28.11.2012 Views

Influence of cast surface finishing process on metal-ceramic bond ...

Influence of cast surface finishing process on metal-ceramic bond ...

Influence of cast surface finishing process on metal-ceramic bond ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

236<br />

Medicinski Glasnik, Volumen 6, Number 2, August 2009<br />

INTRODUCTION<br />

Ceramics are being used increasingly as a<br />

restorative material in a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> dental restorati<strong>on</strong>s,<br />

including <strong>metal</strong>-<strong>ceramic</strong> crowns, all-<strong>ceramic</strong><br />

restorati<strong>on</strong>s, and fixed partial dentures, mainly<br />

as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> their excellent aesthetic properties,<br />

durability, biocompatibility and resistance to wear<br />

(1). Ceramic for dental rec<strong>on</strong>structive work are<br />

multiphase silicate <strong>ceramic</strong>s, glass <strong>ceramic</strong>s or<br />

m<strong>on</strong>ophased glasses with varying compositi<strong>on</strong>s<br />

(2,3). Structure composed <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>ceramic</strong> layers <strong>on</strong><br />

a <strong>metal</strong> frame combined the strength <str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>metal</strong><br />

substrate (dental alloy) with aesthetic <str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>ceramic</strong>.<br />

Currently, these <strong>ceramic</strong> fused to <strong>metal</strong> appliances<br />

are widespread in use in prosthod<strong>on</strong>tics. Because<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> their inherently brittle nature susceptibility to<br />

their failure was identified at localized areas <str<strong>on</strong>g>of</str<strong>on</strong>g> high<br />

stress c<strong>on</strong>centrati<strong>on</strong> <strong>on</strong> the <strong>ceramic</strong> <str<strong>on</strong>g>surface</str<strong>on</strong>g>, <strong>metal</strong><strong>ceramic</strong><br />

interface or within the microstructure (4).<br />

In any laminate composite system the strength <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the interfacial b<strong>on</strong>d between the individual laminates<br />

is a major factor in determining the overall<br />

resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> the system to deformati<strong>on</strong> and failure<br />

(5,6). A str<strong>on</strong>g interface should provide sufficient<br />

stress transfer between the individual laminates to<br />

allow the applied loads to be transferred and accommodated.<br />

C<strong>on</strong>versely, a weak interface will<br />

frequently result in failure by a <str<strong>on</strong>g>process</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> delaminating<br />

under an applied load possibly arising<br />

from crack initiati<strong>on</strong> and propagati<strong>on</strong> within and<br />

al<strong>on</strong>g the layer (7). These bilayered composites<br />

have attracted c<strong>on</strong>siderable attenti<strong>on</strong> from laboratory<br />

researchers seeking to understand the failure<br />

characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>ceramic</strong> fused to <strong>metal</strong> systems.<br />

Alterati<strong>on</strong>s to the interfacial regi<strong>on</strong> between bilayered<br />

structures are <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>siderable interest and<br />

authors have reported the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> variati<strong>on</strong>s in<br />

the interfacial <str<strong>on</strong>g>surface</str<strong>on</strong>g> roughness <strong>on</strong> the mechanical<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>metal</strong>-<strong>ceramic</strong>s specimens (8).<br />

By improving a final <str<strong>on</strong>g>surface</str<strong>on</strong>g> treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>metal</strong><br />

substructure could be significantly improved functi<strong>on</strong>al<br />

durability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>metal</strong>-<strong>ceramic</strong> appliances.<br />

Oxidati<strong>on</strong> heat treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>metal</strong> is used<br />

to remove the entrapped gas, eliminate <str<strong>on</strong>g>surface</str<strong>on</strong>g><br />

c<strong>on</strong>taminants, and form the <strong>metal</strong> oxide layer.<br />

An alloy is deliberately given an oxidati<strong>on</strong> treat-<br />

ment prior to <strong>ceramic</strong> applicati<strong>on</strong>, or whether it<br />

oxidizes during the porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the firing cycle<br />

before flow <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>ceramic</strong>s begins, the fusing <strong>ceramic</strong>s<br />

comes into immediate c<strong>on</strong>tact with oxide<br />

rather than with <strong>metal</strong> <str<strong>on</strong>g>surface</str<strong>on</strong>g> (9,10). Different<br />

opini<strong>on</strong>s exist as to how this oxide interacts with<br />

<strong>ceramic</strong> during the firing cycle. It is widely believed,<br />

that the fusing <strong>ceramic</strong> dissolves away the<br />

oxide originally formed and produces an interacti<strong>on</strong><br />

z<strong>on</strong>e resp<strong>on</strong>sible for the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a b<strong>on</strong>d<br />

(11). King rejected the oxide layer theories extend<br />

at that time (Kauzt 1936.) which postulated<br />

that a layer <str<strong>on</strong>g>of</str<strong>on</strong>g> oxide adherent to the <strong>metal</strong> is wetted<br />

by the <strong>ceramic</strong>s and becomes the transiti<strong>on</strong><br />

z<strong>on</strong>e between the <strong>metal</strong> and glassy matrices (12).<br />

Pask (13) otherwise suggest a direct chemical<br />

b<strong>on</strong>ding between the <strong>ceramic</strong> and <strong>metal</strong>. According<br />

to Mackert (11) the chromium-c<strong>on</strong>taining alloys<br />

all c<strong>on</strong>tain oxygen-active elements: beryl,<br />

aluminium, vanadium, titanium, and/or yttrium.<br />

Bor<strong>on</strong> oxide makes these alloys self-fluxing during<br />

melting and gives them unique melting and<br />

<str<strong>on</strong>g>cast</str<strong>on</strong>g>ing behaviour. The additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminium to<br />

these alloys adversely affects this behaviour because<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> its tendency to produce slag (14). Because<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the close corresp<strong>on</strong>dence between oxide<br />

adherence and <strong>ceramic</strong> b<strong>on</strong>ding, it can <strong>on</strong>ly be<br />

c<strong>on</strong>cluded that the adherence <str<strong>on</strong>g>of</str<strong>on</strong>g> the oxide plays a<br />

dominant role in <strong>ceramic</strong> b<strong>on</strong>ding (11).<br />

The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> this study was to investigate the<br />

influence <str<strong>on</strong>g>of</str<strong>on</strong>g> different <str<strong>on</strong>g>cast</str<strong>on</strong>g> <str<strong>on</strong>g>surface</str<strong>on</strong>g> <str<strong>on</strong>g>finishing</str<strong>on</strong>g> <str<strong>on</strong>g>process</str<strong>on</strong>g><br />

<strong>on</strong> <strong>metal</strong>-<strong>ceramic</strong>s b<strong>on</strong>d strength.<br />

Table 1. Procedures <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>metal</strong> <str<strong>on</strong>g>surface</str<strong>on</strong>g> treatment for each<br />

group <str<strong>on</strong>g>of</str<strong>on</strong>g> samples<br />

Specimen Metals <str<strong>on</strong>g>surface</str<strong>on</strong>g> treatment<br />

1 Sand blasting with 110 μm Al2O3 particles<br />

2<br />

3<br />

4<br />

Sand blasting with 110 μm Al2O3 particles<br />

Oxidati<strong>on</strong><br />

Sand blasting with 110 μm Al2O3 particles<br />

Sand blasting with 250 μm Al2O3 particles<br />

Oxidati<strong>on</strong><br />

Sand blasting with 250 μm Al2O3 particles<br />

Sand blasting with 110 μm Al2O3 particles<br />

Extended oxidati<strong>on</strong><br />

Sand blasting with 110 μm Al2O3 particles<br />

Sand blasting with 110 μm Al2O3 particles<br />

Oxidati<strong>on</strong><br />

5<br />

Sand blasting with 110 μm Al2O3 particles<br />

B<strong>on</strong>ding agent<br />

6 Etching in acid mixture

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!