29.01.2015 Views

Effect of potassium humate and nitrogen fertilizer on herb - Ozean ...

Effect of potassium humate and nitrogen fertilizer on herb - Ozean ...

Effect of potassium humate and nitrogen fertilizer on herb - Ozean ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Sciences 2(3), 2009<br />

<strong>Ozean</strong> Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Sciences 2(3), 2009<br />

ISSN 1943-2429<br />

© 2009 <strong>Ozean</strong> Publicati<strong>on</strong><br />

EFFECT OF POTASSIUM HUMATE AND NITROGEN FERTILIZER ON HERB AND<br />

ESSENTIAL OIL<br />

OF OREGANO UNDER DIFFERENT IRRIGATION INTERVALS<br />

*Said-Al Ahl H. A. H.;** Hasnaa S. Ayad <str<strong>on</strong>g>and</str<strong>on</strong>g> *S. F. Hendawy<br />

* Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Cultivati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Medicinal <str<strong>on</strong>g>and</str<strong>on</strong>g> Aromatic Plants<br />

** Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Botany<br />

Nati<strong>on</strong>al Research Centre, Dokki, Giza, Egypt.<br />

*E-mail address for corresp<strong>on</strong>dence: saidalahl@yahoo.com<br />

___________________________________________________________________________________________<br />

Abstract: Two pot trials were carried out during the 2006 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2007 seas<strong>on</strong>s to investigate the impact <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

irrigati<strong>on</strong> intervals (3, 5 <str<strong>on</strong>g>and</str<strong>on</strong>g> 7 days), <str<strong>on</strong>g>potassium</str<strong>on</strong>g>-<str<strong>on</strong>g>humate</str<strong>on</strong>g> (spraying at 1%) <str<strong>on</strong>g>and</str<strong>on</strong>g>/or <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g> <str<strong>on</strong>g>fertilizer</str<strong>on</strong>g> levels<br />

(0, 0.6 <str<strong>on</strong>g>and</str<strong>on</strong>g> 1.2 g N pot -1 as amm<strong>on</strong>ium sulphate) <strong>on</strong> the fresh weight <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>herb</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> essential oil <str<strong>on</strong>g>of</str<strong>on</strong>g> oregano<br />

plants. Irrigating plants every 7 days <str<strong>on</strong>g>and</str<strong>on</strong>g> with 1.2 g N pot -1 was effective in raising the productivity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>herb</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> the c<strong>on</strong>tent <str<strong>on</strong>g>and</str<strong>on</strong>g> yield <str<strong>on</strong>g>of</str<strong>on</strong>g> essential oil. The interacti<strong>on</strong> between these treatment gave the best results.<br />

C<strong>on</strong>cerning essential oil c<strong>on</strong>stituents, carvacrol was the major compound followed by P-cymene; γ–<br />

terpinene was the third comp<strong>on</strong>ent<br />

Key words: Origanum vulgare L., irrigati<strong>on</strong> intervals, <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g> <str<strong>on</strong>g>fertilizer</str<strong>on</strong>g>, <str<strong>on</strong>g>potassium</str<strong>on</strong>g> <str<strong>on</strong>g>humate</str<strong>on</strong>g>, fresh <strong>herb</strong><br />

yield, essential oil, GLC analysis<br />

___________________________________________________________________________________________<br />

INTRODUCTION<br />

Oregano (Origanum vulgare L.) bel<strong>on</strong>gs to the Lamiaceae family, which is indigenous to the<br />

Mediterranean regi<strong>on</strong>. It also is distributed <str<strong>on</strong>g>and</str<strong>on</strong>g> cultivated in many areas <str<strong>on</strong>g>of</str<strong>on</strong>g> the mild, temperate climates <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Europe, Asia, North Africa, <str<strong>on</strong>g>and</str<strong>on</strong>g> America (Ietswaart, 1980; Goliaris et al., 2002). Oregano plays a primary<br />

role am<strong>on</strong>g culinary <strong>herb</strong>s in world trade. Traditi<strong>on</strong>ally, leaves <str<strong>on</strong>g>and</str<strong>on</strong>g> flowers <str<strong>on</strong>g>of</str<strong>on</strong>g> oregano are used in Lithuania<br />

mostly for their beneficial properties to cure cough <str<strong>on</strong>g>and</str<strong>on</strong>g> sore throats <str<strong>on</strong>g>and</str<strong>on</strong>g> relieve digestive complaints (Ien et<br />

al., 2008). Oregano c<strong>on</strong>tains essential oils, rich in the two isomeric phenols carvacrol <str<strong>on</strong>g>and</str<strong>on</strong>g> thymol (Fleisher<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Sneer, 1982; Kokkini <str<strong>on</strong>g>and</str<strong>on</strong>g> Vokou, 1989 <str<strong>on</strong>g>and</str<strong>on</strong>g> Vokou et al., 1993). The use <str<strong>on</strong>g>of</str<strong>on</strong>g> oregano as a medicinal<br />

plant is attributed to the biological properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>herb</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> its essential oil compositi<strong>on</strong>. Findings report<br />

that oregano is antimicrobial (Didry et al., 1993; Chun et al., 2005 <str<strong>on</strong>g>and</str<strong>on</strong>g> Paster et al., 2005), an antioxidant<br />

(Capecka et al., 2005 <str<strong>on</strong>g>and</str<strong>on</strong>g> Jaloszynski et al., 2008), <str<strong>on</strong>g>and</str<strong>on</strong>g> probably stimulates the appetite (Ien et al., 2008).<br />

The c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> essential oils <str<strong>on</strong>g>and</str<strong>on</strong>g> their compositi<strong>on</strong> are affected by different factors, including genetic<br />

makeup (Muzik et al., 1989) <str<strong>on</strong>g>and</str<strong>on</strong>g> cultivati<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s, such climate, habitat, harvesting time, water stress,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> the use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fertilizer</str<strong>on</strong>g> (Min et al., 2005; <str<strong>on</strong>g>and</str<strong>on</strong>g> Stute, 2006).<br />

Plant reacti<strong>on</strong>s are affected by the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> soil water directly or indirectly. Drought stress limits the<br />

producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 25% <str<strong>on</strong>g>of</str<strong>on</strong>g> the world's l<str<strong>on</strong>g>and</str<strong>on</strong>g> (Delfine et al., 2005). Water stress in plants influences many<br />

metabolic processes, <str<strong>on</strong>g>and</str<strong>on</strong>g> the extent <str<strong>on</strong>g>of</str<strong>on</strong>g> its effects depends <strong>on</strong> drought severity. The optimizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

irrigati<strong>on</strong> for the producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fresh <strong>herb</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> essential oils is important, since water is a major comp<strong>on</strong>ent<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the fresh produce <str<strong>on</strong>g>and</str<strong>on</strong>g> affects both weight <str<strong>on</strong>g>and</str<strong>on</strong>g> quality (J<strong>on</strong>es <str<strong>on</strong>g>and</str<strong>on</strong>g> Tardien, 1998). Water deficit in plants<br />

may lead to physiological disorders, such as a reducti<strong>on</strong> in photosynthesis <str<strong>on</strong>g>and</str<strong>on</strong>g> transpirati<strong>on</strong> (Sarker et al.,<br />

2005), <str<strong>on</strong>g>and</str<strong>on</strong>g> in the case <str<strong>on</strong>g>of</str<strong>on</strong>g> aromatic plants may cause changes in the yield <str<strong>on</strong>g>and</str<strong>on</strong>g> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> their essential<br />

oils. For example, water deficit decreased the oil yield <str<strong>on</strong>g>of</str<strong>on</strong>g> rosemary (Rosmarinus <str<strong>on</strong>g>of</str<strong>on</strong>g>ficinalis L.) (Singh <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Ramesh, 2000) <str<strong>on</strong>g>and</str<strong>on</strong>g> anise (Pimpinella anisum L.) (Zehtab- Salmasi et al., 2001). By c<strong>on</strong>trast, water stress<br />

caused an increase in oil producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> thyme (Aziz et al., 2008) <str<strong>on</strong>g>and</str<strong>on</strong>g> citr<strong>on</strong>ella grass (Cymbopogen<br />

winterianus Jowitt.) expressed <strong>on</strong> the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> plant fresh weight. The severity <str<strong>on</strong>g>of</str<strong>on</strong>g> the water stress resp<strong>on</strong>se<br />

319


Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Sciences 2(3), 2009<br />

varied with cultvar <str<strong>on</strong>g>and</str<strong>on</strong>g> plant density (Fatima et al., 2000). The improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> plant nutriti<strong>on</strong> can<br />

c<strong>on</strong>tribute to increased resistance <str<strong>on</strong>g>and</str<strong>on</strong>g> producti<strong>on</strong> when the crop is submitted to water stress.<br />

Humic substances are organic compounds that result from the decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> plant <str<strong>on</strong>g>and</str<strong>on</strong>g> animal materials.<br />

Humic acid <str<strong>on</strong>g>and</str<strong>on</strong>g> their salts which derived from coal <str<strong>on</strong>g>and</str<strong>on</strong>g> other sources may provide a viable alternative to<br />

liming, to ameliorate soil acidity <str<strong>on</strong>g>and</str<strong>on</strong>g> improve soil structurel stability. Research has shown it is the humic<br />

fracti<strong>on</strong>s (humic acid, fulvic acid <str<strong>on</strong>g>and</str<strong>on</strong>g> humin) <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil organic matter that are resp<strong>on</strong>sible for the generic<br />

improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> soil fertility <str<strong>on</strong>g>and</str<strong>on</strong>g> improved productivity (K<strong>on</strong><strong>on</strong>ova 1966 <str<strong>on</strong>g>and</str<strong>on</strong>g> Fortun et al 1989), the same<br />

author added that humic acids are known to posses many beneficial agricultural properties, they participate<br />

actively in the decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter, rocks <str<strong>on</strong>g>and</str<strong>on</strong>g> mineral, improve soil structure <str<strong>on</strong>g>and</str<strong>on</strong>g> change<br />

physical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> soil, promote the chelati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> many elements <str<strong>on</strong>g>and</str<strong>on</strong>g> make these available to plants, aid<br />

in in correcting plant chlorisis, enhancement <str<strong>on</strong>g>of</str<strong>on</strong>g> photosynthesis density <str<strong>on</strong>g>and</str<strong>on</strong>g> plant root respirati<strong>on</strong> has<br />

resulted in greater plant growth with <str<strong>on</strong>g>humate</str<strong>on</strong>g> applicati<strong>on</strong> (Smidova, 1960 <str<strong>on</strong>g>and</str<strong>on</strong>g> Chen <str<strong>on</strong>g>and</str<strong>on</strong>g> Avid, 1990).<br />

Increase the permeability <str<strong>on</strong>g>of</str<strong>on</strong>g> plant membranes due to <str<strong>on</strong>g>humate</str<strong>on</strong>g> applicati<strong>on</strong> resulted in improve growth <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

various groups <str<strong>on</strong>g>of</str<strong>on</strong>g> beneficial microorganisms, accelerate cell divisi<strong>on</strong>, increased root growth <str<strong>on</strong>g>and</str<strong>on</strong>g> all plant<br />

organs for a number <str<strong>on</strong>g>of</str<strong>on</strong>g> horticultural crops <str<strong>on</strong>g>and</str<strong>on</strong>g> turfgrasses, as well as, the growth <str<strong>on</strong>g>of</str<strong>on</strong>g> some trees, Russo <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Berlyn (1990), S<str<strong>on</strong>g>and</str<strong>on</strong>g>ers et al (1990) <str<strong>on</strong>g>and</str<strong>on</strong>g> Poincelot (1993).<br />

Plant nutriti<strong>on</strong> is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the most important factors that increase plant producti<strong>on</strong>. Nitrogen is most<br />

recognized in plants for its presence in the structure <str<strong>on</strong>g>of</str<strong>on</strong>g> the protein molecule. In additi<strong>on</strong>, <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g> is found<br />

in such important molecules as purines, pyrimidines, porphyrines, <str<strong>on</strong>g>and</str<strong>on</strong>g> coenzymes. Purines <str<strong>on</strong>g>and</str<strong>on</strong>g> pyrimidines<br />

are found in the nucleic acids RNA <str<strong>on</strong>g>and</str<strong>on</strong>g> DNA, which are essential for protein synthesis. The porphyrin<br />

structure is found in such metabolically important compounds as the chlorophyll pigments <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

cytochromes, which are essential in photosynthesis <str<strong>on</strong>g>and</str<strong>on</strong>g> respirati<strong>on</strong>. Coenzymes are essential to the functi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> many enzymes. Accordingly, <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g> plays an important role in synthesis <str<strong>on</strong>g>of</str<strong>on</strong>g> the plant c<strong>on</strong>stituents<br />

through the acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> different enzymes. Nitrogen limiting c<strong>on</strong>diti<strong>on</strong>s increase volatile oil producti<strong>on</strong> in<br />

annual <strong>herb</strong>al. Nitrogen fertilizati<strong>on</strong> has been reported to reduce volatile oil c<strong>on</strong>tent in Juniperus<br />

horiz<strong>on</strong>talis [creeping juniper] (Fretz, 1976), although it has been reported to increase total oil yield in<br />

thyme [Thymus vulgaris] (Baranauskienne et al., 2003). However, studies <strong>on</strong> agr<strong>on</strong>omic factors such as<br />

applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>potassium</str<strong>on</strong>g> <str<strong>on</strong>g>humate</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> irrigati<strong>on</strong> intervals as well as <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g> fertilizati<strong>on</strong> <strong>on</strong> yield <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

essential oils <str<strong>on</strong>g>of</str<strong>on</strong>g> oregano have not been investigated thoroughly until now.<br />

This study aimed to evaluate the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g> fertilizati<strong>on</strong>, applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>potassium</str<strong>on</strong>g> <str<strong>on</strong>g>humate</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

irrigati<strong>on</strong> intervals <strong>on</strong> the fresh <strong>herb</strong> yield <str<strong>on</strong>g>and</str<strong>on</strong>g> essential oil c<strong>on</strong>tent <str<strong>on</strong>g>and</str<strong>on</strong>g> their main c<strong>on</strong>stituents <str<strong>on</strong>g>of</str<strong>on</strong>g> Origanum<br />

vulgare L.<br />

MATERIALS AND METHODS<br />

The experiment was carried out under the natural c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the greenhouse <str<strong>on</strong>g>of</str<strong>on</strong>g> the Nati<strong>on</strong>al Research<br />

Center, Dokki, Giza, Egypt, during the two seas<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 2006 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2007. Seeds <str<strong>on</strong>g>of</str<strong>on</strong>g> oregano were obtained<br />

from Jellitto St<str<strong>on</strong>g>and</str<strong>on</strong>g>ensamen Gmbh, Schwarmstedt, Germany <str<strong>on</strong>g>and</str<strong>on</strong>g> were seeded in the nursery <strong>on</strong> 15 th<br />

November 2005 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2006. The seedlings were transplanted into pots 30 cm diameter, <strong>on</strong> the 15 th February<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> each seas<strong>on</strong>. Each pot c<strong>on</strong>tained three seedlings <str<strong>on</strong>g>and</str<strong>on</strong>g> was placed in full sun light. Each pot was filled with<br />

10 kg <str<strong>on</strong>g>of</str<strong>on</strong>g> air dried soil. The soil related to the typic torrifluvents. The physical <str<strong>on</strong>g>and</str<strong>on</strong>g> chemical analyses <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

soil were determined according to Jacks<strong>on</strong> 1973. The soil texture was s<str<strong>on</strong>g>and</str<strong>on</strong>g>y loam, having a physical<br />

compositi<strong>on</strong> as follows: 44.50% s<str<strong>on</strong>g>and</str<strong>on</strong>g>, 28.80% silt, 26.70% clay, <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.85% organic matter. The results <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

soil chemical analysis were as follows: pH= 8.25; E.C (mmohs/cm) = 0.87; <str<strong>on</strong>g>and</str<strong>on</strong>g> total <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g> =0.11 %;<br />

available phosphorus =2.33 mg/100gram; <str<strong>on</strong>g>potassium</str<strong>on</strong>g>= 0.019 mg/100gram.<br />

The experimental layout was factorial in a complete r<str<strong>on</strong>g>and</str<strong>on</strong>g>omized design (CRD), with three replicati<strong>on</strong>s.<br />

Each replicati<strong>on</strong> c<strong>on</strong>tained seven pots, while the pot c<strong>on</strong>tained three plants. Amm<strong>on</strong>ium sulphate (20.50%)<br />

was applied at the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.0 (N0), 0.6 (N1) <str<strong>on</strong>g>and</str<strong>on</strong>g> 1.2 (N2) g N pot -1 as a top dressing applicati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

divided into two equal porti<strong>on</strong>s. The first porti<strong>on</strong> was added <strong>on</strong>e m<strong>on</strong>th after transplanting, <str<strong>on</strong>g>and</str<strong>on</strong>g> the sec<strong>on</strong>d<br />

N additi<strong>on</strong>, was added five m<strong>on</strong>ths after transplanting. Then, after the first N additi<strong>on</strong>, irrigati<strong>on</strong> intervals<br />

(3, 5 <str<strong>on</strong>g>and</str<strong>on</strong>g> 7 days), <strong>on</strong>e litre <str<strong>on</strong>g>of</str<strong>on</strong>g> water was applied per <strong>on</strong>e pot. The <str<strong>on</strong>g>potassium</str<strong>on</strong>g> <str<strong>on</strong>g>humate</str<strong>on</strong>g> used in this study is<br />

320


Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Sciences 2(3), 2009<br />

produced in China having a physical data as follows: appearance (black powders), pH (9-10), <str<strong>on</strong>g>and</str<strong>on</strong>g> water<br />

solubility (> 98%). The guarateed analysis were as follows: humic acid (80%), <str<strong>on</strong>g>potassium</str<strong>on</strong>g> (K 2 O) (10-12%),<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> zinc, ir<strong>on</strong>, manganese, etc., (100 ppm). Plants were sprayed with twice freshly prepared soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>potassium</str<strong>on</strong>g> <str<strong>on</strong>g>humate</str<strong>on</strong>g> (1 %), in additi<strong>on</strong> to the untreated plants (c<strong>on</strong>trol) which were sprayed with tap water.<br />

The plants treated with K-<str<strong>on</strong>g>humate</str<strong>on</strong>g> two times <str<strong>on</strong>g>of</str<strong>on</strong>g> 75 <str<strong>on</strong>g>and</str<strong>on</strong>g> 180 days from transplanting, respectively in both<br />

seas<strong>on</strong>s. Plant fresh weight (g plant -1 ) <str<strong>on</strong>g>of</str<strong>on</strong>g> each replicate was determined in the first <str<strong>on</strong>g>and</str<strong>on</strong>g> sec<strong>on</strong>d cuts after<br />

105 <str<strong>on</strong>g>and</str<strong>on</strong>g> 210 days from transplanting, respectively. The essential oil percentage was determined in the fresh<br />

<strong>herb</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> each replicate. To extract <str<strong>on</strong>g>and</str<strong>on</strong>g> quantify the essential oils, a weight <str<strong>on</strong>g>of</str<strong>on</strong>g> 100 g <str<strong>on</strong>g>of</str<strong>on</strong>g> fresh <strong>herb</strong>, during two<br />

cuts in both seas<strong>on</strong>s was separately subjected to hydro-distillati<strong>on</strong> for 3 hours using a modified Clevenger<br />

apparatus according to Gunther (1961). Essential oil percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> each replicate was determined <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

expressed as (%), while essential oil yield per plant was expressed as ml plant -1 . The essential oils <str<strong>on</strong>g>of</str<strong>on</strong>g> each<br />

treatment were collected <str<strong>on</strong>g>and</str<strong>on</strong>g> dehydrated over anhydrous sodium sulphate <str<strong>on</strong>g>and</str<strong>on</strong>g> kept in a refrigerator until<br />

gas-liquid chromatography (GLC) analyses. The GLC analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> the oil samples was carried out in the<br />

sec<strong>on</strong>d seas<strong>on</strong> using a Hewlett Packard gas chromatograph apparatus at the Central Laboratory <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

Nati<strong>on</strong>al Research Center (NRC) with the following specificati<strong>on</strong>s: instruments: Hewlett Packard 6890<br />

series, column; HP (Carbwax 20M, 25m length x 0.32mm I.D), film thickness: 0.3mm, sample size: 1µl,<br />

oven temperature: 60-190°C, Program temperature: 60°C/2min, 8°C/min, 190°C/25min, injecti<strong>on</strong> port<br />

temperature:240°C, carrier gas: <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g>, detector temperature (FID): 280°C, flow rate: N 2 3ml/min., H 2<br />

3ml/min., air 300ml/min. Main compounds <str<strong>on</strong>g>of</str<strong>on</strong>g> the essential oil were identified by matching their retenti<strong>on</strong><br />

times with those <str<strong>on</strong>g>of</str<strong>on</strong>g> the authentic samples that were injected under the same c<strong>on</strong>diti<strong>on</strong>s. The relative<br />

percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> each compound was calculated from the peak area corresp<strong>on</strong>ding to each compound. Except<br />

for the c<strong>on</strong>stituents <str<strong>on</strong>g>of</str<strong>on</strong>g> the essential oils, the data in the present study were analyzed with the Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Variance (ANOVA) with three replicati<strong>on</strong>s according to Snedcor <str<strong>on</strong>g>and</str<strong>on</strong>g> Cochran (1981). Duncan's multiple<br />

range test were used to compare between the means <str<strong>on</strong>g>of</str<strong>on</strong>g> treatments according to Waller <str<strong>on</strong>g>and</str<strong>on</strong>g> Duncan (1969)<br />

at probability 5 %.<br />

Herb fresh weight:<br />

RESULTS AND DISCUSSIONS<br />

Data presented in Table (1) indicated that <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g> fertilizati<strong>on</strong>, <str<strong>on</strong>g>potassium</str<strong>on</strong>g>-<str<strong>on</strong>g>humate</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g>/or irrigati<strong>on</strong><br />

intervals affected plant fresh weight in both cuts <str<strong>on</strong>g>of</str<strong>on</strong>g> both seas<strong>on</strong>s. Increasing the period <str<strong>on</strong>g>of</str<strong>on</strong>g> irrigati<strong>on</strong><br />

increased plant fresh weight. The highest mean values due to irrigati<strong>on</strong> treatments were recorded with<br />

plants that received the highest amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> water (irrigated every 3 days). The pr<strong>on</strong>ounced effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

increased irrigati<strong>on</strong> <strong>on</strong> fresh <strong>herb</strong> yield may be attributed to the availability <str<strong>on</strong>g>of</str<strong>on</strong>g> sufficient moisture around<br />

the root c<strong>on</strong>centrated <str<strong>on</strong>g>and</str<strong>on</strong>g> thus a greater proliferati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> root biomass resulting in the higher absorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

nutrients <str<strong>on</strong>g>and</str<strong>on</strong>g> water leading to producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> higher vegetative biomass (Singh et al., 1997). It was found<br />

that increasing levels <str<strong>on</strong>g>of</str<strong>on</strong>g> water stress reduce growth <str<strong>on</strong>g>and</str<strong>on</strong>g> yield due to reducti<strong>on</strong> in photosynthesis <str<strong>on</strong>g>and</str<strong>on</strong>g> plant<br />

biomass. Under increasing water- stress levels photosynthesis was limited by low Co2 availability due to<br />

reduced stomatal <str<strong>on</strong>g>and</str<strong>on</strong>g> mesophyll c<strong>on</strong>ductance. Drought stress iassociated with stomatal closure <str<strong>on</strong>g>and</str<strong>on</strong>g> thereby<br />

with decreased CO2 fixati<strong>on</strong>. However, the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> irrigati<strong>on</strong> repeated in every 4 days seemed to be<br />

optimal <str<strong>on</strong>g>and</str<strong>on</strong>g> produced the highest producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fresh biomass (Srivastava, <str<strong>on</strong>g>and</str<strong>on</strong>g> Srivastava, 2007). The<br />

superiority <str<strong>on</strong>g>of</str<strong>on</strong>g> the plants that received the highest rate <str<strong>on</strong>g>of</str<strong>on</strong>g> irrigati<strong>on</strong> treatments in producing the heaviest total<br />

plant fresh weight was in agreement with that <str<strong>on</strong>g>of</str<strong>on</strong>g> Thabet et al. (1994); Mahmoud (2002); El-Naggar et al.<br />

(2004); Moeini Alishah et al. (2006) <str<strong>on</strong>g>and</str<strong>on</strong>g> Aziz et al. (2008).<br />

Increasing <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g> doses increased plant fresh weight at all doses in the two cuts in both seas<strong>on</strong>s. These<br />

doses had increased plant fresh weight compared to the c<strong>on</strong>trol treatment. The stimulati<strong>on</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

applying <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g> <strong>on</strong> vegetative growth may be attributed to the well known functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g> in plant<br />

life, as described in the Introducti<strong>on</strong>. Moreover, <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g> is involved in many organic compounds <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

plant system. A sufficient supply <str<strong>on</strong>g>of</str<strong>on</strong>g> various <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g>ous compounds is, therefore, required in each plant cell<br />

for its proper functi<strong>on</strong>ing. Generally, the enhancing effect <str<strong>on</strong>g>of</str<strong>on</strong>g> N-fertilizati<strong>on</strong> <strong>on</strong> plant growth may be due to<br />

the positive effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g> <strong>on</strong> activati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> photosynthesis <str<strong>on</strong>g>and</str<strong>on</strong>g> metabolic processes <str<strong>on</strong>g>of</str<strong>on</strong>g> organic<br />

compounds in plants which, in turn, encourage plant vegetative growth. The increase in the fresh <strong>herb</strong>age<br />

yield with <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g> fertilizati<strong>on</strong> is in agreement with results reported were recorded by Agamy (2004);<br />

321


Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Sciences 2(3), 2009<br />

Said-Al Ahl (2005); Mauyo et al. (2008). The results in Table (1) show that plant growth is a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

nutrients supply providing, there were clear significantly positive trend in increasing <strong>herb</strong> fresh yield by<br />

spraying <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>potassium</str<strong>on</strong>g> <str<strong>on</strong>g>humate</str<strong>on</strong>g>. Similar results were reported by Zaghloul et al. (2009) they indicated that<br />

spraying Thuja orientalis plants with humic acid increased growth compared with c<strong>on</strong>trol plants due to the<br />

direct effect <str<strong>on</strong>g>of</str<strong>on</strong>g> humic acid <strong>on</strong> solubilizati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> transport <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrients. These results are in accordance with<br />

those obtained by Norman et al (2004) <strong>on</strong> marigolds <str<strong>on</strong>g>and</str<strong>on</strong>g> peppers <str<strong>on</strong>g>and</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> fruits <str<strong>on</strong>g>of</str<strong>on</strong>g> strawberries.<br />

Chen <str<strong>on</strong>g>and</str<strong>on</strong>g> Avaid (1990) added that humic substances have a very pr<strong>on</strong>ounced influence <strong>on</strong> the growth <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

plant roots <str<strong>on</strong>g>and</str<strong>on</strong>g> enhance root initiati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> increased root growth which known root stimulator. Humic acid<br />

improve growth <str<strong>on</strong>g>of</str<strong>on</strong>g> plant foliage <str<strong>on</strong>g>and</str<strong>on</strong>g> roots. Vaughan (1974) proposed that humic acids may primarily<br />

increase root growth by increasing cell el<strong>on</strong>gati<strong>on</strong> or root cell membrane permeability, therefore increased<br />

water uptake by increased plant roots, <str<strong>on</strong>g>and</str<strong>on</strong>g> added that it can produce root systems with increased branching<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> fine roots, as a result potentially increase nutrients uptake by increase root surface area<br />

(Rauthan <str<strong>on</strong>g>and</str<strong>on</strong>g> Schnitzer, 1981).<br />

The interacti<strong>on</strong> effect was significant in both cuts <str<strong>on</strong>g>of</str<strong>on</strong>g> both seas<strong>on</strong>s. The highest values <str<strong>on</strong>g>of</str<strong>on</strong>g> plant fresh weight<br />

were produced from the treatment irrigated every 3 days <str<strong>on</strong>g>and</str<strong>on</strong>g> sprayed with 1% <str<strong>on</strong>g>potassium</str<strong>on</strong>g>-<str<strong>on</strong>g>humate</str<strong>on</strong>g>, followed<br />

by the treatment irrigated every 3 days <str<strong>on</strong>g>and</str<strong>on</strong>g> sprayed with 1% <str<strong>on</strong>g>potassium</str<strong>on</strong>g>-<str<strong>on</strong>g>humate</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> fertilized with 1.2 g N<br />

pot -1 at the two cuts in both seas<strong>on</strong>s.<br />

Essential oil producti<strong>on</strong>:<br />

In both cuts in both seas<strong>on</strong>s, irrigati<strong>on</strong> intervals, <str<strong>on</strong>g>potassium</str<strong>on</strong>g>-<str<strong>on</strong>g>humate</str<strong>on</strong>g>, <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g> applicati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> their<br />

interacti<strong>on</strong> affected the percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> essential oils in oregano (Table 1). The mean values <str<strong>on</strong>g>of</str<strong>on</strong>g> essential oils<br />

due to irrigati<strong>on</strong> intervals treatments showed that increasing the period <str<strong>on</strong>g>of</str<strong>on</strong>g> irrigati<strong>on</strong> from 7 to 5 days<br />

increased essential the percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> oils. Increasing the period <str<strong>on</strong>g>of</str<strong>on</strong>g> irrigati<strong>on</strong> from 3 to 5 days increased<br />

percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> essential oils. In other words, the irrigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oregano plants every 5 days accelerated the<br />

producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> essential oils, while the severe stress c<strong>on</strong>diti<strong>on</strong>s due to irrigated every 7 days decreased the<br />

biosynthesis <str<strong>on</strong>g>of</str<strong>on</strong>g> the essential oils. Similar results were recorded by Singh et al. (1997) <str<strong>on</strong>g>and</str<strong>on</strong>g> Fatima et al.<br />

(2000). The mean values <str<strong>on</strong>g>of</str<strong>on</strong>g> essential oils due to <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g> applicati<strong>on</strong> at 0.6 g N pot -1 <str<strong>on</strong>g>and</str<strong>on</strong>g> 1.2 g N pot -1<br />

increased in both cuts <str<strong>on</strong>g>of</str<strong>on</strong>g> both seas<strong>on</strong>s. Nitrogen fertilizati<strong>on</strong> might enhance the essential oil biosynthesis<br />

processes through its direct or indirect role in plant metabolism resulting in more plant metabolites. These<br />

finding are in agreement with those <str<strong>on</strong>g>of</str<strong>on</strong>g> Omer (1998) <str<strong>on</strong>g>and</str<strong>on</strong>g> Omer et al. (2008), who said that <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g> <str<strong>on</strong>g>fertilizer</str<strong>on</strong>g><br />

was effective in increasing essential oil <str<strong>on</strong>g>of</str<strong>on</strong>g> Origanum syriacum <str<strong>on</strong>g>and</str<strong>on</strong>g> Ocimum americanum, respectively.<br />

Essential oil percent in oregano fresh <strong>herb</strong> were significantly affected as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> foliar applicati<strong>on</strong> with<br />

K-<str<strong>on</strong>g>humate</str<strong>on</strong>g> (Table 1). Zaghloul et al. (2009) reported that <str<strong>on</strong>g>humate</str<strong>on</strong>g> applicati<strong>on</strong> lead to increase oil c<strong>on</strong>tent in<br />

Thuja orientalis. From the above menti<strong>on</strong>ed results, it could be c<strong>on</strong>cluded that foliar applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> K-<br />

<str<strong>on</strong>g>humate</str<strong>on</strong>g> promoted growth <str<strong>on</strong>g>and</str<strong>on</strong>g> possessed the best oil percentage in oregano plant. Generally, the maximum<br />

essential oil c<strong>on</strong>tent was observed in the fresh <strong>herb</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> plants that irrigated every 5 days <str<strong>on</strong>g>and</str<strong>on</strong>g> sprayed with<br />

1% K-<str<strong>on</strong>g>humate</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> fertilized with 1.2 g N pot -1 in the two cuts.<br />

The oil yield <str<strong>on</strong>g>of</str<strong>on</strong>g> oregano (ml plant -1 ) was affected by irrigati<strong>on</strong> intervals, <str<strong>on</strong>g>potassium</str<strong>on</strong>g> <str<strong>on</strong>g>humate</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g>/or <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g><br />

fertilizati<strong>on</strong> in both cuts <str<strong>on</strong>g>of</str<strong>on</strong>g> both seas<strong>on</strong>s. Decreasing the period <str<strong>on</strong>g>of</str<strong>on</strong>g> irrigati<strong>on</strong> from 7 to 5 days increased oil<br />

yield in both cuts <str<strong>on</strong>g>of</str<strong>on</strong>g> both seas<strong>on</strong>s. Increasing irrigati<strong>on</strong> intervals from 3 to 5 days increased oil yield in both<br />

cuts <str<strong>on</strong>g>of</str<strong>on</strong>g> both seas<strong>on</strong>s. Moisture stress also decreased fresh <strong>herb</strong> yield, so there was a decrease in oil yield<br />

with an increase in moisture stress. These findings agree with those <str<strong>on</strong>g>of</str<strong>on</strong>g> Singh <str<strong>on</strong>g>and</str<strong>on</strong>g> Ramesh (2000) <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Zehtab- Salmasi et al. (2001). They found that water deficit decreased the oil yield <str<strong>on</strong>g>of</str<strong>on</strong>g> rosemary<br />

(Rosmarinus <str<strong>on</strong>g>of</str<strong>on</strong>g>ficinalis L.) <str<strong>on</strong>g>and</str<strong>on</strong>g> anise (Pimpinella anisum L.), respectively. Increasing <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g> doses<br />

resulted in gradual <str<strong>on</strong>g>and</str<strong>on</strong>g> significant increase in essential oil yield in both cuts <str<strong>on</strong>g>of</str<strong>on</strong>g> both seas<strong>on</strong>s. The higher the<br />

amount <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g>, the higher was the oil yield. The resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> volatile oil c<strong>on</strong>tent to <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g><br />

fertilizati<strong>on</strong> might be attributed to de novo meristemic cell metabolism in building dry matter with essential<br />

oil producti<strong>on</strong>. These results agree with those <str<strong>on</strong>g>of</str<strong>on</strong>g> Omer (1998) <str<strong>on</strong>g>and</str<strong>on</strong>g> Omer et al. (2008), who found a positive<br />

correlati<strong>on</strong> between <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g> <str<strong>on</strong>g>fertilizer</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> essential oil c<strong>on</strong>tent in <strong>herb</strong>age <str<strong>on</strong>g>of</str<strong>on</strong>g> Origanum syriacum <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Ocimum americanum, respectively in all cuttings. In additi<strong>on</strong>, spraying oregano plants with K-<str<strong>on</strong>g>humate</str<strong>on</strong>g><br />

caused an increase in the essential oil yield (Table 1). Generally, the highest essential oil yield (ml plant -1 )<br />

was obtained from plants irrigated every 5 days <str<strong>on</strong>g>and</str<strong>on</strong>g> fertilized with 1.2 g N pot -1 <str<strong>on</strong>g>and</str<strong>on</strong>g> sprayed at 1% K-<br />

<str<strong>on</strong>g>humate</str<strong>on</strong>g> in both cuts <str<strong>on</strong>g>of</str<strong>on</strong>g> both seas<strong>on</strong>s.<br />

322


Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Sciences 2(3), 2009<br />

Chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> essential oil:<br />

To study the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> irrigati<strong>on</strong> intervals, K-<str<strong>on</strong>g>humate</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g>/or <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g> fertilizati<strong>on</strong> <strong>on</strong> the main c<strong>on</strong>stituents <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the essential oil, the oil <str<strong>on</strong>g>of</str<strong>on</strong>g> each treatment was separately subjected to gas liquid chromatography <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

main compounds <str<strong>on</strong>g>and</str<strong>on</strong>g> their relative percentages are shown in (Table 2). Carvacrol, a phenolic compound,<br />

was found to be the first major compound <str<strong>on</strong>g>and</str<strong>on</strong>g> ranged from 61.65 to 73.61%. Its maximum c<strong>on</strong>tent was<br />

observed in the essential oil <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>herb</strong> that received 0.6 g N pot -1 with sprayed at 1% K-<str<strong>on</strong>g>humate</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

irrigated every 5 days in the sec<strong>on</strong>d cut, while the minimum c<strong>on</strong>tent was recorded with plants that received<br />

1.2 g N pot -1 with sprayed at 1% K-<str<strong>on</strong>g>humate</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> irrigated every 3 days. The sec<strong>on</strong>d main compound was<br />

identified as the m<strong>on</strong>oterpine, P-cymene, which ranged from its maximum c<strong>on</strong>tent (18.27%) with irrigated<br />

every 3 days <str<strong>on</strong>g>and</str<strong>on</strong>g> received 1.2 g N pot -1 <str<strong>on</strong>g>and</str<strong>on</strong>g> sprayed at 1% K-<str<strong>on</strong>g>humate</str<strong>on</strong>g> in the sec<strong>on</strong>d cut to its minimum<br />

relative percent (6.80%) with irrigated every 5 days <str<strong>on</strong>g>and</str<strong>on</strong>g> fertilized at 0.6 g N pot -1 with sprayed at 1% K-<br />

<str<strong>on</strong>g>humate</str<strong>on</strong>g> in the first cut. Generally, the main differences were observed with the two phenolic compounds<br />

carvacrole <str<strong>on</strong>g>and</str<strong>on</strong>g> thymol, <str<strong>on</strong>g>and</str<strong>on</strong>g> their hydrocarp<strong>on</strong>ic precursor's terpinene <str<strong>on</strong>g>and</str<strong>on</strong>g> p-cymene. The phenolic<br />

compounds increase in hot seas<strong>on</strong>s at the expense <str<strong>on</strong>g>of</str<strong>on</strong>g> their preceding precursors. In other words, the relative<br />

percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> carvacrol was higher in the sec<strong>on</strong>d cut than in the first cut. This may be attributed to the<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the envir<strong>on</strong>mental factors especially n<strong>on</strong>-edaphic factors, since these plants grew in summer<br />

m<strong>on</strong>ths under high temperatures <str<strong>on</strong>g>and</str<strong>on</strong>g> received more solar energy than those grown in the spring summers.<br />

These c<strong>on</strong>diti<strong>on</strong>s accelerate the transformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> terpinene <str<strong>on</strong>g>and</str<strong>on</strong>g> p-cymene to phenolic compounds. These<br />

findings agree with those <str<strong>on</strong>g>of</str<strong>on</strong>g> Omer (1998) <strong>on</strong> Origanum syriacum <str<strong>on</strong>g>and</str<strong>on</strong>g> Omer et al. (1994) <strong>on</strong> marjoram. In<br />

this respect, Picacaglia <str<strong>on</strong>g>and</str<strong>on</strong>g> Marotti (1993) reported that during their two–year study differences in relative<br />

amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> thymol, carvacrol, γ–terpinene, <str<strong>on</strong>g>and</str<strong>on</strong>g> p-cymene, essential oils <str<strong>on</strong>g>of</str<strong>on</strong>g> Satureja m<strong>on</strong>tana which is<br />

grown in Italy, could be attributed to the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s.<br />

323


Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Sciences 2(3), 2009<br />

Table 1. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>potassium</str<strong>on</strong>g> <str<strong>on</strong>g>humate</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> /or <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g> <str<strong>on</strong>g>fertilizer</str<strong>on</strong>g> under different irrigati<strong>on</strong><br />

intervals <strong>on</strong> <strong>herb</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> essential oil <str<strong>on</strong>g>of</str<strong>on</strong>g> Origanum vulgare L. plant in 2006/2007 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

2007/2008 seas<strong>on</strong>s.<br />

Treatments<br />

Fresh weight g plant -1 Essential oil % Essential oil yield (plant -1 )<br />

First cut<br />

Seas<strong>on</strong> 1 Seas<strong>on</strong> 2 Seas<strong>on</strong> 1 Seas<strong>on</strong> 2 Seas<strong>on</strong> 1 Seas<strong>on</strong> 2<br />

I-3 8.90 a ± 2.187 8.72 a ± 2.173 0.59 b ± 0.049 0.59 b ± 0.051 0.05 b ± 0.016 0.05 b ± 0.017<br />

I-5 8.20 b ± 2.140 8.35 b ± 2.263 0.66 a ± 0.084 0.66 a ± 0.074 0.06 a ± 0.020 0.06 a ± 0.020<br />

I-7 5.97 c ± 1.461 5.90 c ± 1.498 0.58 b ± 0.075 0.57 c ± 0.083 0.04 c ± 0.012 0.04 c ± 0.013<br />

LSD at 0.05 0.1585 0.1466 0.0257 0.0211 0.0025 0.0026<br />

N0 5.03 e ± 0.825 5.00 e ± 0.874 0.51 d ± 0.058 0.51 e ± 0.068 0.03 e ± 0.005 0.03 e ± 0.005<br />

N 1 5.98 d ± 1.082 5.94 d ± 1.115 0.57 c ± 0.043 0.56 d ± 0.042 0.04 d ± 0.007 0.03 d ± 0.010<br />

N 2 6.67 c ± 1.105 6.45 c ± 1.024 0.59 c ± 0.046 0.60 c ± 0.050 0.04 c ± 0.009 0.04 c ± 0.009<br />

H 9.73 a ± 1.614 9.69 a ± 1.647 0.64 b ± 0.060 0.64 b ± 0.049 0.06 a ± 0.012 0.06 ab ± 0.013<br />

N 1 +H 9.17 b ± 1.712 9.32 b ± 1.743 0.66 ab ± 0.049 0.66 ab ± 0.060 0.06 b ± 0.015 0.06 b ± 0.015<br />

N 2 + H 9.55 a ± 1.698 9.55 a ± 1.662 0.68 a ± 0.057 0.68 a ± 0.043 0.07 a ± 0.013 0.07 a ± 0.013<br />

LSD at 0.05 0.2242 0.2073 0.0363 0.0298 0.0035 0.0036<br />

I-3 x N0 5.89 i ± 0.157 5.90 h ± 0.100 0.53 ± 0.029 0.53 ± 0.058 0.03 e ± 0.000 0.03 g ± 0.000<br />

I-3 x N 1 6.94 g ± 0.140 6.88 f ± 0.104 0.55 ± 0.000 0.57 ± 0.029 0.04 d ± 0.000 0.04 f ± 0.000<br />

I-3 x N 2 7.75 e ± 0.195 7.15 def ± 0.132 0.58 ± 0.029 0.58 ± 0.029 0.05 c ± 0.006 0.04 f ± 0.000<br />

I-3 x H 11.10 a ± 0.354 10.89 a ± 0.032 0.60 ± 0.050 0.60 ± 0.000 0.07 b ± 0.006 0.07 b ± 0.000<br />

I-3 x N 1 +H 10.72 ab ± 0.135 10.67 ab ± 0.155 0.63 ± 0.029 0.62 ± 0.029 0.07 b ± 0.006 0.06 c ± 0.006<br />

I-3 x N 2 +H 10.99 a ± 0.515 10.82 ab ± 0.076 0.65 ± 0.000 0.67 ± 0.029 0.07 b ± 0.000 0.07 ab ± 0.006<br />

I-5 x N0 5.20 j ± 0.093 5.19 i ± 0.106 0.53 ± 0.058 0.55 ± 0.050 0.03 e ± 0.000 0.03 g ± 0.000<br />

I-5x N 1 6.42 h ± 0.070 6.44 g ± 0.110 0.60 ± 0.050 0.60 ± 0.000 0.04 d ± 0.000 0.04 f ± 0.000<br />

I-5 x N 2 6.99 fg ± 0.036 7.10 ef ± 0.179 0.63 ± 0.029 0.65 ± 0.000 0.05 c ± 0.006 0.05 d ± 0.000<br />

I-5 x H 10.44 bc ± 0.445 10.67 ab ± 0.289 0.70 ± 0.050 0.70 ± 0.000 0.08 a ± 0.006 0.07 ab ± 0.006<br />

I-5 x N 1 +H 9.84 d ± 0.151 10.26 c ± 0.405 0.72 ± 0.029 0.73 ± 0.029 0.07 b ± 0.000 0.08 a ± 0.006<br />

I-5 x N 2 +H 10.30 c ± 0.263 10.47 bc ± 0.451 0.75 ± 0.000 0.73 ± 0.029 0.08 a ± 0.000 0.08 a ± 0.006<br />

I-7x N0 4.02 l ± 0.067 3.92 k ± 0.104 0.45 ± 0.050 0.43 ± 0.029 0.02 f ± 0.000 0.02 h ± 0.000<br />

I-7x N 1 4.58 k ± 0.181 4.51 j ± 0.400 0.55 ± 0.050 0.52 ± 0.029 0.03 e ± 0.006 0.02 h ± 0.000<br />

I-7 x N 2 5.27 j ± 0.061 5.09 i ± 0.086 0.57 ± 0.058 0.57 ± 0.058 0.03 e ± 0.000 0.03 g ± 0.000<br />

I-7 x H 7.65 e ± 0.150 7.50 d ± 0.095 0.62 ± 0.029 0.62 ± 0.029 0.05 c ± 0.000 0.05 de ± 0.006<br />

I-7 x N 1 +H 6.95 g ± 0.138 7.03 ef ± 0.252 0.63 ± 0.029 0.63 ± 0.029 0.04 d ± 0.000 0.04 ef ± 0.006<br />

I-7 x N 2 +H 7.37 ef ± 0.321 7.37 de ± 0.126 0.63 ± 0.029 0.65 ± 0.000 0.05 c ± 0.000 0.05 d ± 0.000<br />

LSD at 0.05 0.3884 0.3590 N.S N.S 0.0060 0.0064<br />

Means with different letters within each column are significant at 0.05 level <str<strong>on</strong>g>and</str<strong>on</strong>g> means in the<br />

same column with the same letters are not significant. Mean ±Sd; Since: N = <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g> <str<strong>on</strong>g>fertilizer</str<strong>on</strong>g>, i.<br />

e. N0 = c<strong>on</strong>trol, N1 = 0.6 g pot -1 , N2 = 1.2 g pot -1 ; I = Irrigati<strong>on</strong><br />

Intervals, i. e. I-3; I-5, I-7 = irrigati<strong>on</strong> every 3, 5 <str<strong>on</strong>g>and</str<strong>on</strong>g> 7 days; H= <str<strong>on</strong>g>potassium</str<strong>on</strong>g> <str<strong>on</strong>g>humate</str<strong>on</strong>g><br />

324


Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Sciences 2(3), 2009<br />

Table 2. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>potassium</str<strong>on</strong>g> <str<strong>on</strong>g>humate</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> /or <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g> <str<strong>on</strong>g>fertilizer</str<strong>on</strong>g> under different<br />

irrigati<strong>on</strong> intervals <strong>on</strong> <strong>herb</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> essential oil <str<strong>on</strong>g>of</str<strong>on</strong>g> Origanum vulgare L. plant in<br />

2006/2007 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2007/2008 seas<strong>on</strong>s.<br />

Treatments<br />

Fresh weight g plant -1 Essential oil % Essential oil yield (plant -1 )<br />

Sec<strong>on</strong>d cut<br />

Seas<strong>on</strong> 1 Seas<strong>on</strong> 2 Seas<strong>on</strong> 1 Seas<strong>on</strong> 2 Seas<strong>on</strong> 1 Seas<strong>on</strong> 2<br />

I-3 10.39 a ± 2.506 10.46 a ± 2.505 0.57 b ± 0.039 0.57 b ± 0.046 0.06 a ± 0.017 0.06 a ± 0.019<br />

I-5 9.88 b ± 2.392 9.66 b ± 2.510 0.60 a ± 0.068 0.60 a ± 0.071 0.06 a ± 0.021 0.06 a ± 0.021<br />

I-7 7.25 c ± 1.849 7.32 c ± 1.854 0.54 c ± 0.066 0.54 c ± 0.054 0.04 b ± 0.013 0.04 b ± 0.012<br />

LSD at 0.05 0.1827 0.1600 0.0195 0.0247 0.0025 0.0036<br />

N0 6.01 d ± 0.986 5.81 e ± 0.993 0.49 d ± 0.049 0.50 d ± 0.050 0.03 d ± 0.009 0.03 c ± 0.007<br />

N 1 7.25 c ± 1.637 7.33 d ± 1.465 0.53 c ± 0.026 0.54 c ± 0.042 0.04 c ± 0.009 0.04 b ± 0.009<br />

N 2 8.01 b ± 0.877 7.97 c ± 0.894 0.56 b ± 0.049 0.55 c ± 0.043 0.05 b ± 0.007 0.04 b ± 0.007<br />

H 11.30 a ± 1.782 11.36 a ± 1.752 0.61 a ± 0.046 0.59 b ± 0.042 0.07 a ± 0.015 0.07 a ± 0.015<br />

N 1 +H 11.16 a ± 1.830 11.13 b ± 1.730 0.61 a ± 0.042 0.61 ab ± 0.053 0.07 a ± 0.013 0.07 a ± 0.014<br />

N 2 + H 11.29 a ± 1.772 11.28 ab ± 1.773 0.63 a ± 0.036 0.63 a ± 0.043 0.07 a ± 0.016 0.07 a ± 0.015<br />

LSD at 0.05 0.2583 0.2262 0.0276 0.0349 0.0036 0.0050<br />

I-3 x N0 6.78 e ± 0.293 6.81 f ± 0.137 0.53 ± 0.029 0.53 ± 0.058 0.04 fg ± 0.000 0.03 d ± 0.006<br />

I-3 x N 1 8.55 cd ± 0.150 8.64 d ± 0.456 0.53 ± 0.029 0.55 ± 0.050 0.05 de ± 0.006 0.05 b ± 0.006<br />

I-3 x N 2 8.82 c ± 0.266 8.95 cd ± 0.050 0.57 ± 0.029 0.55 ± 0.050 0.05 cd ± 0.000 0.05 b ± 0.000<br />

I-3 x H 12.78 a ± 0.247 12.85 a ± 0.218 0.60 ± 0.000 0.60 ± 0.000 0.08 a ± 0.000 0.08 a ± 0.000<br />

I-3 x N 1 +H 12.64 a ± 0.456 12.70 a ± 0.267 0.58 ± 0.029 0.58 ± 0.029 0.07 b ± 0.006 0.08 a ± 0.006<br />

I-3 x N 2 +H 12.75 a ± 0.259 12.83 a ± 0.208 0.62 ± 0.029 0.62 ± 0.029 0.08 a ± 0.000 0.08 a ± 0.000<br />

I-5 x N0 6.49 e ± 0.452 6.02 g ± 0.126 0.50 ± 0.000 0.50 ± 0.000 0.03 hi ± 0.006 0.03 d ± 0.000<br />

I-5x N 1 8.12 d ± 0.125 7.87 e ± 0.231 0.55 ± 0.000 0.55 ± 0.050 0.04 ef ± 0.006 0.04 bc ± 0.006<br />

I-5 x N 2 8.32 d ± 0.186 8.06 e ± 0.110 0.60 ± 0.050 0.58 ± 0.029 0.05 cd ± 0.000 0.05 b ± 0.006<br />

I-5 x H 12.15 b ± 0.327 12.17 b ± 0.289 0.65 ± 0.050 0.62 ± 0.029 0.08 a ± 0.000 0.08 a ± 0.006<br />

I-5 x N 1 +H 12.05 b ± 0.333 11.80 b ± 0.265 0.65 ± 0.000 0.67 ± 0.029 0.08 a ± 0.000 0.08 a ± 0.006<br />

I-5 x N 2 +H 12.14 b ± 0.356 12.04 b ± 0.063 0.67 ± 0.029 0.68 ± 0.029 0.08 a ± 0.006 0.08 a ± 0.000<br />

I-7x N0 4.77 f ± 0.211 4.61 i ± 0.433 0.43 ± 0.029 0.47 ± 0.058 0.02 j ± 0.000 0.02 e ± 0.000<br />

I-7x N 1 5.09 f ± 0.078 5.47 h ± 0.405 0.50 ± 0.000 0.52 ± 0.029 0.03 i ± 0.000 0.03 d ± 0.000<br />

I-7 x N 2 6.90 e ± 0.095 6.90 f ± 0.100 0.52 ± 0.029 0.52 ± 0.029 0.04 gh ± 0.006 0.04 cd ± 0.006<br />

I-7 x H 8.97 c ± 0.052 9.07 c ± 0.064 0.57 ± 0.029 0.55 ± 0.050 0.05 cd ± 0.000 0.05 b ± 0.000<br />

I-7 x N 1 +H 8.78 c ± 0.338 8.90 cd ± 0.100 0.60 ± 0.050 0.57 ± 0.029 0.05 c ± 0.006 0.05 b ± 0.000<br />

I-7 x N 2 +H 8.97 c ± 0.152 8.96 cd ± 0.064 0.60 ± 0.000 0.60 ± 0.000 0.05 cd ± 0.000 0.05 b ± 0.000<br />

LSD at 0.05 0.4474 0.3919 N.S N.S 0.0062 0.0087<br />

Means with different letters within each column are significant at 0.05 level <str<strong>on</strong>g>and</str<strong>on</strong>g> means in the<br />

same column with the same letters are not significant. Mean ±Sd; Since: N = <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g><br />

<str<strong>on</strong>g>fertilizer</str<strong>on</strong>g>, i. e. N0 = c<strong>on</strong>trol, N1 = 0.6 g pot -1 , N2 = 1.2 g pot -1 ; I = Irrigati<strong>on</strong><br />

Intervals, i. e. I-3; I-5, I-7 = irrigati<strong>on</strong> every 3, 5 <str<strong>on</strong>g>and</str<strong>on</strong>g> 7 days; H= <str<strong>on</strong>g>potassium</str<strong>on</strong>g> <str<strong>on</strong>g>humate</str<strong>on</strong>g><br />

319


Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Sciences 2(3), 2009<br />

Table 3. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>potassium</str<strong>on</strong>g> <str<strong>on</strong>g>humate</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> /or <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g> <str<strong>on</strong>g>fertilizer</str<strong>on</strong>g> under<br />

irrigati<strong>on</strong> intervals <strong>on</strong> the c<strong>on</strong>stituents <str<strong>on</strong>g>of</str<strong>on</strong>g> Origanum vulgare L.in the<br />

sec<strong>on</strong>d seas<strong>on</strong>.<br />

Compounds<br />

1 st Cut 2 nd Cut<br />

Treatments<br />

T1 T2 T3 T1 T2 T3<br />

pinene<br />

-- -- -- -- -- --<br />

pinene<br />

-- --- 0.67 -- -- --<br />

terpinene -- -- -- 0.41 0.20 0.22<br />

P-cymene 11.74 6.80 13.81 11.31 11.79 18.28<br />

lim<strong>on</strong>ene 1.19 2.86 0.40 0.20 1.31 --<br />

γ- terpinene 7.60 12.81 8.74 10.28 2.64 5.07<br />

linalool 0.25 0.17 0.34 0.17 -- 0.19<br />

borneol -- 0.11 0.42 0.20 -- 0.16<br />

Terpinene-4-<br />

ol<br />

0.93 0.19 0.51<br />

0.27 0.18 0.18<br />

terpineol 0.45 0.29 0.46 0.12 0.22 0.36<br />

thymol 1.05 1.30 0.57 1.27 1.00 0.44<br />

Bornyl acetate 0.25 0.61 0.34 -- 0.34 0.27<br />

carvacrol 69.07 65.26 68.25 65.35 73.61 61.65<br />

Carvacrol<br />

acetate<br />

0.18 0.16 0.64<br />

0.89 0.20 0.21<br />

elemene 0.18 0.18 0.56 0.14 0.24 0.13<br />

caryophyllene<br />

0.53 0.54 0.41 0.11 0.49 0.12<br />

germacrene D 0.19 0.12 0.45 0.23 0.27 0.21<br />

Identified<br />

compounds<br />

93.61 91.40 95.57<br />

90.95 92.49 87.39<br />

Unidentified<br />

compounds<br />

6.39 8.60 4.43<br />

9.05 7.51 12.61<br />

T1–irrigati<strong>on</strong> every 7 days +<str<strong>on</strong>g>potassium</str<strong>on</strong>g> <str<strong>on</strong>g>humate</str<strong>on</strong>g>, T2– 0.6 gNpot-1 +<str<strong>on</strong>g>potassium</str<strong>on</strong>g><br />

<str<strong>on</strong>g>humate</str<strong>on</strong>g>+ irrigati<strong>on</strong> every 5 days, T3– 1.2 gNpot-1+ irrigati<strong>on</strong> every 3 days<br />

+ <str<strong>on</strong>g>potassium</str<strong>on</strong>g> <str<strong>on</strong>g>humate</str<strong>on</strong>g><br />

CONCLUSIONS<br />

Nitrogen <str<strong>on</strong>g>fertilizer</str<strong>on</strong>g> increase <strong>herb</strong> fresh yield <str<strong>on</strong>g>and</str<strong>on</strong>g> essential oil producti<strong>on</strong> under well-watered c<strong>on</strong>diti<strong>on</strong>s<br />

at 80% available soil moisture, also under moderate-watered c<strong>on</strong>diti<strong>on</strong>s at 60% available soil moisture<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> under water deficit c<strong>on</strong>diti<strong>on</strong>s at 40% available soil moisture. Increasing irrigati<strong>on</strong> levels increased<br />

the producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oregano <str<strong>on</strong>g>and</str<strong>on</strong>g> the optimum irrigati<strong>on</strong> levels for the highest yields <str<strong>on</strong>g>of</str<strong>on</strong>g> fresh <strong>herb</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

essential oil was 80% available soil moisture. Supplying plants with a water level <str<strong>on</strong>g>of</str<strong>on</strong>g> 80% available soil<br />

moisture <str<strong>on</strong>g>and</str<strong>on</strong>g> with 1.2 g N pot -1 (I-80%+ N3) gave the best result in case <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>herb</strong> fresh yield <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

essential oil producti<strong>on</strong>.<br />

320


Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Sciences 2(3), 2009<br />

REFERENCES<br />

Agamy, R.A. 2004. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> mineral <str<strong>on</strong>g>and</str<strong>on</strong>g>/or bio <str<strong>on</strong>g>fertilizer</str<strong>on</strong>g>s <strong>on</strong> morphological <str<strong>on</strong>g>and</str<strong>on</strong>g> anatomical characters,<br />

chemical c<strong>on</strong>stituents <str<strong>on</strong>g>and</str<strong>on</strong>g> yield <str<strong>on</strong>g>of</str<strong>on</strong>g> sweet fennel (Foeniculum vulgare Mill.cv.Dulce) plants<br />

grown in calcareous soil. Egypt. J. Appl., Sci., 19 (3):55-75.<br />

Aziz, E.E. Hendawi, S.F. Ezz El Din, A. <str<strong>on</strong>g>and</str<strong>on</strong>g> Omer E.A. 2008. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> soil type <str<strong>on</strong>g>and</str<strong>on</strong>g> irrigati<strong>on</strong><br />

intervals <strong>on</strong> plant growth, essential oil yield <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>stituents <str<strong>on</strong>g>of</str<strong>on</strong>g> Thymus vulgaris plant.<br />

American-Eurasian J. Agric. & Envir<strong>on</strong>. Sci., 4(4):443-450.<br />

Baranauskienne, R. Venskut<strong>on</strong>is, P.R. Viskelis, P. <str<strong>on</strong>g>and</str<strong>on</strong>g> Dambrausiene, E. 2003. Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g><br />

<str<strong>on</strong>g>fertilizer</str<strong>on</strong>g> <strong>on</strong> the yield <str<strong>on</strong>g>and</str<strong>on</strong>g> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> thyme (Thymus vulgaris). J. Agric. Food Chem., 51:<br />

7751-7758.<br />

Capecka, E. Mareczeka, <str<strong>on</strong>g>and</str<strong>on</strong>g> Leja, M. 2005. Antioxidant activity <str<strong>on</strong>g>of</str<strong>on</strong>g> fresh <str<strong>on</strong>g>and</str<strong>on</strong>g> dry <strong>herb</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> some<br />

lamiaceae species. Food Chemistry, 93, 223-226.<br />

Chen, Y. <str<strong>on</strong>g>and</str<strong>on</strong>g> Avaid, T. 1990. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> humic substances <strong>on</strong> plant growth. Pp. 161-186. In: American<br />

Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Agr<strong>on</strong>omy <str<strong>on</strong>g>and</str<strong>on</strong>g> Soil Science Society <str<strong>on</strong>g>of</str<strong>on</strong>g> America (eds.), Humic substances in soil<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> crop science; selected Readings. American Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Agr<strong>on</strong>omy, Madis<strong>on</strong>, WI.<br />

Chun, S. Vattem, D.A. <str<strong>on</strong>g>and</str<strong>on</strong>g> Shetty, K. 2005. Phenolic antioxidants from cl<strong>on</strong>al oregano (Oreganum<br />

vulgare) with antimicrobial activity against Helicobacter pylori. Process Biochemistry, 40<br />

(2), 809-816.<br />

Delfine S.,Loreto F., Pinell P., Tognetti R., <str<strong>on</strong>g>and</str<strong>on</strong>g> Alvino A.,2005.Isoprenoids c<strong>on</strong>tent <str<strong>on</strong>g>and</str<strong>on</strong>g> photosynthetic<br />

limitati<strong>on</strong>s in rosemary <str<strong>on</strong>g>and</str<strong>on</strong>g> spearmint plants under water stress. Agriculture Ecosystems <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Envir<strong>on</strong>ment, 106: 243-252.<br />

Didry, N. Dubreuil, L. <str<strong>on</strong>g>and</str<strong>on</strong>g> Pinkas, M. 1993. Antimicrobial activity <str<strong>on</strong>g>of</str<strong>on</strong>g> thymol, carvacrol <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

cinnamidaldehyde al<strong>on</strong>e or in combinati<strong>on</strong>. Pharmazie, 48; 301-304.<br />

El-Naggar, A.A.M. El-Naggar, H. <str<strong>on</strong>g>and</str<strong>on</strong>g> El-Fawakhry, F.M. 2004. Physiological studies <strong>on</strong> growth <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

flowering <str<strong>on</strong>g>of</str<strong>on</strong>g> Cyprus papyrus, L. 1- <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> growing media <str<strong>on</strong>g>and</str<strong>on</strong>g> Water requirements.<br />

Alex.J.Agric.Res., 49 (3) 93-105.<br />

Fatima, S. F. Farooqi, A. H. A. <str<strong>on</strong>g>and</str<strong>on</strong>g> Srikant, S. 2000. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> drought stress <str<strong>on</strong>g>and</str<strong>on</strong>g> plant density <strong>on</strong><br />

growth <str<strong>on</strong>g>and</str<strong>on</strong>g> essential oil metabolism in citr<strong>on</strong>ella java (Cymbopogen winterianus Jowitt) J.<br />

Med. Aromatic Plant Sci., 22(IB), 563-567.<br />

Fleisher, A. <str<strong>on</strong>g>and</str<strong>on</strong>g> Sneer, N. 1982. Oregano species <str<strong>on</strong>g>and</str<strong>on</strong>g> Origanum chemotypes. J. Sci. Food Agric., 33:<br />

441-446.<br />

Fortun, C. Fortun, A. <str<strong>on</strong>g>and</str<strong>on</strong>g> Almendros, G. 1989. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> organic materials <str<strong>on</strong>g>and</str<strong>on</strong>g> their humified<br />

fracti<strong>on</strong>s <strong>on</strong> the formati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> stabilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> soil aggergates. The Science <str<strong>on</strong>g>of</str<strong>on</strong>g> the Total<br />

Envir<strong>on</strong>ment, 81/82: 561-568.<br />

Fretz, T.A. 1976. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> photoperiod <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g> <strong>on</strong> the compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Juniperus horiz<strong>on</strong>talis<br />

Moench.cv plmosa. J. Am. Soc. Hortic. Sci., 101:611-613.<br />

Goliaris, A.H. Chatzopoulou, P.S. <str<strong>on</strong>g>and</str<strong>on</strong>g> Katsiotis, S.T. 2002. Producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> new Greek oregano cl<strong>on</strong>es<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> their essential oil.J. <strong>herb</strong>s, Spices & medicinal plants, vol. 10(1): 29-35.<br />

Guenther, G. 1961.The essential oils VIII. Robert E.D. Nastr<str<strong>on</strong>g>and</str<strong>on</strong>g> Comp. Inc. Tor<strong>on</strong>to, New<br />

York, L<strong>on</strong>d<strong>on</strong>.<br />

Ien, J.R. Ivanauskas, L. Janulis, V. <str<strong>on</strong>g>and</str<strong>on</strong>g> Tas, V.J. 2008. Compositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> variability <str<strong>on</strong>g>of</str<strong>on</strong>g> phenolic<br />

compounds in Oroganum vulgare from Lithuania. Biologija,Vol. 54. Nr. 1. P. 45-49.<br />

Ietswaart, J.H. 1980. A tax<strong>on</strong>omic revisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the genus origanum (labiatae). Leiden university<br />

Press. The Hague.<br />

Jacks<strong>on</strong>, M.L. 1973. Soil Chemical Analysis. Published by prentice Hall Indian Private Ltd., M.97,<br />

C<strong>on</strong>nght Citrus, New Delhi-1, India.<br />

Jaloszynski, K. Figiel, A. <str<strong>on</strong>g>and</str<strong>on</strong>g> Wojdylo, A. 2008. Drying kinetics <str<strong>on</strong>g>and</str<strong>on</strong>g> antioxidant activity <str<strong>on</strong>g>of</str<strong>on</strong>g> oregano.<br />

Acta Agrophysica, 11 (1), 81-90.<br />

J<strong>on</strong>es, H.G. <str<strong>on</strong>g>and</str<strong>on</strong>g> Tardien, F. 1998. Modelling water relati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> horticultural crops: a review. Sci. Hort.,<br />

74, 21-46.<br />

Kokkini, S. <str<strong>on</strong>g>and</str<strong>on</strong>g> Vokou, D. 1989. Carvacrol rich plants in Greece. Flavour Fragr. J. 4: 1-4.<br />

K<strong>on</strong><strong>on</strong>ova, M.M. 1966. Soil organic matter. Its role in soil formati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> in soil fertility. Pergam<strong>on</strong><br />

Press, Oxford.<br />

Mahmoud, S.M. 2002. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> water stress <str<strong>on</strong>g>and</str<strong>on</strong>g> NPK fertilizati<strong>on</strong> <strong>on</strong> growth <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

resinc<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> Grindelia camporum Greene. Acta Hort., 576<br />

Mauyo, L.W. Anjichi, V.E. Wambugu, G.W. <str<strong>on</strong>g>and</str<strong>on</strong>g> Omunyini, M.E. 2008. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g> <str<strong>on</strong>g>fertilizer</str<strong>on</strong>g><br />

levels <strong>on</strong> fresh leaf yield <str<strong>on</strong>g>of</str<strong>on</strong>g> spider plant (Cleome gyn<str<strong>on</strong>g>and</str<strong>on</strong>g>ra) in Western Kenya. Scientific<br />

Research <str<strong>on</strong>g>and</str<strong>on</strong>g> Essay, 3 (6): 240-244.<br />

321


Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Sciences 2(3), 2009<br />

Min, S.Y. Tawaha, A.R.M. <str<strong>on</strong>g>and</str<strong>on</strong>g> Lee, K.D. 2005. <str<strong>on</strong>g>Effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> amm<strong>on</strong>ium c<strong>on</strong>centrati<strong>on</strong> <strong>on</strong> the yield,<br />

mineral c<strong>on</strong>tent <str<strong>on</strong>g>and</str<strong>on</strong>g> active terpene comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> Chrysanthemum cor<strong>on</strong>arium L. in a<br />

hydrop<strong>on</strong>ic system. Res. J. Agric. Biol. Sci., 1 (2): 170-175.<br />

Moeini Alishah, H. Heidari, R. Hassani, A. <str<strong>on</strong>g>and</str<strong>on</strong>g> Asadi Dizaji, A. 2006.<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> water stress <strong>on</strong> some<br />

morphological <str<strong>on</strong>g>and</str<strong>on</strong>g> biochemical characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> purple basil (Ocimum basilicum), J. Biol. Sci.,<br />

6 (4), pp.763-767.<br />

Muzik, R.M. Pregitzer, K.S. <str<strong>on</strong>g>and</str<strong>on</strong>g> Hanover, J.W. 1989. Changes in terpene producti<strong>on</strong> following<br />

<str<strong>on</strong>g>nitrogen</str<strong>on</strong>g> fertilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gr<str<strong>on</strong>g>and</str<strong>on</strong>g> fir (Abies gr<str<strong>on</strong>g>and</str<strong>on</strong>g>is(Dougl.)Lindl.) seedlings. Oecologia, 80: 485<br />

489.<br />

Norman, Q. Stephenlesa, A. Edwardsa, C. A. <str<strong>on</strong>g>and</str<strong>on</strong>g> Atiyeha, R. 2004. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> humic acid derived from<br />

cattle, food <str<strong>on</strong>g>and</str<strong>on</strong>g> paper –waste vermic<strong>on</strong>iposts <strong>on</strong> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> greenhouse plants. The Soil<br />

Ecology Laboratory. The Ohio State Univ., 1735 Neil Avenue, Columbus, OH 43210, USA.<br />

Omer, E.A. 1998. Resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> wild Egyptian oregano to <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g> fertilizati<strong>on</strong> in s<str<strong>on</strong>g>and</str<strong>on</strong>g>y soil. Egypt J.<br />

Hort., 25, No.3, pp. 295-307.<br />

Omer, E.A. Elsayed, A.A. El- Lathy, A. Khattab, A.M.E. <str<strong>on</strong>g>and</str<strong>on</strong>g> Sabra, A.S. 2008.<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g><br />

<str<strong>on</strong>g>fertilizer</str<strong>on</strong>g> forms <str<strong>on</strong>g>and</str<strong>on</strong>g> time <str<strong>on</strong>g>of</str<strong>on</strong>g> their applicati<strong>on</strong> <strong>on</strong> the yield <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>herb</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> essential oil <str<strong>on</strong>g>of</str<strong>on</strong>g> Ocimum<br />

americanum L. Herba Pol<strong>on</strong>ica,Vol. 54 No.1, pp. 34-46.<br />

Omer, E.A. Ouda, H.E. <str<strong>on</strong>g>and</str<strong>on</strong>g> Ahmed, S.S. 1994.Cultivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sweet marjoram, Majorana hortensis in<br />

newly reclaimed l<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Egypt. J. Herbs, Spices & Medicinal Plants, 2 (2) 9.<br />

Paster, N. Menasherov, M. Ravid, U. Juven, B. Raduoiene, J. Judpintiene, A. Peeiulyte, D. <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Janulis, V. 2005. Chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> essential oil <str<strong>on</strong>g>and</str<strong>on</strong>g> antimicrobial avtivity <str<strong>on</strong>g>of</str<strong>on</strong>g> Origanum<br />

vulgare. Biologija, Nr., 4. P. 53-58.<br />

Piccaglia, R. <str<strong>on</strong>g>and</str<strong>on</strong>g> Marotti, M. 1993.Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> several aromatic plants grown in Northern Italy.<br />

Flavour <str<strong>on</strong>g>and</str<strong>on</strong>g> Fragrance J., 8, 115.<br />

Pi<strong>on</strong>celot, R.P. 1993. The use <str<strong>on</strong>g>of</str<strong>on</strong>g> a commerical organic biostimulant for bedding plant producti<strong>on</strong> J.<br />

Sustainable Agriculture 3:99-110.<br />

Rauthan, B.S. <str<strong>on</strong>g>and</str<strong>on</strong>g> Schnitzer, M. 1981. <str<strong>on</strong>g>Effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a fulvic acid <strong>on</strong> the growth <str<strong>on</strong>g>and</str<strong>on</strong>g> nutrient c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

cucumber (Cucumis sativus) plants. Plants <str<strong>on</strong>g>and</str<strong>on</strong>g> Soil 63:491-495.<br />

Russo, R.O. <str<strong>on</strong>g>and</str<strong>on</strong>g> Berlyn, G.P. 1990. The use <str<strong>on</strong>g>of</str<strong>on</strong>g> organic biostimulants to help low input sustainable<br />

agriculture. J. Sustainable Agriculture, 1:19-42.<br />

Said-Al Ahl, H.A.H. 2005. Physiological Studies On Growth, Yield <str<strong>on</strong>g>and</str<strong>on</strong>g> Volatile Oil <str<strong>on</strong>g>of</str<strong>on</strong>g> Dill (Anethum<br />

graveolens).Ph D. Thesis. Fac. Agric. Cairo Univ.Egypt.<br />

S<str<strong>on</strong>g>and</str<strong>on</strong>g>ers, D.C. Ricotta, J.A. <str<strong>on</strong>g>and</str<strong>on</strong>g> Hodges, L. 1990. Improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> carrot st<str<strong>on</strong>g>and</str<strong>on</strong>g>s with plant<br />

biostimulants <str<strong>on</strong>g>and</str<strong>on</strong>g> fluid drilling. Hortscience 25:181-183.<br />

Sarker, B.C. Hara, M. <str<strong>on</strong>g>and</str<strong>on</strong>g> Uemura, M. 2005. Proline synthesis, physiological resp<strong>on</strong>ses <str<strong>on</strong>g>and</str<strong>on</strong>g> biomass,<br />

yield <str<strong>on</strong>g>of</str<strong>on</strong>g> eggplants during <str<strong>on</strong>g>and</str<strong>on</strong>g> after repetitive soil moisture stress. Sci. Hort., 103, 387-402.<br />

Singh, M. Ganesha Rao, R.S. <str<strong>on</strong>g>and</str<strong>on</strong>g> Ramesh, S. 1997. Irrigati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g> requirement <str<strong>on</strong>g>of</str<strong>on</strong>g> lem<strong>on</strong>grass<br />

(Cymbopog<strong>on</strong> flexuosus (Sleud) Wats) <strong>on</strong> a red s<str<strong>on</strong>g>and</str<strong>on</strong>g>y loam soil under semiarid tropical<br />

c<strong>on</strong>diti<strong>on</strong>s. J. Essential oil Res., 9, pp. 569-574.<br />

Singh, M. <str<strong>on</strong>g>and</str<strong>on</strong>g> Ramesh, S. 2000. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> irrigati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g> <strong>on</strong> <strong>herb</strong>age, oil yield <str<strong>on</strong>g>and</str<strong>on</strong>g> water- use<br />

efficiency in rosemary grown under semi- arid tropical c<strong>on</strong>diti<strong>on</strong>s. J. Med. Aromatic Plant Sci.,<br />

22(IB), 659-662.<br />

Smidova, M. 1960. The influence <str<strong>on</strong>g>of</str<strong>on</strong>g> humus acid <strong>on</strong> the respirati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> plant roots. Biol. Plant 2: 154-<br />

164.<br />

Snedecor, G.W. <str<strong>on</strong>g>and</str<strong>on</strong>g> Cochran, W.G. 1981. Statistical Methods 6th Ed. The Iowa State<br />

Univ.press,Amer.Iowa,USA,pp. 593.<br />

Srivastava, N.K. <str<strong>on</strong>g>and</str<strong>on</strong>g> Srivastava, A.K. 2007. Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> gibberellic acid <strong>on</strong> 14 CO2 metabolism,<br />

growth <str<strong>on</strong>g>and</str<strong>on</strong>g> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> alkaloids in Catheranthus roseus.<br />

Photosynthetica, 45: 156-160.<br />

Stutte, G.W. 2006. Process <str<strong>on</strong>g>and</str<strong>on</strong>g> product: recirculati<strong>on</strong> hydrop<strong>on</strong>ics <str<strong>on</strong>g>and</str<strong>on</strong>g> bioactive compounds in a<br />

c<strong>on</strong>trolled envir<strong>on</strong>ment. Hortscience, 41: 526-530.<br />

Thabet, E.M. A., Abdallah, A.A.G. <str<strong>on</strong>g>and</str<strong>on</strong>g> Mohamed, A.R. 1994. Productivity <str<strong>on</strong>g>of</str<strong>on</strong>g> Oni<strong>on</strong> grown in<br />

reclaimed s<str<strong>on</strong>g>and</str<strong>on</strong>g>y soil using tafla as affected by water regimes <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g> levels. Ann.Agric.<br />

Sci., (Cairo), 39(1):337-344.<br />

Vaughan, D. 1974. A possible mechanism for humic acid acti<strong>on</strong> <strong>on</strong> cell el<strong>on</strong>gati<strong>on</strong>s in root segments <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Pisum sativum L.under aseptic c<strong>on</strong>diti<strong>on</strong>s. Soil Biol. Biochem. 6: 241-247.<br />

Vokou, D. Kokkini, S. <str<strong>on</strong>g>and</str<strong>on</strong>g> Bassiere, J. M. 1993. Geographic variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Greek oregano (Origanum<br />

vulgare spp. hirtum). Biochem. Syst. Ecol., 21 (2): 287-295.<br />

Waller, A. <str<strong>on</strong>g>and</str<strong>on</strong>g> Duncan, D. B. 1969. Multiple range <str<strong>on</strong>g>and</str<strong>on</strong>g> multiple test. Biometries, 11: 1-24.<br />

322


Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Sciences 2(3), 2009<br />

Zaghloul, S.M. El-Quesni, F.E.M. <str<strong>on</strong>g>and</str<strong>on</strong>g> Mazhar, A.A.M. 2009. Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> Potassium Humate <strong>on</strong><br />

Growth <str<strong>on</strong>g>and</str<strong>on</strong>g> Chemical c<strong>on</strong>stituents <str<strong>on</strong>g>of</str<strong>on</strong>g> Thuja Orientalis L seedlings. <strong>Ozean</strong> Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied<br />

Sciences 2(1):73-78.<br />

Zehtab-Salmasi, S. Javanshir, A. Omidbaigi, R. Aly-Ari, H. <str<strong>on</strong>g>and</str<strong>on</strong>g> Ghassemi- Golezani, K. 2001. <str<strong>on</strong>g>Effect</str<strong>on</strong>g>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> water supply <str<strong>on</strong>g>and</str<strong>on</strong>g> sowing date <strong>on</strong> performance <str<strong>on</strong>g>and</str<strong>on</strong>g> essential oil producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> anise<br />

(Pimpinella anisum L.). Acta. Agr<strong>on</strong>. Hung., 49(1), 75-81.<br />

323

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!