23.03.2015 Views

Exercises with Magnetic Monopoles - Kurt Nalty

Exercises with Magnetic Monopoles - Kurt Nalty

Exercises with Magnetic Monopoles - Kurt Nalty

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

For the zone R/2 < r < ∞, we have the expression<br />

(<br />

)<br />

2<br />

rR<br />

r 3 R 3 tan−1 − 2 (r2 − (R/2) 2 )<br />

r 2 − (R/2) 2 (r 2 + (R/2) 2 ) 2 r 2 R 2<br />

For the zone 0 < r < R/2, we have the expression<br />

(<br />

)<br />

2<br />

rR<br />

r 3 R 3 tan−1 − 2 ((R/2)2 − r 2 )<br />

(R/2) 2 − r 2 (r 2 + (R/2) 2 ) 2 r 2 R 2<br />

We are now ready to finish our integrations.<br />

⃗L = − µq ∫ ∞<br />

[ (<br />

)<br />

eq m<br />

2<br />

2πr 3 rR<br />

R⃗a<br />

16π 2<br />

z<br />

R/2 r 3 R 3 tan−1 − 2 ]<br />

(r2 − (R/2) 2 )<br />

r 2 − (R/2) 2 (r 2 + (R/2) 2 ) 2 rdr<br />

r 2 R 2<br />

− µq ∫ R/2<br />

[ (<br />

)<br />

eq m<br />

2<br />

2πr 3 rR<br />

R⃗a<br />

16π 2 z<br />

0<br />

r 3 R 3 tan−1 − 2 ]<br />

((R/2)2 − r 2 )<br />

(R/2) 2 − r 2 (r 2 + (R/2) 2 ) 2 rdr<br />

r 2 R<br />

∫ 2<br />

µq e q ∞<br />

[ (<br />

)<br />

]<br />

m 2r<br />

rR<br />

⃗L = −⃗a z<br />

8π R/2 R 2 tan−1 − 2r2 (r 2 − (R/2) 2 )<br />

r 2 − (R/2) 2 (r 2 + (R/2) 2 ) 2 dr<br />

R<br />

∫<br />

µq e q R/2<br />

[ (<br />

)<br />

]<br />

m 2r<br />

rR<br />

−⃗a z<br />

8π R 2 tan−1 − 2r2 ((R/2) 2 − r 2 )<br />

(R/2) 2 − r 2 (r 2 + (R/2) 2 ) 2 dr<br />

R<br />

0<br />

Our first integral is<br />

∫<br />

µq e q ∞<br />

[ (<br />

)<br />

m 2r<br />

rR<br />

−⃗a z<br />

8π R/2 R 2 tan−1 r 2 − (R/2) 2<br />

[<br />

µq e q m<br />

= −⃗a z −<br />

2Rr<br />

( )<br />

8π R 2 + 4r + r2 4Rr<br />

2 R 2 tan−1 4r 2 − R 2<br />

]<br />

− 2r2 (r 2 − (R/2) 2 )<br />

(r 2 + (R/2) 2 ) 2 dr<br />

R<br />

− r R + 3 2 tan−1 ( 2r<br />

R<br />

)] ∞<br />

R/2<br />

As we approach infinity, the first term in the bracket disappears, the second<br />

and third terms cancel each other, and we have a residual value from the last<br />

term of 3π/4. For the lower limit, we have a term in brackets of<br />

− 1 2 + 1 π<br />

4 2 − 1 2 + 3 π<br />

2 4 = −1 + π 2<br />

15

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!