23.03.2015 Views

Exercises with Magnetic Monopoles - Kurt Nalty

Exercises with Magnetic Monopoles - Kurt Nalty

Exercises with Magnetic Monopoles - Kurt Nalty

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

⃗∇(ρ e ρ m ) −1 . Each form favors one of the two charge types. I prefer to use a<br />

version which is more symmetric (actually anti-symmetric) <strong>with</strong> respect to<br />

the charges. Thus, I introduce<br />

⃗α = 1 2<br />

(<br />

=<br />

( 1<br />

ρ e<br />

⃗ ∇<br />

( 1<br />

ρ m<br />

)<br />

− 1<br />

ρ m<br />

⃗ ∇<br />

( 1<br />

ρ e<br />

))<br />

x 2 + y 2 + z 2 + ( R<br />

2<br />

(<br />

) 2<br />

)<br />

x 2 + y 2 + z 2 + ( R<br />

2<br />

⃗r × ⃗α = −<br />

ρ 3 eρ 3 m<br />

( ( R<br />

) )<br />

2<br />

2 − x 2 − y 2 − z 2<br />

⃗r · ⃗α =<br />

ρ 3 eρ 3 m<br />

( ( R<br />

) 2<br />

2 − r 2)<br />

Rz<br />

2<br />

=<br />

ρ 3 eρ 3 m<br />

( ) ( )<br />

⃗∇ × ⃗α = ∇ ⃗ 1<br />

× ∇<br />

ρ ⃗ 1<br />

e ρ m<br />

R<br />

⃗a 2 z − zR (x⃗a x + y⃗a y + z⃗a z )<br />

ρ 3 eρ 3 m<br />

) ) 2<br />

Rz<br />

2<br />

R<br />

2 ρ⃗a θ<br />

We see that ⃗α is to momentum density as ⃗ A is to magnetic field density<br />

⃗B. Consequently, I’ll call ⃗α the momentum density vector potential.<br />

So, going back to our momentum density, we have<br />

ɛµ ⃗ S = µq eq m<br />

16π 2<br />

yR⃗a x − xR⃗a y<br />

(<br />

x2 + y 2 + (z − R/2) 2) 3/2 (<br />

x2 + y 2 + (z + R/2) 2) 3/2<br />

The momentum density circulates around the z axis, so we expect our<br />

total linear momentum to be zero. Our integral for total momentum is<br />

∫∫∫<br />

⃗M = ɛµ Sdxdydz ⃗<br />

= µq ∫∫∫<br />

eq m<br />

yR⃗a x − xR⃗a y<br />

16π 2 (<br />

x2 + y 2 + (z − R/2) 2) 3/2 (<br />

x2 + y 2 + (z + R/2) 2) dxdydz<br />

3/2<br />

5

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!