09.03.2015 Views

Top-down and Bottom-up Approaches to Nanoscale Fabrication

Top-down and Bottom-up Approaches to Nanoscale Fabrication

Top-down and Bottom-up Approaches to Nanoscale Fabrication

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Nanoscale</strong> Issues in<br />

Materials & Manufacturing<br />

ENGR 213 Principles of Materials Engineering<br />

Module 2: Introduction <strong>to</strong> <strong>Nanoscale</strong> Issues<br />

<strong>Top</strong>-<strong>down</strong> <strong>and</strong> <strong>Bot<strong>to</strong>m</strong>-<strong>up</strong> <strong>Approaches</strong> for<br />

<strong>Fabrication</strong><br />

Winfried Teizer, Physics<br />

Ibrahim Karaman, Materials & Mechanics<br />

Terry S. Creasy, Materials & Mechanics<br />

Spring 2004<br />

1


Primer on manufacturing processes<br />

<strong>Bot<strong>to</strong>m</strong>-<strong>up</strong> self<br />

assembly (wet<br />

chemistry)<br />

biomimetic,<br />

controlled<br />

<strong>Top</strong>-<strong>down</strong> assembly<br />

(lithography <strong>and</strong><br />

derivatives)<br />

dip-pen pen lithography<br />

soft lithography <strong>and</strong><br />

nanoscale printing<br />

e-beam <strong>and</strong> deep<br />

UV lithography<br />

Other production<br />

processes<br />

vapor deposition<br />

evaporation<br />

combustion<br />

thermal plasma<br />

milling<br />

cavitation<br />

coating (spin or<br />

dip)<br />

thermal spray<br />

electrodeposition<br />

2-040503TSCD


Module 2: <strong>Nanoscale</strong> Issues<br />

<strong>Top</strong>-<strong>down</strong> <strong>Approaches</strong> <strong>to</strong><br />

<strong>Fabrication</strong><br />

<strong>Bot<strong>to</strong>m</strong>-<strong>up</strong> <strong>Approaches</strong> <strong>to</strong><br />

<strong>Fabrication</strong><br />

3-040503TSCD


Two principal approaches<br />

<strong>Top</strong>-Down<br />

Miniaturizing existing<br />

processes at the<br />

Macro/Microscale<br />

Traditional approach in<br />

industrial applications<br />

E.g. Lithography, backbone of<br />

computing systems<br />

<strong>Bot<strong>to</strong>m</strong>-Up<br />

Assembling structures from<br />

the a<strong>to</strong>mic/molecular level<br />

Novel approach, conceptually<br />

imitating nature<br />

E.g. chemical self-assembly<br />

4-040503TSCD


Two principal approaches<br />

<strong>Top</strong>-Down<br />

Miniaturizing existing<br />

processes at the<br />

Macro/Microscale<br />

Traditional approach in<br />

industrial applications<br />

E.g. Lithography, backbone of<br />

computing systems<br />

<strong>Bot<strong>to</strong>m</strong>-Up<br />

Assembling structures from<br />

the a<strong>to</strong>mic/molecular level<br />

Novel approach, conceptually<br />

imitating nature<br />

E.g. chemical self-assembly<br />

5-040503TSCD


<strong>Nanoscale</strong> Issues in Materials<br />

& Manufacturing<br />

<strong>Top</strong>-<strong>down</strong><br />

<strong>Approaches</strong> <strong>to</strong><br />

<strong>Fabrication</strong><br />

6


Lithography in the Arts<br />

• Invented by Alois Senefelder in 1798<br />

• Process has been used for book<br />

illustrations, artist's prints,<br />

packaging, posters etc.<br />

• In 1825, Goya produced a famous<br />

series of lithographs titled “The Bulls<br />

of Bordeaux”.<br />

• In the 20 th <strong>and</strong> 21 st century, becomes<br />

an important technique with unique<br />

expressive capabilities in the Art<br />

field.<br />

7-040503TSCD


How Lithography started<br />

Lithography (Greek for "s<strong>to</strong>ne<br />

drawing") relies on the fact that<br />

water <strong>and</strong> grease repel<br />

Draw a pattern on<strong>to</strong> a flat s<strong>to</strong>ne<br />

surface with a greasy substance<br />

Paint the printing ink on<strong>to</strong> the s<strong>to</strong>ne<br />

While the s<strong>to</strong>ne background<br />

absorbs water, the greasy<br />

substance retains wet ink on <strong>to</strong>p<br />

Press paper against the s<strong>to</strong>ne <strong>to</strong><br />

transfer the pattern<br />

Positive! Repeatable!<br />

8-040503TSCD


Lithography, <strong>to</strong> date<br />

Miniaturized computing circuits require mass<br />

manufacturing of small features ⇒ push<br />

lithographic approach <strong>to</strong> new limits<br />

Some lithography approaches for manufacturing<br />

Optical lithography (including ultraviolet)<br />

X-Ray lithography<br />

Electron Beam lithography<br />

Ion Beam lithography<br />

“Dip-Pen” lithography<br />

…<br />

9-040503TSCD


Optical/UV Lithography<br />

Workhorse of current chip manufacturing<br />

processes<br />

Limited by wave length of light employed<br />

Smaller features ⇒ reduce wave length ⇒ UV<br />

light<br />

Here is how it works<br />

10-040503TSCD<br />

040503TSCD


Optical Lithography<br />

Mask<br />

Pho<strong>to</strong>resist<br />

Si - Substrate<br />

11-040503TSCD


Optical Lithography<br />

12-040503TSCD


Optical Lithography<br />

13-040503TSCD


Optical Lithography<br />

14-040503TSCD


Example: Pentium III<br />

Low Magnification<br />

High Magnification<br />

15-040503TSCD


Lithography<br />

16-040503TSCD


Fundamental Limitations<br />

• Smallest Feature Size is limited by<br />

wave length of light used<br />

• Currently deep UV light is used <strong>to</strong> produce<br />

sub-µm line widths<br />

• Moving in<strong>to</strong> X-ray may allow further reduction<br />

• This has practical complications, e.g. lenses<br />

17-040503TSCD


X-Ray Lithography Example<br />

18-040503TSCD


E-Beam Lithography<br />

•Smallest Feature Size of<br />

optical lithography is limited<br />

by wave length of light<br />

• Use a smaller wave length!<br />

• Use electrons!<br />

• Quantum Mechanics ⇒ all<br />

particles have a wave length<br />

• Higher energy ⇒ lower<br />

wave length<br />

Example<br />

19-040503TSCD


Electron Beam Lithography<br />

20-040503TSCD<br />

040503TSCD


Electron Beam Lithography<br />

21-040503TSCD


Electron Beam Lithography<br />

22-040503TSCD


Electron Beam Lithography<br />

23-040503TSCD


Electron Beam Lithography<br />

24-040503TSCD


Electron Beam Lithography<br />

25-040503TSCD


Electron Beam Lithography<br />

26-040503TSCD


Current Capabilities<br />

• Use either dedicated e-beam writer or SEM (Vacuum<br />

environment)<br />

• 30nm line width is straightforward<br />


Ion Beam Lithography Example<br />

28-040503TSCD


Dip-Pen Lithography<br />

29-040503TSCD


dip-pen pen lithography<br />

30-040503TSCD<br />

040503TSCD


<strong>Nanoscale</strong> Issues in Materials<br />

& Manufacturing<br />

<strong>Bot<strong>to</strong>m</strong>-<strong>up</strong><br />

<strong>Approaches</strong> <strong>to</strong><br />

<strong>Fabrication</strong><br />

31


<strong>Bot<strong>to</strong>m</strong>-Up<br />

– Why?<br />

• <strong>Top</strong> <strong>down</strong> is reaching limits<br />

• Nature does not work <strong>to</strong>p-<strong>down</strong><br />

• Scientists like <strong>to</strong> imitate nature<br />

32-040503TSCD


<strong>Bot<strong>to</strong>m</strong>-Up<br />

– How?<br />

• Molecular Assembly<br />

•Self-Assembly<br />

• “Assisted” through external parameters<br />

(e.g. fields, catalysts, etc)<br />

• Biological Assembly<br />

33-040503TSCD


Self Assembly<br />

coordinated action of independent entities<br />

under distributed (i.e., non-central) control<br />

<strong>to</strong> produce a larger structure or <strong>to</strong> achieve a desired gro<strong>up</strong><br />

effect<br />

34-040503TSCD


Self Assembly<br />

Making What?<br />

35-040503TSCD


Self Assembly<br />

36-040503TSCD


37-040503TSCD


Self Assembly<br />

Other Self Assembly Areas<br />

Regular structured devices (optics)<br />

Nanocomposite fabrication<br />

Chemical sensors<br />

Wiring matrices (high density RAM)<br />

Chemical reac<strong>to</strong>rs<br />

Modular positioners<br />

Light-emitting diodes<br />

Optical s<strong>to</strong>rage materials<br />

Biosensors<br />

Drug-delivery materials<br />

38-040503TSCD


Ethical Consideration<br />

39-040503TSCD


Add Particles <strong>to</strong> Bulk<br />

Materials<br />

How do we keep<br />

‘nano’ character<br />

during processing?<br />

Consolidation of<br />

Metals<br />

Must stay below<br />

recrystallization<br />

temperatures.<br />

Mixing with Polymers<br />

Blend particles with<br />

resin or melted<br />

polymer.<br />

40-040503TSCD<br />

040503TSCD


Equal Channel Angular<br />

Extrusion<br />

Solid state processing<br />

at low <strong>to</strong> room<br />

temperature.<br />

Intense plastic<br />

deformation in shear<br />

works the material.<br />

41-040503TSCD


Equal Channel Angular<br />

Extrusion<br />

42-040503TSCD


ECAE Effect<br />

Nanoparticles become<br />

bulk material with<br />

larger but nanoscale<br />

grain sizes.<br />

43-040503TSCD

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!