14.11.2012 Views

A soft x-ray resonant inelastic x-ray scattering (RIXS) syllabus - Unam

A soft x-ray resonant inelastic x-ray scattering (RIXS) syllabus - Unam

A soft x-ray resonant inelastic x-ray scattering (RIXS) syllabus - Unam

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

A <strong>soft</strong> x-<strong>ray</strong> <strong>resonant</strong> <strong>inelastic</strong> x-<strong>ray</strong> <strong>scattering</strong><br />

(<strong>RIXS</strong>) <strong>syllabus</strong><br />

The main ideas that make <strong>RIXS</strong> a very useful tool to study the electronic structure of<br />

solid compounds will be presented in this work. This photon-in photon-out technique<br />

allows a direct determination of symmetry and site selected density of states, both<br />

occupied and unoccupied. A basic experimental configuration and calculations using<br />

atomic multiplet models to interpret <strong>RIXS</strong> spectra will be discussed. Transition metal<br />

fluorides and oxides will be used as examples of <strong>RIXS</strong> work that provides crucial<br />

electronic structure information. For instance, a comparison of absorption and<br />

emission spectra at the fluorine K and metal L2,3 edges allows a detailed study of the<br />

evolution of the Mott-Hubbard transition metal di-fluoride insulators. A simple<br />

extrapolation of these results to the corresponding monoxides is in very good<br />

agreement with the Zaanen-Sawatzky-Allen model. For the same compounds <strong>RIXS</strong> spectra at<br />

the metal L2,3 edge give information about d-excited and charge transfer states. It<br />

will also be shown that <strong>RIXS</strong> spectra give a detailed information about the fast decay<br />

dynamics of the 2p_{3/2} hole in ionic orthovanadates and about the symmetry and<br />

nature of the gap of the lanthanum-strontium cobaltates.<br />

Primary authors : Prof. JIMENEZ-MIER, Jose (ICN-UNAM)<br />

Co-authors : Dr. HERRERA-PEREZ, Guillermo (CINVESTAV) ; Mr. OLALDE-VELASCO, Paul (Instituto de<br />

Ciencias Nucleares, UNAM) ; Mr. CARABALI-SANDOVAL, Giovanni (Instituto de Ciencias Nucleares, UNAM) ;<br />

Prof. MOEWES, Alexander (University of Saskatchewan, Canada) ; Dr. WILKS, Regan (University of<br />

Saskatchewan, Canada) ; Dr. YANG, Wan -li (The Advanced Light Source, Berkeley) ; Dr. DENLINGER, Jonathan<br />

(The Advanced Light Source, Berkeley) ; Prof. EDERER, David (Tulane University) ; Prof. CHAVIRA, Elizabeth<br />

(Instituto de Investigaciones en Materiales, UNAM)


!"#$%"&'()*"+,-."#*//)01#2"<br />

32"3456789':48("<br />

,7#;


B1


Photon-in photon-out processes.


%<br />

,7


+,-."$H8(87


*+,!-<br />

• >$H8(87


!


!"SE)(;)/W"#$%"&'()*"


G()7#4;$7"58


Photon-in photon-out experiments


Ae"17=1/)


Beam line 8.0.1<br />

! Spherical grating monochromator. Grazing incidence.<br />

! End mirror focuses beam into the sample.<br />

! Three gratings (130 – 2000 eV).


.$%"&'()*"#E8?


G$


$5E)(8="


.8/F')0#$(E;$7"<br />

! ,F"


Some examples


GH8"8/8?


q(8)_=$C7"$F" 2p 3/2<br />

Ni at 882.6 eV<br />

3p 1/2,3/2<br />

740 760 780 800 820 840 860 880<br />

3s -> 2p 3/2<br />

3s -> 2p 1/2<br />

3s -> 2p 1/2<br />

x 7<br />

Co at 806.8 eV<br />

3p 1/2,3/2<br />

x 7<br />

v -> 2p 3/2<br />

v -> 2p 3/2<br />

L 3<br />

v -> 2p 1/2<br />

L 2<br />

(a)<br />

800 810 820 830 840 850 860 870<br />

680 700 720 740 760 780 800 800 810 820 830 840 850 860 870<br />

Fluorescence Photon energy (eV)<br />

L 3<br />

(b)<br />

v -> 2p 1/2<br />

L 2<br />

3s -> 2p 3/2<br />

3s -> 2p 3/2<br />

J. Phys. B 36, L173 (2003).<br />

3s -> 2p 1/2<br />

3s -> 2p 1/2<br />

CuO at 968.8 eV<br />

3p 1/2,3/2<br />

Cu at 968.8 eV<br />

Fluorescence Photon energy (eV)<br />

3p 1/2,3/2<br />

(d)<br />

(c)


• cE"'\"VE"854##4$7"F$//$C#"<br />

)//"


• .47K/*"$??1E48="c="<br />

$(04


Titanium<br />

TEY (arb. u.)<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

t 2g<br />

e g<br />

t 2g<br />

e g<br />

2<br />

450 455 460 465 470 475 480 485<br />

CT<br />

Photon energy (eV)<br />

CT<br />

Normal emission and ddensity<br />

of states.<br />

Absorption


+,-.")7="=87#4


^4#E8(#4$7"?1(R8#Q"878(K*"/$##2"<br />

TiO 2<br />

Phys. Rev. B 65, 184105 (2002).


l)7)=415"<br />

• !0#$(E;$7"#E8?


"+,-."5)E"$F"l V B e ")


• GH(88"F8)


&'()*+,-(./<br />

"<br />

$<br />

!"<br />

!"%"<br />

!"#$<br />

!"#"<br />

>$#


• GH8"NV"854##4$7"E8)_#"<br />

F$//$C">I"=8?)*2"<br />

• q($)=878="'\"/4F8";58"<br />

8`8?


234<br />

.<br />

G()7#4;$7"58


-!.'-M.")


CrF 2<br />

565 570 575 580 585 590<br />

MnF 2<br />

FeF 2<br />

625 630 635 640 645 650<br />

695 700 705 710 715 720 725<br />

CoF 2<br />

NiF 2<br />

760 765 770 775 780 785 790 795<br />

840 845 850 855 860 865 870<br />

<strong>RIXS</strong><br />

series


,?. @ ,)*8-",93051+<br />

./011023,435631057,)*8-",93051+ ,<br />

,<br />

$"!<br />

!"#<br />

!"!<br />

$"!<br />

!"#<br />

!"!<br />

$"!<br />

!"#<br />

!"!<br />

$"!<br />

!"#<br />

!"!<br />

>$5E)(4#$7"C4 +(56)"+71.2/*<br />

,-.//.01+.1231/.24+(56)"+71.2/*<br />

$"!<br />

!"#<br />

!"!<br />

$"!<br />

!"#<br />

!"!<br />

$"!<br />

!"#<br />

!"!<br />

$"!<br />

!"#<br />

!"!<br />

5<br />

%%! %%# %&! %&# %'! %'#<br />

+<br />

?0@ A<br />

8<br />

+<br />

)<br />

+<br />

+<br />

+<br />

+<br />

+<br />

+<br />

9:0201+3136;4+(3


C,D+(56)7+81.2/*<br />

,-.//.01+.1231/.24+(56)7+81.2/*<br />

#!<br />

"'<br />

"!<br />

'<br />

!<br />

#<br />

"<br />

!<br />

#<br />

"<br />


GH8"N) U'& .( & >$B c" "L8($R#_4


d 6 configuration: independent electrons<br />

+,- .<br />

1"# 2'3$<br />

4")13<br />

) #<br />

/ 0#<br />

( )<br />

156$% &"'<br />

+,- . $*$( )<br />

) # !<br />

) # "<br />

/ 0# !<br />

/ 0# "<br />

( )<br />

!"#!$%&"'<br />

( ) $*$+,- . $<br />

) # !<br />

/ 0# !<br />

) # "<br />

/ 0# "


'( )*+,-'.*/0<br />

&<br />

%<br />

$<br />

#<br />

!<br />

1 "<br />

'<br />

! " #<br />

G)7)08"m".1K)7$"=4)K()5#2"<br />

1 #<br />

'<br />

! " # ! " # ! " # ! " #<br />

y b$("UO^Z"T"U2ie"


H)(K8"


B&*K87"I"8=K8"$F"E)(87


Site and symmetry<br />

projected density<br />

of states<br />

()*++*,-'*-./-+*.0'12345'6-*.+7<br />

!$$<br />

&$$<br />

%$$<br />

#$$<br />

"$$<br />

$<br />

@$(5)/"854##4$7"S&vOW"<br />

*<br />

+,-./01234*567368179<br />

"%$<br />

$%)<br />

$%(<br />

$%'<br />

$%&<br />

O K<br />

'<br />

$%$<br />

!"# !"$ !#<br />

:63-;9*<br />

$ #<br />

+<br />

Co L<br />

!"! !#$ !#! !%$ !%!<br />

89,.,-',6.'1/:7<br />

'<br />

?*&@<br />

,-.//.01+.1231/.24+5678&+91.2/:<br />

)&#<br />

#&$<br />

#&"<br />

#&(<br />

#&'<br />

#&#<br />

A,*B4<br />

<br />

* "<br />

*<br />

!"# !!# !$# !%# $##<br />

;


012332.4*245643257*89:;%*


*+,-./012-345678<br />

"$$$<br />

($$<br />

'$$<br />

&$$<br />

%$$<br />

A-B-$2#<br />

$2)<br />

$2$<br />

=%><br />

7<br />

=%><br />

7<br />

=%><br />

7<br />

/<br />

/<br />

/<br />

1<br />

1<br />

&"v"O]"O2c]"O2e"#8(48#"<br />

1<br />

$<br />

!"# !"$ !# $ # "$ "# %$<br />

-<br />

+490:;-.9


XAS at cobalt L2,3 edge<br />

,<br />

,<br />

123,4567",89:;<br />

0<br />

!,.,&"#<br />

'!/ 0 ,.,'"'( ,


MF8?


$7?/1#4$7#2"<br />

• ,7


• A@!:"<br />

– a2">)()0)/4"m",>@""<br />

– M2">H)R4()"m",,:"<br />

– L2"=8"/)":$()"'"b>"<br />

– a2"J8((8()"m",>@"<br />

– L2"B/)/=8"m",>@"<br />

• Saskatchewan<br />

– A. Moewes<br />

– R. Wilks<br />

"<br />

L)(;?4E)7

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!