17.04.2015 Views

Air-Source vs. Water/Ground-Source Heat Pump Systems ...

Air-Source vs. Water/Ground-Source Heat Pump Systems ...

Air-Source vs. Water/Ground-Source Heat Pump Systems ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

CoolEnergy.dk – March 6-7 th, 2013 – Odense, Denmark<br />

<strong>Air</strong>-<strong>Source</strong> <strong>vs</strong>. <strong>Water</strong>/<strong>Ground</strong>-<strong>Source</strong><br />

<strong>Heat</strong> <strong>Pump</strong> <strong>Systems</strong> – Operational<br />

Characteristics<br />

Jørn Stene PhD<br />

Specialist – COWI AS, Division Buildings<br />

Associate professor II – NTNU<br />

1<br />

MARCH 7TH, 2013<br />

COWI POWERPOINT PRESENTATION


CoolEnergy.dk – March 6-7 th, 2013 – Odense, Denmark<br />

COWI<br />

› Consultant services<br />

› Buildings incl. heat pump and cooling systems<br />

› Industry and energy<br />

› Railways, roads and airports<br />

› Bridge, tunnel and marine structures<br />

› <strong>Water</strong> and environment<br />

› Economics, management and planning<br />

› Geographical, management and IT<br />

› About COWI<br />

› Head office in Denmark, Lyngby<br />

› Trondheim office – approx. 180 employees<br />

› Norway – approx. 950 employees, 20 offices<br />

› COWI group – 6000 employees in 35 countries<br />

› www.cowi.no, www.cowi.com<br />

2<br />

MARCH 7TH, 2013<br />

COWI POWERPOINT PRESENTATION


CoolEnergy.dk – March 6-7 th, 2013 – Odense, Denmark<br />

NTNU<br />

› NTNU – The Norwegian University of Science and Technology<br />

› Main responsibility for higher technological education in Norway<br />

› 7 faculties, 52 departments<br />

› 22,000 students, half of them in technical studies<br />

› Annual graduation – 3200 Master and 330 PhD stud.<br />

› Approx. foreign students<br />

› Close cooperation with SINTEF<br />

› www.ntnu.no<br />

› NTNU, Department of Energy and Process Engineering<br />

› Thermal Energy, Industrial Process Engineering, Fluid Flow Engineering<br />

and "<strong>Heat</strong>ing, Cooling and Ventilation in Buildings"<br />

› Applied <strong>Heat</strong> <strong>Pump</strong> Technology, TEP4260 and TEP16<br />

› www.ntnu.no/ept<br />

3<br />

MARCH 7TH, 2013<br />

COWI POWERPOINT PRESENTATION


CoolEnergy.dk – March 6-7 th, 2013 – Odense, Denmark<br />

Classification – <strong>Air</strong>-to-<strong>Water</strong> <strong>Heat</strong> <strong>Pump</strong>s<br />

A1.1 – Direct system design<br />

Outdoor<br />

Indoor<br />

› Evaporator, compressor etc. – outdoor<br />

› Circulation of refrigerant in a pipeline<br />

circuit between air-source evaporator<br />

and indoor water-cooled condenser<br />

<strong>Air</strong><br />

Evaporator<br />

Condenser<br />

<strong>Heat</strong>ing<br />

system<br />

A1.2 – Direct system design<br />

<strong>Heat</strong> <strong>Pump</strong> Unit<br />

› <strong>Heat</strong> pump unit – outdoor<br />

› Circulation of water in a closed pipeline<br />

circuit between condenser or gas cooler<br />

in indoor heat pump and heating system<br />

<strong>Air</strong><br />

Evaporator<br />

Condenser<br />

Gas cooler<br />

<strong>Heat</strong>ing<br />

system<br />

A1.3 – Direct system design<br />

› <strong>Heat</strong> pump unit – indoor<br />

<strong>Air</strong><br />

<strong>Heat</strong> <strong>Pump</strong> Unit<br />

<strong>Heat</strong>ing<br />

system<br />

› Circulation of ambient air in ducts through<br />

the wall to/from the indoor evaporator<br />

Evaporator<br />

Condenser<br />

4<br />

MARCH 7TH, 2013<br />

COWI POWERPOINT PRESENTATION


CoolEnergy.dk – March 6-7 th, 2013 – Odense, Denmark<br />

Classification – <strong>Air</strong>-to-<strong>Water</strong> <strong>Heat</strong> <strong>Pump</strong>s<br />

A2.1 – Indirect system design<br />

› Reversible air-to-water heat pump and<br />

chiller unit located outdoor<br />

› A 4-way valve switches between<br />

heating and cooling mode<br />

› Secondary circuit with circulating antifreeze<br />

fluid between outdoor condenser<br />

and indoor heat exchanger<br />

A2.2 – Indirect system design<br />

› Indoor brine-to-water heat pump unit<br />

located indoor<br />

› Secondary circuit with circulating antifreeze<br />

fluid between outdoor air cooler<br />

and indoor evaporator<br />

<strong>Air</strong><br />

<strong>Air</strong><br />

Evaporator,<br />

condenser<br />

Outdoor<br />

<strong>Heat</strong> <strong>Pump</strong> Unit<br />

<strong>Air</strong> cooler<br />

(heat exchanger)<br />

Condenser,<br />

evaporator<br />

Secondary<br />

Circuit<br />

Secondary<br />

circuit<br />

Evaporator<br />

Indoor<br />

<strong>Heat</strong><br />

exchanger<br />

<strong>Heat</strong> <strong>Pump</strong> Unit<br />

Condenser<br />

<strong>Heat</strong>ing<br />

system<br />

<strong>Heat</strong>ing<br />

system<br />

5<br />

MARCH 7TH, 2013<br />

COWI POWERPOINT PRESENTATION


CoolEnergy.dk – March 6-7 th, 2013 – Odense, Denmark<br />

Classification – Brine-to-<strong>Water</strong> <strong>Heat</strong> <strong>Pump</strong>s<br />

B1.1 – Direct system design<br />

› The heat pump evaporator is in direct<br />

contact with the heat source (seawater,<br />

groundwater, sewage etc.)<br />

› The evaporator must be designed and<br />

operated to prevent corrosion, fouling,<br />

clogging and frost formation<br />

› Achieves a higher evaporation temp.<br />

than a direct heat source system, B2.1<br />

B2.1 – Indirect system design<br />

› <strong>Heat</strong> from the heat source is transferred<br />

from the outdoor heat exchanger to<br />

the indoor evaporator via a secondary<br />

circuit with circulating anti-freeze fluid<br />

› Standard heat pumps can be used<br />

<strong>Heat</strong> source<br />

<strong>Source</strong><br />

Outdoor<br />

<strong>Heat</strong> exchanger<br />

Secondary<br />

circuit<br />

Evaporator<br />

Indoor<br />

<strong>Heat</strong> <strong>Pump</strong> Unit<br />

Evaporator<br />

Condenser<br />

<strong>Heat</strong> <strong>Pump</strong> Unit<br />

Condenser<br />

<strong>Heat</strong>ing<br />

system<br />

<strong>Heat</strong>ing<br />

system<br />

6<br />

MARCH 7TH, 2013<br />

COWI POWERPOINT PRESENTATION


CoolEnergy.dk – March 6-7 th, 2013 – Odense, Denmark<br />

Factors that Affects <strong>Heat</strong> <strong>Pump</strong> Operation<br />

› <strong>Heat</strong> source system<br />

› <strong>Heat</strong> source temperature level – variations<br />

› Direct / indirect system design – heat exchanger design<br />

› Corrosion – material selection<br />

› Pollution, fouling – cleaning requirements<br />

› Volumetric transport capacity (kJ/m 3 K)<br />

› Frosting – defrosting (air-source systems)<br />

› <strong>Heat</strong> pump unit<br />

› Refrigerant (working fluid)<br />

› Type of compressor – pressure rating, part load capacity control etc.<br />

› Design – single-stage, cascade, two-stage, economizer, EVI etc.<br />

› <strong>Heat</strong> distribution system<br />

› Temperature level variations, heat load variations etc.<br />

7<br />

MARCH 7TH, 2013<br />

COWI POWERPOINT PRESENTATION


CoolEnergy.dk – March 6-7 th, 2013 – Odense, Denmark<br />

<strong>Heat</strong> <strong>Source</strong> – Temperature Level – Norway<br />

HEAT SOURCE Temperature Level During the <strong>Heat</strong>ing Season<br />

-20ºC -10ºC 0ºC 10ºC 20ºC<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Ambient air<br />

Seawater<br />

<strong>Ground</strong>water<br />

Bedrock<br />

Lake water<br />

Soil (ground)<br />

Ventilation air<br />

Sewage<br />

Grey water<br />

-40 to 10°C<br />

3-8°C<br />

4-8°C<br />

-4 to 8°C<br />

0-5°C<br />

-5 til 0°C<br />

4-12°C<br />

10-25°C<br />

20°C<br />

8<br />

MARCH 7TH, 2013<br />

COWI POWERPOINT PRESENTATION


CoolEnergy.dk – March 6-7 th, 2013 – Odense, Denmark<br />

<strong>Heat</strong> <strong>Source</strong>s – Monthly Mean Temperatures<br />

› Ambient air<br />

› Large temp. variations<br />

during the year and<br />

between climatic zones<br />

› Seawater<br />

› Relative moderate<br />

temperature variations,<br />

1-3 months temperature<br />

delay <strong>vs</strong>. ambient<br />

air<br />

Temperature (°C)<br />

A<br />

B<br />

C<br />

D<br />

E<br />

› <strong>Ground</strong>water – rock<br />

› Relatively moderate<br />

temperature variations<br />

during the year and<br />

between climatic zones<br />

A – <strong>Air</strong> Bergen, B – <strong>Air</strong> Trondheim, C – <strong>Air</strong> Røros<br />

D – Seawater, -20 m, Bergen, E – <strong>Ground</strong>water, Elverum<br />

9<br />

MARCH 7TH, 2013<br />

COWI POWERPOINT PRESENTATION


CoolEnergy.dk – March 6-7 th, 2013 – Odense, Denmark<br />

Important Operational Aspects for HPs<br />

› Energy Saving<br />

› Seasonal Performance Factor (SPF net )<br />

› <strong>Heat</strong> pump units incl. fans and pumps<br />

› Coverage factor of annual heating demand<br />

› Reference system wrt. primary energy demand<br />

› Lifetime<br />

› El.boiler, oil-fired boiler, gas-fired boiler, bio-fired boiler, district heating or other heat pump<br />

› Mechanical wear and tear for the heat source system<br />

› Corrosion on heat exchangers, pipelines etc.<br />

› Wear and tear for compressors, motors, valves etc.<br />

› Maintenance<br />

› Components<br />

› Leakage testing etc.<br />

10<br />

MARCH 7TH, 2013<br />

COWI POWERPOINT PRESENTATION


CoolEnergy.dk – March 6-7 th, 2013 – Odense, Denmark<br />

<strong>Heat</strong>ing Cap. <strong>vs</strong>. Evaporation Temperature, t E<br />

Relative Relativ heating kondensatoreffekt capacity (-) (-)<br />

1,8<br />

1,6<br />

1,4<br />

1,2<br />

1,0<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

R410A<br />

R407C<br />

R134a<br />

R744 (CO2) (CO2)<br />

R717 (NH3) (NH3)<br />

R290 (propan) (propane)<br />

-30 -25 -20 -15 -10 -5 0 5 10 15 20<br />

Evaporation Fordampningstemperatur Temperature, (°C) t E (°C)<br />

Single-stage unit – t C =45 °C – compressor efficiencies not incl.<br />

› The heating capacity<br />

drops 3-4 % for each<br />

°C reduction in t E<br />

› Reduced vapour density<br />

of the suction gas and<br />

with that lower mass<br />

flow rate, m R (kg/s), at<br />

reduced t E<br />

› Decreasing compressor<br />

efficiency (λ) at increasing<br />

pressure ratio (π)<br />

› Lowest relative drop in<br />

heating capacity for:<br />

› R744 (CO 2 ), R410A and<br />

R290 (propane)<br />

11<br />

MARCH 7TH, 2013<br />

COWI POWERPOINT PRESENTATION


0<br />

5<br />

CoolEnergy.dk – March 6-7 th, 2013 – Odense, Denmark<br />

Performance – <strong>Air</strong>-to-<strong>Water</strong> CO 2 <strong>Heat</strong> <strong>Pump</strong><br />

R744 Ref :W.C.Reynolds: Thermodynamic Properties in SI<br />

100,00<br />

DTU, Department of Energy Engineering<br />

s in [kJ/(kg K)]. v in [m^3/kg]. T in [ºC]<br />

M.J. Skovrup & H.J.H Knudsen. 12-03-15<br />

90,00<br />

80,00<br />

90<br />

80<br />

10°C<br />

A<br />

30°C<br />

0,0015<br />

B<br />

s = 1,45<br />

s = 1,45<br />

0,0020<br />

40°C<br />

s = 1,50<br />

s = 1,55<br />

C<br />

s = 1,60<br />

s = 1,65<br />

50°C<br />

0,0030<br />

s = 1,70<br />

0,0040<br />

D<br />

0,0050<br />

0,0060<br />

0,0070<br />

0,0070<br />

0,0080<br />

0,0090<br />

0,0090<br />

Pressure [Bar]<br />

70,00<br />

Pressure (bar)<br />

60,00<br />

50,00<br />

40,00<br />

30,00<br />

20,00<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

-15<br />

-10<br />

-5<br />

10<br />

15<br />

20<br />

25<br />

v= 0,0030<br />

v= 0,0040<br />

30<br />

30<br />

25<br />

20<br />

x = 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90<br />

s = 1,00 1,20 1,40 1,60 1,80<br />

v= 0,0060<br />

v= 0,0080<br />

v= 0,010<br />

140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580<br />

Enthalpy [kJ/kg]<br />

v= 0,015<br />

s = 1,75<br />

s = 1,80<br />

s = 1,80<br />

15<br />

⎛ Q&<br />

COP = ⎜<br />

10<br />

⎝ W<br />

5<br />

Specific Enthalpy (kJ/kg)<br />

GC<br />

s = 1,85<br />

⎞<br />

⎟<br />

⎠<br />

s = 1,90<br />

s = 1,95<br />

s = 1,95<br />

s = 2,00<br />

0<br />

-5<br />

-10<br />

-15<br />

-10<br />

0<br />

10<br />

20<br />

30<br />

s = 2,05<br />

Q GC-A =100%<br />

Q GC-B = 83%<br />

Q GC-C = 56%<br />

s = 2,10<br />

s = 2,10<br />

Q GC-D = 34%<br />

s = 2,15<br />

s = 2,20<br />

s = 2,20<br />

s = 2,25<br />

s = 2,30<br />

s = 2,35<br />

s = 2,35<br />

40 50 60 70 80 90 100 110<br />

0,010<br />

0,015<br />

0,015<br />

COP A =4.3 (100%)<br />

0,020<br />

0,020<br />

COP B =3.5 (71%)<br />

COP C =2.4 (58%)<br />

COP D =1.5 (31%)<br />

0,030<br />

› <strong>Heat</strong>ing capacity and COP decline rapidly at increasing inlet water temperature<br />

in the gas cooler → hot water heating and low-temp. space heating<br />

12<br />

MARCH 7TH, 2013<br />

COWI POWERPOINT PRESENTATION


CoolEnergy.dk – March 6-7 th, 2013 – Odense, Denmark<br />

COP <strong>vs</strong>. Evaporation Temperature, t E<br />

Effektfaktor COP (-) (-)<br />

10,0<br />

R410A R410A<br />

8,0<br />

6,0<br />

4,0<br />

2,0<br />

R407C<br />

R134a<br />

R744 (CO2) (CO2)<br />

R717 (NH3) (NH3)<br />

R290 (propan) (propane)<br />

-30 -25 -20 -15 -10 -5 0 5 10 15 20<br />

Evaporation Fordampningstemperatur Temperature, (°C) t E (°C)<br />

Single-stage unit – t C =45 °C – compressor efficiencies not incl.<br />

› The COP drops 2-3 %<br />

for °C reduction in t E<br />

› Increasing temperature<br />

lift (∆t) for the heat<br />

pump at decreasing t E<br />

› Decreasing compressor<br />

efficiency (η is ) at increasing<br />

pressure ratio (π)<br />

› Highest cycle COP<br />

› R717 (ammonia), R134a<br />

and R290 (propane)<br />

› R744 (CO 2 ) heat pumps<br />

may achieve high COP at<br />

low return temperature<br />

in the heating system<br />

13<br />

MARCH 7TH, 2013<br />

COWI POWERPOINT PRESENTATION


CoolEnergy.dk – March 6-7 th, 2013 – Odense, Denmark<br />

Discharge Gas Temp. <strong>vs</strong>. Evaporation Temp., t E<br />

Discharge Trykkgasstemperatur Gas Temp. (°C) (°C)<br />

150<br />

140<br />

130<br />

120<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

-30 -25 -20 -15 -10 -5 0 5 10 15 20<br />

Evaporation Fordampningstemperatur Temperature, (°C) t E (°C)<br />

R410A<br />

R407C<br />

R134a<br />

R744 (CO2) (CO2)<br />

R717 (NH3) (NH3)<br />

R290 (propan) (propane)<br />

› Disch. gas temp. increases<br />

with decreasing t E<br />

› Increasing temperature<br />

lift (∆t) for the heat<br />

pump at decreasing t E<br />

› Decreasing compressor<br />

efficiency (η is ) at increasing<br />

pressure ratio (π)<br />

› High discharge gas<br />

temp., thermal load<br />

› Lubricant carbonization,<br />

decomposition of refrigerant<br />

and leakage risk<br />

Single-stage unit – t C =45 °C – compressor efficiencies not incl.<br />

› Increase wear and tear,<br />

compressor failure<br />

14<br />

MARCH 7TH, 2013<br />

COWI POWERPOINT PRESENTATION


CoolEnergy.dk – March 6-7 th, 2013 – Odense, Denmark<br />

Pressure Ratio <strong>vs</strong>. Evaporation Temperature, t E<br />

Pressure Trykkforhold Ratio (-) (-)<br />

12<br />

11<br />

R410A<br />

10<br />

R407C<br />

9<br />

R134a<br />

8<br />

R744 (CO2)<br />

7<br />

R717 (NH3)<br />

6<br />

R290 (propan) (propane)<br />

5<br />

4<br />

3<br />

2<br />

1<br />

-30 -25 -20 -15 -10 -5 0 5 10 15 20<br />

Evaporation Fordampningstemperatur Temperature, (°C) t E (°C)<br />

Single-stage unit – t C =45 °C – compressor efficiencies not incl.<br />

› Pressure ratio increases<br />

with decreasing t E<br />

› Increased pressure<br />

difference (∆p) at<br />

decreasing t E<br />

› Decreasing compressor<br />

efficiencies at increasing<br />

pressure ratio (π)<br />

› High pressure ratio,<br />

mechanical load<br />

› Increased wear and<br />

tear, compressor failure<br />

› Max. pressure ratio<br />

1:10 for reciprocating<br />

and scroll compressors<br />

15<br />

MARCH 7TH, 2013<br />

COWI POWERPOINT PRESENTATION


CoolEnergy.dk – March 6-7 th, 2013 – Odense, Denmark<br />

<strong>Air</strong>-to-<strong>Water</strong> <strong>Heat</strong> <strong>Pump</strong> – Operational Map<br />

Ambient air temp. (°C)<br />

<strong>Heat</strong>ing mode<br />

Example<br />

20<br />

10<br />

0<br />

-10<br />

-12<br />

Temperature<br />

limitations<br />

30 35 40 45 50<br />

Outlet water temp. (°C)<br />

› Standard reversible R410A<br />

heat pump / chiller unit<br />

› Nom. heating cap. – 150 kW<br />

› Stop temperature: -12 °C<br />

› t water = 40°C at t air = -12 °C<br />

› t water < 50°C at t air ≥ 0 °C<br />

› The pressure ratio and discharge gas temp. limits the operational map<br />

› Limited water temp. from cond. → limited heat supply at high temp. req.<br />

16<br />

MARCH 7TH, 2013<br />

COWI POWERPOINT PRESENTATION


CoolEnergy.dk – March 6-7 th, 2013 – Odense, Denmark<br />

<strong>Air</strong>-to-<strong>Water</strong> <strong>Heat</strong> <strong>Pump</strong> – Performance<br />

<strong>Heat</strong>ing Avgitt capacity varmeeffekt (kW)<br />

210<br />

190<br />

170<br />

150<br />

130<br />

110<br />

90<br />

30°C<br />

40°C<br />

50°C<br />

-15 -10 -5 0 5 10 15 4,520<br />

Amb. air temperature Utelufttemperatur (°C)<br />

› Both heating capacity and<br />

COP drop at decreasing<br />

ambient air temperature<br />

Effektfaktor, COP (-)<br />

6,0<br />

5,5<br />

5,0<br />

4,0<br />

3,5<br />

3,0<br />

2,5<br />

2,0<br />

1,5<br />

Example<br />

› Standard reversible R410A<br />

heat pump / chiller unit<br />

› Nom. heating cap. – 150 kW<br />

30°C<br />

40°C<br />

50°C<br />

-15 -10 -5 0 5 10 15 20<br />

Amb. air Utelufttemperatur temperature (°C) (°C)<br />

17<br />

MARCH 7TH, 2013<br />

COWI POWERPOINT PRESENTATION


CoolEnergy.dk – March 6-7 th, 2013 – Odense, Denmark<br />

Power and Energy Coverage <strong>vs</strong>. <strong>Heat</strong> <strong>Source</strong><br />

Net Power Demand(%)<br />

P N<br />

Q HP – annual heat supply from heat pump<br />

Annual <strong>Heat</strong> supply from peak load unit<br />

<strong>Heat</strong> pump<br />

capacity curves<br />

Q HP<br />

<strong>Air</strong>: α=70-80 %<br />

Rock, water: α=85-95 %<br />

Relative power demand<br />

› Available heating cap.<br />

› <strong>Water</strong>, rock – rel. stable<br />

source temperature and<br />

flat capacity curve<br />

› Ambient air – large<br />

temperature variations<br />

and steep capacity curve<br />

› Temp. limitation for the<br />

heat pump unit will limit<br />

energy coverage factor, α<br />

Duaration (days)<br />

Principle power demand duration curve - hot water heating not incl.<br />

α<br />

⎛ Q<br />

=<br />

⎜<br />

⎝ Q<br />

HP<br />

total<br />

⎞<br />

⎟ ⋅100 %<br />

⎠<br />

18<br />

MARCH 7TH, 2013<br />

COWI POWERPOINT PRESENTATION


CoolEnergy.dk – March 6-7 th, 2013 – Odense, Denmark<br />

COP, SPF and Relative Energy Saving – ∆E<br />

COP (-)<br />

Theoretical (max.) COP<br />

Real COP<br />

Prosentvis energisparing, ∆E<br />

50%<br />

67%<br />

75%<br />

80% 83%<br />

Temperature Difference, ∆t Seasonal Performance Factor, SPF (-)<br />

› Percentage energy saving ∆E compared to direct electric heating system<br />

› Non-linear relationship between SPF and energy saving ∆E<br />

19<br />

MARCH 7TH, 2013<br />

COWI POWERPOINT PRESENTATION


CoolEnergy.dk – March 6-7 th, 2013 – Odense, Denmark<br />

SPF and Energy Coverage – ∆E<br />

Rel. Energy Relativ energisparing, Saving, ∆E (%) (%)<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

5,0<br />

4,0<br />

SPF=2,0<br />

3,5<br />

SPF=2,5<br />

3,0<br />

2,5<br />

SPF=3,0<br />

SPF=3,5<br />

2,0<br />

SPF=4,0<br />

SPF=5,0<br />

0 10 20 30 40 50 60 70 80 90 100<br />

<strong>Heat</strong> <strong>Pump</strong> Varmepumpens Energy energidekning, Coverage, ∆Q (%) α (%)<br />

Electric Peak Load – Elecric <strong>Heat</strong>ing as Reference System<br />

› Relative energy saving<br />

of a heat pump system<br />

∆E (%) determined by:<br />

› Seasonal perf., SPF<br />

› Energy coverage fact., α<br />

› Mean efficiency for peak<br />

load system, η<br />

⎡<br />

∆E<br />

= ⎢1<br />

−<br />

⎣<br />

α<br />

SPF<br />

(1 − α) ⎤<br />

+ ⎥ ⋅100%<br />

η ⎦<br />

› Annual energy saving<br />

significantly affected<br />

by energy coverage, α<br />

20<br />

MARCH 7TH, 2013<br />

COWI POWERPOINT PRESENTATION


CoolEnergy.dk – March 6-7 th, 2013 – Odense, Denmark<br />

<strong>Air</strong>-to-<strong>Water</strong> <strong>Heat</strong> <strong>Pump</strong>s – Main Properties<br />

› Installation – possibilities and limitations<br />

› Ambient air is the most available heat source<br />

› <strong>Heat</strong>ing capacity and COP is affected by the ambient air temp.<br />

› Evaporator requires defrosting – energy use and possible problems<br />

› Fans generates noise – challenges wrt. location, use ”low noise” techn.<br />

› Max. water temp. 40-50 °C – limitation at high temp. requirements<br />

› Some heat pump units can supply 55-80 °C max. water temperature<br />

› May provide cooling, but limited free cooling<br />

› Investment, energy saving and lifetime<br />

› Rel. low investment costs since the evaporator is an integrated part<br />

› Moderate energy saving due to moderate energy coverage and SPF<br />

› Moderate lifetime due to large temp. variations (wear and tear)<br />

21<br />

MARCH 7TH, 2013<br />

COWI POWERPOINT PRESENTATION


CoolEnergy.dk – March 6-7 th, 2013 – Odense, Denmark<br />

<strong>Air</strong>-to-<strong>Water</strong> <strong>Heat</strong> <strong>Pump</strong>s – Problems<br />

› Compressor<br />

› Mechanical/thermal stress – wear and tear, compressor failure<br />

› Low compressor efficiency – reduced performance<br />

› <strong>Air</strong> cooler<br />

› Corrosion – refrigerant leakage, reduced performance etc.<br />

› Fatigue fractures – refrigerant leakages<br />

› Defrosting – extensive energy use, reduced performance etc.<br />

› Fans – noise, vibrations etc.<br />

› Recirculation of air – reduced performance<br />

› Operating limitations and problems<br />

› Limited outlet water temperature – reduced annual heat supply<br />

› High stop-temperature – reduced annual heat supply<br />

› 4-way valve malfunction etc.<br />

22<br />

MARCH 7TH, 2013<br />

COWI POWERPOINT PRESENTATION


CoolEnergy.dk – March 6-7 th, 2013 – Odense, Denmark<br />

<strong>Ground</strong>/<strong>Water</strong>-<strong>Source</strong> HPs – Main Properties<br />

› Installation – possibilities and limitations<br />

› <strong>Heat</strong>ing capacity/COP not affected by the ambient air temperature<br />

› <strong>Heat</strong> source/sink – may supply considerable free (renewable) cooling<br />

› The heat source system is hidden – no or minimal noise<br />

› Max. water temp. 50-60 °C – limitation at high temp. requirements<br />

› Two-stage plants may supply heat at 70-80 °C – expensive<br />

› Limitation for heat source system – availability, uncompacted material<br />

and lack of free space for GSHPs, polluted water (ground/seawater)<br />

› Important with correct design/operation of the heat source system<br />

› Investment, lifetime and energy saving<br />

› Relatively high investment costs due to separate heat source system<br />

› Monitoring and maintenance of heat source system important<br />

› High energy saving & long lifetime when correctly designed/operated<br />

23<br />

MARCH 7TH, 2013<br />

COWI POWERPOINT PRESENTATION


CoolEnergy.dk – March 6-7 th, 2013 – Odense, Denmark<br />

<strong>Water</strong>/<strong>Ground</strong>-<strong>Source</strong> HPs – Problems<br />

› Compressor<br />

› Mechanical/thermal stress – wear and tear, compressor failure<br />

› Low compressor efficiency – reduced performance<br />

› <strong>Heat</strong> source system – heat exchangers, pumps, tubing etc.<br />

› Corrosion – leakage, reduced performance, malfunction<br />

› Fouling – reduced performance, malfunction<br />

› Clogging – reduced performance, malfunction<br />

› <strong>Pump</strong> cavitation – reduced performance, malfunction<br />

› Gradual temp. drop in energy wells – reduced performance<br />

› Freezing of energy wells – severe settings, pipe rupture etc.<br />

› Operating limitations and problems<br />

› Limited outlet water temperature – reduced annual heat supply<br />

24<br />

MARCH 7TH, 2013<br />

COWI POWERPOINT PRESENTATION


CoolEnergy.dk – March 6-7 th, 2013 – Odense, Denmark<br />

Example – <strong>Air</strong>-<strong>Water</strong> <strong>vs</strong>. <strong>Ground</strong>-<strong>Source</strong> HP<br />

› <strong>Heat</strong> supply to an existing, non-residential building<br />

› Dominating space heating demand, some hot water demand (DHW)<br />

› Goal – replace existing oil-fired boiler with renewable heat source<br />

› Data<br />

› Climate – Trondheim, DOT=-19 °C og t A = 4.9 °C<br />

› <strong>Heat</strong>ing demand<br />

› Net power demand, space heating: 450 kW<br />

› Annual heating demand, space heating: 900,000 kWh/y<br />

› Annual heating demand, DHW: 100,000 kWh/y<br />

› <strong>Heat</strong> distribution system<br />

› Temperature requirement – 60/40 °C or 80/60 °C at DOT<br />

› Energy price – interest rate – mainenance<br />

› El.price: 0,8 NOK/kWh (about 10 Eurocent)<br />

› Interest rate: 7 %<br />

› Maintenance: 3 % of the investment costs for the heat pump system<br />

25<br />

MARCH 7TH, 2013<br />

COWI POWERPOINT PRESENTATION


CoolEnergy.dk – March 6-7 th, 2013 – Odense, Denmark<br />

Example – <strong>Air</strong>-to-<strong>Water</strong> <strong>vs</strong>. <strong>Ground</strong>-<strong>Source</strong> HP<br />

Thermal power demand (kW)<br />

Effekt (kW)<br />

500<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

55 %<br />

Diagram – Geir Eggen, COWI<br />

Tilsatsvarme<br />

Effekt biobrenselanlegg<br />

Varighetskurve for<br />

effektbehov<br />

Space heating and<br />

heating Energidekning of ventilation fra pelletsanlegg air<br />

Hot water heating<br />

Varighetskurve for<br />

utetemperatur<br />

Ambient air temp.<br />

0 50 100 150 200 250 300 350<br />

Duration Varighet (døgn (days)<br />

-20<br />

-15<br />

-10<br />

-5<br />

0<br />

5<br />

10<br />

15<br />

Ambient <strong>Air</strong> Temperature (°C)<br />

Temperatur (°C)<br />

› <strong>Heat</strong> pump dimensioning – 40-70% of net power demand for space heating<br />

› Carry out a technical/economical optimization incl. sencivity analysis<br />

26<br />

MARCH 7TH, 2013<br />

COWI POWERPOINT PRESENTATION


CoolEnergy.dk – March 6-7 th, 2013 – Odense, Denmark<br />

Example – <strong>Air</strong>-to-<strong>Water</strong> <strong>vs</strong>. <strong>Ground</strong>-<strong>Source</strong> HP<br />

› <strong>Ground</strong>-source heat pump – 225 kW<br />

› Standard brine-to-water chiller unit<br />

› Refrigerant R407C, max. outlet water temperature 50 °C<br />

› Investments<br />

› Brine-to-water heat pump/chiller unit 500,000 NOK<br />

› Energy wells in bedrock 2,000,000 NOK<br />

› Tubing, machinery room, el.installation etc. 800,000 NOK<br />

› Engineering and unforeseen costs (20 %) 660,000 NOK<br />

TOTAL<br />

3,960,000 NOK<br />

› Lifetime heat pump unit 15 years<br />

› Lifetime other installations 20 years<br />

› Lifetime energy wells 40 years<br />

› Energy coverage factor (α) To be calculated<br />

› Seasonal performance factor (SPF) To be calculated<br />

27<br />

MARCH 7TH, 2013<br />

COWI POWERPOINT PRESENTATION


CoolEnergy.dk – March 6-7 th, 2013 – Odense, Denmark<br />

Example – <strong>Air</strong>-to-<strong>Water</strong> <strong>vs</strong>. <strong>Ground</strong>-<strong>Source</strong> HP<br />

› <strong>Air</strong>-to-water heat pump – 225 kW<br />

› Standard reversible chiller with indirect system design<br />

› Refrigerant R410A, max. water temp. 40/50 °C at -10/0 °C<br />

› Investments<br />

› <strong>Air</strong>-to-water heat pump/chiller unit 700,000 NOK<br />

› Noise reduction for evaporator 200,000 NOK<br />

› Container, tubing, el. installation etc. 800,000 NOK<br />

› Design and unforeseen costs (20 %) 340,000 NOK<br />

TOTAL<br />

2,040,000 NOK<br />

› Lifetime heat pump unit 10 years<br />

› Lifetime other installations 20 years<br />

› Energy coverage factor (α) To be calculated<br />

› Seasonal Performance Factor (SPF) To be calculated<br />

28<br />

MARCH 7TH, 2013<br />

COWI POWERPOINT PRESENTATION


CoolEnergy.dk – March 6-7 th, 2013 – Odense, Denmark<br />

Example – <strong>Air</strong>-to-<strong>Water</strong> <strong>vs</strong>. <strong>Ground</strong>-<strong>Source</strong> HP<br />

500<br />

-20<br />

GSHP 1 (60/40 °C)<br />

Effekt (kW)<br />

450<br />

Thermal power demand (kW)<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

Tilsatsvarme<br />

Effekt biobrenselanlegg<br />

Varighetskurve for<br />

effektbehov<br />

Energidekning fra pelletsanlegg<br />

Varighetskurve for<br />

utetemperatur<br />

-15<br />

-10<br />

-5<br />

0<br />

5<br />

10<br />

15<br />

Temperatur (°C)<br />

• Energy coverage HP 89 %<br />

• SPF heat pump 3.8<br />

• SPF incl. peak loak 2.9<br />

• Energy saving 65 %<br />

• Costs (NOK/kWh) 0.83<br />

GSHP 2 (80/60 °C)<br />

• Energy coverage HP 66 %<br />

• SPF heat pump 3.4<br />

• SPF incl. peak load 1.9<br />

0<br />

0 50 100 150 200 250 300 350<br />

Duration Varighet (døgn (days)<br />

• Energy saving 47 %<br />

• Costs (NOK/kWh) 0.98<br />

› Considerable reduction in the annual heat supply from the heat pump and<br />

energy saving when using standard HP unit and high temp. heating system!<br />

29<br />

MARCH 7TH, 2013<br />

COWI POWERPOINT PRESENTATION


CoolEnergy.dk – March 6-7 th, 2013 – Odense, Denmark<br />

Example – <strong>Air</strong>-to-<strong>Water</strong> <strong>vs</strong>. <strong>Ground</strong>-<strong>Source</strong> HP<br />

500<br />

-20<br />

<strong>Air</strong> HP 1 (60/40 °C)<br />

Effekt (kW)<br />

450<br />

Thermal power demand (kW)<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

Tilsatsvarme<br />

Effekt biobrenselanlegg<br />

Varighetskurve for<br />

effektbehov<br />

Energidekning fra pelletsanlegg<br />

Varighetskurve for<br />

utetemperatur<br />

-15<br />

-10<br />

-5<br />

0<br />

5<br />

10<br />

15<br />

Temperatur (°C)<br />

• Energy coverage HP 75 %<br />

• SPF heat pump 3.0<br />

• SPF incl. peak load 2.1<br />

• Energy saving 53 %<br />

• Costs (NOK/kWh) 0.78<br />

<strong>Air</strong> HP 2 (80/60 °C)<br />

• Energy coverage HP 45 %<br />

• SPF heat pump 3.1<br />

• SPF incl. peak load 1.3<br />

0<br />

0 50 100 150 200 250 300 350<br />

Duration Varighet (døgn (days)<br />

• Energy saving 25 %<br />

• Costs (NOK/kWh) 0.97<br />

› Considerable reduction in the annual heat supply from the heat pump and<br />

energy saving when using standard HP unit and high temp. heating system!<br />

30<br />

MARCH 7TH, 2013<br />

COWI POWERPOINT PRESENTATION


CoolEnergy.dk – March 6-7 th, 2013 – Odense, Denmark<br />

Field Monitoring – Residential <strong>Heat</strong> <strong>Pump</strong>s<br />

› New field monitoring<br />

project in<br />

Norway with 18<br />

air-water and<br />

brine-water HPs<br />

› HVAC association<br />

› Governm. support<br />

<strong>Air</strong>-to-water Brine-to-water – relative energy saving in %<br />

› New field monitoring<br />

project in<br />

Sweden with 20<br />

GSHP systems<br />

› Several other<br />

field studies in EU<br />

› Field monitoring<br />

shows real energy<br />

saving for the heat<br />

pump system<br />

31<br />

MARCH 7TH, 2013<br />

COWI POWERPOINT PRESENTATION


CoolEnergy.dk – March 6-7 th, 2013 – Odense, Denmark<br />

Example 1 – W/W heat <strong>Pump</strong> in Passive House<br />

› Prototype heat pump designed by D. Zijdemans<br />

› Installation in a passive house<br />

› Single-family house – 172 m 2 (2007)<br />

› Location – Flekkefjord (Sourthern Norway)<br />

› <strong>Heat</strong> pump covers the entire heating demand<br />

› Domestic hot water – 65 °C<br />

› Space heating – floor heating – 35 °C<br />

› Advanced water-to-water heat pump<br />

› 2.9 kW nominal heating capacity<br />

› <strong>Heat</strong> source – lake water<br />

› Working fluid – propane (R290)<br />

› Low- and high-temperature storage tanks<br />

› Especially designed for efficient DHW heating<br />

32<br />

MARCH 7TH, 2013<br />

COWI POWERPOINT PRESENTATION


CoolEnergy.dk – March 6-7 th, 2013 – Odense, Denmark<br />

Optimum HP Design for Hot <strong>Water</strong> <strong>Heat</strong>ing<br />

5°C<br />

70°C<br />

SG<br />

CONDENSER<br />

EVAPORATOR<br />

DSH<br />

Temperature (°C)<br />

5°C<br />

70°C<br />

Relative HX position (-)<br />

› Suction gas heat exchanger (SG) – increases gas temp. and superheat<br />

› Desuperheater (DSH) – hot discharge gas for reheating of DHW<br />

› SG + DSH – leads to lower condensation temp. and increased COP<br />

33<br />

MARCH 7TH, 2013<br />

COWI POWERPOINT PRESENTATION


CoolEnergy.dk – March 6-7 th, 2013 – Odense, Denmark<br />

Example 1 –W/W <strong>Heat</strong> <strong>Pump</strong> in Passive House<br />

<strong>Heat</strong> pump<br />

<strong>Pump</strong> HT<br />

Floor<br />

heating<br />

LT<br />

HT<br />

DSH<br />

<strong>Pump</strong> LT<br />

Compressor<br />

Condenser<br />

SG<br />

Evaporator<br />

<strong>Heat</strong> source<br />

Ref. – David Zijdemans, Oso Hotwater<br />

› LT storage tank – 35°C – floor heating system + preheating DHW<br />

› HT storage tank – 65 °C – reheating of DHW<br />

34<br />

MARCH 7TH, 2013<br />

COWI POWERPOINT PRESENTATION


CoolEnergy.dk – March 6-7 th, 2013 – Odense, Denmark<br />

Example 1 – W/W <strong>Heat</strong> <strong>Pump</strong> in Passive House<br />

COP – heat pump<br />

unit COP – total<br />

SPF – heat pump<br />

unit SPF – total<br />

Measurements – D. Zijdemans<br />

› Average COP 3.2 + 100 % coverage factor = 70 % energy saving<br />

› Increased COP by optimization and improved measuring equipment<br />

35<br />

MARCH 7TH, 2013<br />

COWI POWERPOINT PRESENTATION


CoolEnergy.dk – March 6-7 th, 2013 – Odense, Denmark<br />

CO₂ <strong>Heat</strong> <strong>Pump</strong> <strong>Water</strong> <strong>Heat</strong>ers (HPWH)<br />

› CO 2 (R744) – environmentally benign refrigerant<br />

› GWP = 0, non-flammable, non-toxic<br />

› Technology developed at NTNU-SINTEF, Trondheim<br />

› Properties of the CO 2 heat pump cycle<br />

› <strong>Heat</strong> rejection at gliding temp. in a gas cooler<br />

› Can supply high temperature heat<br />

› Excellent energy-efficiency for components<br />

› Properties of CO 2 heat pump water heaters<br />

› The most energy efficient cycle<br />

› Domestic hot water (DHW) heating up to 95 °C<br />

› No DHW reheating required<br />

› Tank system etc. must be optimized for the CO 2 cycle<br />

Temperature (°C)<br />

Gas cooler<br />

Compressor<br />

Evaporator<br />

Specific enthalpy (kJ/kg)<br />

36<br />

MARCH 7TH, 2013<br />

COWI POWERPOINT PRESENTATION


CoolEnergy.dk – March 6-7 th, 2013 – Odense, Denmark<br />

CO₂ <strong>Heat</strong> <strong>Pump</strong> <strong>Water</strong> <strong>Heat</strong>ers (5 to 100 kW)<br />

37<br />

MARCH 7TH, 2013<br />

COWI POWERPOINT PRESENTATION


CoolEnergy.dk – March 6-7 th, 2013 – Odense, Denmark<br />

Example 2 – CO₂ B/W HPWH in Block of Flats<br />

› Tveita borettslag (housing cooperative), Oslo<br />

› 3 large block of flats from 1969 with 819 apartments<br />

› Extensive refurbishing – various measures<br />

› Investments 40 mill. €<br />

› Energy reduced use from 280 to 140 kWh/(m 2 y)<br />

› CO 2 heat pump installation (2011)<br />

› The first large capacity CO 2 heat pump in NO<br />

› Exhaust air 22 °C as heat source<br />

› <strong>Heat</strong>ing of DHW for each block of flats (x 3)<br />

› Hot water tanks – 1000 litres – serial connection<br />

› CO 2 heat pump units of 3 x 100 kW from Green &<br />

Cool (SE) – designed by Kuldeteknisk AS, Tromsø<br />

› Measured COP approx. 4.0 incl. pumps<br />

38<br />

MARCH 7TH, 2013<br />

COWI POWERPOINT PRESENTATION


CoolEnergy.dk – March 6-7 th, 2013 – Odense, Denmark<br />

Example 2 – CO₂ B/W HPWH in Block of Flats<br />

12°C<br />

12°C<br />

9°C<br />

9°C<br />

22°C<br />

<strong>Heat</strong> exchangers<br />

22°C<br />

CO 2 heat pump<br />

GC<br />

E<br />

12°C<br />

Secondary circuit<br />

with anti-freeze<br />

Hot water tanks<br />

55°C<br />

9°C<br />

70°C<br />

Hot water<br />

70°C 70°C 10°C<br />

39<br />

MARCH 7TH, 2013<br />

COWI POWERPOINT PRESENTATION


CoolEnergy.dk – March 6-7 th, 2013 – Odense, Denmark<br />

Example 3 – A/W HP in Passive Office Bldg.<br />

› GK Norway, new head office – completed June 2012<br />

› http://hjemme.enova.no/sitepageview.aspx?articleID=4013<br />

› Passive house standard (class A) – calculated values:<br />

› Net energy demand: 67 kWh/(m 2 år)<br />

› Supplied energy: 52 kWh/(m 2 år)<br />

› BREEAM classification: ”Very good”<br />

› BRA 14,300 m 2 with workshop and stockroom<br />

› Annual heating demand – approx. 45,000 kWh/y<br />

› GK Norway contractor for e.g.:<br />

› Ventilation and AC system<br />

› <strong>Air</strong>-to-water heat pump and cooling system<br />

› Hydronic system and sanitary installations<br />

40<br />

MARCH 7TH, 2013<br />

COWI POWERPOINT PRESENTATION


CoolEnergy.dk – March 6-7 th, 2013 – Odense, Denmark<br />

Example 3 – A/W HP in Passive Office Bldg.<br />

› <strong>Air</strong>-to-water heat pumps – base load<br />

› Cooling power 500 kW – heating power 200 kW<br />

› Indirect system design with secondary circuit<br />

› Provides either heating or cooling<br />

› 2 units, each 4 scroll compressors and 2 circuits<br />

› Expected stop-temperature approx. –15 °C<br />

› Electric heating system – peak load<br />

› Electric boiler + electric heaters in the rooms (200 W)<br />

› Computer cooling<br />

› <strong>Water</strong> chiller – max. 50 kW (50 % utilization)<br />

› District heating and GSHP – not selected<br />

› No available district heating network – expensive tubing<br />

› 60 m uncompacted material – expensive tubing for GSHP<br />

41<br />

MARCH 7TH, 2013<br />

COWI POWERPOINT PRESENTATION


CoolEnergy.dk – March 6-7 th, 2013 – Odense, Denmark<br />

Example 3 – A/W HP in Passive Office Bldg.<br />

x4<br />

x4<br />

GK Norway<br />

HP1<br />

HP2<br />

Secondary circuit – anti-freeze fluid<br />

Reversible A/W heat pump units x 2<br />

Condenser heat from<br />

water chiller, computers<br />

Electro boiler<br />

<strong>Heat</strong>ing or cooling to<br />

heating/cooling batteries<br />

42<br />

MARCH 7TH, 2013<br />

COWI POWERPOINT PRESENTATION


CoolEnergy.dk – March 6-7 th, 2013 – Odense, Denmark<br />

Example 4 – B/W HP in Low-Energy School<br />

› The building (2008)<br />

› 6600 m 2 – school and kindergarten<br />

› Solid wood construction, low-energy bldg. (74 kWh/m 2 y)<br />

› The heat pump system – bedrock as heat source<br />

› <strong>Heat</strong>ing and cooling<br />

› Space heating – radiators (60/40 °C) and floor heating<br />

› <strong>Heat</strong>ing of ventilation air (40/25 °C)<br />

› Preheating of hot water<br />

› Cooling of ventilation air (10/16 °C) – free cooling<br />

› Unit – standard R134a water chiller<br />

› Nominal heating power 132 kW<br />

› 4 scroll compressors, on/off operation<br />

› To separate refrigerant circuits<br />

› 14 energy wells á 200 metres<br />

› Peak load – district heating<br />

43<br />

MARCH 7TH, 2013<br />

COWI POWERPOINT PRESENTATION


CoolEnergy.dk – March 6-7 th, 2013 – Odense, Denmark<br />

Example 4 – B/W HP in Low-Energy School<br />

VVS Norplan AS<br />

› The entire cooling demand is covered by free cooling from the energy wells<br />

44<br />

MARCH 7TH, 2013<br />

COWI POWERPOINT PRESENTATION


CoolEnergy.dk – March 6-7 th, 2013 – Odense, Denmark<br />

B/W HP for <strong>Heat</strong>ing/Cooling – Full Flexibility<br />

Geir Eggen, COWI AS<br />

› <strong>Heat</strong> pump for peak load cooling – excess heat utilized for thermal charging<br />

45<br />

MARCH 7TH, 2013<br />

COWI POWERPOINT PRESENTATION


CoolEnergy.dk – March 6-7 th, 2013 – Odense, Denmark<br />

Example 5 – A/W HP in District <strong>Heat</strong>ing Syst.<br />

› District heating system (2012)<br />

› <strong>Heat</strong> source<br />

› Ambient air<br />

› DOT -9 °C – average air temperature 4.2 °C<br />

› <strong>Heat</strong> pump plant – heating only<br />

› Refrigerant – ammonia (R717, NH₃)<br />

› Total heating capacity 920 kW at -1 °C and 68/55 °C<br />

› Single-stage plant<br />

› 2 identical compressor/condenser units – in parallel<br />

› 75 (60) bar mono-screw compressors – slide valve and v i control<br />

› Huge oil separator<br />

› Evaporator – 4 separate air coolers, hot gas defrosting<br />

› Condenser – plate heat exchanger<br />

› Oil cooler – shell-and-tube HX for heat recovery to district heating network<br />

› Max. 75 °C outlet water temperature from the condenser at -6°C<br />

46<br />

MARCH 7TH, 2013<br />

COWI POWERPOINT PRESENTATION


CoolEnergy.dk – March 6-7 th, 2013 – Odense, Denmark<br />

Example 5 – A/W HP in District <strong>Heat</strong>ing Syst.<br />

Evaporator<br />

Evaporator<br />

Ambient air<br />

Ambient air<br />

Liquid<br />

separator<br />

Hot gas defrosting<br />

Compressor<br />

OS<br />

Condenser<br />

Compressor<br />

OS<br />

Condenser<br />

Oil cooler<br />

Oil cooler<br />

Supply<br />

District heating system<br />

Return<br />

OS = Oil Separator<br />

Norsk Kulde<br />

47<br />

MARCH 7TH, 2013<br />

COWI POWERPOINT PRESENTATION


CoolEnergy.dk – March 6-7 th, 2013 – Odense, Denmark<br />

Example 5 – A/W HP in District <strong>Heat</strong>ing Syst.<br />

Norsk Kulde<br />

› The air coolers are parallel to the main wind direction – reduces fan work<br />

› The hatches are closed during defrosting in order to minimize heat loss<br />

48<br />

MARCH 7TH, 2013<br />

COWI POWERPOINT PRESENTATION


CoolEnergy.dk – March 6-7 th, 2013 – Odense, Denmark<br />

Example 5 – A/W HP in District <strong>Heat</strong>ing Syst.<br />

Liquid separator<br />

Compressor<br />

Oil separator<br />

Condenser<br />

Oil cooler<br />

Norsk Kulde<br />

49<br />

MARCH 7TH, 2013<br />

COWI POWERPOINT PRESENTATION


CoolEnergy.dk – March 6-7 th, 2013 – Odense, Denmark<br />

<strong>Air</strong>-to-<strong>Water</strong> HPs – Comments<br />

› <strong>Air</strong>-to-water <strong>vs</strong>. brine-to-water heat pumps<br />

› Less energy saving due to lower SPF and lower energy coverage<br />

› Shorter lifetime due to large temperature variations<br />

› Lower outlet water temperature for same ”technologcial level”<br />

› Technolocial development for air-to-water HP systems<br />

› Two-stage system design<br />

› Economizer compressor design<br />

› Cascade system design<br />

› Scroll compressors witl EVI (Economized Vapour Injection)<br />

› Mono screw compressors – variable speed drive, v i control<br />

› Improved demand controlled defrosting systems<br />

› Optimized evaporator design – larger fin distance etc.<br />

› Surface treatment of evaporators ("blue/gold coating")<br />

› Improved control systems etc.<br />

50<br />

MARCH 7TH, 2013<br />

COWI POWERPOINT PRESENTATION


CoolEnergy.dk – March 6-7 th, 2013 – Odense, Denmark<br />

<strong>Water</strong>/Brine-to-<strong>Water</strong> HPs – Comments<br />

› <strong>Water</strong>/Brine-to-water <strong>vs</strong>. air-to-water heat pumps<br />

› Higher energy saving due to higher SPF and higher energy coverage<br />

› Longer lifetime due to more stabile heat source temperature<br />

› Higher outlet water temperature for the ”same technological level”<br />

› Technological development for brine-to-water HP systems<br />

› Single-stage design +high-pressure compressors, 60-65 °C water temp.<br />

› Two-stage design + high-pressure compressors, 80-90 °C water temp.<br />

› Twin-screw compressors – variable speed drive, v i control<br />

› Mono-screw compressors – variable speed drive, v i control<br />

› Evaporators with micro porous surface coating (nano technology)<br />

› Propane (R290) og ammonia (R717) units for smaller capacities<br />

› Turbulence collectors for GSHPs<br />

› New heat exchanger types, e.g. bundle collector systems<br />

› Class A variable speed pumps<br />

51<br />

MARCH 7TH, 2013<br />

COWI POWERPOINT PRESENTATION


Thank you for your attention!<br />

HEAT PUMP<br />

52<br />

MARCH 7TH, 2013<br />

COWI POWERPOINT PRESENTATION

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!