11.07.2015 Views

Measurement and correction of coupling in BEPC

Measurement and correction of coupling in BEPC

Measurement and correction of coupling in BEPC

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

CPC(HEP & NP), 2011, 35(12): 1143–1147 Ch<strong>in</strong>ese Physics C Vol. 35, No. 12, Dec., 2011<strong>Measurement</strong> <strong>and</strong> <strong>correction</strong> <strong>of</strong> <strong>coupl<strong>in</strong>g</strong> <strong>in</strong> <strong>BEPC</strong> *ZHANG Yuan() 1) YU Cheng-Hui() JI Da-Heng()XU Gang() WEI Yuan-Yuan() QIN Q<strong>in</strong>g()Institute <strong>of</strong> High Energy Physics, Ch<strong>in</strong>ese Academy <strong>of</strong> Sciences, Beij<strong>in</strong>g 100049, Ch<strong>in</strong>aAbstract: The exist<strong>in</strong>g l<strong>in</strong>ear <strong>coupl<strong>in</strong>g</strong> theory <strong>and</strong> representation method are <strong>in</strong>troduced briefly. The socalledlocal <strong>and</strong> global <strong>coupl<strong>in</strong>g</strong> is discussed <strong>in</strong> more detail. The vertical orbit distortion excited by a horizontalcorrector is represented with the <strong>coupl<strong>in</strong>g</strong> parameters at the corrector <strong>and</strong> the observation po<strong>in</strong>t. The formulais used to measure the <strong>coupl<strong>in</strong>g</strong> <strong>in</strong> <strong>BEPC</strong>. In order to correct the <strong>coupl<strong>in</strong>g</strong>, vertical correctors are used tochange the vertical orbit through sextupoles by a least square method. We also <strong>in</strong>troduce <strong>and</strong> review otherfrequently used <strong>coupl<strong>in</strong>g</strong> measurement/tun<strong>in</strong>g methods used <strong>in</strong> our mach<strong>in</strong>e.Key words:<strong>BEPC</strong>, <strong>coupl<strong>in</strong>g</strong>, lum<strong>in</strong>osity optimizationPACS: 29.20.db DOI: 10.1088/1674-1137/35/12/0121 IntroductionQuadrupole alignment errors <strong>and</strong> the non-zeroclosed orbit <strong>in</strong> the sextupoles will <strong>in</strong>troduce <strong>coupl<strong>in</strong>g</strong>between horizontal <strong>and</strong> vertical directions <strong>in</strong> a storager<strong>in</strong>g. The detector solenoid <strong>in</strong> a collider can also leadto very strong <strong>coupl<strong>in</strong>g</strong>. The solenoid field compensationis a very important problem to be considereddur<strong>in</strong>g the design process, s<strong>in</strong>ce transverse betatron<strong>coupl<strong>in</strong>g</strong> can impact the mach<strong>in</strong>e performance <strong>of</strong> acollider seriously.The <strong>coupl<strong>in</strong>g</strong> “contributes” to the lum<strong>in</strong>osity bylocal <strong>coupl<strong>in</strong>g</strong> at the IP <strong>and</strong> global <strong>coupl<strong>in</strong>g</strong>. The fourlocal <strong>coupl<strong>in</strong>g</strong> parameters can be represented by theEdwards-Teng-Bill<strong>in</strong>g parameters [1, 2]. Global <strong>coupl<strong>in</strong>g</strong>is <strong>of</strong>ten called emittance <strong>coupl<strong>in</strong>g</strong> ɛ y /ɛ x . In factthe vertical emittance comes not only from the betatron<strong>coupl<strong>in</strong>g</strong> but also from the vertical dispersion <strong>in</strong>an electron circular mach<strong>in</strong>e where the impact <strong>of</strong> radiationcannot be ignored. That is to say we need tom<strong>in</strong>imize the local <strong>coupl<strong>in</strong>g</strong> parameters <strong>and</strong> verticaldispersion along the r<strong>in</strong>g <strong>in</strong> order to reduce the verticalemittance. It is much more important to reducethe vertical dispersion <strong>in</strong> a low emittance mach<strong>in</strong>esuch as the ILC/SuperB damp<strong>in</strong>g r<strong>in</strong>g [3, 4].It would be ideal if we could tune local <strong>and</strong> global<strong>coupl<strong>in</strong>g</strong> <strong>in</strong>dependently. However, the <strong>BEPC</strong> storager<strong>in</strong>g is very compact <strong>and</strong> there is no space to <strong>in</strong>stallmagnets which could serve as the knobs. Thereare 4 skew quadrupoles <strong>in</strong> total <strong>in</strong> each r<strong>in</strong>g, wheredispersion is nearly zero. It seems that we cannottune the local <strong>coupl<strong>in</strong>g</strong>, the dispersion at the IP <strong>and</strong>the vertical emission separately. That is to say, themach<strong>in</strong>e tun<strong>in</strong>g is much more difficult.In the follow<strong>in</strong>g, we first <strong>in</strong>troduce the normalmode analysis <strong>of</strong> a 4D one-turn map <strong>and</strong> present thevertical closed orbit distortion excited by the horizontalcorrector <strong>in</strong> a coupled mach<strong>in</strong>e. Then we obta<strong>in</strong>the local <strong>coupl<strong>in</strong>g</strong> parameters along the r<strong>in</strong>g bymeasur<strong>in</strong>g the horizontal/vertical orbit distortion excitedby the horizontal dipoles. The local <strong>coupl<strong>in</strong>g</strong>parameters can also be obta<strong>in</strong>ed us<strong>in</strong>g a turn-by-turnbeam position monitor. S<strong>in</strong>ce the number <strong>of</strong> LiberaBPM [5] is very limited <strong>and</strong> the data are not well calibrated,so far we can not compare the results fromthe two methods. The familiar global <strong>coupl<strong>in</strong>g</strong> formula<strong>and</strong> measurement method are also <strong>in</strong>troduced<strong>and</strong> discussed. The frequently used measurement <strong>and</strong><strong>correction</strong> methods dur<strong>in</strong>g mach<strong>in</strong>e tun<strong>in</strong>g <strong>in</strong> dailyoperation are <strong>in</strong>troduced <strong>in</strong> the last part <strong>of</strong> the paper.2 Theory <strong>and</strong> simulation2.1 Local <strong>coupl<strong>in</strong>g</strong>We follow the parametrization <strong>of</strong> <strong>coupl<strong>in</strong>g</strong> <strong>in</strong>Received 24 February 2011* Supported by National Natural Science Foundation <strong>of</strong> Ch<strong>in</strong>a (10805051, 10725525)1) E-mail: zhangy@ihep.ac.cn©2011 Ch<strong>in</strong>ese Physical Society <strong>and</strong> the Institute <strong>of</strong> High Energy Physics <strong>of</strong> the Ch<strong>in</strong>ese Academy <strong>of</strong> Sciences <strong>and</strong> the Institute<strong>of</strong> Modern Physics <strong>of</strong> the Ch<strong>in</strong>ese Academy <strong>of</strong> Sciences <strong>and</strong> IOP Publish<strong>in</strong>g Ltd


1144 Ch<strong>in</strong>ese Physics C (HEP & NP) Vol. 35Refs. [1, 2, 6]. The one-turn transfer matrix <strong>of</strong> 4Dphase space vector x = (x,x ′ ,y,y ′ ) is represented byT , written <strong>in</strong> terms <strong>of</strong> 2×2 submatrices,( )M mT = = V UV −1 , (1)n Nwhere( ) ( )A 0γI CU = ;V =; γ 2 +|C| = 1, (2)0 B −C + γIA is a 2×2 normal mode transfer matrix, which canbe represented by Courant-Snyder parameters,( )cos2πνA +α A s<strong>in</strong>2πν A β A s<strong>in</strong>2πν AA=.−γ A s<strong>in</strong>2πν A cos2πν a −α A s<strong>in</strong>2πν A(3)It is similar for B. The symplectic conjugate is( )C22 −CC + 12=. (4)−C 21 C 11In a weak <strong>coupl<strong>in</strong>g</strong> mach<strong>in</strong>e, mode A/B is similar tohorizontal/vertical oscillation, respectively. ν A /ν B isthe so-called horizontal/vertical tune. The one-turncoupled transfer matrix can be rewritten <strong>in</strong> the follow<strong>in</strong>gformT = G −1 ¯V Ū ¯V −1 G, (5)G is the Courant-Snyder transformation matrix,( ) ( √ )GA 01/ βu 0G = ; G u =0 G B α u / √ √ , (6)β u βu¯V = GV G −1 =(Ū = GUG −1 =γI−G B C + G −1A)G A CG −1BγI( )γI ¯C=− ¯C, (7)+ γI(R(2πνA ) 00 R(2πν B )), (8)where R is the rotation matrix.We restrict ourselves to a weak <strong>coupl<strong>in</strong>g</strong> mach<strong>in</strong>e,which is true <strong>in</strong> most cases. Then γ ≈ 1 along ther<strong>in</strong>g is a good approximation. The exception maybe <strong>in</strong> the IR region, where the detector solenoid <strong>and</strong>anti-solid field is very strong. When a horizontal correctorprovides a deflection θ x , the horizontal orbitdisplacement is∆x cod =θ x2s<strong>in</strong>πν x√βb,x β c,x cos(∆φ x −πν x ), (9)where ∆φ x is the horizontal betatron phase advancefrom the corrector to the observation po<strong>in</strong>t, β b /β c isthe beta function at the BPM <strong>and</strong> the corrector, respectively.The deflection <strong>in</strong> the horizontal direction wouldalso lead to a vertical orbit displacement along ther<strong>in</strong>g due to the transverse <strong>coupl<strong>in</strong>g</strong>. The vertical displacementcomes from two parts,1) the local <strong>coupl<strong>in</strong>g</strong> at BPMθ x√∆y cod,1 =− βc,x β b,y ¯Cb,22 cos(∆φ x −πν x )2s<strong>in</strong>πν xθ x√− βc,x β b,y ¯Cb,12 s<strong>in</strong>(∆φ x −πν x ).2s<strong>in</strong>πν x(10)We can notice that the first term on the right-h<strong>and</strong>side may come from the tilt error <strong>of</strong> the BPM, s<strong>in</strong>ceit is <strong>in</strong> phase with that <strong>of</strong> the horizontal distortion.2) the local <strong>coupl<strong>in</strong>g</strong> at the horizontal correctorθ x√∆y cod,2 =+ βc,x β b,y ¯Cc,11 cos(∆φ y −πν y )2s<strong>in</strong>πν y+ θ x2s<strong>in</strong>πν y√βc,x β b,y ¯Cc,12 s<strong>in</strong>(∆φ y −πν y ).(11)We can also notice that the first term on the righth<strong>and</strong>side may come from the tilt error <strong>of</strong> the corrector,s<strong>in</strong>ce it is <strong>in</strong> phase with that <strong>of</strong> the verticaldistortion excited by a vertical corrector at the position<strong>of</strong> the horizontal one. As a matter <strong>of</strong> fact, wedo not like to use the ¯C c,12 distribution as the <strong>coupl<strong>in</strong>g</strong>parametrization along the r<strong>in</strong>g due to the f<strong>in</strong>itelength <strong>of</strong> magnets, s<strong>in</strong>ce most <strong>of</strong> the horizontal correctorsare implemented us<strong>in</strong>g the redundant coils <strong>in</strong>the ma<strong>in</strong> bend<strong>in</strong>g magnets.Accord<strong>in</strong>g to the previous analysis, we can concludethat due to a horizontal deflection, ∆y codbpm is∆x codat a∆y cod∆x cod= ¯C b,22 k 1 + ¯C b,12 k 2 + ¯C c,11 k 3 + ¯C c,12 k 4 , (12)where the four coefficients k 1,2,3,4 are only related tothe decoupled l<strong>in</strong>ear optics <strong>of</strong> the mach<strong>in</strong>e. Afterthe mach<strong>in</strong>e is well calibrated by us<strong>in</strong>g the LOCOmethod[7], it is expected that we could use the theorymodel to calculate the coefficients.We performed done some simulations us<strong>in</strong>gSAD [8]. The rotation angle along the s-axis <strong>of</strong>quadrupoles is set r<strong>and</strong>omly, then we knob the horizontalcorrectors <strong>and</strong> measure the transverse orbitdistortion. By analyz<strong>in</strong>g the orbit response <strong>in</strong>formation,we can get ¯C b,12 at the BPMs. Tun<strong>in</strong>g thevertical orbit by vertical correctors could change the<strong>coupl<strong>in</strong>g</strong>, where the skewed quadrupoles come from


No. 12 ZHANG Yuan et al: <strong>Measurement</strong> <strong>and</strong> <strong>correction</strong> <strong>of</strong> <strong>coupl<strong>in</strong>g</strong> <strong>in</strong> <strong>BEPC</strong> 1145the vertical displacement through sextupoles. Fig. 1shows the real value <strong>of</strong> ¯C b,12 before/after <strong>correction</strong>.In the simulation, the emittance <strong>coupl<strong>in</strong>g</strong> is 6% before<strong>correction</strong> <strong>and</strong> reduces to 0.9% after <strong>correction</strong>.Fig. 1. Simulation study <strong>of</strong> local <strong>coupl<strong>in</strong>g</strong> measurement<strong>and</strong> <strong>correction</strong>. The horizontal axisis the BPM <strong>in</strong>dex <strong>and</strong> the vertical axis is the¯C b,12 . The figure shows the real value before(dot) <strong>and</strong> after (square dot) <strong>correction</strong>.The local <strong>coupl<strong>in</strong>g</strong> parameters could also be measuredbe us<strong>in</strong>g a turn-by-turn beam position monitor[9]. When only the A mode is excited, the transverseturn-by-turn beam position can be written asx(n) = ɛ A γ √ β A cos(2πnν A ),y(n) = ɛ A√βB√¯C 2 12 + ¯C 2 22 cos(2πnν A +∆φ A ), (13)where n is the turn number, <strong>and</strong>cos∆φ A ≡− ¯C 22√ ¯C2 12 + ¯C;222¯C 12s<strong>in</strong>∆φ A ≡ √ ¯C2 12 + ¯C.222Invert<strong>in</strong>g these expressions gives√β(A y)¯C 12 = γs<strong>in</strong>∆φ A ,β B x A¯C 22 = −γ√β(A y)cos∆φ A ,β B x A(14)(15)where (y/x) A is the ratio <strong>of</strong> the y amplitude to the xamplitude for the A mode.Similarly if only the B mode is excited, we couldmeasure the two local <strong>coupl<strong>in</strong>g</strong> parameters ¯C 12 <strong>and</strong>¯C 11 . S<strong>in</strong>ce the horizontal beam size is much largerthan the vertical one <strong>in</strong> a normal electron/positronstorage r<strong>in</strong>g, the small amplitude oscillation <strong>in</strong> thehorizontal direction is more difficult to measure. Generallyspeak<strong>in</strong>g it is not a good idea to measure thelocal <strong>coupl<strong>in</strong>g</strong> by excit<strong>in</strong>g the B mode.2.2 Global <strong>coupl<strong>in</strong>g</strong>In the smooth approximation <strong>and</strong> assum<strong>in</strong>g a uniformlydistributed skew quadrupolar field, analyticformulas are derived for a constant focus<strong>in</strong>g latticewhose s-dependent <strong>coupl<strong>in</strong>g</strong> strength j(s) is replacedby a uniform <strong>coupl<strong>in</strong>g</strong> strength given by [10]C = − 12π∮dsj(s)√β x (s)β y (s)e −i[φx(s)−φy(s)]+i(s/R)∆ ,(16)where R is the mach<strong>in</strong>e radius, s is the longitud<strong>in</strong>alcoord<strong>in</strong>ate, β <strong>and</strong> φ are the Twiss parameters <strong>of</strong> theuncoupled lattice, <strong>and</strong> ∆ the fractional distance fromthe difference resonance. Up to the first order, |C|is equivalent to the “tune difference on the <strong>coupl<strong>in</strong>g</strong>resonance”, ∆Q m<strong>in</strong> (also known as the “closest tuneapproach”). Their transverse RMS emittances arecoupled accord<strong>in</strong>g toɛ x = ɛ x0 −|C|2 ɛ x0 −ɛ y0, (17)∆ 2 +|C| 2 2ɛ y = ɛ y0 +|C|2 ɛ x0 −ɛ y0. (18)∆ 2 +|C| 2 2It should be mentioned that the equations are given<strong>in</strong> the absence <strong>of</strong> synchrotron radiation. Recent work[11] f<strong>in</strong>ds that the emittance shar<strong>in</strong>g <strong>and</strong> exchangedriven by l<strong>in</strong>ear betatron <strong>coupl<strong>in</strong>g</strong> without radiationis much more complicated. In many cases we wouldlike to use a more simplified equation for elim<strong>in</strong>at<strong>in</strong>gvertical dispersion even with radiation [12],ɛ y |C| 2=ɛ x 2∆ 2 +|C| . (19)2The m<strong>in</strong>imum tune split could also be represented bythe matrix formalizm[13],∆Q m<strong>in</strong> =det|m+ +n|π(s<strong>in</strong>µ A +s<strong>in</strong>µ B ) . (20)The most common way to adjust the <strong>coupl<strong>in</strong>g</strong> isto globally decouple the mach<strong>in</strong>e. The strengths <strong>of</strong>normal quads are adjusted to br<strong>in</strong>g the normal modetunes together. Typically the tunes cannot be madeequal. The m<strong>in</strong>imum tune split is used as a measure<strong>of</strong> the <strong>coupl<strong>in</strong>g</strong> <strong>in</strong> the mach<strong>in</strong>e. Skew quads are thenused to m<strong>in</strong>imize the tune split. F<strong>in</strong>ally the normalquads are returned to their orig<strong>in</strong>al values to br<strong>in</strong>gthe mach<strong>in</strong>e back to its normal operat<strong>in</strong>g po<strong>in</strong>t.Bagley & Rub<strong>in</strong> have po<strong>in</strong>ted out that global<strong>coupl<strong>in</strong>g</strong> is ill-def<strong>in</strong>ed [9], because the change <strong>in</strong> the(m + +n) as the tunes are brought together dependson the detailed changes <strong>in</strong> the phase advances betweenthe skew quads <strong>and</strong> the observation po<strong>in</strong>t. This


1146 Ch<strong>in</strong>ese Physics C (HEP & NP) Vol. 35<strong>in</strong> turn depends on which quads are used to br<strong>in</strong>g thetunes together. S<strong>in</strong>ce most circular mach<strong>in</strong>es run nearthe <strong>coupl<strong>in</strong>g</strong> Q x = Q y area, where the resonance densityis low, the global <strong>coupl<strong>in</strong>g</strong> method helps to someextent. Detailed <strong>coupl<strong>in</strong>g</strong> <strong>correction</strong> needs more detailedwork <strong>and</strong> we have to correct the local <strong>coupl<strong>in</strong>g</strong>along the r<strong>in</strong>g.3 Daily operation <strong>in</strong> <strong>BEPC</strong>Lum<strong>in</strong>osity performance strongly depends on themach<strong>in</strong>e condition. The <strong>coupl<strong>in</strong>g</strong> <strong>correction</strong> is animportant knob for optimization dur<strong>in</strong>g daily runs,which <strong>in</strong>cludes the vertical emittance reduction, thelocal <strong>coupl<strong>in</strong>g</strong> <strong>and</strong> even vertical dispersion parametertun<strong>in</strong>g at the IP.There are four skew quadrupoles <strong>in</strong> the arc, wheredispersion is nearly zero. They could be used to tunethe so-called global <strong>coupl<strong>in</strong>g</strong> parameters. At first, thepower supplies are unidirectional <strong>and</strong> we seldom usethe tun<strong>in</strong>g method. In that case, we use the verticalorbit bump near the sextupoles as an alternative.The 3-bump vertical orbit knob near S5 (which is themost strongest sextupole <strong>in</strong> the arc) could help ustune the lum<strong>in</strong>osity. It is unfortunate that we do notknow for sure how the vertical emittance, local <strong>coupl<strong>in</strong>g</strong>or even dispersion distortion at the IP help us,we just know that they really help.S<strong>in</strong>ce the autumn <strong>of</strong> 2010, the 4 skew quadrupoles<strong>in</strong> each r<strong>in</strong>g have commenced operation. Most <strong>of</strong>tenthey work as a knob <strong>of</strong> the local <strong>coupl<strong>in</strong>g</strong> parameterat the IP, however both the global <strong>and</strong> local <strong>coupl<strong>in</strong>g</strong>sare changed. S<strong>in</strong>ce the dispersion is nearly zero at theskew quadrupoles, we ignore the vertical dispersiondistortion caused by the knob.The m<strong>in</strong>imum tune split method is used to estimatethe emittance <strong>coupl<strong>in</strong>g</strong> <strong>in</strong> <strong>BEPC</strong>, s<strong>in</strong>ce thebeam pr<strong>of</strong>ile monitor is not well calibrated before October,2010. One quadrupole <strong>in</strong> the <strong>in</strong>jection regionis used to change the transverse tune. The m<strong>in</strong>imumtune separation is usually <strong>in</strong> the range <strong>of</strong> 0.01–0.02,<strong>and</strong> the <strong>coupl<strong>in</strong>g</strong> ɛ y /ɛ x is estimated about 1.0%–2.0%.The local vertical orbit 3-bump near S5 is used tochange the tune separation <strong>and</strong> sometimes the m<strong>in</strong>imumsplit can achieve 0.005. Dur<strong>in</strong>g the lum<strong>in</strong>osityoptimization, we do not care about the tune separationvery much. In most cases we just changethe bump <strong>and</strong> try to <strong>in</strong>crease the lum<strong>in</strong>osity. Asmentioned before, the one-quadrupole knob methodcauses beta-beat<strong>in</strong>g along the r<strong>in</strong>g <strong>and</strong> the m<strong>in</strong>imized<strong>coupl<strong>in</strong>g</strong> may be enlarged when the quadrupole is resumed.When the mach<strong>in</strong>e runs near the half-<strong>in</strong>teger region,where the lum<strong>in</strong>osity is higher, the m<strong>in</strong>imumtune split method does not work s<strong>in</strong>ce it will have tocross the synchro-betatron resonance l<strong>in</strong>e 2ν x +ν s = nwhen the transverse tunes move close to each other.Fischer [14] has developed a method for global <strong>coupl<strong>in</strong>g</strong>measurement <strong>and</strong> <strong>correction</strong>, which is based onN-turn maps fitted from turn-by-turn beam positiondata, where tune change is not needed. We have performedrelated simulations <strong>in</strong> our mach<strong>in</strong>e. It seemsthat the method does not work well. When we try toreduce the the so-called tune-split(calculated by oneturnmap) at some po<strong>in</strong>ts, it seems that the emittance<strong>coupl<strong>in</strong>g</strong> does not drop. We did not f<strong>in</strong>d a“golden” po<strong>in</strong>t where we could tune the <strong>coupl<strong>in</strong>g</strong> byits det|m + +n| value. Maybe because the mach<strong>in</strong>e isfar from a smooth one. That may show that the m<strong>in</strong>imumtune split method is not a good approximationfor us.The local <strong>coupl<strong>in</strong>g</strong> is obta<strong>in</strong>ed by analyz<strong>in</strong>g thetransverse orbit response to the horizontal correctors.When the detector’s solenoid is <strong>of</strong>f, the method istested <strong>in</strong> the BER (the electron r<strong>in</strong>g <strong>of</strong> <strong>BEPC</strong>) <strong>and</strong>the result is shown <strong>in</strong> Fig. 2.Fig. 2. Local <strong>coupl<strong>in</strong>g</strong> measurement <strong>and</strong> <strong>correction</strong><strong>in</strong> the BER with the solenoid <strong>of</strong>f. Thehorizontal axis is the BPM <strong>in</strong>dex <strong>and</strong> the verticalaxis is the ¯C b,12 .With the first <strong>correction</strong>, the vertical beam size dropsfrom 945 to 790 (r<strong>and</strong>om unit), that is to say, the verticalemittance drops to 70% <strong>of</strong> the orig<strong>in</strong>al. We alsomeasure the Touschek lifetime by measur<strong>in</strong>g the lifetimeversus the bunch current <strong>and</strong> obta<strong>in</strong> that the<strong>in</strong>verse <strong>of</strong> Touschek lifetime ratio is 33:48:95 amongthe orig<strong>in</strong>al, the 1st <strong>and</strong> 2nd <strong>correction</strong>s. S<strong>in</strong>ce theTouschek lifetime τ ∝ σ x σ y σ z , we could also obta<strong>in</strong>that the vertical emittance drops by about 50% afterthe first <strong>correction</strong> with the lifetime data. Them<strong>in</strong>imum tune split is also measured, it drops from


No. 12 ZHANG Yuan et al: <strong>Measurement</strong> <strong>and</strong> <strong>correction</strong> <strong>of</strong> <strong>coupl<strong>in</strong>g</strong> <strong>in</strong> <strong>BEPC</strong> 114712 kHz to 4 kHz for the 1st <strong>and</strong> 1 kHz for the 2nd<strong>correction</strong>. It is estimated that the vertical emittancecontributed by <strong>coupl<strong>in</strong>g</strong> drops by about 90% after the1st <strong>correction</strong> where the Eq. (19) is used. In spite<strong>of</strong> the bad co<strong>in</strong>cidence between different estimationmethods, we could conclude that the <strong>coupl<strong>in</strong>g</strong> is significantlyreduced <strong>in</strong> the r<strong>in</strong>g.When the detector solenoid <strong>and</strong> the correspond<strong>in</strong>ganti-solenoid are on, the <strong>correction</strong> method has alsobeen used successfully <strong>in</strong> our mach<strong>in</strong>e. Fig. 3 showsa typical example, where the rms size <strong>of</strong> ¯c 12 has beenreduced by about 80% to 0.009.The 4 transverse <strong>coupl<strong>in</strong>g</strong> parameters at the IPcould be tuned with the 4 skew quadrupoles. An alternativemethod is used to change the vertical orbit<strong>in</strong> the sextupoles, where the vertical dispersion at theIP is also disturbed. That is to say, we could tune fourx-y <strong>coupl<strong>in</strong>g</strong> parameters <strong>and</strong> two vertical dispersionsat the IP by chang<strong>in</strong>g the vertical orbit <strong>in</strong> sextupoles.It is expected that the tun<strong>in</strong>g would not change theorbit at the IP, <strong>in</strong>jection region, RF region <strong>and</strong> northIP (where the two collid<strong>in</strong>g beams are separated verticallyto avoid the parasitic beam-beam effect). Theprelim<strong>in</strong>ary experiments show that the method is notfeasible s<strong>in</strong>ce the vertical orbit distortion could notbe ignored.4 Summary & discussionFig. 3. Local <strong>coupl<strong>in</strong>g</strong> <strong>correction</strong> with thesolenoid on. The horizontal axis is the BPM<strong>in</strong>dex <strong>and</strong> the vertical axis is the ¯C b,12 .The error <strong>of</strong> local <strong>coupl<strong>in</strong>g</strong> measurement comesfrom the beta beat<strong>in</strong>g from the theory model <strong>and</strong> theBPM resolution. The sextupole <strong>and</strong> vertical magnetstrength error would also contribute to the <strong>correction</strong>errors. S<strong>in</strong>ce the wiggler 4w1 is also runn<strong>in</strong>g <strong>in</strong> theBER, the LOCO method has shown that the opticdistortion is more serious <strong>in</strong> the BER than that <strong>in</strong>the BPR (the positron r<strong>in</strong>g <strong>of</strong> <strong>BEPC</strong>).In <strong>BEPC</strong> the solenoid <strong>of</strong> the detector is wellcompensated by the anti-solenoid on both sides <strong>of</strong> theIP [15, 16]. It is believed that the <strong>coupl<strong>in</strong>g</strong> ma<strong>in</strong>lycomes from alignment error <strong>and</strong> the vertical orbitthrough the sextupoles. Coupl<strong>in</strong>g tun<strong>in</strong>g knobs are<strong>in</strong>dispensable to the lum<strong>in</strong>osity optimization.In this paper we present a formula by which wecould obta<strong>in</strong> the local <strong>coupl<strong>in</strong>g</strong> parameters at theBPM us<strong>in</strong>g the orbit response <strong>in</strong>formation <strong>in</strong>stead<strong>of</strong> the s<strong>in</strong>gle-pass BPM. This method has been successfullyused to measure <strong>and</strong> correct the <strong>coupl<strong>in</strong>g</strong><strong>in</strong> our mach<strong>in</strong>e. We also <strong>in</strong>troduce other <strong>coupl<strong>in</strong>g</strong>knobs for normal operation. The local <strong>coupl<strong>in</strong>g</strong> atthe IP <strong>and</strong> the global <strong>coupl<strong>in</strong>g</strong> could not be tuned<strong>in</strong>dependently <strong>in</strong> <strong>BEPC</strong>, which would br<strong>in</strong>g moretrouble to the lum<strong>in</strong>osity optimization. In our local<strong>coupl<strong>in</strong>g</strong> <strong>correction</strong>, so far we have not considered thevertical dispersion <strong>correction</strong>.We wish to thank the members <strong>of</strong> the <strong>BEPC</strong>commission<strong>in</strong>g group for their hard work.References1 Edwards D, Teng L, IEEE Trans. Nucl. Sci., 1973, 20: 32 Bill<strong>in</strong>g M. Cornell Report No. CBN 85-2, 19853 Panagiotidis K, Wolski A, Korostelev M. Proceed<strong>in</strong>gs <strong>of</strong>IPAC10, Kyoto, Japan, 46024 Liuzzo S M, Biag<strong>in</strong>i M E, Raimondi P, Donald M H. Proceed<strong>in</strong>gs<strong>of</strong> IPAC10, Kyoto, Japan, 15305 Instrumentation Technologies, http://www.i-tech.si6 Sagan D, Rub<strong>in</strong> D. Phys. Rev. ST-AB, 1999, 2: 0740017 WEI Y Y. Analysis <strong>of</strong> <strong>BEPC</strong> Optics Us<strong>in</strong>g Orbit ResponseMatrix, Proceed<strong>in</strong>gs <strong>of</strong> PAC2007, Albuquerque,USA8 Hirata K. An Introduction to SAD, CERN 88-04, 19889 Bagley P, Rub<strong>in</strong> D. Proceed<strong>in</strong>gs <strong>of</strong> PAC 1989, 87410 M<strong>in</strong>ty M, Zimmermann F. <strong>Measurement</strong> <strong>and</strong> Control <strong>of</strong>Charged Particle Beams. Berl<strong>in</strong>: Spr<strong>in</strong>ger, 2003. ISBN 3-540-44197-511 Franchi A, Metral E, Tomas R. Phys. Rev. ST-AB, 2007,10: 06400312 Guignard G. Phys. Rev. E, 1995, 51: 6104–611813 Schanch<strong>in</strong>ger L, Talman R. Manual for the ProgramTEAPOT, Non<strong>in</strong>teractive FORTRAN Version, AppendixG, 199614 Fischer W. Phys. Rev. ST-AB, 2003, 6: 06280115 YU Cheng-Hui, WU Y<strong>in</strong>g-Zhi, XU Gang. HEP & NP, 2005,29: 418–423 (<strong>in</strong> Ch<strong>in</strong>ese)16 YU Cheng-Hui et al. Nucl. Instrum. Methods A, 2009, 608:234–237

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!