09.07.2015 Views

Lecture Notes (PDF) - Aqueous and Environmental Geochemistry

Lecture Notes (PDF) - Aqueous and Environmental Geochemistry

Lecture Notes (PDF) - Aqueous and Environmental Geochemistry

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Environmental</strong> <strong>Geochemistry</strong>DM Sherman, University of Bristol2007/2008Molecular Components of BiomassLipidsCarbohydrates <strong>and</strong> PolysaccharidesMolecular Components of BiomassLigninPage ‹#›


<strong>Environmental</strong> <strong>Geochemistry</strong>DM Sherman, University of Bristol2007/2008Hydrolysis Products of BiomassFatty Acids (Hydrophyllic Acids)SugarsAmino AcidsBiological Breakdown of BiomoleculesHydrolysisAmino AcidsFatty AcidsSugarsHumic/Fulvic AcidsRespiration CO 2ProteinsLipidsCarbohydratesLigninFermentationAcetateAlcoholsExtremely anaerobicconditionsMethanogenesis CH 4Page ‹#›


<strong>Environmental</strong> <strong>Geochemistry</strong>DM Sherman, University of Bristol2007/2008Abiotic Breakdown Products of BiomassFulvic AcidsAbiotic Breakdown Products of BiomassHumic AcidPage ‹#›


<strong>Environmental</strong> <strong>Geochemistry</strong>DM Sherman, University of Bristol2007/2008Complexation of Metals by Humic/FulvicAcidsSome metals (Cu, Hg) arecomplexed by HA <strong>and</strong> FA.This may play a role in oreformingprocesses.Organic Carbon in Terrestrial AquaticsystemsPage ‹#›


<strong>Environmental</strong> <strong>Geochemistry</strong>DM Sherman, University of Bristol2007/2008Nature of Humic/Fulvic Acids <strong>and</strong> Humin•Major form of organic matter in soils <strong>and</strong> freshwater.•Origins are still not fully understood but mainhypothesis is that humic/fulvic acids are derived fromthe breakdown of lignin.•Humic Acid = soluble at high pH only•Fulvic Acid = soluble over all pH values•Humin = not soluble at any pHOrganic Carbon in Aquatic systemsPage ‹#›


<strong>Environmental</strong> <strong>Geochemistry</strong>DM Sherman, University of Bristol2007/2008Organic Carbon in Sediments•Sediments contain < 1% organic C.•Nearly all DOC <strong>and</strong> POC in the water column isoxidized by respiration.•For organic C to accumulate in sediments, the flux ofPOC must be high <strong>and</strong> the redox conditions must beanaerobic.Diagenesis <strong>and</strong> Kerogen Formation•Hydrolysis of complex organics•Functional groups are removed.•Double bonds are hydrogenated to give saturatedhydrocarbons•Aromatic compounds increase relative to aliphatic•Condensation of molecular fragments to complexmacromolecules•End product is kerogen a mixture of complex organiccompounds that dominate organic matter in sediments.Page ‹#›


<strong>Environmental</strong> <strong>Geochemistry</strong>DM Sherman, University of Bristol2007/2008Catagenesis of Kerogen to Oil <strong>and</strong> GasDiagenesis: methanogensproduce methane. Organicmatter converted to kerogen.Catagenesis: breakdownof kerogenMetagenesis: breakdownof oil into gas + graphiteMethane HydratesAt the pressures <strong>and</strong> temperaturesof the ocean bottom, biogenicmethane is trapped as clathrates.Page ‹#›


<strong>Environmental</strong> <strong>Geochemistry</strong>DM Sherman, University of Bristol2007/2008Methane HydratesThe stability field ofmethane hydrates islimited to shallow sedimentdepths.Methane is an extremelypotent greenhouse gas<strong>and</strong> release fromsediments could greatlyaccelerate globalwarming.Carbon Isotopic FractionationPage ‹#›


<strong>Environmental</strong> <strong>Geochemistry</strong>DM Sherman, University of Bristol2007/2008Carbon Isotopic FractionationPollution by Organic CompoundsPage ‹#›


<strong>Environmental</strong> <strong>Geochemistry</strong>DM Sherman, University of Bristol2007/2008Organic Pollutants: BTEX CompoundsBiodegradation of Organics (Cont.)C 6 H 6 + 7.5 O 2 → 6CO 2 + 3H 2 OC 6 H 6 + 15MnO 2 + 30H + → 6CO 2 + 18H 2 O + 15Mn 2+C 6 H 6 + 6NO 3-+ H + → 6CO 2 + 3N 2 +6H 2 OC 6 H 6 + 30 FeOOH + 60 H + → 6CO 2 + 48 H 2 O + 30Fe 2+C 6 H 6 + 3.75SO 42-+ 7.5H + → 6CO 2 + 3.75H 2 S + 3H 2 ODecreasing EhC 6 H 6 + 4.5H 2 O → 2.25CO 2 + 3.75CH 4Page ‹#›


<strong>Environmental</strong> <strong>Geochemistry</strong>DM Sherman, University of Bristol2007/2008Spatial Distribution of electron acceptors afterbiodegradation progresses in soilPAH (Polycyclic Aromatic Hydrocarbons)in CreosoteOHOHphenolCH 3cresolnapthaleneBenzo-[a]-pyreneanthraceneCreosote is a common wood preservative butis now banned because it contains PAHs(carcinogenic). These are slow to degrade insoil.Page ‹#›


<strong>Environmental</strong> <strong>Geochemistry</strong>DM Sherman, University of Bristol2007/2008Synthetic ChlorohydrocarbonsOrganohalide Breakdown byMethanogens(1) CCl 2 =CCl 2 (PCE) + H 2 → CCl 2 =CClH (TCE)+ HCl(2) CCl 2 =CClH (TCE) + H 2 → CCl 2 =CH 2 (DCE) + HCl(3) CCl 2 =CH 2 (DCE) + H 2 → CH 2 =CHCl (VC) + HClBreakdown of vinyl chloride (CH 2 =CHCl) requiresaerobic conditions:CH 2 =CHCl (VC) + 5/2O 2 → 2CO 2 + H 2 O + HClPage ‹#›


<strong>Environmental</strong> <strong>Geochemistry</strong>DM Sherman, University of Bristol2007/2008Summary: Abiotic Breakdown ofBiomoleculesLignin, Carbohydrates, Proteins, LipidsFulvic, Humic acids, HuminKerogenHydrocarbonsMethaneGraphitePage ‹#›

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!