<strong>10</strong><br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

Section 5<br />

Package Description<br />

A B C D E F G H J K L M N P Q R<br />

NC<br />

GND<br />

DVEE<br />

VPLUSD<br />

B/GB<br />

DECB/<br />

DIODE<br />

GND GND VPLUSD VPLUSD VPLUSD GND DVEE DVEE GND VPLUSD VPLUSD VPLUSD GND GND<br />

DVEE DVEE DVEE DVEE<br />

VPLUSD VPLUSD GND VPLUSD<br />

GND VPLUSD VPLUSD VPLUSD<br />

GND VEE VPLUSD VEE<br />

PGEB GND VEE VEE VEE<br />

VEE<br />

VCC<br />

SDA<br />

GND<br />

VEE<br />

GND<br />

GND OR D0 D1 D2 D3 DR D4 D5 D6 D7 D8 D9 GND<br />

GND ORB D0B D1B D2B D3B DRB D4B D5B D6B D7B D8B D9B GND<br />

VEE VEE VCC VCC<br />

VCC VCC GND GND<br />

VCC<br />

VEE<br />

TS83<strong>10</strong>2G0B<br />

CBGA152<br />

(cavity down)<br />

VCC GND<br />

VEE GND<br />

VEE VEE GND GND GND<br />

GND VEE GND GND GND GND VEEH VCCTH VCCTH VEE VEE GND VEE VEE VEE<br />

NC GND GND GND GND GND GND VEEH VEEH VCCTH<br />

VEE VEE GND<br />

Note: If required, four NC balls can be electrically connected to GND to simplify PCB routing.<br />

TSEV83<strong>10</strong>2G0B - <strong>Evaluation</strong> <strong>Board</strong> <strong>User</strong> <strong>Guide</strong> 5-1<br />

GND<br />

GND<br />

NC<br />

GND<br />

DVEE<br />

VPLUSD<br />

GND<br />

VEE<br />

GA<br />

VCC<br />

GND<br />

VINb<br />

VIN<br />

GND GND NC<br />

GND GND GND CLK CLKb GND VEEH VEEH VCCTH VEE GND DRRB SDAEN GND<br />

A B C D E F G H J K L M N P Q R<br />

16<br />

15<br />

14<br />

13<br />

12<br />

11<br />

<strong>10</strong><br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

Rev. 2166D–BDC–01/04


Package Description<br />

Table 5-1. TSEV83<strong>10</strong>2G0B Pin Description<br />

Symbol Pin Number Function<br />

Power Supplies<br />

V CC K1, K2, J3, K3, B6, C6, A7, B7, C7, P8, Q8, R8 +5V analog supply<br />

GND<br />

V EE<br />

5-2 TSEV83<strong>10</strong>2G0B - <strong>Evaluation</strong> <strong>Board</strong> <strong>User</strong> <strong>Guide</strong><br />

2166D–BDC–01/04<br />

B1, C1, D1, G1, M1, Q1, B2, C2, D2, E2, F2,<br />

G2, N2, P2, Q2, A3, B3, D3, E3, F3, G3, N3,<br />

P4, Q4, R4, A5, P5, Q5, P6, Q6, P7, Q7, R7,<br />

B9, B<strong>10</strong>, B11, R11, P12, A14, B14, C14, G14,<br />

K14, P14, Q14, R14, B15, Q15, B16, Q16<br />

H1, J1, L1, H2, J2, L2, M2, C3, H3, L3, M3, P3,<br />

Q3, R3, A4, B4, C4, B5, C5, A8, B8, C8, C9,<br />

P9, Q9, C<strong>10</strong>, Q<strong>10</strong>, R<strong>10</strong><br />

Analog ground<br />

-5V analog supply<br />

VPLUSD P<strong>10</strong>, C11, P11, Q11, A12, B12, C12, Q12,<br />

R12, D14, E14, F14, L14, M14, N14<br />

Digital positive supply<br />

DVEE A13, B13, C13, P13, Q13, R13, H14, J14 -5V digital supply<br />

Analog Inputs<br />

V IN<br />

V INB<br />

Clock Inputs<br />

R5<br />

R6<br />

CLK E1 In-phase (+) clock input<br />

In-phase (+) analog input signal of the differential sample<br />

and hold preamplifier<br />

Inverted phase (-) analog input signal of the differential<br />

sample and hold preamplifier<br />

CLKB F1 Inverted phase (-) clock input<br />

Digital outputs<br />

D0, D1, D2, D3, D4,<br />

D5, D6, D7, D8, D9<br />

D0B, D1B, D2B, D3B,<br />

D4B, D5B, D6B, D7B,<br />

D8B, D9B<br />

D16, E16, F16, G16, J16, K16, L16, M16, N16,<br />

P16<br />

D15, E15, F15, G15, J15, K15, L15, M15, N15,<br />

P15<br />

In-phase (+) digital outputs<br />

D0 is the LSB. D9 is the MSB<br />

Inverted phase (-) digital outputs<br />

OR C16 In-phase (+) Out-of-Range output<br />

ORB C15 Inverted phase (-) Out-of-Range output<br />

DR H16 In-phase (+) Data Ready Signal output<br />

DRB H15 Inverted phase (-) Data Ready Signal output<br />

Additional Functions<br />

B/GB A11<br />

Binary or Gray select output format control<br />

- Binary output format if B/GB is floating or connected to<br />

GND<br />

- Gray output format if B/GB is driven with ECL low level or<br />

B/GB is connected to V EE


Table 5-1. TSEV83<strong>10</strong>2G0B Pin Description (Continued)<br />

Symbol Pin Number Function<br />

DIODE A<strong>10</strong><br />

PGEB A9<br />

5.2 Thermal<br />

Characteristics<br />

5.2.1 Thermal Resistance<br />

from Junction to<br />

Ambient: Rthja<br />

Package Description<br />

Decimation function enable or die junction temperature<br />

monitoring:<br />

- Decimation active when LOW (die junction temperature<br />

monitoring NOT possible)<br />

- Normal mode when HIGH or left floating<br />

- Die junction temperature monitoring when current is<br />

applied<br />

Active low pattern generator enable<br />

- Digitized input delivered at outputs according to B/GB if<br />

PGEB is floating or connected to GND<br />

- Checkerboard pattern delivered at outputs if PGEB is<br />

driven with ECL low level or connected to V EE<br />

DRRB N1 Asynchronous Data Ready Reset function<br />

GA R9 Gain Adjust<br />

SDA A6 Sampling delay adjust<br />

SDAEN P1<br />

Table 5-2. Thermal Resistance<br />

Sampling delay adjust enable:<br />

- inactive if floating or connected to GND<br />

- active if ECL low or connected to V EE<br />

Table 5-2 lists the converter’s thermal performance parameters of the device itself, with<br />

no external heatsink added.<br />

Air Flow (m/s)<br />

Estimated ja Thermal<br />

Resistance (° C/W)<br />

0 45 Figure 5-2. Thermal Resistance from Junction to Ambient: Rthja<br />

0.5 35.8<br />

1 30.8<br />

1.5 27.4<br />

2 24.9<br />

2.5 23<br />

3 21.5<br />

4 19.3<br />

5 17.7<br />

TSEV83<strong>10</strong>2G0B - <strong>Evaluation</strong> <strong>Board</strong> <strong>User</strong> <strong>Guide</strong> 5-3<br />

Rthja (°C/W)<br />

50<br />

40<br />

30<br />

20<br />

<strong>10</strong><br />

0<br />

0<br />

1 2 3 4 5<br />

Air flow (m/s)<br />

2166D–BDC–01/04


Package Description<br />

5.2.2 Thermal Resistance<br />

from Junction to<br />

Case: Rthjc<br />

5-4 TSEV83<strong>10</strong>2G0B - <strong>Evaluation</strong> <strong>Board</strong> <strong>User</strong> <strong>Guide</strong><br />

2166D–BDC–01/04<br />

Maximum thermal Junction to Case resistance is 4.0° C/Watt.<br />

This value does not include thermal contact resistance between the package and external<br />

heatsink (glue, paste, or thermal foil interface for example).<br />

As an example, we can take 2.0° C/W for 50 µm thickness of thermal grease.<br />

5.2.3 Heatsink It is recommended to use a 50 mm x 50 mm x 30 mm heatsink (respectively L x l x H) in<br />

case of natural convection cooling mode (with no air flow).<br />

A fan heatsink or direct conduction cooling is recommended, due to high power dissipation<br />

(4.7W).<br />

A method should be chosen for cooling that allows less than 4.0° C/W for the case to<br />

ambient thermal resistance (Rthca).<br />

The thermal resistance of the board is a high value (within a range of 30° C/W); thus an<br />

external heatsink is mandatory.<br />

The heatsink must be fixed to the heatspreader which is at -5V. So the heatsink needs<br />

to be electrically isolated; using adequate low Rth electrical isolation.<br />

Example: 4.0° C/W Rthca (case to ambient) +2.0° C/W thermal grease resistance<br />

+4.0° C/W Rthjc = <strong>10</strong>.0° C/W total (Rthja).<br />

The heatsink should make contact with the package on the side opposite to the balls, in<br />

a 8.5 mm diameter circle:<br />

Figure 5-3. CBGA152 <strong>Board</strong> Assembly<br />

24.2<br />

20.2<br />

Note: The measures are given in mm.<br />

50.5<br />

Cooling system efficiency can be monitored using the Temperature Sensing Diodes,<br />

integrated in the device.<br />

8.5<br />

31<br />

<strong>Board</strong><br />

32.5


5.3 Ordering<br />

Information<br />

Package Description<br />

Part Number Package Temperature Range Screening Level Comments<br />

JTSX83<strong>10</strong>2G0-1V1B Die Ambient Prototype<br />

ON REQUEST ONLY<br />

(Please contact Marketing)<br />

TSX83<strong>10</strong>2G0BGL CBGA 152 Ambient Prototype Prototype Version<br />

TS83<strong>10</strong>2G0BCGL CBGA 152<br />

TS83<strong>10</strong>2G0BVGL CBGA 152<br />

“C” grade:<br />

0° C < T C; T J < 90° C<br />

“V” grade:<br />

-20° C < T C ; T J < 1<strong>10</strong>° C<br />

Standard<br />

Standard<br />

TSEV83<strong>10</strong>2G0BGL CBGA 152 Ambient Prototype<br />

<strong>Evaluation</strong> <strong>Board</strong><br />

(delivered with heatsink)<br />

TSEV83<strong>10</strong>2G0B - <strong>Evaluation</strong> <strong>Board</strong> <strong>User</strong> <strong>Guide</strong> 5-5<br />

2166D–BDC–01/04


Package Description<br />

5-6 TSEV83<strong>10</strong>2G0B - <strong>Evaluation</strong> <strong>Board</strong> <strong>User</strong> <strong>Guide</strong><br />

2166D–BDC–01/04


6.1 TSEV83<strong>10</strong>2G0B<br />

Electrical<br />

Schematic<br />

Section 6<br />

Schematics<br />

Figures 6-2 to Figures 6-8 shows the electrical schematic of the TSEV83<strong>10</strong>2G0B.<br />

The pinout used for the evaluation board has been translated from Atmel's pinout (refer<br />

to page 5-1) to the JEDEC standard shown in Figure 6-1. This explains the discrepancies<br />

between the pinout used on page 5-1 and the one given in the electrical schematic<br />

in Figure 6-2.<br />

TSEV83<strong>10</strong>2G0B - <strong>Evaluation</strong> <strong>Board</strong> <strong>User</strong> <strong>Guide</strong> 6-1<br />

Rev. 2166D–BDC–01/04


Schematics<br />

Figure 6-1. TS83<strong>10</strong>2G0B pinout in JEDEC Standard<br />

1 2 3 4 5 6 7 8 9 <strong>10</strong> 11 12 13 14 15 16<br />

6-2 TSEV83<strong>10</strong>2G0B - <strong>Evaluation</strong> <strong>Board</strong> <strong>User</strong> <strong>Guide</strong><br />

2166D–BDC–01/04<br />

R<br />

Q<br />

P<br />

N<br />

M<br />

L<br />

K<br />

J<br />

H<br />

G<br />

F<br />

E<br />

D<br />

C<br />

B<br />

A<br />

NC<br />

GND<br />

DVEE<br />

VPLUSD<br />

B/GB<br />

DECB/<br />

DIODE<br />

GND GND VPLUSD VPLUSD VPLUSD GND DVEE DVEE GND VPLUSD VPLUSD VPLUSD GND GND<br />

DVEE DVEE DVEE DVEE<br />

VPLUSD VPLUSD GND VPLUSD<br />

GND VPLUSD VPLUSD VPLUSD<br />

GND VEE VPLUSD VEE<br />

PGEB GND VEE VEE VEE<br />

VEE<br />

VCC<br />

SDA<br />

GND<br />

VEE<br />

GND<br />

GND OR D0 D1 D2 D3 DR D4 D5 D6 D7 D8 D9 GND<br />

GND ORB D0B D1B D2B D3B DRB D4B D5B D6B D7B D8B D9B GND<br />

VEE VEE VCC VCC<br />

VCC VCC GND GND<br />

VCC<br />

VEE<br />

TS83<strong>10</strong>2G0B<br />

CBGA152<br />

(cavity down)<br />

VCC GND<br />

VEE GND<br />

VEE VEE GND GND GND<br />

GND VEE GND GND GND GND VEEH VCCTH VCCTH VEE VEE GND VEE VEE VEE<br />

NC GND GND GND GND GND GND VEEH VEEH VCCTH<br />

VEE VEE GND<br />

GND<br />

GND<br />

NC<br />

GND<br />

DVEE<br />

VPLUSD<br />

GND<br />

VEE<br />

GA<br />

VCC<br />

GND<br />

VINb<br />

VIN<br />

GND GND NC<br />

GND GND GND CLK CLKb GND VEEH VEEH VCCTH VEE GND DRRB SDAEN GND<br />

1 2 3 4 5 6 7 8 9 <strong>10</strong> 11 12 13 14 15 16<br />

R<br />

Q<br />

P<br />

N<br />

M<br />

L<br />

K<br />

J<br />

H<br />

G<br />

F<br />

E<br />

D<br />

C<br />

B<br />

A


Figure 6-2. TSEV83<strong>10</strong>2G0B Electrical Schematic<br />

XJ<strong>10</strong><br />

VEE<br />

J7<br />

1 2<br />

3 4<br />

5 6<br />

7 8<br />

9 <strong>10</strong><br />

11 12<br />

13 14<br />

15 16<br />

17 18<br />

19 20<br />

21 22<br />

23 24<br />

25 26<br />

27 28<br />

29 30<br />

31 32<br />

33 34<br />

35 36<br />

37 38<br />

39 40<br />

41 42<br />

43 44<br />

45 46<br />

47 48<br />

49 50<br />

51 52<br />

53 54<br />

55 56<br />

57 58<br />

59 60<br />

61 62<br />

63 64<br />

65 66<br />

67 68<br />

69 70<br />

71 72<br />

73 74<br />

75 76<br />

77 78<br />

79 80<br />

81 82<br />

83 84<br />

85 86<br />

87 88<br />

89 90<br />

91 92<br />

93 94<br />

95 96<br />

CON2X48<br />

BUF_PCb<br />

BUF_PC<br />

B17<br />

TEST<br />

1<br />

BUF_D0b<br />

BUF_D0<br />

PTTEST<br />

CAVALIER<br />

NC<br />

J<strong>10</strong> 2<br />

2<br />

Jumper<br />

C13<br />

VEE<br />

<strong>10</strong>nF<br />

1<br />

1<br />

1<br />

C14<br />

<strong>10</strong>0pF<br />

3<br />

FICHE BANANE 2mm rouge<br />

DVEE<br />

VEE<br />

3<br />

BUF_D1b<br />

BUF_D1<br />

50 ohms impedance lines<br />

same line length<br />

1<br />

N1<br />

N2<br />

N3<br />

N14<br />

N15<br />

N16<br />

P8<br />

P9<br />

A8<br />

A9<br />

A11<br />

B8<br />

B9<br />

B11<br />

B12<br />

C3<br />

C8<br />

C11<br />

C12<br />

C14<br />

C15<br />

C16<br />

D1<br />

D2<br />

D3<br />

E2<br />

E3<br />

H1<br />

H2<br />

H3<br />

J3<br />

J14<br />

J15<br />

K3<br />

K15<br />

K16<br />

BUF_D2b<br />

BUF_D2<br />

V1<br />

B/GB<br />

2<br />

2<br />

XJ1<br />

1<br />

PTB/GB<br />

B1<br />

NC<br />

J1<br />

1<br />

FICHE BANANE 2mm rouge / B/GB Jumper<br />

1<br />

PCb<br />

PC<br />

D0b<br />

3<br />

BUF_D3b<br />

BUF_D3<br />

3<br />

D1b<br />

D1<br />

D2b<br />

D2<br />

D3b<br />

D3<br />

DRb<br />

DR<br />

D4b<br />

D4<br />

D5b<br />

D5<br />

D6b<br />

D6<br />

D7b<br />

D7<br />

D8b<br />

D8<br />

D9b<br />

D9<br />

D0<br />

BUF_DRb<br />

BUF_DR<br />

B2<br />

1<br />

FICHE BANANE 2mm noire<br />

B3<br />

BUF_D4b<br />

BUF_D4<br />

1<br />

D1<br />

ZENER<br />

NC<br />

DIODE<br />

C129<br />

<strong>10</strong>0nF<br />

NC<br />

FICHE BANANE 2mm noire / V-GND<br />

1<br />

BUF_D5b<br />

BUF_D5<br />

2<br />

BUF_D6b<br />

BUF_D6<br />

BUF_D7b<br />

BUF_D7<br />

Q3<br />

R3<br />

Q4<br />

R4<br />

Q5<br />

R5<br />

Q6<br />

R6<br />

Q7<br />

R7<br />

Q8<br />

R8<br />

Q9<br />

R9<br />

Q<strong>10</strong><br />

R<strong>10</strong><br />

Q11<br />

R11<br />

Q12<br />

R12<br />

Q13<br />

R13<br />

Q14<br />

R14<br />

PCb (ORb)<br />

PC (OR)<br />

D0b<br />

D0<br />

D1b<br />

D1<br />

D2b<br />

D2<br />

DVEE<br />

DVEE<br />

DVEE<br />

DVEE<br />

DVEE<br />

DVEE<br />

DVEE<br />

DVEE<br />

VEE<br />

VEE<br />

VEE<br />

VEE<br />

VEE<br />

VEE<br />

VEE<br />

VEE<br />

VEE<br />

VEE<br />

VEE<br />

VEE<br />

VEE<br />

VEE<br />

VEE<br />

VEE<br />

VEE<br />

VEE<br />

VEE<br />

VEE<br />

VEE<br />

VEE<br />

VEE<br />

VEE<br />

VEE<br />

VEE<br />

VEE<br />

VEE<br />

D3b<br />

D3<br />

DRb<br />

DR<br />

D4b<br />

D4<br />

D5b<br />

D5<br />

D6b<br />

D6<br />

D7b<br />

D7<br />

D8b<br />

D8<br />

D9b<br />

D9<br />

A2<br />

A3<br />

A4<br />

A7<br />

A12<br />

A15<br />

B1<br />

B2<br />

B3<br />

B4<br />

B5<br />

B6<br />

B7<br />

B13<br />

B14<br />

B15<br />

B16<br />

C1<br />

C2<br />

C4<br />

C5<br />

C6<br />

C7<br />

C13<br />

D14<br />

D15<br />

D16<br />

E1<br />

E14<br />

E15<br />

F14<br />

F15<br />

G14<br />

G15<br />

G16<br />

J2<br />

K2<br />

L2<br />

L16<br />

M13<br />

P1<br />

P2<br />

P3<br />

P7<br />

P<strong>10</strong><br />

P14<br />

P15<br />

P16<br />

Q1<br />

Q2<br />

Q15<br />

Q16<br />

R2<br />

R15<br />

B5<br />

1<br />

BANANA JACK 2mm red / V-DIODE<br />

B6<br />

1<br />

FICHE BANANE 2mm noire / I-GND<br />

BUF_D8b<br />

BUF_D8<br />

CLK<br />

CLKB<br />

A5<br />

A6<br />

CLK<br />

S2<br />

BUF_D9b<br />

BUF_D9<br />

1<br />

1<br />

Clock<br />

2<br />

DRRB<br />

50 ohms impedance lines<br />

2<br />

OA<br />

A13<br />

DRRB<br />

A14<br />

OA (SDAEN)<br />

VIN<br />

VINB<br />

E16<br />

VIN F16<br />

VINB<br />

CLKB<br />

PTGAIN<br />

PTSDA<br />

PTOA<br />

GAIN<br />

SDA OA<br />

NC NC NC<br />

P2<br />

P3<br />

1K 25 turns<br />

1K 25 turns<br />

NC<br />

XJ2<br />

XJ8<br />

XJ9<br />

J2 2 GAIN J8 2 SDA J9 2 OA<br />

2<br />

R49<br />

2<br />

2<br />

Jumper<br />

3K9 1%<br />

Jumper<br />

R51 Jumper<br />

CAVALIER<br />

C55 C56<br />

CAVALIER<br />

C125 C126<br />

0R 5% CAVALIER<br />

C127 C128<br />

<strong>10</strong>nF <strong>10</strong>0pF<br />

<strong>10</strong>nF <strong>10</strong>0pF<br />

<strong>10</strong>nF <strong>10</strong>0pF<br />

Schematics<br />

TSEV83<strong>10</strong>2G0B - <strong>Evaluation</strong> <strong>Board</strong> <strong>User</strong> <strong>Guide</strong> 6-3<br />

SDA<br />

TEST<br />

VIN<br />

GAIN<br />

DIODE<br />

B/GB<br />

F1<br />

SDA<br />

J1<br />

TEST<br />

J16<br />

GAIN<br />

K1<br />

DIODE<br />

L1<br />

B/GB<br />

GND<br />

GND<br />

GND<br />

GND<br />

GND<br />

GND<br />

GND<br />

GND<br />

GND<br />

GND<br />

GND<br />

GND<br />

GND<br />

GND<br />

GND<br />

GND<br />

GND<br />

GND<br />

GND<br />

GND<br />

GND<br />

GND<br />

GND<br />

GND<br />

GND<br />

GND<br />

GND<br />

GND<br />

GND<br />

GND<br />

GND<br />

GND<br />

GND<br />

GND<br />

GND<br />

GND<br />

GND<br />

GND<br />

GND<br />

GND<br />

GND<br />

GND<br />

GND<br />

GND<br />

GND<br />

GND<br />

GND<br />

GND<br />

GND<br />

GND<br />

GND<br />

GND<br />

GND<br />

GND<br />

C26<br />

<strong>10</strong>0pF<br />

C25<br />

<strong>10</strong>nF<br />

CAVALIER<br />

B4<br />

BANANA JACK 2mm red / I-DIODE<br />

1<br />

CLK<br />

CLKB<br />

1<br />

1<br />

ClockB<br />

S3<br />

2<br />

2<br />

1<br />

1<br />

VIN<br />

S4<br />

2<br />

2<br />

VCC<br />

VCC<br />

VCC<br />

VCC<br />

VCC<br />

VCC<br />

VCC<br />

VCC<br />

VCC<br />

VCC<br />

VCC<br />

VCC<br />

VPLUSD<br />

VPLUSD<br />

VPLUSD<br />

VPLUSD<br />

VPLUSD<br />

VPLUSD<br />

VPLUSD<br />

VPLUSD<br />

VPLUSD<br />

VPLUSD<br />

VPLUSD<br />

VPLUSD<br />

VPLUSD<br />

VPLUSD<br />

VPLUSD<br />

VINB<br />

1<br />

1<br />

VINB<br />

S5<br />

A<strong>10</strong><br />

B<strong>10</strong><br />

C9<br />

C<strong>10</strong><br />

F2<br />

F3<br />

G1<br />

G2<br />

G3<br />

H14<br />

H15<br />

H16<br />

K14<br />

L3<br />

L14<br />

L15<br />

M1<br />

M2<br />

M3<br />

M15<br />

M16<br />

P4<br />

P5<br />

P6<br />

P11<br />

P12<br />

P13<br />

TS83<strong>10</strong>2G0<br />

2<br />

XS2<br />

2<br />

VPLUSD VCC<br />

BOUCHON_SMA<br />

VEE<br />

VEE<br />

VEE<br />

XS3<br />

1<br />

1<br />

CAL1<br />

S7<br />

2<br />

R52<br />

0R 5%<br />

ST13<br />

R50<br />

3K9 1%<br />

R54<br />

3K9 1%<br />

BOUCHON_SMA<br />

XS4<br />

2<br />

2<br />

1<br />

2<br />

BOUCHON_SMA<br />

XS5<br />

1<br />

1<br />

CAL2<br />

2<br />

P1<br />

1K 25 turns<br />

S8<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

BOUCHON_SMA<br />

1<br />

1<br />

1<br />

S1<br />

CONN SMC FC / DRRB<br />

3<br />

3<br />

3<br />

R53<br />

3K9 1%<br />

DRRB<br />

1<br />

3<br />

3 4<br />

3 4<br />

2<br />

5<br />

2 5<br />

1<br />

3<br />

3<br />

VCC<br />

VCC<br />

VCC<br />

VEE VCC VPLUSD<br />

DVEE<br />

C17 C18 C27 C28 C35 C36A C36B<br />

<strong>10</strong>0pF <strong>10</strong>nF <strong>10</strong>0pF <strong>10</strong>nF <strong>10</strong>0pF <strong>10</strong>nF <strong>10</strong>nF<br />

C29 C30A C30B C31 C32A C32B C21 C22A C22B C19 C20A C20B<br />

<strong>10</strong>0pF <strong>10</strong>nF <strong>10</strong>nF <strong>10</strong>0pF <strong>10</strong>nF <strong>10</strong>nF <strong>10</strong>0pF <strong>10</strong>nF <strong>10</strong>nF <strong>10</strong>0pF <strong>10</strong>nF <strong>10</strong>nF<br />

C37 C38A C38B C41 C42A C42B C3 C4A C4B<br />

<strong>10</strong>0pF <strong>10</strong>nF <strong>10</strong>nF <strong>10</strong>0pF <strong>10</strong>nF <strong>10</strong>nF <strong>10</strong>0pF <strong>10</strong>nF<br />

<strong>10</strong>nF<br />

C1 C2 C39 C40 C5 C6 C45 C46 C11 C12 C9 C<strong>10</strong><br />

<strong>10</strong>0pF <strong>10</strong>nF <strong>10</strong>0pF <strong>10</strong>nF <strong>10</strong>0pF <strong>10</strong>nF <strong>10</strong>0pF <strong>10</strong>nF <strong>10</strong>0pF <strong>10</strong>nF <strong>10</strong>0pF <strong>10</strong>nF<br />

2166D–BDC–01/04


Schematics<br />

Figure 6-3. Component Side Description Figure 6-4. Metal Layer 2 and 4: Ground Planes<br />

Figure 6-5. Metal Layer 3 and 3 bis: Power Supplies<br />

and Ground Planes<br />

Figure 6-7. TSEV83<strong>10</strong>2G0B <strong>Evaluation</strong> <strong>Board</strong>: Top View<br />

(Signal Side) without Heatsink<br />

6-4 TSEV83<strong>10</strong>2G0B - <strong>Evaluation</strong> <strong>Board</strong> <strong>User</strong> <strong>Guide</strong><br />

2166D–BDC–01/04<br />

Figure 6-6. Metal Layer 5: Solder Side<br />

Figure 6-8. TSEV83<strong>10</strong>2G0B <strong>Evaluation</strong> <strong>Board</strong>:<br />

Bottom View


Atmel Corporation Atmel Operations<br />

2325 Orchard Parkway<br />

San Jose, CA 95131, USA<br />

Tel: 1(408) 441-0311<br />

Fax: 1(408) 487-2600<br />

Regional Headquarters<br />

Europe<br />

Atmel Sarl<br />

Route des Arsenaux 41<br />

Case Postale 80<br />

CH-1705 Fribourg<br />

Switzerland<br />

Tel: (41) 26-426-5555<br />

Fax: (41) 26-426-5500<br />

Asia<br />

Room 1219<br />

Chinachem Golden Plaza<br />

77 Mody Road Tsimshatsui<br />

East Kowloon<br />

Hong Kong<br />

Tel: (852) 2721-9778<br />

Fax: (852) 2722-1369<br />

Japan<br />

9F, Tonetsu Shinkawa Bldg.<br />

1-24-8 Shinkawa<br />

Chuo-ku, Tokyo <strong>10</strong>4-0033<br />

Japan<br />

Tel: (81) 3-3523-3551<br />

Fax: (81) 3-3523-7581<br />

Memory<br />

2325 Orchard Parkway<br />

San Jose, CA 95131, USA<br />

Tel: 1(408) 441-0311<br />

Fax: 1(408) 436-4314<br />

Microcontrollers<br />

2325 Orchard Parkway<br />

San Jose, CA 95131, USA<br />

Tel: 1(408) 441-0311<br />

Fax: 1(408) 436-4314<br />

La Chantrerie<br />

BP 70602<br />

44306 Nantes Cedex 3, France<br />

Tel: (33) 2-40-18-18-18<br />

Fax: (33) 2-40-18-19-60<br />

ASIC/ASSP/Smart Cards<br />

Zone Industrielle<br />

13<strong>10</strong>6 Rousset Cedex, France<br />

Tel: (33) 4-42-53-60-00<br />

Fax: (33) 4-42-53-60-01<br />

1150 East Cheyenne Mtn. Blvd.<br />

Colorado Springs, CO 80906, USA<br />

Tel: 1(719) 576-3300<br />

Fax: 1(719) 540-1759<br />

Scottish Enterprise Technology Park<br />

Maxwell Building<br />

East Kilbride G75 0QR, Scotland<br />

Tel: (44) 1355-803-000<br />

Fax: (44) 1355-242-743<br />

Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard<br />

warranty which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any<br />

errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and<br />

does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are<br />

granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use<br />

as critical components in life support devices or systems.<br />

© Atmel Corporation 2004. All rights reserved. Atmel ® is a registered trademark of Atmel Corporation.<br />

Other terms and product names may be the trademarks of others.<br />

RF/Automotive<br />

Theresienstrasse 2<br />

Postfach 3535<br />

74025 Heilbronn, Germany<br />

Tel: (49) 71-31-67-0<br />

Fax: (49) 71-31-67-2340<br />

1150 East Cheyenne Mtn. Blvd.<br />

Colorado Springs, CO 80906, USA<br />

Tel: 1(719) 576-3300<br />

Fax: 1(719) 540-1759<br />

Biometrics/Imaging/Hi-Rel MPU/<br />

High Speed Converters/RF Datacom<br />

Avenue de Rochepleine<br />

BP 123<br />

38521 Saint-Egreve Cedex, France<br />

Tel: (33) 4-76-58-30-00<br />

Fax: (33) 4-76-58-34-80<br />

Literature Requests<br />

www.atmel.com/literature<br />

Printed on recycled paper.<br />

2166D–BDC–01/04 /0M

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!