07.05.2015 Views

IMS Magazine - Summer 2012 edition in PDF format - Institute of ...

IMS Magazine - Summer 2012 edition in PDF format - Institute of ...

IMS Magazine - Summer 2012 edition in PDF format - Institute of ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

FEATURE<br />

Epigenomics<br />

Beyond Genomic Sequenc<strong>in</strong>g<br />

Darci Butcher, PhD, Postdoctoral<br />

Fellow<br />

Program <strong>in</strong> Genetics and Genome Biology,<br />

Hospital for Sick Children<br />

Rosanna Weksberg, MD, PhD<br />

Staff Physician, Cl<strong>in</strong>ical and Metabolic<br />

Genetics<br />

Co-Director and Staff Geneticist, Cancer<br />

Genetics Program<br />

The Hospital for Sick Children<br />

Pr<strong>of</strong>essor,<br />

Molecular and Medical Genetics<br />

University <strong>of</strong> Toronto<br />

Genome sequenc<strong>in</strong>g <strong>in</strong>itiatives<br />

have been unable to identify the<br />

genetic causes or phenotypic modulators<br />

<strong>of</strong> many <strong>of</strong> disorders seen <strong>in</strong> cl<strong>in</strong>ical<br />

medic<strong>in</strong>e. Layered on top <strong>of</strong> the DNA<br />

sequence is epigenetic <strong>in</strong><strong>format</strong>ion, def<strong>in</strong>ed<br />

as a “stably heritable phenotype result<strong>in</strong>g<br />

from changes <strong>in</strong> a chromosome without alterations<br />

<strong>in</strong> the DNA sequence” 1 . Identify<strong>in</strong>g<br />

the epigenetic marks and characteriz<strong>in</strong>g how<br />

they are read to regulate the expression <strong>of</strong> the<br />

primary genomic sequence is necessary for<br />

our understand<strong>in</strong>g <strong>of</strong> human development<br />

and disease. Multiple epigenetic mechanisms<br />

<strong>in</strong>clud<strong>in</strong>g DNA methylation at cytos<strong>in</strong>e<br />

residues <strong>in</strong> CpG d<strong>in</strong>ucleotides, covalent<br />

modifications <strong>of</strong> histone prote<strong>in</strong>s, regulatory<br />

non-cod<strong>in</strong>g RNAs, <strong>in</strong>clud<strong>in</strong>g small <strong>in</strong>terfer<strong>in</strong>g<br />

RNA (siRNA), microRNAs (miRNAs)<br />

and long non-cod<strong>in</strong>g RNAs (lncRNAs) participate<br />

<strong>in</strong> regulat<strong>in</strong>g gene expression and<br />

chromat<strong>in</strong> architecture. Disruption <strong>of</strong> these<br />

mechanisms is associated with a variety <strong>of</strong><br />

diseases with behavioural, endocr<strong>in</strong>e or neurologic<br />

manifestations and disorders <strong>of</strong> tissue<br />

growth, <strong>in</strong>clud<strong>in</strong>g cancer. The <strong>in</strong>volvement <strong>of</strong><br />

epigenetic alterations <strong>in</strong> many diseases has<br />

been known for some time, but only recently<br />

has it begun to be useful for cl<strong>in</strong>ical practice<br />

to diagnose and monitor disease progression.<br />

In the Weksberg laboratory we determ<strong>in</strong>e<br />

genome-wide differential DNA methylation,<br />

gene expression and histone modifications<br />

for a number <strong>of</strong> disorders that have known<br />

or suspected aberrations <strong>in</strong> their epigenomic<br />

patterns. Many <strong>of</strong> these projects are collaborative<br />

efforts between the research laboratory<br />

and cl<strong>in</strong>icians at the Hospital for Sick<br />

Children and around the world. We are identify<strong>in</strong>g<br />

genes and pathways that have altered<br />

DNA methylation to determ<strong>in</strong>e their contribution<br />

to the overall disease phenotype. The<br />

projects <strong>in</strong> the laboratory can be separated<br />

<strong>in</strong>to those related to growth, <strong>in</strong>clud<strong>in</strong>g genomic<br />

impr<strong>in</strong>t<strong>in</strong>g and <strong>in</strong>trauter<strong>in</strong>e growth<br />

restriction and those related to neurodevelopment<br />

<strong>in</strong>clud<strong>in</strong>g autism spectrum disorders<br />

(ASD) and other paediatric neuropsychiatric<br />

disorders.<br />

A number <strong>of</strong> disorders are caused by aberrant<br />

genomic impr<strong>in</strong>t<strong>in</strong>g result<strong>in</strong>g from unequal<br />

contributions <strong>of</strong> maternal and paternal<br />

alleles to the <strong>of</strong>fspr<strong>in</strong>g 2 . Impr<strong>in</strong>ted genes<br />

typically function <strong>in</strong> growth regulation and<br />

neurodevelopment, and the correspond<strong>in</strong>g<br />

disease phenotypes are due to genetic or epigenetic<br />

aberrations <strong>in</strong> these genes <strong>of</strong>ten result<br />

<strong>in</strong> abnormalities <strong>of</strong> <strong>in</strong>trauter<strong>in</strong>e growth<br />

or post-natal cognition and behavior. These<br />

disorders <strong>in</strong>clude Beckwith-Wiedemann<br />

(BWS), Silver-Russell (SRS), Prader-Willi<br />

(PWS) and Angelman syndromes (AS).<br />

The molecular and epigenetic causes <strong>of</strong><br />

Beckwith-Wiedemann syndrome have been<br />

studied <strong>in</strong> depth <strong>in</strong> the Weksberg laboratory 3 .<br />

This disorder is a rare, <strong>of</strong>ten sporadic, heterogeneous<br />

congenital overgrowth disorder<br />

which has many features <strong>in</strong>clud<strong>in</strong>g somatic<br />

overgrowth, large tongue, abdom<strong>in</strong>al wall<br />

defects, ear creases and pits, kidney mal<strong>format</strong>ions<br />

and neonatal hypoglycemia, as well<br />

as <strong>in</strong> <strong>in</strong>creased risk <strong>of</strong> embryonal tumours.<br />

BWS is caused by epigenomic and/or genomic<br />

alterations <strong>in</strong> the impr<strong>in</strong>ted gene clusters<br />

on chromosome band 11p15.5 4 can be subdivided<br />

<strong>in</strong>to two dist<strong>in</strong>ct impr<strong>in</strong>ted doma<strong>in</strong>s.<br />

Most cases <strong>of</strong> BWS are due to epigenetic lesions:<br />

either a ga<strong>in</strong> <strong>of</strong> CpG methylation at an<br />

impr<strong>in</strong>t<strong>in</strong>g control region on the maternal allele<br />

<strong>of</strong> the H19 upstream differentially methylation<br />

region (DMR), which silences H19<br />

and activates expression <strong>of</strong> the growth promot<strong>in</strong>g<br />

gene <strong>in</strong>sul<strong>in</strong> growth factor 2 (IGF2),<br />

or a loss <strong>of</strong> methylation at another impr<strong>in</strong>t<strong>in</strong>g<br />

control region <strong>of</strong> the KCNQ1<strong>in</strong>tronic DMR,<br />

which silences the growth suppressor gene<br />

CDKN1C plus several nearby maternally expressed<br />

genes. Identify<strong>in</strong>g specific molecular<br />

defects <strong>in</strong> impr<strong>in</strong>t<strong>in</strong>g disorders provides im-<br />

Photos by Brett Jones<br />

21 | <strong>IMS</strong> MAGAZINE SUMMER <strong>2012</strong> GENOMIC MEDICINE

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!