29.01.2015 Views

Effect of potassium humate and nitrogen fertilizer on herb - Ozean ...

Effect of potassium humate and nitrogen fertilizer on herb - Ozean ...

Effect of potassium humate and nitrogen fertilizer on herb - Ozean ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Sciences 2(3), 2009<br />

varied with cultvar <str<strong>on</strong>g>and</str<strong>on</strong>g> plant density (Fatima et al., 2000). The improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> plant nutriti<strong>on</strong> can<br />

c<strong>on</strong>tribute to increased resistance <str<strong>on</strong>g>and</str<strong>on</strong>g> producti<strong>on</strong> when the crop is submitted to water stress.<br />

Humic substances are organic compounds that result from the decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> plant <str<strong>on</strong>g>and</str<strong>on</strong>g> animal materials.<br />

Humic acid <str<strong>on</strong>g>and</str<strong>on</strong>g> their salts which derived from coal <str<strong>on</strong>g>and</str<strong>on</strong>g> other sources may provide a viable alternative to<br />

liming, to ameliorate soil acidity <str<strong>on</strong>g>and</str<strong>on</strong>g> improve soil structurel stability. Research has shown it is the humic<br />

fracti<strong>on</strong>s (humic acid, fulvic acid <str<strong>on</strong>g>and</str<strong>on</strong>g> humin) <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil organic matter that are resp<strong>on</strong>sible for the generic<br />

improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> soil fertility <str<strong>on</strong>g>and</str<strong>on</strong>g> improved productivity (K<strong>on</strong><strong>on</strong>ova 1966 <str<strong>on</strong>g>and</str<strong>on</strong>g> Fortun et al 1989), the same<br />

author added that humic acids are known to posses many beneficial agricultural properties, they participate<br />

actively in the decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter, rocks <str<strong>on</strong>g>and</str<strong>on</strong>g> mineral, improve soil structure <str<strong>on</strong>g>and</str<strong>on</strong>g> change<br />

physical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> soil, promote the chelati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> many elements <str<strong>on</strong>g>and</str<strong>on</strong>g> make these available to plants, aid<br />

in in correcting plant chlorisis, enhancement <str<strong>on</strong>g>of</str<strong>on</strong>g> photosynthesis density <str<strong>on</strong>g>and</str<strong>on</strong>g> plant root respirati<strong>on</strong> has<br />

resulted in greater plant growth with <str<strong>on</strong>g>humate</str<strong>on</strong>g> applicati<strong>on</strong> (Smidova, 1960 <str<strong>on</strong>g>and</str<strong>on</strong>g> Chen <str<strong>on</strong>g>and</str<strong>on</strong>g> Avid, 1990).<br />

Increase the permeability <str<strong>on</strong>g>of</str<strong>on</strong>g> plant membranes due to <str<strong>on</strong>g>humate</str<strong>on</strong>g> applicati<strong>on</strong> resulted in improve growth <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

various groups <str<strong>on</strong>g>of</str<strong>on</strong>g> beneficial microorganisms, accelerate cell divisi<strong>on</strong>, increased root growth <str<strong>on</strong>g>and</str<strong>on</strong>g> all plant<br />

organs for a number <str<strong>on</strong>g>of</str<strong>on</strong>g> horticultural crops <str<strong>on</strong>g>and</str<strong>on</strong>g> turfgrasses, as well as, the growth <str<strong>on</strong>g>of</str<strong>on</strong>g> some trees, Russo <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Berlyn (1990), S<str<strong>on</strong>g>and</str<strong>on</strong>g>ers et al (1990) <str<strong>on</strong>g>and</str<strong>on</strong>g> Poincelot (1993).<br />

Plant nutriti<strong>on</strong> is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the most important factors that increase plant producti<strong>on</strong>. Nitrogen is most<br />

recognized in plants for its presence in the structure <str<strong>on</strong>g>of</str<strong>on</strong>g> the protein molecule. In additi<strong>on</strong>, <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g> is found<br />

in such important molecules as purines, pyrimidines, porphyrines, <str<strong>on</strong>g>and</str<strong>on</strong>g> coenzymes. Purines <str<strong>on</strong>g>and</str<strong>on</strong>g> pyrimidines<br />

are found in the nucleic acids RNA <str<strong>on</strong>g>and</str<strong>on</strong>g> DNA, which are essential for protein synthesis. The porphyrin<br />

structure is found in such metabolically important compounds as the chlorophyll pigments <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

cytochromes, which are essential in photosynthesis <str<strong>on</strong>g>and</str<strong>on</strong>g> respirati<strong>on</strong>. Coenzymes are essential to the functi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> many enzymes. Accordingly, <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g> plays an important role in synthesis <str<strong>on</strong>g>of</str<strong>on</strong>g> the plant c<strong>on</strong>stituents<br />

through the acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> different enzymes. Nitrogen limiting c<strong>on</strong>diti<strong>on</strong>s increase volatile oil producti<strong>on</strong> in<br />

annual <strong>herb</strong>al. Nitrogen fertilizati<strong>on</strong> has been reported to reduce volatile oil c<strong>on</strong>tent in Juniperus<br />

horiz<strong>on</strong>talis [creeping juniper] (Fretz, 1976), although it has been reported to increase total oil yield in<br />

thyme [Thymus vulgaris] (Baranauskienne et al., 2003). However, studies <strong>on</strong> agr<strong>on</strong>omic factors such as<br />

applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>potassium</str<strong>on</strong>g> <str<strong>on</strong>g>humate</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> irrigati<strong>on</strong> intervals as well as <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g> fertilizati<strong>on</strong> <strong>on</strong> yield <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

essential oils <str<strong>on</strong>g>of</str<strong>on</strong>g> oregano have not been investigated thoroughly until now.<br />

This study aimed to evaluate the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g> fertilizati<strong>on</strong>, applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>potassium</str<strong>on</strong>g> <str<strong>on</strong>g>humate</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

irrigati<strong>on</strong> intervals <strong>on</strong> the fresh <strong>herb</strong> yield <str<strong>on</strong>g>and</str<strong>on</strong>g> essential oil c<strong>on</strong>tent <str<strong>on</strong>g>and</str<strong>on</strong>g> their main c<strong>on</strong>stituents <str<strong>on</strong>g>of</str<strong>on</strong>g> Origanum<br />

vulgare L.<br />

MATERIALS AND METHODS<br />

The experiment was carried out under the natural c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the greenhouse <str<strong>on</strong>g>of</str<strong>on</strong>g> the Nati<strong>on</strong>al Research<br />

Center, Dokki, Giza, Egypt, during the two seas<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 2006 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2007. Seeds <str<strong>on</strong>g>of</str<strong>on</strong>g> oregano were obtained<br />

from Jellitto St<str<strong>on</strong>g>and</str<strong>on</strong>g>ensamen Gmbh, Schwarmstedt, Germany <str<strong>on</strong>g>and</str<strong>on</strong>g> were seeded in the nursery <strong>on</strong> 15 th<br />

November 2005 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2006. The seedlings were transplanted into pots 30 cm diameter, <strong>on</strong> the 15 th February<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> each seas<strong>on</strong>. Each pot c<strong>on</strong>tained three seedlings <str<strong>on</strong>g>and</str<strong>on</strong>g> was placed in full sun light. Each pot was filled with<br />

10 kg <str<strong>on</strong>g>of</str<strong>on</strong>g> air dried soil. The soil related to the typic torrifluvents. The physical <str<strong>on</strong>g>and</str<strong>on</strong>g> chemical analyses <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

soil were determined according to Jacks<strong>on</strong> 1973. The soil texture was s<str<strong>on</strong>g>and</str<strong>on</strong>g>y loam, having a physical<br />

compositi<strong>on</strong> as follows: 44.50% s<str<strong>on</strong>g>and</str<strong>on</strong>g>, 28.80% silt, 26.70% clay, <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.85% organic matter. The results <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

soil chemical analysis were as follows: pH= 8.25; E.C (mmohs/cm) = 0.87; <str<strong>on</strong>g>and</str<strong>on</strong>g> total <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g> =0.11 %;<br />

available phosphorus =2.33 mg/100gram; <str<strong>on</strong>g>potassium</str<strong>on</strong>g>= 0.019 mg/100gram.<br />

The experimental layout was factorial in a complete r<str<strong>on</strong>g>and</str<strong>on</strong>g>omized design (CRD), with three replicati<strong>on</strong>s.<br />

Each replicati<strong>on</strong> c<strong>on</strong>tained seven pots, while the pot c<strong>on</strong>tained three plants. Amm<strong>on</strong>ium sulphate (20.50%)<br />

was applied at the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.0 (N0), 0.6 (N1) <str<strong>on</strong>g>and</str<strong>on</strong>g> 1.2 (N2) g N pot -1 as a top dressing applicati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

divided into two equal porti<strong>on</strong>s. The first porti<strong>on</strong> was added <strong>on</strong>e m<strong>on</strong>th after transplanting, <str<strong>on</strong>g>and</str<strong>on</strong>g> the sec<strong>on</strong>d<br />

N additi<strong>on</strong>, was added five m<strong>on</strong>ths after transplanting. Then, after the first N additi<strong>on</strong>, irrigati<strong>on</strong> intervals<br />

(3, 5 <str<strong>on</strong>g>and</str<strong>on</strong>g> 7 days), <strong>on</strong>e litre <str<strong>on</strong>g>of</str<strong>on</strong>g> water was applied per <strong>on</strong>e pot. The <str<strong>on</strong>g>potassium</str<strong>on</strong>g> <str<strong>on</strong>g>humate</str<strong>on</strong>g> used in this study is<br />

320

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!