07.02.2015 Views

PY2104 - Introduction to thermodynamics and Statistical physics ...

PY2104 - Introduction to thermodynamics and Statistical physics ...

PY2104 - Introduction to thermodynamics and Statistical physics ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>PY2104</strong> - <strong>Introduction</strong> <strong>to</strong> <strong>thermodynamics</strong> <strong>and</strong> <strong>Statistical</strong><br />

<strong>physics</strong><br />

Review Problems - solutions. Part III: Thermodynamic<br />

functions <strong>and</strong> equilibrium<br />

1) We know that the temperature T is given by<br />

( )<br />

1 ∂S<br />

T = = n ∂U 2 ×5R 1 U<br />

from which we get that<br />

V<br />

U = 5 2 nRT .<br />

The specific heat at constant volume is thus<br />

( ) dU<br />

c v = = 5 dT 2 nR<br />

The specific heat at constant pressure is<br />

c p = c v +nR = 7 2 nR .<br />

2) (i) We have done this in class. In an adiabatic process, TdS = 0, <strong>and</strong> hence<br />

c v dT = −pdV. Using the perfect gas equation of state, pV = Nk B T, we get<br />

from which γpdV +Vdp = 0, or<br />

pdV +Vdp = Nk B dT = (c p −c v )dT ,<br />

V<br />

pV γ = const .<br />

(ii) The reason that c p > c v is that the gas exp<strong>and</strong>ing at constant pressure<br />

has <strong>to</strong> do work, <strong>and</strong> therefore more heat is absorbed for this purpose.<br />

3) (i)<br />

(ii)<br />

dQ = dU +dW = −d(MB)+MdB = −BdM<br />

dS = dQ T = −B T dM = −M C dM .<br />

(iii)<br />

S = S 0 − M2<br />

2C<br />

4) We can use the fundamental relation,<br />

[ ( )<br />

dU +pdV 1 ∂U<br />

dS = = + p T T ∂V<br />

T<br />

T<br />

]<br />

dV + 1 T<br />

( ) ∂U<br />

dT .<br />

∂T<br />

V<br />

Substituting the expressions for U <strong>and</strong> p, we get<br />

dS = BTn−1 +AT 2 [ f ′ (T)<br />

dV + +nBT n−2 ln V ]dT .<br />

V T V 0


Using ∂ 2 S/∂T∂V = ∂ 2 S/∂V∂T, we get<br />

(<br />

∂ BT n−1 +AT 2 )<br />

= ∂ [ f ′ (T)<br />

+nBT n−2 ln V ]<br />

∂T V ∂V T V 0<br />

,<br />

from which we get<br />

2AT −BT n−2 = 0 .<br />

The solution must therefore be n = 3 <strong>and</strong> B = 2A.<br />

5) (i) We can write the equation of state as<br />

p = RT<br />

V −b − a<br />

V 2 .<br />

In an isothermal process, the change in Helmholtz free energy is<br />

∆F = − ∫ V 2<br />

V 1<br />

pdV<br />

(<br />

= int<br />

)<br />

V2<br />

( V<br />

dV 2 )<br />

V<br />

= −RT ln 2−b 1<br />

V 1−b<br />

+a<br />

V 1<br />

− 1 V 2<br />

.<br />

RT<br />

V 1 V−b − a<br />

(ii) The change of internal energy can be calculated using<br />

( ) ( ) ∂U ∂U<br />

dU = dT + dV .<br />

∂T ∂V<br />

For an isothermal process, we have<br />

( ) ∂U<br />

dU =<br />

∂V<br />

We can further use<br />

V<br />

( ) ∂U<br />

= T<br />

∂V<br />

T<br />

Using the equation of state, we get<br />

Integrating, we get<br />

∆U =<br />

∫ V2<br />

V 1<br />

T<br />

dV .<br />

T<br />

( ) ∂p<br />

−p<br />

∂T<br />

V<br />

dU = a<br />

V 2dV .<br />

(<br />

a 1<br />

V 2dV = a − 1 )<br />

V 1 V 2<br />

.<br />

6) The entropy is given by<br />

( ) ∂G<br />

S = −<br />

∂T<br />

P<br />

= 5 [ ]<br />

2 R−Rln ap<br />

(RT) 5/2<br />

The specific heat at constant pressure is<br />

( ) ∂S<br />

c p = T = 5 ∂T 2 R .<br />

p<br />

.


7) Let the molar numbers of the gas in the two sides (A) <strong>and</strong> (B) be n 1 <strong>and</strong> n 2 ,<br />

respectively. From the equations of state: pV = n 1 RT <strong>and</strong> 6pV = n 2 RT,<br />

we obtain n 2 = 6n 1 .<br />

(i) The system is isolated <strong>and</strong> containing an ideal gas, <strong>and</strong> therefore the<br />

final temperature is T f = T, since in both sides the initial temperature<br />

is T.<br />

(ii) The final pressure is<br />

p f = (n 1 +n 2 )RT<br />

3V<br />

= p 3<br />

(<br />

1+ n )<br />

2<br />

= 7 n 1 3 p .<br />

(iii) The change in entropy can be calculated by designing a quasi-static<br />

isothermal process. Then,<br />

(∫ )<br />

∆S = 1 T p1 dV 1 +p 2 dV 2<br />

= n 1 R ∫ V 1,f dV<br />

V V +n 2R ∫ V 2,f dV<br />

2V V<br />

= n 1 Rln V 1,f<br />

V +n 2Rln V 2,f<br />

V<br />

Since V 1,f +V 2,f = 3V, <strong>and</strong> V 2,f<br />

V 1,f<br />

= n2<br />

n 1<br />

= 6, we find that V 2,f = 6V 1,f =<br />

18<br />

7 V. Thus, ∆S = n 1 Rln 3 7 +n 2Rln 9 7 ≈ 2 pV<br />

3 T .

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!