23.03.2015 Views

Exercises with Magnetic Monopoles - Kurt Nalty

Exercises with Magnetic Monopoles - Kurt Nalty

Exercises with Magnetic Monopoles - Kurt Nalty

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Without loss of generality, I can place the positive magnetic charge at<br />

(0, 0, R/2) and the negative magnetic charge at (0, 0, −R/2). The resulting<br />

magnetic dipole field is<br />

⃗B = µq m<br />

4π<br />

[<br />

⃗r − (R/2)⃗a z<br />

(<br />

x2 + y 2 + (z − R/2) 2) 3/2 − ⃗r + (R/2)⃗a z<br />

(<br />

x2 + y 2 + (z + R/2) 2) 3/2<br />

]<br />

For the special case of the midplane between the two charges, we have<br />

⃗B z=0 = µq m<br />

4π<br />

The force on an electric charge at ⃗r is<br />

⃗F = q e (⃗v × B)<br />

[<br />

⃗<br />

= µq eq m<br />

4π<br />

−R⃗a z<br />

(x 2 + y 2 + R 2 /4) 3/2<br />

⃗v × (⃗r − (R/2)⃗a z )<br />

(<br />

x2 + y 2 + (z − R/2) 2) 3/2 − ⃗v × (⃗r + (R/2)⃗a z )<br />

(<br />

x2 + y 2 + (z + R/2) 2) 3/2<br />

]<br />

The acceleration on an electric charge at ⃗r is<br />

⃗a = ⃗ F<br />

m<br />

= µq eq m<br />

4πm<br />

[<br />

]<br />

⃗v × (⃗r − (R/2)⃗a z )<br />

(<br />

x2 + y 2 + (z − R/2) 2) − ⃗v × (⃗r + (R/2)⃗a z )<br />

3/2 (<br />

x2 + y 2 + (z + R/2) 2) 3/2<br />

⃗κ =<br />

The curvature is<br />

⃗a × ⃗v<br />

v 3<br />

= µq eq m<br />

4πm<br />

[<br />

]<br />

[⃗v × (⃗r − (R/2)⃗a z )] × ⃗v<br />

v ( 3 x 2 + y 2 + (z − R/2) 2) − [⃗v × (⃗r + (R/2)⃗a z)] × ⃗v<br />

3/2<br />

v ( 3 x 2 + y 2 + (z + R/2) 2) 3/2<br />

For the special case of motion confined to the midplane, we have<br />

[<br />

]<br />

⃗κ z=0 = µq eq m 1 −R⃗a z<br />

4π mv (x 2 + y 2 + R 2 /4) 3/2<br />

27

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!