16.03.2015 Views

0 - Nearfield Systems Inc.

0 - Nearfield Systems Inc.

0 - Nearfield Systems Inc.

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

COMPENSATION FOR PROBE TRANSLATION<br />

EFFECTS IN DUAL POLARIZED PLANAR<br />

NEAR-FIELD ANTENNA MEASUREMENTS<br />

Daniël Janse van Rensburg<br />

<strong>Nearfield</strong> <strong>Systems</strong> <strong>Inc</strong>, 19730 Magellan Drive, Torrance, CA 90502, USA.<br />

November 2008 1


Overview<br />

• Planar near-field acquisition<br />

• Probe translation & compensation formulation<br />

• Example 1<br />

• Offset determination<br />

• Example 2<br />

• Conclusions<br />

November 2008 2


Probe Translation Problem<br />

Cable.<br />

y<br />

Pol = 90 degrees.<br />

x<br />

z<br />

x<br />

y<br />

Cable.<br />

Pol = 0 degrees.<br />

November 2008 3


Planar Near-field Scan<br />

November 2008 4


' K P<br />

( P = a F ∫ e<br />

i ⋅<br />

0<br />

S 02 ⋅<br />

'<br />

0<br />

)<br />

PNF Spectral Relations I<br />

'<br />

( ) ( )<br />

iγd<br />

K S10<br />

K e d K<br />

Kerns’ representation of the complex measured voltage on a planar<br />

surface to the AUT plane wave spectral function, where<br />

P = Vector<br />

K = Transverse<br />

b<br />

a<br />

'<br />

0<br />

0<br />

F'<br />

= Mismatch<br />

e<br />

S<br />

'<br />

02<br />

= Complex<br />

= Complex<br />

e<br />

i K • P iγd<br />

relative<br />

= Probe<br />

defining<br />

to<br />

input<br />

= Phase<br />

scan<br />

part<br />

measured<br />

term<br />

near −<br />

of<br />

signal.<br />

signal.<br />

correction term.<br />

relating<br />

probe location.<br />

field<br />

plane centre.<br />

AUT<br />

plane wave spectrum.<br />

probe<br />

location<br />

propagation vector k.<br />

origin<br />

to<br />

Probe spectrum<br />

S<br />

10<br />

=<br />

AUT<br />

plane<br />

wave<br />

spectrum.<br />

November 2008 5


Probe Translation Problem<br />

Cable.<br />

y<br />

Pol = 90 degrees.<br />

x<br />

z<br />

x<br />

y<br />

Cable.<br />

Pol = 0 degrees.<br />

November 2008 6


PNF Spectral Relations II<br />

In order to solve for the complex spectrum of the AUT, two measurement data sets<br />

are required using two near-field probes that have linearly independent spectra,<br />

leading to a set of two equations with two unknowns.<br />

If the equation shown above is regarded as the first data set, the second (after probe<br />

polarization rotation) can be written as<br />

b<br />

'' K P T<br />

P a F e<br />

i ( )<br />

( = ∫<br />

⋅ +<br />

0<br />

S 02 ⋅<br />

''<br />

0<br />

)<br />

''<br />

( ) ( )<br />

iγd<br />

K S10<br />

K e d K<br />

T<br />

b<br />

S<br />

''<br />

0<br />

= Δxxˆ<br />

+ Δyyˆ<br />

''<br />

02<br />

=<br />

Complex<br />

=<br />

Rotated<br />

= Vector defining rotated probe translation.<br />

measured signal for rotated probe.<br />

probe plane wave spectrum.<br />

November 2008 7


Example I: 94 GHz CP Horn<br />

Case #<br />

Δx [mm]<br />

Δx [λ]<br />

Δy[mm]<br />

Δy[λ]<br />

1<br />


Example I: 94 GHz CP Horn<br />

Y (meters)<br />

-0.45<br />

-0.50<br />

-0.55<br />

-0.60<br />

-0.65<br />

0<br />

-2<br />

-4<br />

-6<br />

-8<br />

-10<br />

-12<br />

-14<br />

-16<br />

-18<br />

-20<br />

-22<br />

-24<br />

-26<br />

-28<br />

-30<br />

-32<br />

-34<br />

-36<br />

-38<br />

-40<br />

-42<br />

-44<br />

-46<br />

-48<br />

-50<br />

Y (meters)<br />

-0.45<br />

-0.50<br />

-0.55<br />

-0.60<br />

-0.65<br />

0<br />

-2<br />

-4<br />

-6<br />

-8<br />

-10<br />

-12<br />

-14<br />

-16<br />

-18<br />

-20<br />

-22<br />

-24<br />

-26<br />

-28<br />

-30<br />

-32<br />

-34<br />

-36<br />

-38<br />

-40<br />

-42<br />

-44<br />

-46<br />

-48<br />

-50<br />

-0.70<br />

-0.70<br />

-0.15 -0.10 -0.05 0.00 0.05 0.10<br />

X (meters)<br />

-0.15 -0.10 -0.05 0.00 0.05 0.10<br />

X (meters)<br />

Near-field intensity for CP antenna measured with LP<br />

probe. Δx = 4mm (1.25λ) and Δy = -4.5mm (1.4λ).<br />

Dynamic range shown is 50 dB.<br />

November 2008 9


Example I: 94 GHz CP Horn<br />

0<br />

Uncorrected Corrected Reference<br />

0<br />

Uncorrected Corrected Reference<br />

-5<br />

-5<br />

-10<br />

-10<br />

Amplitude (dB)<br />

-15<br />

-20<br />

-25<br />

Amplitude (dB)<br />

-15<br />

-20<br />

-25<br />

-30<br />

-30<br />

-35<br />

-35<br />

-40<br />

-40 -30 -20 -10 0 10 20 30 40<br />

Elevation (deg)<br />

-40<br />

-40 -30 -20 -10 0 10 20 30 40<br />

Elevation (deg)<br />

Elevation plane co-polarized (left) and cross-polarized (right)<br />

patterns for 94 GHz CP horn. Case #2 uncorrected data (red),<br />

Case #2 corrected (blue) and Case 1 reference data (purple).<br />

T = 4mm (x) – 4.5mm (y).<br />

November 2008 10


Example I: 94 GHz CP Horn<br />

Far-field amplitude of test_c_11.nsi<br />

Far-field amplitude of test_c_10.nsi<br />

0<br />

0.5 mm 1.5 mm 2.5 mm 3.5 mm 4.5 mm<br />

0<br />

7.5 mm 8.5 mm 9.5 mm 10.5 mm 11.5 mm 12.5 mm<br />

-5<br />

-5<br />

-10<br />

-10<br />

-15<br />

-15<br />

Amplitude (dB)<br />

-20<br />

-25<br />

Amplitude (dB)<br />

-20<br />

-25<br />

-30<br />

-30<br />

-35<br />

-35<br />

-40<br />

-40<br />

-40 -30 -20 -10 0 10 20 30 40 -40 -30 -20 -10 0 10 20 30 40<br />

Elevation (deg)<br />

Elevation (deg)<br />

Sensitivity examples for a 1.5λ translation.<br />

Case #2 (left) Case #3 (right).<br />

November 2008 11


Automated Probe Offset Determination<br />

1. Full near-field acquisition with the near-field probe<br />

polarization positions 0° and 90°.<br />

‣ Extract far-field phase data for horizontal (azimuth)<br />

and vertical (elevation) planes.<br />

2. Repeat near-field acquisition with the near-field<br />

probe polarization positions 180° and 270°.<br />

‣ Extract far-field phase data for horizontal (azimuth)<br />

and vertical (elevation) planes.<br />

Cable.<br />

Pol = 90 degrees.<br />

y<br />

3. Subtraction of the two far-field phase reference<br />

patterns is a direct measure of the probe translation<br />

Δx & Δy.<br />

x<br />

x<br />

z<br />

y<br />

Cable.<br />

Pol = 0 degrees.<br />

November 2008 12


Example 2: 23 GHz LP Array<br />

Near-field amplitude of DJvR_Probe_offset01.nsi<br />

0.25<br />

Y (meters)<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

0.00<br />

-0.05<br />

-0.10<br />

-0.15<br />

-0.20<br />

0<br />

-2<br />

-4<br />

-6<br />

-8<br />

-10<br />

-12<br />

-14<br />

-16<br />

-18<br />

-20<br />

-22<br />

-24<br />

-26<br />

-28<br />

-30<br />

-32<br />

-34<br />

-36<br />

-38<br />

-40<br />

-42<br />

-44<br />

-46<br />

-48<br />

-50<br />

-0.25<br />

-0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.25<br />

X (meters)<br />

Near-field intensity for LP slotted waveguide array<br />

measured with LP probe (orthogonal polarization<br />

component is not shown since amplitude < -50 dB ).<br />

Δx = Δy = 3mm (0.23λ at 23.25 GHz). Dynamic<br />

range shown is 50 dB.<br />

November 2008 13


Example 2: 23 GHz LP Array<br />

0<br />

Far-field amplitude of DJvR_Probe_offset01.nsi<br />

0/90 Case 180/270 Case<br />

Far-field phase of DJvR_Probe_offset01.nsi - Far-field phase of DJvR_Probe_offset04.nsi<br />

0/90 Case 180/270 Case Phase difference<br />

-5<br />

150<br />

-10<br />

-15<br />

100<br />

Amplitude (dB)<br />

-20<br />

-25<br />

-30<br />

-35<br />

-40<br />

Phase (deg)<br />

50<br />

0<br />

-50<br />

-100<br />

-45<br />

-50<br />

-50 -40 -30 -20 -10 0 10 20 30 40 50<br />

Azimuth (deg)<br />

-150<br />

-30 -20 -10 0 10 20 30<br />

Azimuth (deg)<br />

Azimuth LP co-polarized anplitude (left) and phase (right) patterns. Probe position<br />

0/90 data (red) and probe position 180/270 (blue). Phase data comparison showing<br />

the 3 mm probe translation effect. The difference between the two phase functions<br />

is also shown and is sinusoidal with respect to the azimuth angle.<br />

November 2008 14


Example 2: 23 GHz LP Array<br />

5.0<br />

Average<br />

The difference between the two phase functions can be<br />

converted to a linear offset Δx using<br />

Probe Offset<br />

Probe x offset<br />

Δx<br />

=<br />

λΔPhase<br />

2π<br />

sinθ<br />

Linear distance [mm]<br />

4.5<br />

4.0<br />

3.5<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

-30 -20 -10 0 10 20 30<br />

Azimuth (deg)<br />

Since we know the offset has to be<br />

> 0 and < 5 mm, the average value<br />

of all values in this domain can be<br />

calculated. It follows that:<br />

Δx = (2.98 mm).<br />

Repeating this process for the<br />

elevation plane it follows that:<br />

Δy = (3.04 mm).<br />

November 2008 15


Example 2: 23 GHz LP Array<br />

Far-field phase of NewFilename.nsi<br />

Uncorrected Corrected Reference<br />

Far-field phase of NewFilename.nsi<br />

Uncorrected Corrected Reference<br />

150<br />

150<br />

100<br />

100<br />

50<br />

50<br />

Phase (deg)<br />

0<br />

Phase (deg)<br />

0<br />

-50<br />

-50<br />

-100<br />

-100<br />

-150<br />

-150<br />

-30 -20 -10 0 10 20 30<br />

Azimuth (deg)<br />

-30 -20 -10 0 10 20 30<br />

Elevation (deg)<br />

Far-field azimuth (left) and elevation (right) phase data<br />

comparison demonstrating the T = 2.98mm (x) + 3.04mm (y)<br />

probe translation correction.<br />

November 2008 16


Conclusions<br />

• Technique allows for the correction of planar near-field probe<br />

translation during polarization rotation.<br />

• Significant application in mm-wave applications.<br />

• Self calibration technique has been described that allows for<br />

automated detection of the near-field probe translation distance.<br />

• This technique circumvents the problem of having to make<br />

mechanical measurements of the probe alignment.<br />

November 2008 17

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!