21.04.2015 Views

PhD Proposal Presentation (pdf) - Georgia Institute of Technology

PhD Proposal Presentation (pdf) - Georgia Institute of Technology

PhD Proposal Presentation (pdf) - Georgia Institute of Technology

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Outline<br />

Controlling a Passive Haptic Master During<br />

Teleoperation<br />

Ben Black<br />

George Woodruf School Mechanical Engineering<br />

<strong>Georgia</strong> <strong>Institute</strong> <strong>of</strong> <strong>Technology</strong><br />

-<br />

Committee:<br />

Dr Book (chair)<br />

Dr Falcon (National Instruments)<br />

Dr Ferri (ME)<br />

Dr Jacko (ISyE)<br />

Dr Lee (ME)<br />

Dr Ting (BME)<br />

May 2, 2006<br />

Benjamin A. Black <strong>PhD</strong> <strong>Proposal</strong> - 5.2.06 1 / 59


Outline<br />

Part I - Background & Problem Statement<br />

Part II - Preliminary Work<br />

Part III - Proposed Work<br />

Full Outline<br />

1 Introduction and<br />

Background<br />

System Introduction<br />

2 Proposed Research<br />

3 Literature Review<br />

Teleoperation<br />

Haptics<br />

Passive Haptics<br />

Other Relevant Work<br />

Link 1<br />

Workspace Boundary<br />

Joint C<br />

Link 2<br />

Joint A & B<br />

Link 4<br />

Joint E<br />

Link 3<br />

Joint D<br />

Handle & Force Sensor<br />

Benjamin A. Black <strong>PhD</strong> <strong>Proposal</strong> - 5.2.06 2 / 59


Outline<br />

Part I - Background & Problem Statement<br />

Part II - Preliminary Work<br />

Part III - Proposed Work<br />

Full Outline<br />

4 Analysis <strong>of</strong> Force Generation<br />

Preliminary Discussion<br />

On-Off Actuation<br />

Multi-Brake Actuation<br />

Discussion<br />

5 Preliminary Analysis <strong>of</strong> Force<br />

Calculation Algorithm<br />

6 Preliminary Experiments<br />

Master Hardware<br />

Slave Hardware<br />

Control S<strong>of</strong>tware<br />

Testing<br />

Benjamin A. Black <strong>PhD</strong> <strong>Proposal</strong> - 5.2.06 3 / 59


Outline<br />

Part I - Background & Problem Statement<br />

Part II - Preliminary Work<br />

Part III - Proposed Work<br />

Full Outline<br />

7 Proposed Extensions <strong>of</strong><br />

Preliminary Work<br />

Advanced Force Calculation<br />

Extension <strong>of</strong> Hardware and<br />

S<strong>of</strong>tware<br />

Human Testing<br />

8 Contributions<br />

9 Final Thoughts<br />

Acknowledgments<br />

Opportunity for Questions<br />

Benjamin A. Black <strong>PhD</strong> <strong>Proposal</strong> - 5.2.06 4 / 59


Introduction<br />

<strong>Proposal</strong><br />

Lit. Review<br />

System Introduction<br />

1 Introduction and Background<br />

System Introduction<br />

2 Proposed Research<br />

3 Literature Review<br />

Teleoperation<br />

Haptics<br />

Passive Haptics<br />

Other Relevant Work<br />

Benjamin A. Black <strong>PhD</strong> <strong>Proposal</strong> - 5.2.06 5 / 59


Introduction<br />

<strong>Proposal</strong><br />

Lit. Review<br />

System Introduction<br />

Project Background<br />

Haptics - sense <strong>of</strong> touch<br />

Human-Computer Interface<br />

Augment user-interface by providing force feedback<br />

Teleoperation<br />

Remote control - master / slave<br />

Allows an expert user to remotely operate in dangerous<br />

environments<br />

Haptic Teleoperation - remote control with force feedback<br />

Benjamin A. Black <strong>PhD</strong> <strong>Proposal</strong> - 5.2.06 6 / 59


Introduction<br />

<strong>Proposal</strong><br />

Lit. Review<br />

System Introduction<br />

Haptic Categorizations<br />

Active Haptics<br />

Most prevalent group <strong>of</strong> haptic devices<br />

Actuated via motors, linear actuators, etc<br />

Allow energy to be added to the system<br />

Possibly dangerous to user<br />

Benjamin A. Black <strong>PhD</strong> <strong>Proposal</strong> - 5.2.06 7 / 59


Introduction<br />

<strong>Proposal</strong><br />

Lit. Review<br />

System Introduction<br />

Haptic Categorizations<br />

Passive Haptics<br />

Energetically passive<br />

Energetically neutral - Cobots (Colgate)<br />

Dissipative - PTER & MR PTER (Book)<br />

Generated force can only oppose or redirect motion<br />

Benjamin A. Black <strong>PhD</strong> <strong>Proposal</strong> - 5.2.06 8 / 59


Introduction<br />

<strong>Proposal</strong><br />

Lit. Review<br />

System Introduction<br />

Motivation<br />

Why use passive haptic devices?<br />

Inherently safe!<br />

Can be low power<br />

Well-suited to guiding applications<br />

Less expensive in some cases<br />

Benjamin A. Black <strong>PhD</strong> <strong>Proposal</strong> - 5.2.06 9 / 59


Introduction<br />

<strong>Proposal</strong><br />

Lit. Review<br />

1 Introduction and Background<br />

System Introduction<br />

2 Proposed Research<br />

3 Literature Review<br />

Teleoperation<br />

Haptics<br />

Passive Haptics<br />

Other Relevant Work<br />

Benjamin A. Black <strong>PhD</strong> <strong>Proposal</strong> - 5.2.06 10 / 59


Introduction<br />

<strong>Proposal</strong><br />

Lit. Review<br />

Basic <strong>Proposal</strong><br />

Problem Goals:<br />

Explore use <strong>of</strong> passive haptic master during teleoperation<br />

Understand the human response to a passive haptic device<br />

Produce control algorithm for providing haptic feedback<br />

Test algorithm through human-user teleoperation tasks<br />

All research will extend the small field <strong>of</strong> passive haptics<br />

Benjamin A. Black <strong>PhD</strong> <strong>Proposal</strong> - 5.2.06 11 / 59


Interesting Application<br />

Introduction<br />

<strong>Proposal</strong><br />

Lit. Review<br />

Medical Haptics:<br />

Orthopedic assistance: Rossi & Boschetti<br />

Why passive haptic?<br />

Provides assistance<br />

Surgeon in complete control<br />

Benjamin A. Black <strong>PhD</strong> <strong>Proposal</strong> - 5.2.06 12 / 59


Introduction<br />

<strong>Proposal</strong><br />

Lit. Review<br />

Teleoperation<br />

Haptics<br />

Passive Haptics<br />

Other Relevant Work<br />

1 Introduction and Background<br />

System Introduction<br />

2 Proposed Research<br />

3 Literature Review<br />

Teleoperation<br />

Haptics<br />

Passive Haptics<br />

Other Relevant Work<br />

Benjamin A. Black <strong>PhD</strong> <strong>Proposal</strong> - 5.2.06 13 / 59


Introduction<br />

<strong>Proposal</strong><br />

Lit. Review<br />

Teleoperation<br />

Haptics<br />

Passive Haptics<br />

Other Relevant Work<br />

Teleoperation Research<br />

History and Applications:<br />

Father: Goertz (1954)<br />

Vertut (1976)<br />

Bejczy & Salisbury (1980)<br />

Current Interesting Applications:<br />

Space-teleoperation – Nohmi (2003)<br />

Remote surgery – Hayward (2004)<br />

Hazardous material handling – Lee & Park (2004)<br />

Etc, etc...<br />

Benjamin A. Black <strong>PhD</strong> <strong>Proposal</strong> - 5.2.06 14 / 59


Introduction<br />

<strong>Proposal</strong><br />

Lit. Review<br />

Teleoperation<br />

Haptics<br />

Passive Haptics<br />

Other Relevant Work<br />

Haptic Interfaces<br />

Beginning <strong>of</strong> popularity:<br />

Sherrick (1985)<br />

Klatzky (1987)<br />

Bajcsy & Campos (1991)<br />

Craig & Rollman (1999)<br />

Passivity:<br />

Hanneford & Ruy (2001)<br />

Lee & Li (1998)<br />

Passivity with respect to delay - wave variables<br />

Anderson & Spong (1989)<br />

Slotine & Niemeyer (1991)<br />

Extended: Ching (2005)<br />

Benjamin A. Black <strong>PhD</strong> <strong>Proposal</strong> - 5.2.06 15 / 59


Passive Haptics<br />

Introduction<br />

<strong>Proposal</strong><br />

Lit. Review<br />

Teleoperation<br />

Haptics<br />

Passive Haptics<br />

Other Relevant Work<br />

Outside <strong>Georgia</strong> Tech<br />

Cobots - Colgate et. al (1996)<br />

Sakaguchi (2001)<br />

Matsuoka (2001)<br />

Wannasuphoprasit (2002)<br />

Cho - Force Manipulability Ellipsoid (2003)<br />

Benjamin A. Black <strong>PhD</strong> <strong>Proposal</strong> - 5.2.06 16 / 59


Passive Haptics<br />

Introduction<br />

<strong>Proposal</strong><br />

Lit. Review<br />

Teleoperation<br />

Haptics<br />

Passive Haptics<br />

Other Relevant Work<br />

At <strong>Georgia</strong> Tech<br />

PTER (Passive Trajectory Enhancing Robot)<br />

Design - Charles (1997)<br />

Impedence Control - Gomes (1997)<br />

Velocity Field / Path Following - Swanson (2003)<br />

Mr PTER (Design and Control) - Reed (2003)<br />

Steerability - Gao (2005)<br />

Benjamin A. Black <strong>PhD</strong> <strong>Proposal</strong> - 5.2.06 17 / 59


Introduction<br />

<strong>Proposal</strong><br />

Lit. Review<br />

Human-Computer Interaction<br />

Teleoperation<br />

Haptics<br />

Passive Haptics<br />

Other Relevant Work<br />

Human Factors Research<br />

Fitts (1950s)<br />

Fitts’ Law - design <strong>of</strong> user interfaces<br />

behavioral response to stimuli<br />

Velocity Field / Path Following - Swanson (2003)<br />

Human Cognative Modeling<br />

Lochard and Murdock - signal detection theory (1970)<br />

Card, Morgan & Newell - Human Model Processor (1983)<br />

Anderson & Byrne - ACT Architecture (1993 / 2001)<br />

Kieras & Meyer - EPIC Architecture (1997)<br />

Benjamin A. Black <strong>PhD</strong> <strong>Proposal</strong> - 5.2.06 18 / 59


Introduction<br />

<strong>Proposal</strong><br />

Lit. Review<br />

Teleoperation<br />

Haptics<br />

Passive Haptics<br />

Other Relevant Work<br />

Further Research <strong>of</strong> Interest<br />

Wire-driven haptics:<br />

Melchiorri (1997)<br />

Haptic transparency:<br />

Sirithanapipat (2002)<br />

...<br />

Benjamin A. Black <strong>PhD</strong> <strong>Proposal</strong> - 5.2.06 19 / 59


Preliminary Analysys<br />

Analysis - Force Generation<br />

Analysis - Force Calculation<br />

Preliminary Work<br />

The analysis <strong>of</strong> use <strong>of</strong> a passive haptic device can be divided into<br />

two sections:<br />

Force generation ability<br />

the actuation scheme to produce a specified force<br />

Force calculation<br />

determination <strong>of</strong> desired force magnitude and direction<br />

Benjamin A. Black <strong>PhD</strong> <strong>Proposal</strong> - 5.2.06 20 / 59


Analysis - Force Generation<br />

Analysis - Force Calculation<br />

Preliminary Work<br />

Preliminary Discussion<br />

On-Off Actuation<br />

Multi-Brake Actuation<br />

Discussion<br />

4 Analysis <strong>of</strong> Force Generation<br />

Preliminary Discussion<br />

On-Off Actuation<br />

Multi-Brake Actuation<br />

Discussion<br />

5 Preliminary Analysis <strong>of</strong> Force Calculation Algorithm<br />

6 Preliminary Experiments<br />

Master Hardware<br />

Slave Hardware<br />

Control S<strong>of</strong>tware<br />

Testing<br />

Benjamin A. Black <strong>PhD</strong> <strong>Proposal</strong> - 5.2.06 21 / 59


Analysis - Force Generation<br />

Analysis - Force Calculation<br />

Preliminary Work<br />

Preliminary Discussion<br />

On-Off Actuation<br />

Multi-Brake Actuation<br />

Discussion<br />

Single Degree <strong>of</strong> Freedom Paths<br />

Limitations <strong>of</strong> passivity<br />

Locking a single brake<br />

constrains endpoint to single<br />

DOF path<br />

1 single DOF paths for each<br />

actuator<br />

Non-redundent actuators<br />

yield unique paths<br />

p E<br />

p B<br />

p A<br />

Benjamin A. Black <strong>PhD</strong> <strong>Proposal</strong> - 5.2.06 22 / 59


Analysis - Force Generation<br />

Analysis - Force Calculation<br />

Preliminary Work<br />

Preliminary Discussion<br />

On-Off Actuation<br />

Multi-Brake Actuation<br />

Discussion<br />

Producible Forces<br />

Each brake force is<br />

perpindicular to its single<br />

DOF path<br />

Direction <strong>of</strong> force defined by<br />

joint velocity<br />

One unique force direction<br />

for each unique actuator<br />

Generated force must be π 2<br />

radians away from ⃗v<br />

−f E<br />

−f −f A<br />

B<br />

v<br />

f A f B<br />

f E<br />

Benjamin A. Black <strong>PhD</strong> <strong>Proposal</strong> - 5.2.06 23 / 59


On-Off Actuation<br />

Analysis - Force Generation<br />

Analysis - Force Calculation<br />

Preliminary Work<br />

Preliminary Discussion<br />

On-Off Actuation<br />

Multi-Brake Actuation<br />

Discussion<br />

v<br />

f h1<br />

f A<br />

f h2<br />

f B<br />

f E<br />

Simplest actuation scheme:<br />

Only actuates a brake if<br />

|f h − v| > π 2<br />

Actuate brake to produce<br />

a force closest to f h<br />

Difference between<br />

actuated force direction<br />

and f h is θ error<br />

NOTE: f h has not yet<br />

been defined<br />

Benjamin A. Black <strong>PhD</strong> <strong>Proposal</strong> - 5.2.06 24 / 59


Analysis - Force Generation<br />

Analysis - Force Calculation<br />

Preliminary Work<br />

Preliminary Discussion<br />

On-Off Actuation<br />

Multi-Brake Actuation<br />

Discussion<br />

Multi-Brake Actuation<br />

f h1<br />

Next step in force production:<br />

v<br />

f E<br />

f A<br />

f h2<br />

f B<br />

Two zones (between two<br />

brakes & outside <strong>of</strong><br />

brakes)<br />

Given e h1 actuate brake A<br />

Given e h2 actuate brakes<br />

A & B at the same time<br />

Benjamin A. Black <strong>PhD</strong> <strong>Proposal</strong> - 5.2.06 25 / 59


Using Two Brakes<br />

f2<br />

θ2<br />

θh<br />

fh<br />

θ1<br />

f1<br />

Analysis - Force Generation<br />

Analysis - Force Calculation<br />

Preliminary Work<br />

Preliminary Discussion<br />

On-Off Actuation<br />

Multi-Brake Actuation<br />

Discussion<br />

Use Jacobian to find force vector <strong>of</strong> unit actuation:<br />

[ ] T [ ] T [ ] T fx τ1<br />

= [J<br />

f y τ 12 ] −1 τ3<br />

+ [J<br />

2 τ 34 ] −1<br />

4<br />

where 1,2,3 & 4 represent brakes A,B,C or E<br />

sequentially set one brake torque to 1 and the<br />

others to 0<br />

yields unit actuation force for each brake<br />

Match the direction <strong>of</strong> resultant force:<br />

direction(f h ) = direction(af 1 + bf 2 )<br />

f 1 & f 2 correspond to unit actuation <strong>of</strong> A,B,C or E<br />

tan(θ h ) = tan(af 1 θ 1 + bf 2 θ 2 )<br />

Solve for actuation V 1 & V 2 given a magnitude, |f h |:<br />

V 1 = a|f h|<br />

√<br />

a 2 +b 2<br />

Benjamin A. Black b|f | <strong>PhD</strong> <strong>Proposal</strong> - 5.2.06 26 / 59


Discussion<br />

Analysis - Force Generation<br />

Analysis - Force Calculation<br />

Preliminary Work<br />

Preliminary Discussion<br />

On-Off Actuation<br />

Multi-Brake Actuation<br />

Discussion<br />

Empirical values for judging haptic device:<br />

Direction:<br />

Judged by Average θ error<br />

Magnitude judged by:<br />

Producible endpoint forces<br />

NOTE: also a function <strong>of</strong> user input<br />

Benjamin A. Black <strong>PhD</strong> <strong>Proposal</strong> - 5.2.06 27 / 59


Analysis - Force Generation<br />

Analysis - Force Calculation<br />

Preliminary Work<br />

Preliminary Discussion<br />

On-Off Actuation<br />

Multi-Brake Actuation<br />

Discussion<br />

Average Angle Error (single brake actuation)<br />

e 3<br />

e 2<br />

e 1<br />

v<br />

producible forces<br />

Average over 2 unknown variables, θ v & θ h :<br />

Sum over regions:<br />

Avg (θ error ) = ∑ P (region) ∗ (AverageValue)<br />

or:<br />

Avg (θ error ) = ∑ regions<br />

∫<br />

1 θupper<br />

∫ π<br />

πRegionSize θ lower 0 θ error dθ h dθ v<br />

Benjamin A. Black <strong>PhD</strong> <strong>Proposal</strong> - 5.2.06 28 / 59


Analysis - Force Generation<br />

Analysis - Force Calculation<br />

Preliminary Work<br />

Preliminary Discussion<br />

On-Off Actuation<br />

Multi-Brake Actuation<br />

Discussion<br />

Average Angle Error (single brake actuation)<br />

e 2<br />

e 1<br />

π<br />

4<br />

θerror<br />

v<br />

e 3<br />

θ 3 θ 1 θ 2 π<br />

θ f<br />

For MRPTER:<br />

Avg (θ error ) = 2(θ2 3 +(π−θ 2) 2 )+((θ 1 −θ 3 ) 2 +(θ 2 −theta 1 ) 2 )<br />

4π<br />

Benjamin A. Black <strong>PhD</strong> <strong>Proposal</strong> - 5.2.06 29 / 59


Analysis - Force Generation<br />

Analysis - Force Calculation<br />

Preliminary Work<br />

Preliminary Discussion<br />

On-Off Actuation<br />

Multi-Brake Actuation<br />

Discussion<br />

Average Angle Error (single brake actuation)<br />

e 2<br />

e 1<br />

e 2<br />

e 1<br />

π<br />

4<br />

π<br />

4<br />

v<br />

θerror<br />

v<br />

v<br />

e 2<br />

e 3<br />

θerror<br />

e 3<br />

θ 3 θ 1 e 3<br />

θ 2 π<br />

θ f<br />

θ 3<br />

Benjamin A. Black <strong>PhD</strong> <strong>Proposal</strong> - 5.2.06 30 / 59


Analysis - Force Generation<br />

Analysis - Force Calculation<br />

Preliminary Work<br />

Preliminary Discussion<br />

On-Off Actuation<br />

Multi-Brake Actuation<br />

Discussion<br />

Average Angle Error (multi brake actuation)<br />

e 2<br />

e 1<br />

π<br />

4<br />

v<br />

e 3<br />

θ 3<br />

θ 1 θ2<br />

θ f<br />

π<br />

Benjamin A. Black <strong>PhD</strong> <strong>Proposal</strong> - 5.2.06 31 / 59


Analysis - Force Generation<br />

Analysis - Force Calculation<br />

Preliminary Work<br />

Preliminary Discussion<br />

On-Off Actuation<br />

Multi-Brake Actuation<br />

Discussion<br />

Average θ error for single brake<br />

actuation<br />

Average θ error for multi-brake<br />

actuation<br />

Benjamin A. Black <strong>PhD</strong> <strong>Proposal</strong> - 5.2.06 32 / 59


Force Output<br />

Analysis - Force Generation<br />

Analysis - Force Calculation<br />

Preliminary Work<br />

Preliminary Discussion<br />

On-Off Actuation<br />

Multi-Brake Actuation<br />

Discussion<br />

Maximum Force Output Defined by Using Maximum Brake Torque<br />

F Amax or F Bmax<br />

F Emax<br />

Benjamin A. Black <strong>PhD</strong> <strong>Proposal</strong> - 5.2.06 33 / 59


Analysis - Force Generation<br />

Analysis - Force Calculation<br />

Preliminary Work<br />

4 Analysis <strong>of</strong> Force Generation<br />

Preliminary Discussion<br />

On-Off Actuation<br />

Multi-Brake Actuation<br />

Discussion<br />

5 Preliminary Analysis <strong>of</strong> Force Calculation Algorithm<br />

6 Preliminary Experiments<br />

Master Hardware<br />

Slave Hardware<br />

Control S<strong>of</strong>tware<br />

Testing<br />

Benjamin A. Black <strong>PhD</strong> <strong>Proposal</strong> - 5.2.06 34 / 59


Analysis - Force Generation<br />

Analysis - Force Calculation<br />

Preliminary Work<br />

Force Determination - teleoperation<br />

Determination <strong>of</strong> force to be displayed to user, f h<br />

Classic teleoperation:<br />

Virtual coupling<br />

Force based on difference in master & slave position<br />

Drawbacks for passive systems:<br />

Blind to human user input<br />

Overshoot error without damping term<br />

|ˆp s − ˆp m |<br />

ˆp m<br />

K<br />

Virtual Coupling<br />

ˆp s<br />

Benjamin A. Black <strong>PhD</strong> <strong>Proposal</strong> - 5.2.06 35 / 59


Analysis - Force Generation<br />

Analysis - Force Calculation<br />

Preliminary Work<br />

Force Determination - passive haptics<br />

Determination <strong>of</strong> force to be displayed to user, f h<br />

Typical for passive haptic devices:<br />

Steerability<br />

Velocity Field control<br />

Drawbacks for teleoperation<br />

Focused on controlling velocity direction<br />

Require knowledge <strong>of</strong> slave environment<br />

Benjamin A. Black <strong>PhD</strong> <strong>Proposal</strong> - 5.2.06 36 / 59


Analysis - Force Generation<br />

Analysis - Force Calculation<br />

Preliminary Work<br />

Master Hardware<br />

Slave Hardware<br />

Control S<strong>of</strong>tware<br />

Testing<br />

4 Analysis <strong>of</strong> Force Generation<br />

Preliminary Discussion<br />

On-Off Actuation<br />

Multi-Brake Actuation<br />

Discussion<br />

5 Preliminary Analysis <strong>of</strong> Force Calculation Algorithm<br />

6 Preliminary Experiments<br />

Master Hardware<br />

Slave Hardware<br />

Control S<strong>of</strong>tware<br />

Testing<br />

Benjamin A. Black <strong>PhD</strong> <strong>Proposal</strong> - 5.2.06 37 / 59


Analysis - Force Generation<br />

Analysis - Force Calculation<br />

Preliminary Work<br />

System-Level Overview<br />

Master Hardware<br />

Slave Hardware<br />

Control S<strong>of</strong>tware<br />

Testing<br />

human<br />

operator<br />

force input<br />

force feedback<br />

haptic<br />

master<br />

sensor data<br />

brake actuation<br />

NI PXI<br />

controller<br />

#1<br />

master position<br />

UDP communication<br />

slave position<br />

NI PXI<br />

controller<br />

#2<br />

motor actuation<br />

slave position<br />

slave<br />

device<br />

4-Part system<br />

Human & Master<br />

Master control system<br />

Slave control system<br />

Slave device<br />

Benjamin A. Black <strong>PhD</strong> <strong>Proposal</strong> - 5.2.06 38 / 59


Analysis - Force Generation<br />

Analysis - Force Calculation<br />

Preliminary Work<br />

Master Hardware<br />

Slave Hardware<br />

Control S<strong>of</strong>tware<br />

Testing<br />

MR PTER - Haptic Master<br />

Developed by Reed & Book<br />

Based on PTER by Charles,<br />

Swanson & Book<br />

Reconfigurable 4 or 5-Link<br />

manipulator<br />

Actuated by 3 or 4<br />

magneto-rheological brakes<br />

Link 1<br />

Joint C<br />

θ B<br />

θ A<br />

Joint A & B<br />

Link 4<br />

Joint E<br />

Controlled by National<br />

Instruments PXI hardware<br />

& LabVIEW s<strong>of</strong>tware<br />

NOTE: not originally<br />

running in Real-Time<br />

Link 2<br />

Workspace Boundary<br />

Link 3<br />

Joint D – handle<br />

Benjamin A. Black <strong>PhD</strong> <strong>Proposal</strong> - 5.2.06 39 / 59


Analysis - Force Generation<br />

Analysis - Force Calculation<br />

Preliminary Work<br />

Master Hardware<br />

Slave Hardware<br />

Control S<strong>of</strong>tware<br />

Testing<br />

Slave Device<br />

“Current” slave device:<br />

Linear motor – 1-DOF device<br />

Controlled using LabVIEW & PXI hardware<br />

Creates situation similar to previous path following research<br />

Benjamin A. Black <strong>PhD</strong> <strong>Proposal</strong> - 5.2.06 40 / 59


Analysis - Force Generation<br />

Analysis - Force Calculation<br />

Preliminary Work<br />

Master Hardware<br />

Slave Hardware<br />

Control S<strong>of</strong>tware<br />

Testing<br />

Slave Device<br />

“Future” slave device:<br />

HURBIRT<br />

2-DOF system<br />

Controlled through LabVIEW & PXI system<br />

Kinematically similar to MR PTER<br />

Allows for more realistic teleoperation scenario<br />

Benjamin A. Black <strong>PhD</strong> <strong>Proposal</strong> - 5.2.06 41 / 59


Analysis - Force Generation<br />

Analysis - Force Calculation<br />

Preliminary Work<br />

Pure Teleoperation Video<br />

Master Hardware<br />

Slave Hardware<br />

Control S<strong>of</strong>tware<br />

Testing<br />

play stop launch<br />

Benjamin A. Black <strong>PhD</strong> <strong>Proposal</strong> - 5.2.06 42 / 59


Analysis - Force Generation<br />

Analysis - Force Calculation<br />

Preliminary Work<br />

Master Hardware<br />

Slave Hardware<br />

Control S<strong>of</strong>tware<br />

Testing<br />

S<strong>of</strong>tware for Experiment<br />

LabVIEW &<br />

LabVIEW Real Time<br />

Textural & graphical<br />

programming<br />

Concurrent loops<br />

running at different<br />

speeds and priorities<br />

Internet-based<br />

communication<br />

Benjamin A. Black <strong>PhD</strong> <strong>Proposal</strong> - 5.2.06 43 / 59


Analysis - Force Generation<br />

Analysis - Force Calculation<br />

Preliminary Work<br />

Master Hardware<br />

Slave Hardware<br />

Control S<strong>of</strong>tware<br />

Testing<br />

First Experiment<br />

Simulated human input<br />

Constant force provided<br />

by weight attached to<br />

handle via string<br />

Experiment designed to<br />

test a large portion <strong>of</strong><br />

workspace<br />

Benjamin A. Black <strong>PhD</strong> <strong>Proposal</strong> - 5.2.06 44 / 59


Video<br />

Analysis - Force Generation<br />

Analysis - Force Calculation<br />

Preliminary Work<br />

Master Hardware<br />

Slave Hardware<br />

Control S<strong>of</strong>tware<br />

Testing<br />

play stop launch<br />

Benjamin A. Black <strong>PhD</strong> <strong>Proposal</strong> - 5.2.06 45 / 59


Analysis - Force Generation<br />

Analysis - Force Calculation<br />

Preliminary Work<br />

Master Hardware<br />

Slave Hardware<br />

Control S<strong>of</strong>tware<br />

Testing<br />

Experimental Results – first experiment<br />

Control Position<br />

Difference<br />

Angle<br />

Error<br />

Total Time Unfinished<br />

Trials<br />

None 17.91% N/A 1.46 sec 0/18<br />

On-Off 2.26% 0.6 rad 16.53 sec 9/18<br />

From these results:<br />

ENACTIVE conference paper (November 2005)<br />

SYROCO conference paper (September 2006)<br />

Benjamin A. Black <strong>PhD</strong> <strong>Proposal</strong> - 5.2.06 46 / 59


Analysis - Force Generation<br />

Analysis - Force Calculation<br />

Preliminary Work<br />

Master Hardware<br />

Slave Hardware<br />

Control S<strong>of</strong>tware<br />

Testing<br />

Introduction <strong>of</strong> CRS Testing Mechanism<br />

Problems with past testbeds:<br />

Non-Repeatability <strong>of</strong> informal test<br />

Non-Reality <strong>of</strong> first test<br />

Current Solution<br />

Use CRS 6-R robot to simulate human input<br />

Apply sinusoidal path <strong>of</strong> CRS robot applied changing p m<br />

Implement flexible coupling designed by Carwyn Jones<br />

Benjamin A. Black <strong>PhD</strong> <strong>Proposal</strong> - 5.2.06 47 / 59


Benjamin A. Black<br />

Step 1 - rigid connection<br />

CRS overpowered MR<br />

PTER<br />

control made no<br />

impact<br />

Step 2 - flexible rod<br />

single flexible rod<br />

produced reasonable<br />

results<br />

Step 3 - dynamic “mit”<br />

3-member spring /<br />

<strong>PhD</strong> <strong>Proposal</strong> damper - 5.2.06 system<br />

48 / 59<br />

Analysis - Force Generation<br />

Analysis - Force Calculation<br />

Preliminary Work<br />

Master Hardware<br />

Slave Hardware<br />

Control S<strong>of</strong>tware<br />

Testing<br />

CRS Interface - thanks to Carwyn Jones / Matt Litman


Extensions<br />

Contributions<br />

Wrap-up<br />

Advanced Force Calculation<br />

Extension <strong>of</strong> Hardware and S<strong>of</strong>tware<br />

Human Testing<br />

7 Proposed Extensions <strong>of</strong> Preliminary Work<br />

Advanced Force Calculation<br />

Extension <strong>of</strong> Hardware and S<strong>of</strong>tware<br />

Human Testing<br />

8 Contributions<br />

9 Final Thoughts<br />

Acknowledgments<br />

Opportunity for Questions<br />

Benjamin A. Black <strong>PhD</strong> <strong>Proposal</strong> - 5.2.06 49 / 59


Extensions<br />

Contributions<br />

Wrap-up<br />

Advanced Force Calculation<br />

Extension <strong>of</strong> Hardware and S<strong>of</strong>tware<br />

Human Testing<br />

Extensions<br />

Work over the next 12 months:<br />

Early human testing<br />

Advanced force calculation<br />

Extensions <strong>of</strong> hardware and s<strong>of</strong>tware<br />

Analysis <strong>of</strong> force generation<br />

Human testing<br />

Benjamin A. Black <strong>PhD</strong> <strong>Proposal</strong> - 5.2.06 50 / 59


Extensions<br />

Contributions<br />

Wrap-up<br />

Advanced Force Calculation<br />

Extension <strong>of</strong> Hardware and S<strong>of</strong>tware<br />

Human Testing<br />

Intermediate Testing<br />

Explore human resolution <strong>of</strong> force<br />

Compare virtual spring to actual spring<br />

Look at force generation <strong>of</strong> passive haptic device<br />

Attempt to understand resolution <strong>of</strong> force direction and<br />

magnitude<br />

Results to be published as ASME IMECE conference paper<br />

Point 3<br />

Point 1 Point 2 Point 4<br />

Point 5<br />

K<br />

Benjamin A. Black <strong>PhD</strong> <strong>Proposal</strong> - 5.2.06 51 / 59


Extensions<br />

Contributions<br />

Wrap-up<br />

Advanced Force Calculation<br />

Extension <strong>of</strong> Hardware and S<strong>of</strong>tware<br />

Human Testing<br />

Force Calculation<br />

Divide haptic force into two parts:<br />

f h = f dynamic + f coupling<br />

Take dynamic forces into account when displaying force<br />

Improve transparency<br />

Expand coupling force, possible thoughts<br />

Include damping term<br />

Use slave velocity as path predictor<br />

Benjamin A. Black <strong>PhD</strong> <strong>Proposal</strong> - 5.2.06 52 / 59


Extensions<br />

Contributions<br />

Wrap-up<br />

Advanced Force Calculation<br />

Extension <strong>of</strong> Hardware and S<strong>of</strong>tware<br />

Human Testing<br />

Upgrades to Hardware and S<strong>of</strong>tware<br />

Upgrade the hardware and s<strong>of</strong>tware <strong>of</strong> the testbed, including:<br />

Extend to 2-DOF slave device<br />

Migrate control to a Real-Time operating system<br />

Upgrade and optimize control s<strong>of</strong>tware for speed - 500Hz<br />

Verify National Instruments communication algorithms<br />

Benjamin A. Black <strong>PhD</strong> <strong>Proposal</strong> - 5.2.06 53 / 59


Extensions<br />

Contributions<br />

Wrap-up<br />

Advanced Force Calculation<br />

Extension <strong>of</strong> Hardware and S<strong>of</strong>tware<br />

Human Testing<br />

Human Testing (for fine tuning controller)<br />

Possible details (VERY open for discussion):<br />

Realistic teleoperation task<br />

Multiple phases<br />

Early: preliminary test to influence control design<br />

Late: finalize discussion about control algorithms<br />

Late testing in two steps:<br />

Step 1: Compare 3-4 control algorithms<br />

Step 2: Refine gains and discuss aplication to specific tasks<br />

Benjamin A. Black <strong>PhD</strong> <strong>Proposal</strong> - 5.2.06 54 / 59


Extensions<br />

Contributions<br />

Wrap-up<br />

Advanced Force Calculation<br />

Extension <strong>of</strong> Hardware and S<strong>of</strong>tware<br />

Human Testing<br />

Proposed Teleoperation Experiment<br />

Experiment designed to simulate tool task:<br />

Use MR PTER to control HURBIRT<br />

Place ”obstacle” in HURBIRT workspace<br />

Move tool from point A to point B<br />

Judge based on:<br />

speed <strong>of</strong> completion<br />

penetration into obstacle<br />

user workload (NASA-TLX)<br />

Benjamin A. Black <strong>PhD</strong> <strong>Proposal</strong> - 5.2.06 55 / 59


Extensions<br />

Contributions<br />

Wrap-up<br />

7 Proposed Extensions <strong>of</strong> Preliminary Work<br />

Advanced Force Calculation<br />

Extension <strong>of</strong> Hardware and S<strong>of</strong>tware<br />

Human Testing<br />

8 Contributions<br />

9 Final Thoughts<br />

Acknowledgments<br />

Opportunity for Questions<br />

Benjamin A. Black <strong>PhD</strong> <strong>Proposal</strong> - 5.2.06 56 / 59


Extensions<br />

Contributions<br />

Wrap-up<br />

Contributions<br />

Specific tools for comparing passive haptic devices<br />

Determination <strong>of</strong> passive force resolution by a user<br />

Identification <strong>of</strong> meaningful performance factors<br />

Quantification <strong>of</strong> performance factors<br />

Comparisons between different dissipative devices<br />

An algorithm for haptic feedback with a passive device<br />

Definition <strong>of</strong> useful passive haptic feedback<br />

Possible extension <strong>of</strong> Pahl & Beitz method to haptic control<br />

Verified control algorithm<br />

Combination <strong>of</strong> above to produce working feedback algorithm<br />

Verification <strong>of</strong> the haptic device’s force production<br />

Verification <strong>of</strong> the algorithm through human-user experiments<br />

Benjamin A. Black <strong>PhD</strong> <strong>Proposal</strong> - 5.2.06 57 / 59


Extensions<br />

Contributions<br />

Wrap-up<br />

Acknowledgments<br />

Opportunity for Questions<br />

I would like to thank...<br />

I appreciate the flexibility and input <strong>of</strong> my committee members and<br />

my advisor, Dr Book. Special thanks go to JD Huggins for his<br />

assistance with hardware and to Carwyn Jones for his extensions to<br />

my research.<br />

The work proposed here operates primarialy under a grant from<br />

the Academic Relations division <strong>of</strong> National Instruments whose<br />

support includes hardware, s<strong>of</strong>tware and funding. In that, special<br />

thanks go to Dr. Jeannie Falcon, Morten Jensen, and Andy Deck<br />

for their support in the early stages <strong>of</strong> the project as well as their<br />

continued support throughout the process.<br />

Finally, I would like to thank my wife Amanda.<br />

Benjamin A. Black <strong>PhD</strong> <strong>Proposal</strong> - 5.2.06 58 / 59


Extensions<br />

Contributions<br />

Wrap-up<br />

Acknowledgments<br />

Opportunity for Questions<br />

Any Questions?<br />

Benjamin A. Black <strong>PhD</strong> <strong>Proposal</strong> - 5.2.06 59 / 59

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!