23.03.2015 Views

Exercises with Magnetic Monopoles - Kurt Nalty

Exercises with Magnetic Monopoles - Kurt Nalty

Exercises with Magnetic Monopoles - Kurt Nalty

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

We now write the field angular momentum as<br />

∫∫∫ ( )<br />

⃗L = ɛ ⃗r × ⃗E × B ⃗ dxdydz<br />

∫∫∫ ( (<br />

= ɛ ⃗E ⃗r · ⃗B<br />

)<br />

− B ⃗ (<br />

⃗r · ⃗E<br />

))<br />

dxdydz<br />

= q ∫∫∫<br />

e 1<br />

( (<br />

⃗r ⃗r ·<br />

4π r ⃗B<br />

)<br />

− ⃗ )<br />

B (⃗r · ⃗r) dxdydz<br />

3<br />

= q ∫∫∫<br />

e 1<br />

( (⃗a r ⃗a r ·<br />

4π r<br />

⃗B<br />

)<br />

− B ⃗ )<br />

dxdydz<br />

= − q ∫∫∫ [( ]<br />

e ⃗B · ∇ ⃗<br />

)⃗a r dxdydz<br />

4π<br />

I am good to this point. The step, I haven’t verified to my satisfaction. The<br />

claim is to integrate by parts to achieve<br />

⃗L = − q ∫∫ ( )<br />

e<br />

⃗a r ⃗B · dS ⃗ + q ∫∫∫ ( )<br />

e<br />

⃗a r ⃗∇ · B ⃗ dxdydz<br />

4π<br />

4π<br />

Given this step, the next step is to assert that the surface integral goes to<br />

zero at infinity. We then identify<br />

⃗B = − µq ( )<br />

m<br />

∇<br />

4π ⃗ 1<br />

ρ m<br />

⃗∇ · ⃗B = − µq m<br />

4π (−4πδ (⃗r − R⃗a z)) = µq m δ (⃗r − R⃗a z )<br />

⃗L = q ∫∫∫ ( )<br />

e<br />

⃗a r ⃗∇ · B ⃗ dxdydz<br />

4π<br />

= q ∫∫∫<br />

e<br />

⃗a r (µq m δ (⃗r − R⃗a z )) dxdydz<br />

4π<br />

= µq eq m<br />

4π<br />

⃗a z<br />

We have postive electric charge, positive magnetic charge, and ⃗ L points<br />

from electric to magnetic charge.<br />

7

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!