12.02.2015 Views

Introduction to Introduction to Sensory Data Analysis - Camo

Introduction to Introduction to Sensory Data Analysis - Camo

Introduction to Introduction to Sensory Data Analysis - Camo

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Introduction</strong> <strong>to</strong><br />

<strong>Sensory</strong> <strong>Data</strong> <strong>Analysis</strong><br />

Marion Cuny<br />

<strong>Camo</strong> Software AS


<strong>Sensory</strong> <strong>Data</strong> <strong>Analysis</strong>:<br />

Course outline:<br />

1. Why sensory data analysis<br />

2. <strong>Data</strong> collection and experimental design<br />

3. Inspection and preparation of the data<br />

a. Theory<br />

b. Demo in Quali‐Sense<br />

4. Principal Component <strong>Analysis</strong>: PCA<br />

a. Theory<br />

b. Demo in The Unscrambler<br />

5. Partial‐Least Square Regression: PLS<br />

a. Theory<br />

b. Demo in The Unscrambler


<strong>Sensory</strong> <strong>Data</strong> <strong>Analysis</strong>:<br />

Course outline:<br />

1. Why sensory data analysis<br />

2. <strong>Data</strong> collection and experimental design<br />

3. Inspection and preparation of the data<br />

a. Theory<br />

b. Demo in Quali‐Sense<br />

4. Principal Component <strong>Analysis</strong>: PCA<br />

a. Theory<br />

b. Demo in The Unscrambler<br />

5. Partial‐Least Square Regression: PLS<br />

a. Theory<br />

b. Demo in The Unscrambler


1. Why sensory data analysis<br />

What can sensory data analysis provide us <br />

• Describing product characteristics / Quality Control<br />

– <strong>Sensory</strong> panel of experts sensory profile<br />

– Chemical / industrial process measurements<br />

Multivariate regression analysis<br />

cheaper quality control<br />

• Understanding of the behaviour and liking of the<br />

consumers<br />

– Consumer studies preferences mapping<br />

PCA / Multivariate regression analysis<br />

Relating product characteristics <strong>to</strong> the needs<br />

of the consumers / Prediction of market response<br />

<strong>to</strong> a new product<br />

• Investigation of competitive products / new recipes<br />

PCA<br />

Positionning


1. Why sensory data analysis<br />

Can we trust the sensory panel<br />

Assessors consistently give variable results, due <strong>to</strong> differences in<br />

motivation, sensitivity, and psychological response behaviors.<br />

In a sensory lab:<br />

• assessors come and go<br />

• time for training is short,<br />

measuring and tracking each assessor’s performance is essential.


1. Why sensory data analysis<br />

Focus of <strong>to</strong>day<br />

Check the performance of the panel<br />

– Seeking the attributes that are the most reliable<br />

– Finding the panelists that need more training<br />

Modeling<br />

– Behaviour of the attributes, grouping of samples (PCA)<br />

– Regression over the preference (PLS)


1. Why sensory data analysis<br />

<strong>Sensory</strong> <strong>Analysis</strong> workflow<br />

DoE<br />

Selection of<br />

the Products<br />

<strong>Analysis</strong> of<br />

the Products<br />

Selection of<br />

the judges<br />

Check the data<br />

CHEMICAL<br />

data on the<br />

products<br />

Statistics<br />

ANOVA<br />

DATA<br />

PRODUCT<br />

Statistics<br />

ANOVA<br />

DATA<br />

Judge<br />

Check the<br />

model & results<br />

Relation<br />

between<br />

chemical and<br />

sensory data<br />

MVA<br />

<strong>Sensory</strong><br />

Profile<br />

MVA<br />

Preference<br />

mapping


<strong>Sensory</strong> <strong>Data</strong> <strong>Analysis</strong>:<br />

Course outline:<br />

1. Why sensory data analysis<br />

2. <strong>Data</strong> collection and experimental design<br />

3. Inspection and preparation of the data<br />

a. Theory<br />

b. Demo in Quali‐Sense<br />

4. Principal Component <strong>Analysis</strong>: PCA<br />

a. Theory<br />

b. Demo in The Unscrambler<br />

5. Partial‐Least Square Regression: PLS<br />

a. Theory<br />

b. Demo in The Unscrambler


2. <strong>Data</strong> collection and experimental design<br />

<strong>Data</strong> collection and experimental design<br />

in <strong>Sensory</strong><br />

Depending on objectives:<br />

• Positionning<br />

Samples from the market<br />

• Products (new recipe, QC) /<br />

reference<br />

Experimental design<br />

•Maximum acceptance<br />

Experimental ldesign


2. <strong>Data</strong> collection and experimental design<br />

Requirements <strong>to</strong> input data<br />

Sampling 1<br />

• Representative: Samples must be<br />

Population<br />

representative with respect <strong>to</strong>:<br />

– Average values<br />

– Variability<br />

– Levels<br />

• Accurate/Reproducible: The grades must be the same for the same<br />

product independently of the panelist and time<br />

Sampling 2<br />

Garbage in gives garbage out:<br />

No software program should find information where none exists.


<strong>Sensory</strong> <strong>Data</strong> <strong>Analysis</strong>:<br />

Course outline:<br />

1. Why sensory data analysis<br />

2. <strong>Data</strong> collection and experimental design<br />

3. Inspection and preparation of the data<br />

a. Theory<br />

b. Demo in Quali‐Sense<br />

4. Principal Component <strong>Analysis</strong>: PCA<br />

a. Theory<br />

b. Demo in The Unscrambler<br />

5. Partial‐Least Square Regression: PLS<br />

a. Theory<br />

b. Demo in The Unscrambler


3. Inspection and preparation of the data / a) Theory<br />

Inspecting the data<br />

•<strong>Data</strong> that are different from<br />

the others<br />

(Typing error, missing values...)<br />

• Distribution of the samples<br />

for different attributes:<br />

– uniform,<br />

– groupings...<br />

g


3. Inspection and preparation of the data / a) Theory<br />

Judging panel performance<br />

1. Assessor<br />

– Sensitivity<br />

– Reproducibility<br />

2. Panel Agreement<br />

Checking for Crossover and<br />

Checking for Crossover and<br />

ranking (Eggshell Correlation)


3. Inspection and preparation of the data / a) Theory<br />

Example data set: Toma<strong>to</strong>es<br />

17 <strong>to</strong>ma<strong>to</strong> varieties (products)<br />

11 descriptive evaluations (attributes) grade: 0 <strong>to</strong> 10<br />

14 trained assessors (panelists)


3. Inspection and preparation of the data / a) Theory<br />

Quali-Sense


3. Inspection and preparation of the data / a) Theory<br />

Importing the data in Quali‐Sense<br />

• Select the columns<br />

corresponding <strong>to</strong><br />

the products and<br />

panelists<br />

• Exclude the<br />

colums that are<br />

not attributes<br />

• Adjust the score<br />

range


3. Inspection and preparation of the data / a) Theory<br />

Preview of the <strong>Data</strong><br />

Spider plot<br />

Overview by<br />

product of the<br />

judges’ grades<br />

on the diferent<br />

attributes<br />

Branch= Attribute<br />

Line= Panelist


3. Inspection and preparation of the data / a) Theory<br />

Sensitivity<br />

• Measures the ability of a single assessor <strong>to</strong> identify product differences.<br />

• A low p‐value shows a significant difference between products, and is thus good.<br />

Panelist needing training<br />

Attribute not<br />

discriminative


3. Inspection and preparation of the data / a) Theory<br />

Reproducibility<br />

Moni<strong>to</strong>rs the ability of a single assessor <strong>to</strong> reproduce its<br />

y g p<br />

results with respect <strong>to</strong> the rest of the panel.


3. Inspection and preparation of the data / a) Theory<br />

Reproducibility<br />

Size of the spot = mean<br />

difference in repeated<br />

scores for all products<br />

Color of the spot =<br />

frequency of bad<br />

replication


3. Inspection and preparation of the data / a) Theory<br />

Assessor agreement<br />

The agreement test measures each individual assessor's agreement<br />

compared <strong>to</strong> the rest of the panel.


3. Inspection and preparation of the data / a) Theory<br />

Cross‐overover<br />

Crossover effects occur when an assessor scores products opposite in intensity<br />

<strong>to</strong> the rest of the panel.<br />

Bad agreement<br />

and high crossover<br />

probability<br />

indicate<br />

misused of the<br />

scale


3. Inspection and preparation of the data / a) Theory<br />

Test 5: Rank Correlation<br />

• Rank correlation is also a form of agreement test.<br />

• Here, the ranking instead of score values are used and compared between<br />

assessors.<br />

• Rank correlation measures the correlation between an assessor and the<br />

panel consensus ranking of products.<br />

• Rank correlation values can be used <strong>to</strong> form so called ”eggshell” plots.


3. Inspection and preparation of the data / a) Theory<br />

Rank correlation table<br />

In this test, the assessor differences are found using the assessors'<br />

cumulative product ranks instead of the assessor scores directly.


3. Inspection and preparation of the data / a) Theory<br />

Select the trusted data<br />

Exclusion of panelist, samples, attributes


3. Inspection and preparation of the data / a) Theory<br />

Make an average of the trusted data for<br />

multivariate analysis


<strong>Sensory</strong> <strong>Data</strong> <strong>Analysis</strong>:<br />

Course outline:<br />

1. Why sensory data analysis<br />

2. <strong>Data</strong> collection and experimental design<br />

3. Inspection and preparation of the data<br />

a. Theory<br />

b. Demo in Quali‐Sense<br />

4. Principal Component <strong>Analysis</strong>: PCA<br />

a. Theory<br />

b. Demo in The Unscrambler<br />

5. Partial‐Least Square Regression: PLS<br />

a. Theory<br />

b. Demo in The Unscrambler


3. Inspection and preparation of the data / b) Demo in Quali-Sense<br />

Quali-Sense


<strong>Sensory</strong> <strong>Data</strong> <strong>Analysis</strong>:<br />

Course outline:<br />

1. Why sensory data analysis<br />

2. <strong>Data</strong> collection and experimental design<br />

3. Inspection and preparation of the data<br />

a. Theory<br />

b. Demo in Quali‐Sense<br />

4. Principal Component <strong>Analysis</strong>: PCA<br />

a. Theory<br />

b. Demo in The Unscrambler<br />

5. Partial‐Least Square Regression: PLS<br />

a. Theory<br />

b. Demo in The Unscrambler


4. Principal Component <strong>Analysis</strong>: PCA / a) Theory<br />

Principal Component <strong>Analysis</strong> (PCA)<br />

•Explora<strong>to</strong>ry data analysis<br />

•Extract information<br />

• Noise removal<br />

• Dimensionality reduction<br />

<strong>Data</strong> structure in PCA:<br />

• Each row represents an observation<br />

• Each column represents a variable<br />

Variable 1 Variable 2 Variable 3<br />

Object 1<br />

Object 2<br />

Object 3<br />

Object 4<br />

X Model Error<br />

<strong>Data</strong> Structure Noise


4. Principal Component <strong>Analysis</strong>: PCA / a) Theory<br />

Principal Component <strong>Analysis</strong> (PCA)<br />

New latent variables that are linear combinations of the<br />

original variables.<br />

PC1 = a 1 V1 + a 2 V2 + a 3 V3<br />

X = Mean + b 1 PC1 + b 2 PC2 + Error<br />

Constraints :<br />

• Maximise the dispersion of samples along the<br />

latent variables (the variance)<br />

• Orthogonality<br />

PCA = A change of variable space


4. Principal Component <strong>Analysis</strong>: PCA / a) Theory<br />

Principal Component <strong>Analysis</strong> (PCA)<br />

Adhesive e<br />

Average =<br />

most typical<br />

example<br />

Principal<br />

Component 1<br />

(PC 1)<br />

Adhesive e<br />

PC2<br />

PC1


4. Principal Component <strong>Analysis</strong>: PCA / a) Theory<br />

Varimax Rotation<br />

The aim is <strong>to</strong> enhance interpretation<br />

Rotation works on the structured part of the data only (depends on the selected number of<br />

PCs)<br />

Total explained variance is not changed (But more evenly distributed among PCs)<br />

Scores PC2<br />

Loadings PC2<br />

1 4<br />

PC1<br />

2 3<br />

PC1<br />

Scores<br />

Loadings


4. Principal Component <strong>Analysis</strong>: PCA / a) Theory<br />

<strong>Data</strong> preprocessing before PCA<br />

• In practice, there is often a need <strong>to</strong> slightly modify<br />

the shape of the data <strong>to</strong> better suit an analysis.<br />

•Such a modification is called preprocessing or<br />

pretreatment. (centering, scalling, derivative...)<br />

•But when we use a trained panel it is not necessary


4. Principal Component <strong>Analysis</strong>: PCA / a) Theory<br />

Example data set: Toma<strong>to</strong>es<br />

17 <strong>to</strong>ma<strong>to</strong> varieties (products)<br />

11 descriptive evaluations (attributes) grade: 0 <strong>to</strong> 10<br />

14 trained assessors (panelists)


4. Principal Component <strong>Analysis</strong>: PCA / a) Theory<br />

PCA vocabulary<br />

Principal components<br />

Main data variations, also known as ”latent variables” , ”fac<strong>to</strong>rs” and ”eigenvec<strong>to</strong>rs”<br />

.<br />

Scores, T<br />

Map of samples: Projected locations of objects on<strong>to</strong> the principal components<br />

Loadings, P<br />

Map of variables: Correlation between variables (regression of X on T)<br />

Residuals, E<br />

Error. The data can be divided in<strong>to</strong> structure and residual: X = Xstruct + E<br />

Variance<br />

Residual variance<br />

– variance remaining in E<br />

Explained variance –The% variance explained by Xstruct<br />

Model Equation:<br />

X = TP T + E<br />

structure residual


4. Principal Component <strong>Analysis</strong>: PCA / a) Theory<br />

Example data set: Toma<strong>to</strong>es<br />

External color<br />

Acidity<br />

The scale has been used with good<br />

variation<br />

3 groups appeared<br />

The scale has been used with a<br />

small variation range<br />

Almost uniform distribution


4. Principal Component <strong>Analysis</strong>: PCA / a) Theory<br />

<strong>Data</strong> overview<br />

Check the range of<br />

value... No outlier


4. Principal Component <strong>Analysis</strong>: PCA / a) Theory<br />

Do a PCA


4. Principal Component <strong>Analysis</strong>: PCA / a) Theory<br />

Number of component <strong>to</strong> take in<strong>to</strong> account<br />

Explained variance<br />

in cross‐validation<br />

With the explained variance in validation we decide <strong>to</strong><br />

take in<strong>to</strong> account 5 PCs


4. Principal Component <strong>Analysis</strong>: PCA / a) Theory<br />

Map of samples<br />

Average<br />

sample<br />

• Toma<strong>to</strong>es displayed as a<br />

score plot.<br />

• The purpose is <strong>to</strong><br />

describe products<br />

according <strong>to</strong> their<br />

sensory characteristics.<br />

• The relative positions of<br />

products reflect their<br />

similarities or<br />

differences.


4. Principal Component <strong>Analysis</strong>: PCA / a) Theory<br />

Map of variables<br />

High contribution on PC 2<br />

Firmness and Firmness inside are<br />

correlated<br />

Anticorrelated with Meltyness<br />

Not contributing<br />

<strong>to</strong> PC1 & 2<br />

High contribution on PC 1<br />

Toma<strong>to</strong> odor/flavor, Juciness, Sweetness, External color<br />

are anti‐correlated with Mealyness<br />

• Loadings can be<br />

visualized <strong>to</strong> map<br />

which variables<br />

have contributed<br />

<strong>to</strong> the score plot.<br />

• Variables far away<br />

from the center<br />

are well described<br />

and important<br />

• Variables near the<br />

center are less<br />

important.


4. Principal Component <strong>Analysis</strong>: PCA / a) Theory<br />

Bi‐Plot


4. Principal Component <strong>Analysis</strong>: PCA / a) Theory<br />

Bi‐Plot with Varimax rotation


4. Principal Component <strong>Analysis</strong>: PCA / a) Theory<br />

• Some variables are correlated :<br />

Conclusions on PCA<br />

– ”Firm” and ”Firm inside” //// ”Meltiness”<br />

– ”Toma<strong>to</strong> odor”, ”Toma<strong>to</strong> flavor”, ”Juiciness”, ”Sweetness”, ”External color”<br />

//// ”Mealyness”<br />

Some of those variables can be selected if we want <strong>to</strong> save on time of<br />

sensory analyses<br />

• Some variables are not descriminative: ”Acidity” and ”Skin width”<br />

They don’t have <strong>to</strong> be tested in the future.<br />

• Some <strong>to</strong>ma<strong>to</strong> varieties are presenting similar characteristics:<br />

– F and K are ”Firm”<br />

”<br />

– G and H are ”Firm inside”<br />

– A, O and C are ”Juicy”<br />

– Q and D are ”Melty”<br />

Some can be dropped in a consumer study


<strong>Sensory</strong> <strong>Data</strong> <strong>Analysis</strong>:<br />

Course outline:<br />

1. Why sensory data analysis<br />

2. <strong>Data</strong> collection and experimental design<br />

3. Inspection and preparation of the data<br />

a. Theory<br />

b. Demo in Quali‐Sense<br />

4. Principal Component <strong>Analysis</strong>: PCA<br />

a. Theory<br />

b. Demo in The Unscrambler<br />

5. Partial‐Least Square Regression: PLS<br />

a. Theory<br />

b. Demo in The Unscrambler


4.Principal Component <strong>Analysis</strong>: PCA / b) Demo in the Unscrambler


<strong>Sensory</strong> <strong>Data</strong> <strong>Analysis</strong>:<br />

Course outline:<br />

1. Why sensory data analysis<br />

2. <strong>Data</strong> collection and experimental design<br />

3. Inspection and preparation of the data<br />

a. Theory<br />

b. Demo in Quali‐Sense<br />

4. Principal Component <strong>Analysis</strong>: PCA<br />

a. Theory<br />

b. Demo in The Unscrambler<br />

5. Partial‐Least Square Regression: PLS<br />

a. Theory<br />

b. Demo in The Unscrambler


5. PLS regression / a) Theory<br />

Regression methods<br />

Find a linear relationship between Y (variables <strong>to</strong><br />

predict) and the x‐variables (variables explaining the<br />

data)<br />

Y=B0+B1X1+ B2X2+…+ BNXN+ F<br />

Y<br />

Fitted value<br />

With PLS: the new variables are called<br />

“latent variables” (linear combination<br />

from the former variables)<br />

Y=B 0 +B 1 LV 1 + B 2 LV 2 +…+ B N LV N + F<br />

LV i = a 1 X 1 + a 2 X 2 +…+ +a p X p<br />

f<br />

Observation<br />

X


5. PLS regression / a) Theory<br />

PLS terminology<br />

Scores: (X‐scores: T, Y‐scores: : T (or U)) Map of samples. Projected dlocations<br />

of objects on<strong>to</strong> the model components.<br />

Loadings: (X‐loadings:( P, Y‐loadings: Q) Map of variables. Describes<br />

relationships between either X or Y variables.<br />

Loading weights: (X‐loading weights: W) Describes relationships between X<br />

and Y variables. ibl<br />

Residuals: (X‐residuals: E, y‐residuals: F) Error.<br />

Variance: Mean squares of residuals / degrees of freedom = residual variance<br />

Model equations:<br />

X = TP T + E and Y = TQ T + F<br />

Regression coefficients: i Y = B 0 + X 1 *B 1 + X 2 *B 2 + ... + X N *B N


5. PLS regression / a) Theory<br />

Example data set: Toma<strong>to</strong>es<br />

17 <strong>to</strong>ma<strong>to</strong> varieties (products)<br />

11 descriptive evaluations (attributes) grade: 0 <strong>to</strong> 10<br />

14 trained assessors (panelists)


5. PLS regression / a) Theory<br />

Distribution of Y = Preference


5. PLS regression / a) Theory<br />

Do a PLS 1


5. PLS regression / a) Theory<br />

Selecting the number of latent variables<br />

Model with 1 latent variable


5. PLS regression / a) Theory<br />

Sample mapping<br />

Preference


5. PLS regression / a) Theory<br />

Attributes explaining the preference<br />

Not important<br />

Important variables<br />

Preference is strongly correlated<br />

with ”External<br />

color” , ”Sweetness” , ”Toma<strong>to</strong><br />

flavor” and ”Juiciness”<br />

And strongly anti‐correlated with<br />

”M li ”


5. PLS regression / a) Theory<br />

Prediction quality<br />

Good R2 good correlation between<br />

prediction and measurement<br />

Good validation error small error<br />

(0.3) when predicting the preference:<br />

from 3 <strong>to</strong> 10


5. PLS regression / a) Theory<br />

What did I earn... <br />

• A new Toma<strong>to</strong> variety could be tested by a sensory<br />

panel on a restraint number of attributes:<br />

– Mealiness<br />

– External color<br />

– Toma<strong>to</strong> flavor<br />

– Juciness Gain of time and money<br />

– Sweetness<br />

•To predict the consumer liking


<strong>Sensory</strong> <strong>Data</strong> <strong>Analysis</strong>:<br />

Course outline:<br />

1. Why sensory data analysis<br />

2. <strong>Data</strong> collection and experimental design<br />

3. Inspection and preparation of the data<br />

a. Theory<br />

b. Demo in Quali‐Sense<br />

4. Principal Component <strong>Analysis</strong>: PCA<br />

a. Theory<br />

b. Demo in The Unscrambler<br />

5. Partial‐Least Square Regression: PLS<br />

a. Theory<br />

b. Demo in The Unscrambler<br />

6. Summary


5. PLS regression / b) Demo in The Unscrambler


<strong>Sensory</strong> <strong>Data</strong> <strong>Analysis</strong>:<br />

Course outline:<br />

1. Why sensory data analysis<br />

2. <strong>Data</strong> collection and experimental design<br />

3. Inspection and preparation of the data<br />

a. Theory<br />

b. Demo in Quali‐Sense<br />

4. Principal Component <strong>Analysis</strong>: PCA<br />

a. Theory<br />

b. Demo in The Unscrambler<br />

5. Partial‐Least Square Regression: PLS<br />

a. Theory<br />

b. Demo in The Unscrambler<br />

6. Summary


6. Summary<br />

Summary<br />

1. Managing data from panelists - Evaluation of panel performance<br />

2. Univariate i statistics<br />

i<br />

3. Principal component analysis (PCA)<br />

4. Varimax rotation<br />

5. Regression analysis (PCR, PLS, MLR)<br />

6. Preference mapping<br />

7. L-PLS regression<br />

8. Cluster <strong>Analysis</strong><br />

9. Classification (SIMCA, PLS-DA)<br />

10. 3-way PLS regression<br />

11. Design of Experiment


6. Summary<br />

CAMO Products<br />

Product Optimizer<br />

The Unscrambler<br />

A complete Multivariate<br />

<strong>Analysis</strong> and Experimental<br />

Design software.<br />

A powerful product formulation<br />

and process optimization <strong>to</strong>ol.<br />

On‐line applications:<br />

•The Unscrambler on‐line<br />

•OLUC<br />

•OLUP<br />

A plug 'n' play product designed <strong>to</strong> make effective on‐line<br />

predictions and classifications, <strong>to</strong> moni<strong>to</strong>r processes and<br />

ensure quality control with spectroscopic measurements.<br />

Quali‐Sense<br />

The best companion for panel leader<br />

detects the personal strengths and<br />

weaknesses of each assessor in your<br />

panel<br />

Training and Consultancy<br />

Designed courses and support <strong>to</strong><br />

help you get the best of your<br />

experiments and data


Thank you for your attention<br />

Marion Cuny for technical questions: mc@camo.no<br />

Maria Falcão for sales: maria@camo.no

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!