17.04.2015 Views

Air-Source vs. Water/Ground-Source Heat Pump Systems ...

Air-Source vs. Water/Ground-Source Heat Pump Systems ...

Air-Source vs. Water/Ground-Source Heat Pump Systems ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

CoolEnergy.dk – March 6-7 th, 2013 – Odense, Denmark<br />

Discharge Gas Temp. <strong>vs</strong>. Evaporation Temp., t E<br />

Discharge Trykkgasstemperatur Gas Temp. (°C) (°C)<br />

150<br />

140<br />

130<br />

120<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

-30 -25 -20 -15 -10 -5 0 5 10 15 20<br />

Evaporation Fordampningstemperatur Temperature, (°C) t E (°C)<br />

R410A<br />

R407C<br />

R134a<br />

R744 (CO2) (CO2)<br />

R717 (NH3) (NH3)<br />

R290 (propan) (propane)<br />

› Disch. gas temp. increases<br />

with decreasing t E<br />

› Increasing temperature<br />

lift (∆t) for the heat<br />

pump at decreasing t E<br />

› Decreasing compressor<br />

efficiency (η is ) at increasing<br />

pressure ratio (π)<br />

› High discharge gas<br />

temp., thermal load<br />

› Lubricant carbonization,<br />

decomposition of refrigerant<br />

and leakage risk<br />

Single-stage unit – t C =45 °C – compressor efficiencies not incl.<br />

› Increase wear and tear,<br />

compressor failure<br />

14<br />

MARCH 7TH, 2013<br />

COWI POWERPOINT PRESENTATION

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!