30.03.2015 Views

Lecture Notes (PDF) - University of Bristol

Lecture Notes (PDF) - University of Bristol

Lecture Notes (PDF) - University of Bristol

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Chemistry for Earth Scientists<br />

DM Sherman, <strong>University</strong> <strong>of</strong> <strong>Bristol</strong> <br />

2012/2013<br />

Ions and Ionic Compounds<br />

Chemistry for Earth Scientists,<br />

DM Sherman<br />

<strong>University</strong> <strong>of</strong> <strong>Bristol</strong><br />

Stable Electronic Configurations<br />

Atoms like to adopt closed-shell configurations. To do this, they<br />

may gain or lose electrons to become ions<br />

NaNa: 0 : open shell<br />

Na + Na : closed + : closed shell shell<br />

Page 1


Chemistry for Earth Scientists<br />

DM Sherman, <strong>University</strong> <strong>of</strong> <strong>Bristol</strong> <br />

2012/2013<br />

Stable Electronic Configurations (Cont.)<br />

The most stable ionization state <strong>of</strong> Si is the Si 4+ ion. The semiclosed<br />

shell Si 2+ ion does exist in interstellar gas, however.<br />

Si 0 : open shell<br />

Si 4+ : closed shell<br />

Stable Electronic Configurations (Cont.)<br />

Iron cannot adopt a closed-shell configuration... <br />

Fe 0 : open shell<br />

Fe 3+ : open shell<br />

Page 2


Chemistry for Earth Scientists<br />

DM Sherman, <strong>University</strong> <strong>of</strong> <strong>Bristol</strong> <br />

2012/2013<br />

Electronegativity<br />

Solar (“Cosmic”) Abundance <strong>of</strong> Elements!<br />

The most abundant element in the rocky planets is<br />

oxygen which is (almost) the most electronegative<br />

element.<br />

Page 3


Chemistry for Earth Scientists<br />

DM Sherman, <strong>University</strong> <strong>of</strong> <strong>Bristol</strong> <br />

2012/2013<br />

Ions and Electronic Configurations!<br />

Whether an atom will gain electrons<br />

to become an anion or lose<br />

electrons to become a cation<br />

depends on its electronegativity<br />

relative to other atoms.<br />

Mg + O → Mg 2+ + O 2-<br />

Atoms with high electronegativity<br />

tend to become anions. More<br />

precisely, if two neutral atoms come<br />

together, the more electronegative<br />

atom will receive electrons and<br />

become the anion.<br />

Stable Ions and Oxidation states<br />

The full ionic charge is only<br />

realized in completely ionic<br />

compounds. Otherwise it is only<br />

the formal oxidation state.<br />

Page 4


Chemistry for Earth Scientists<br />

DM Sherman, <strong>University</strong> <strong>of</strong> <strong>Bristol</strong> <br />

2012/2013<br />

Attraction between ions:<br />

The force between two point<br />

charges a and b is<br />

F =<br />

q a q b<br />

4πε 0<br />

r 2<br />

€<br />

But ions are not point charges;<br />

as they get closer, the nuclei<br />

repel each other as do the<br />

electron “clouds” on adjacent<br />

ions.<br />

Ionic Bonds<br />

• Formed between atoms <strong>of</strong> very different<br />

electronegativity.<br />

• The less electronegative atom completely donates<br />

one or more electron to the more electronegative<br />

atom. The resulting ions are held together by<br />

electrostatic attraction.<br />

• Most important for<br />

bonding between O<br />

and Mg, Ca, Si, Al, Na,<br />

K.<br />

• Hence, the primary<br />

bonding type in silicate<br />

and oxide minerals.<br />

Page 5


Chemistry for Earth Scientists<br />

DM Sherman, <strong>University</strong> <strong>of</strong> <strong>Bristol</strong> <br />

2012/2013<br />

Ionic Radii<br />

• An ion with a closed-shell configuration will have a spherical<br />

electron distribution.<br />

• To a first<br />

approximation, the<br />

ionic radius will be<br />

constant.<br />

• A better approximation<br />

gives different radii for<br />

each coordination<br />

number.<br />

• The radius <strong>of</strong> an ion<br />

can be a very useful<br />

predictor <strong>of</strong> an ion’s<br />

geochemical behaviour.<br />

Ionic Radii and Solid Solutions<br />

Ions with similar radii can substitute for each other (even if charges<br />

are different). <br />

Example: the amphibole hornblende<br />

(Na,Ca) 2 (Mg,Fe,Al) 5 [(Al,Si) 4 O 11 ] 2 (OH) 2<br />

has a complex composition due to solid<br />

solutions.<br />

Page 6


Chemistry for Earth Scientists<br />

DM Sherman, <strong>University</strong> <strong>of</strong> <strong>Bristol</strong> <br />

2012/2013<br />

Pauling’s Rules for Ionic Structures!<br />

Rule 1: The coordination number <strong>of</strong> a<br />

cation A by an anion B will be<br />

determined by the radius ratio <strong>of</strong><br />

the ions A and B:<br />

Radius Ratio CN Examples*<br />

R A /R B < 0.16 3 C 4+<br />

0.16 > R A /R B < 0.41 4 Si 4+ , Al 3+<br />

0.41 > R A /R B < 0.73 6 Fe 2+ , Mg 2+<br />

0.73 > R A /R B < 1.0 8 Ca 2+ , Na+<br />

1.0 > R A /R B 12 K +<br />

*when coordinated by O 2- .<br />

Pauling’s Rules for Ionic Structures (cont.)<br />

Rule 2: For an anion to be<br />

stable, the sum <strong>of</strong> the<br />

strengths* <strong>of</strong> the electrostatic<br />

bonds that reach an anion<br />

from its coordination <strong>of</strong> cations<br />

will equal the charge on the<br />

anion. This is the<br />

electrostatic valency<br />

principle.<br />

(*The “Pauling bond strength” or “Bond Valence” that a cation gives to<br />

an anion is the cation charge/coordination number).<br />

Page 7


Chemistry for Earth Scientists<br />

DM Sherman, <strong>University</strong> <strong>of</strong> <strong>Bristol</strong> <br />

2012/2013<br />

Volatiles in the Mantle (?): Prediction from<br />

Paulings 2 nd Rule<br />

Wadsleyite (β-Mg 2 SiO 4 )<br />

Replace Mg with 2H +<br />

• Octahedral (yellow) sites for Mg.<br />

• Si tetrahedra in corner-shared pairs<br />

• One oxygen has a ∑PBS <strong>of</strong> only 4/3.<br />

Pauling’s Rules for Ionic Structures<br />

Rule 3: The sharing <strong>of</strong> edges and faces by<br />

coordination polyhedra decreases the stability <strong>of</strong> a<br />

structure.<br />

Edge-sharing<br />

Corner-sharing<br />

Face-sharing<br />

Page 8


Chemistry for Earth Scientists<br />

DM Sherman, <strong>University</strong> <strong>of</strong> <strong>Bristol</strong> <br />

2012/2013<br />

Pauling’s Rules for Ionic Structures (cont.)<br />

Rule 3: The sharing <strong>of</strong> edges and faces by coordination polyhedra<br />

decreases the stability <strong>of</strong> a structure.<br />

Anatase<br />

Rutile<br />

There are two polymorphs <strong>of</strong> TiO 2 . Rutile is more stable (by 6 kJ/mole)<br />

than anatase because there is less edge-sharing in the structure.<br />

Breakdown <strong>of</strong> Pauling’s Rules<br />

Pauling’s rules will fail when bonds are not ionic. Sulfide minerals<br />

tend to have covalent bonds with S. Metallic bonding is also found is<br />

metals and many sulfides.<br />

Mackinawite (FeS)<br />

Triolite (FeS)<br />

Page 9


Chemistry for Earth Scientists<br />

DM Sherman, <strong>University</strong> <strong>of</strong> <strong>Bristol</strong> <br />

2012/2013<br />

Breakdown <strong>of</strong> Pauling’s Rules<br />

At high pressure, Pauling’s first rule break down as<br />

cations adopt high coordination numbers.<br />

Si in 4-fold<br />

coordination<br />

Olivine Mg 2 SiO4<br />

Mg in 6-fold<br />

coordination<br />

Si in 6-fold<br />

coordination<br />

MgSiO 3 Perovskite<br />

Mg in 12-fold<br />

coordination<br />

Chemical bonding: ionic vs. covalent<br />

When electrons are completely transferred between<br />

atoms to yield cations and anions, the atoms will be<br />

held together by ionic bonds.<br />

If atoms have similar<br />

electronegativities, they<br />

adopt closed-shell<br />

configurations by sharing<br />

electrons with each other;<br />

the atoms are held together<br />

by covalent bonds.<br />

Page 10


Chemistry for Earth Scientists<br />

DM Sherman, <strong>University</strong> <strong>of</strong> <strong>Bristol</strong> <br />

2012/2013<br />

Ionic Potential and Ion Hydration!<br />

Large cations with low<br />

charge will be weakly<br />

hydrated.<br />

Small cations with<br />

high charge will form<br />

oxyanions (or<br />

oxycations).<br />

Summary<br />

Be able to:<br />

work out the electronic configurations via the<br />

Pauli exclusion principle.<br />

predict the stable ions in geochemistry (e.g.,<br />

Mg +2 , Si +4 , Al +3 ..).<br />

• Ionic bonds form between atoms <strong>of</strong> different<br />

electronegativity.<br />

• The concept <strong>of</strong> ionic radius is a useful picture for<br />

geochemistry. Ions with similar radii can <strong>of</strong>ten<br />

substitute for each other.<br />

• Pauling’s rules give a predictive model for ionic<br />

structures.<br />

Page 11

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!