09.03.2015 Views

Top-down and Bottom-up Approaches to Nanoscale Fabrication

Top-down and Bottom-up Approaches to Nanoscale Fabrication

Top-down and Bottom-up Approaches to Nanoscale Fabrication

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Nanoscale</strong> Issues in<br />

Materials & Manufacturing<br />

ENGR 213 Principles of Materials Engineering<br />

Module 2: Introduction <strong>to</strong> <strong>Nanoscale</strong> Issues<br />

<strong>Top</strong>-<strong>down</strong> <strong>and</strong> <strong>Bot<strong>to</strong>m</strong>-<strong>up</strong> <strong>Approaches</strong> for<br />

<strong>Fabrication</strong><br />

Winfried Teizer, Physics<br />

Ibrahim Karaman, Materials & Mechanics<br />

Terry S. Creasy, Materials & Mechanics<br />

Spring 2004<br />

1


Primer on manufacturing processes<br />

<strong>Bot<strong>to</strong>m</strong>-<strong>up</strong> self<br />

assembly (wet<br />

chemistry)<br />

biomimetic,<br />

controlled<br />

<strong>Top</strong>-<strong>down</strong> assembly<br />

(lithography <strong>and</strong><br />

derivatives)<br />

dip-pen pen lithography<br />

soft lithography <strong>and</strong><br />

nanoscale printing<br />

e-beam <strong>and</strong> deep<br />

UV lithography<br />

Other production<br />

processes<br />

vapor deposition<br />

evaporation<br />

combustion<br />

thermal plasma<br />

milling<br />

cavitation<br />

coating (spin or<br />

dip)<br />

thermal spray<br />

electrodeposition<br />

2-040503TSCD


Module 2: <strong>Nanoscale</strong> Issues<br />

<strong>Top</strong>-<strong>down</strong> <strong>Approaches</strong> <strong>to</strong><br />

<strong>Fabrication</strong><br />

<strong>Bot<strong>to</strong>m</strong>-<strong>up</strong> <strong>Approaches</strong> <strong>to</strong><br />

<strong>Fabrication</strong><br />

3-040503TSCD


Two principal approaches<br />

<strong>Top</strong>-Down<br />

Miniaturizing existing<br />

processes at the<br />

Macro/Microscale<br />

Traditional approach in<br />

industrial applications<br />

E.g. Lithography, backbone of<br />

computing systems<br />

<strong>Bot<strong>to</strong>m</strong>-Up<br />

Assembling structures from<br />

the a<strong>to</strong>mic/molecular level<br />

Novel approach, conceptually<br />

imitating nature<br />

E.g. chemical self-assembly<br />

4-040503TSCD


Two principal approaches<br />

<strong>Top</strong>-Down<br />

Miniaturizing existing<br />

processes at the<br />

Macro/Microscale<br />

Traditional approach in<br />

industrial applications<br />

E.g. Lithography, backbone of<br />

computing systems<br />

<strong>Bot<strong>to</strong>m</strong>-Up<br />

Assembling structures from<br />

the a<strong>to</strong>mic/molecular level<br />

Novel approach, conceptually<br />

imitating nature<br />

E.g. chemical self-assembly<br />

5-040503TSCD


<strong>Nanoscale</strong> Issues in Materials<br />

& Manufacturing<br />

<strong>Top</strong>-<strong>down</strong><br />

<strong>Approaches</strong> <strong>to</strong><br />

<strong>Fabrication</strong><br />

6


Lithography in the Arts<br />

• Invented by Alois Senefelder in 1798<br />

• Process has been used for book<br />

illustrations, artist's prints,<br />

packaging, posters etc.<br />

• In 1825, Goya produced a famous<br />

series of lithographs titled “The Bulls<br />

of Bordeaux”.<br />

• In the 20 th <strong>and</strong> 21 st century, becomes<br />

an important technique with unique<br />

expressive capabilities in the Art<br />

field.<br />

7-040503TSCD


How Lithography started<br />

Lithography (Greek for "s<strong>to</strong>ne<br />

drawing") relies on the fact that<br />

water <strong>and</strong> grease repel<br />

Draw a pattern on<strong>to</strong> a flat s<strong>to</strong>ne<br />

surface with a greasy substance<br />

Paint the printing ink on<strong>to</strong> the s<strong>to</strong>ne<br />

While the s<strong>to</strong>ne background<br />

absorbs water, the greasy<br />

substance retains wet ink on <strong>to</strong>p<br />

Press paper against the s<strong>to</strong>ne <strong>to</strong><br />

transfer the pattern<br />

Positive! Repeatable!<br />

8-040503TSCD


Lithography, <strong>to</strong> date<br />

Miniaturized computing circuits require mass<br />

manufacturing of small features ⇒ push<br />

lithographic approach <strong>to</strong> new limits<br />

Some lithography approaches for manufacturing<br />

Optical lithography (including ultraviolet)<br />

X-Ray lithography<br />

Electron Beam lithography<br />

Ion Beam lithography<br />

“Dip-Pen” lithography<br />

…<br />

9-040503TSCD


Optical/UV Lithography<br />

Workhorse of current chip manufacturing<br />

processes<br />

Limited by wave length of light employed<br />

Smaller features ⇒ reduce wave length ⇒ UV<br />

light<br />

Here is how it works<br />

10-040503TSCD<br />

040503TSCD


Optical Lithography<br />

Mask<br />

Pho<strong>to</strong>resist<br />

Si - Substrate<br />

11-040503TSCD


Optical Lithography<br />

12-040503TSCD


Optical Lithography<br />

13-040503TSCD


Optical Lithography<br />

14-040503TSCD


Example: Pentium III<br />

Low Magnification<br />

High Magnification<br />

15-040503TSCD


Lithography<br />

16-040503TSCD


Fundamental Limitations<br />

• Smallest Feature Size is limited by<br />

wave length of light used<br />

• Currently deep UV light is used <strong>to</strong> produce<br />

sub-µm line widths<br />

• Moving in<strong>to</strong> X-ray may allow further reduction<br />

• This has practical complications, e.g. lenses<br />

17-040503TSCD


X-Ray Lithography Example<br />

18-040503TSCD


E-Beam Lithography<br />

•Smallest Feature Size of<br />

optical lithography is limited<br />

by wave length of light<br />

• Use a smaller wave length!<br />

• Use electrons!<br />

• Quantum Mechanics ⇒ all<br />

particles have a wave length<br />

• Higher energy ⇒ lower<br />

wave length<br />

Example<br />

19-040503TSCD


Electron Beam Lithography<br />

20-040503TSCD<br />

040503TSCD


Electron Beam Lithography<br />

21-040503TSCD


Electron Beam Lithography<br />

22-040503TSCD


Electron Beam Lithography<br />

23-040503TSCD


Electron Beam Lithography<br />

24-040503TSCD


Electron Beam Lithography<br />

25-040503TSCD


Electron Beam Lithography<br />

26-040503TSCD


Current Capabilities<br />

• Use either dedicated e-beam writer or SEM (Vacuum<br />

environment)<br />

• 30nm line width is straightforward<br />


Ion Beam Lithography Example<br />

28-040503TSCD


Dip-Pen Lithography<br />

29-040503TSCD


dip-pen pen lithography<br />

30-040503TSCD<br />

040503TSCD


<strong>Nanoscale</strong> Issues in Materials<br />

& Manufacturing<br />

<strong>Bot<strong>to</strong>m</strong>-<strong>up</strong><br />

<strong>Approaches</strong> <strong>to</strong><br />

<strong>Fabrication</strong><br />

31


<strong>Bot<strong>to</strong>m</strong>-Up<br />

– Why?<br />

• <strong>Top</strong> <strong>down</strong> is reaching limits<br />

• Nature does not work <strong>to</strong>p-<strong>down</strong><br />

• Scientists like <strong>to</strong> imitate nature<br />

32-040503TSCD


<strong>Bot<strong>to</strong>m</strong>-Up<br />

– How?<br />

• Molecular Assembly<br />

•Self-Assembly<br />

• “Assisted” through external parameters<br />

(e.g. fields, catalysts, etc)<br />

• Biological Assembly<br />

33-040503TSCD


Self Assembly<br />

coordinated action of independent entities<br />

under distributed (i.e., non-central) control<br />

<strong>to</strong> produce a larger structure or <strong>to</strong> achieve a desired gro<strong>up</strong><br />

effect<br />

34-040503TSCD


Self Assembly<br />

Making What?<br />

35-040503TSCD


Self Assembly<br />

36-040503TSCD


37-040503TSCD


Self Assembly<br />

Other Self Assembly Areas<br />

Regular structured devices (optics)<br />

Nanocomposite fabrication<br />

Chemical sensors<br />

Wiring matrices (high density RAM)<br />

Chemical reac<strong>to</strong>rs<br />

Modular positioners<br />

Light-emitting diodes<br />

Optical s<strong>to</strong>rage materials<br />

Biosensors<br />

Drug-delivery materials<br />

38-040503TSCD


Ethical Consideration<br />

39-040503TSCD


Add Particles <strong>to</strong> Bulk<br />

Materials<br />

How do we keep<br />

‘nano’ character<br />

during processing?<br />

Consolidation of<br />

Metals<br />

Must stay below<br />

recrystallization<br />

temperatures.<br />

Mixing with Polymers<br />

Blend particles with<br />

resin or melted<br />

polymer.<br />

40-040503TSCD<br />

040503TSCD


Equal Channel Angular<br />

Extrusion<br />

Solid state processing<br />

at low <strong>to</strong> room<br />

temperature.<br />

Intense plastic<br />

deformation in shear<br />

works the material.<br />

41-040503TSCD


Equal Channel Angular<br />

Extrusion<br />

42-040503TSCD


ECAE Effect<br />

Nanoparticles become<br />

bulk material with<br />

larger but nanoscale<br />

grain sizes.<br />

43-040503TSCD

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!