28.11.2012 Views

Influence of cast surface finishing process on metal-ceramic bond ...

Influence of cast surface finishing process on metal-ceramic bond ...

Influence of cast surface finishing process on metal-ceramic bond ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

ORIGINAL ARTICLE<br />

<str<strong>on</strong>g>Influence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>cast</str<strong>on</strong>g> <str<strong>on</strong>g>surface</str<strong>on</strong>g> <str<strong>on</strong>g>finishing</str<strong>on</strong>g> <str<strong>on</strong>g>process</str<strong>on</strong>g> <strong>on</strong> <strong>metal</strong>-<strong>ceramic</strong><br />

b<strong>on</strong>d strength<br />

Ketij Mehulić 1 , Martina Lauš-Šošić 2 , Zdravko Schauperl 3 , Denis Vojvodić 1 , Sanja Štefančić 2<br />

1 Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Prosthod<strong>on</strong>tic School <str<strong>on</strong>g>of</str<strong>on</strong>g> Dental Medicine, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Zagreb, 2 Dental Polyclinic, 3 Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Mechanical Engineering and<br />

Naval Architecture, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Zagreb, Zagreb, Croatia<br />

Corresp<strong>on</strong>ding author:<br />

Ketij Mehulić,<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Zagreb,<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Dental Medicine,<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Prosthod<strong>on</strong>tic<br />

Gundulićeva 5, 10 000 Zagreb,<br />

Croatia<br />

Ph<strong>on</strong>e: ++385 1 4802 112;<br />

Fax: ++385 1 4802 159;<br />

e-mail: mehulic@sfzg.hr<br />

Original submissi<strong>on</strong>:<br />

19 March 2009.;<br />

Revised submissi<strong>on</strong>:<br />

06 April 2009.;<br />

Accepted:<br />

10 April 2009.<br />

Med Glas 2009; 6(2): 235-242<br />

ABSTRACT<br />

Aim To investigate the influence <str<strong>on</strong>g>of</str<strong>on</strong>g> different <str<strong>on</strong>g>cast</str<strong>on</strong>g> <str<strong>on</strong>g>surface</str<strong>on</strong>g> <str<strong>on</strong>g>finishing</str<strong>on</strong>g><br />

<str<strong>on</strong>g>process</str<strong>on</strong>g> <strong>on</strong> <strong>metal</strong>-<strong>ceramic</strong>s b<strong>on</strong>d strength.<br />

Methods Six Co-Cr alloy sample groups were <str<strong>on</strong>g>cast</str<strong>on</strong>g> (Wirob<strong>on</strong>d C,<br />

BEGO, Bremen, Germany) and randomly selected for use in <strong>on</strong>e<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the six different final <str<strong>on</strong>g>process</str<strong>on</strong>g>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>cast</str<strong>on</strong>g>ing <str<strong>on</strong>g>surface</str<strong>on</strong>g> (oxidati<strong>on</strong>,<br />

sandblasting with 110 and 250 µm Al 2 O 3 , b<strong>on</strong>ding agent,<br />

hydrochloric acid soluti<strong>on</strong>) prior to applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> feldspathic <strong>ceramic</strong><br />

(Duceram Kiss, DeguDent, Hanau-Wolfgang, Germany).<br />

The testing was carried out with a tensile testing machine (LRX<br />

with Nexygen s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware, Lloyd Instr., Fareham, UK) (ISO 9693).<br />

Results The highest force (66.902 N) for the separati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>ceramic</strong>s<br />

measured with the sample sandblasted with 250µm Al 2 O 3 ,<br />

oxidised and repeatedly sandblasted with 250 µm, and the lowest<br />

force (36.260 N) with the sample treated with hydrochloric acid<br />

soluti<strong>on</strong>. With all sample groups except the group with the b<strong>on</strong>ding<br />

agent (cohesive fracture), an adhesive fracture <str<strong>on</strong>g>of</str<strong>on</strong>g> the medium<br />

and an adhesive-cohesive fracture <str<strong>on</strong>g>of</str<strong>on</strong>g> the peripheral part <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

fracture <str<strong>on</strong>g>surface</str<strong>on</strong>g> were observed. The oxidati<strong>on</strong>, prol<strong>on</strong>ged oxidati<strong>on</strong><br />

and the b<strong>on</strong>ding agent do not influence the b<strong>on</strong>d strength <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the tested <strong>metal</strong>-<strong>ceramic</strong> system.<br />

C<strong>on</strong>clusi<strong>on</strong> Different <str<strong>on</strong>g>cast</str<strong>on</strong>g>ing <str<strong>on</strong>g>surface</str<strong>on</strong>g> treatments have an important<br />

role <strong>on</strong> the b<strong>on</strong>d strength <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>ceramic</strong>-<strong>metal</strong> interface.<br />

Key words: <str<strong>on</strong>g>cast</str<strong>on</strong>g>ing <str<strong>on</strong>g>surface</str<strong>on</strong>g> <str<strong>on</strong>g>process</str<strong>on</strong>g>ing, b<strong>on</strong>d strength, <strong>metal</strong>-<strong>ceramic</strong><br />

restorati<strong>on</strong>, <strong>metal</strong>-<strong>ceramic</strong> interface<br />

235


236<br />

Medicinski Glasnik, Volumen 6, Number 2, August 2009<br />

INTRODUCTION<br />

Ceramics are being used increasingly as a<br />

restorative material in a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> dental restorati<strong>on</strong>s,<br />

including <strong>metal</strong>-<strong>ceramic</strong> crowns, all-<strong>ceramic</strong><br />

restorati<strong>on</strong>s, and fixed partial dentures, mainly<br />

as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> their excellent aesthetic properties,<br />

durability, biocompatibility and resistance to wear<br />

(1). Ceramic for dental rec<strong>on</strong>structive work are<br />

multiphase silicate <strong>ceramic</strong>s, glass <strong>ceramic</strong>s or<br />

m<strong>on</strong>ophased glasses with varying compositi<strong>on</strong>s<br />

(2,3). Structure composed <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>ceramic</strong> layers <strong>on</strong><br />

a <strong>metal</strong> frame combined the strength <str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>metal</strong><br />

substrate (dental alloy) with aesthetic <str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>ceramic</strong>.<br />

Currently, these <strong>ceramic</strong> fused to <strong>metal</strong> appliances<br />

are widespread in use in prosthod<strong>on</strong>tics. Because<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> their inherently brittle nature susceptibility to<br />

their failure was identified at localized areas <str<strong>on</strong>g>of</str<strong>on</strong>g> high<br />

stress c<strong>on</strong>centrati<strong>on</strong> <strong>on</strong> the <strong>ceramic</strong> <str<strong>on</strong>g>surface</str<strong>on</strong>g>, <strong>metal</strong><strong>ceramic</strong><br />

interface or within the microstructure (4).<br />

In any laminate composite system the strength <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the interfacial b<strong>on</strong>d between the individual laminates<br />

is a major factor in determining the overall<br />

resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> the system to deformati<strong>on</strong> and failure<br />

(5,6). A str<strong>on</strong>g interface should provide sufficient<br />

stress transfer between the individual laminates to<br />

allow the applied loads to be transferred and accommodated.<br />

C<strong>on</strong>versely, a weak interface will<br />

frequently result in failure by a <str<strong>on</strong>g>process</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> delaminating<br />

under an applied load possibly arising<br />

from crack initiati<strong>on</strong> and propagati<strong>on</strong> within and<br />

al<strong>on</strong>g the layer (7). These bilayered composites<br />

have attracted c<strong>on</strong>siderable attenti<strong>on</strong> from laboratory<br />

researchers seeking to understand the failure<br />

characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>ceramic</strong> fused to <strong>metal</strong> systems.<br />

Alterati<strong>on</strong>s to the interfacial regi<strong>on</strong> between bilayered<br />

structures are <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>siderable interest and<br />

authors have reported the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> variati<strong>on</strong>s in<br />

the interfacial <str<strong>on</strong>g>surface</str<strong>on</strong>g> roughness <strong>on</strong> the mechanical<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>metal</strong>-<strong>ceramic</strong>s specimens (8).<br />

By improving a final <str<strong>on</strong>g>surface</str<strong>on</strong>g> treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>metal</strong><br />

substructure could be significantly improved functi<strong>on</strong>al<br />

durability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>metal</strong>-<strong>ceramic</strong> appliances.<br />

Oxidati<strong>on</strong> heat treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>metal</strong> is used<br />

to remove the entrapped gas, eliminate <str<strong>on</strong>g>surface</str<strong>on</strong>g><br />

c<strong>on</strong>taminants, and form the <strong>metal</strong> oxide layer.<br />

An alloy is deliberately given an oxidati<strong>on</strong> treat-<br />

ment prior to <strong>ceramic</strong> applicati<strong>on</strong>, or whether it<br />

oxidizes during the porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the firing cycle<br />

before flow <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>ceramic</strong>s begins, the fusing <strong>ceramic</strong>s<br />

comes into immediate c<strong>on</strong>tact with oxide<br />

rather than with <strong>metal</strong> <str<strong>on</strong>g>surface</str<strong>on</strong>g> (9,10). Different<br />

opini<strong>on</strong>s exist as to how this oxide interacts with<br />

<strong>ceramic</strong> during the firing cycle. It is widely believed,<br />

that the fusing <strong>ceramic</strong> dissolves away the<br />

oxide originally formed and produces an interacti<strong>on</strong><br />

z<strong>on</strong>e resp<strong>on</strong>sible for the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a b<strong>on</strong>d<br />

(11). King rejected the oxide layer theories extend<br />

at that time (Kauzt 1936.) which postulated<br />

that a layer <str<strong>on</strong>g>of</str<strong>on</strong>g> oxide adherent to the <strong>metal</strong> is wetted<br />

by the <strong>ceramic</strong>s and becomes the transiti<strong>on</strong><br />

z<strong>on</strong>e between the <strong>metal</strong> and glassy matrices (12).<br />

Pask (13) otherwise suggest a direct chemical<br />

b<strong>on</strong>ding between the <strong>ceramic</strong> and <strong>metal</strong>. According<br />

to Mackert (11) the chromium-c<strong>on</strong>taining alloys<br />

all c<strong>on</strong>tain oxygen-active elements: beryl,<br />

aluminium, vanadium, titanium, and/or yttrium.<br />

Bor<strong>on</strong> oxide makes these alloys self-fluxing during<br />

melting and gives them unique melting and<br />

<str<strong>on</strong>g>cast</str<strong>on</strong>g>ing behaviour. The additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminium to<br />

these alloys adversely affects this behaviour because<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> its tendency to produce slag (14). Because<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the close corresp<strong>on</strong>dence between oxide<br />

adherence and <strong>ceramic</strong> b<strong>on</strong>ding, it can <strong>on</strong>ly be<br />

c<strong>on</strong>cluded that the adherence <str<strong>on</strong>g>of</str<strong>on</strong>g> the oxide plays a<br />

dominant role in <strong>ceramic</strong> b<strong>on</strong>ding (11).<br />

The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> this study was to investigate the<br />

influence <str<strong>on</strong>g>of</str<strong>on</strong>g> different <str<strong>on</strong>g>cast</str<strong>on</strong>g> <str<strong>on</strong>g>surface</str<strong>on</strong>g> <str<strong>on</strong>g>finishing</str<strong>on</strong>g> <str<strong>on</strong>g>process</str<strong>on</strong>g><br />

<strong>on</strong> <strong>metal</strong>-<strong>ceramic</strong>s b<strong>on</strong>d strength.<br />

Table 1. Procedures <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>metal</strong> <str<strong>on</strong>g>surface</str<strong>on</strong>g> treatment for each<br />

group <str<strong>on</strong>g>of</str<strong>on</strong>g> samples<br />

Specimen Metals <str<strong>on</strong>g>surface</str<strong>on</strong>g> treatment<br />

1 Sand blasting with 110 μm Al2O3 particles<br />

2<br />

3<br />

4<br />

Sand blasting with 110 μm Al2O3 particles<br />

Oxidati<strong>on</strong><br />

Sand blasting with 110 μm Al2O3 particles<br />

Sand blasting with 250 μm Al2O3 particles<br />

Oxidati<strong>on</strong><br />

Sand blasting with 250 μm Al2O3 particles<br />

Sand blasting with 110 μm Al2O3 particles<br />

Extended oxidati<strong>on</strong><br />

Sand blasting with 110 μm Al2O3 particles<br />

Sand blasting with 110 μm Al2O3 particles<br />

Oxidati<strong>on</strong><br />

5<br />

Sand blasting with 110 μm Al2O3 particles<br />

B<strong>on</strong>ding agent<br />

6 Etching in acid mixture


MATERIALS AND METHODS<br />

Six groups <str<strong>on</strong>g>of</str<strong>on</strong>g> same three <strong>metal</strong> <str<strong>on</strong>g>cast</str<strong>on</strong>g> plates,<br />

25×3×0.5 mm have been produced according<br />

to the manufacturer’s instructi<strong>on</strong>s. The used alloy<br />

(Wirob<strong>on</strong>d C, BEGO, Bremen, Germany)<br />

Mehulić et al Surface <str<strong>on</strong>g>finishing</str<strong>on</strong>g> and b<strong>on</strong>d strength<br />

(weight percentage: Cr 26%, Mo 6 %, W 5 %, Si<br />

1 %, Fe 0.5 %, Ce 0.5 %, C 0.02 %, and the rest<br />

Co) bel<strong>on</strong>gs to the group <str<strong>on</strong>g>of</str<strong>on</strong>g> cobalt-chrome alloys<br />

free <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>tents <str<strong>on</strong>g>of</str<strong>on</strong>g> beryllium and nickel. Thus<br />

produced samples are cleaned and handled in<br />

same directi<strong>on</strong>, and the <str<strong>on</strong>g>surface</str<strong>on</strong>g>s to which ceram-<br />

Sample 1 Sample 2<br />

Sample 3 Sample 4<br />

Sample 5 Sample 6<br />

Figure 1. Specimens’ <str<strong>on</strong>g>surface</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the sample prepared and recorded by a scanning electr<strong>on</strong>ic microscope (SEM) with the sec<strong>on</strong>dary<br />

electr<strong>on</strong> detector (SE) (Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Mechanical Engineering and Naval Architecture, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Zagreb, Croatia, 2008., with permissi<strong>on</strong>)<br />

237


238<br />

Medicinski Glasnik, Volumen 6, Number 2, August 2009<br />

ics is applied are treated by different procedures<br />

and combinati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> procedures (Table 1).<br />

Sandblasting was achieved with 110 and<br />

250 μm Al2O3 particles (Shera, Lemförde, Germany).<br />

The used b<strong>on</strong>ding agent (3C-B<strong>on</strong>d, Al-<br />

Sample 1 Sample 2<br />

Sample 3 Sample 4<br />

Sample 5 Sample 6<br />

Figure 2. Results <str<strong>on</strong>g>of</str<strong>on</strong>g> 3-point bending test performed <strong>on</strong> six groups <str<strong>on</strong>g>of</str<strong>on</strong>g> specimens


phadent N.V., Antwerpen, Belgium) is applied to<br />

the samples in group 5. The samples <str<strong>on</strong>g>of</str<strong>on</strong>g> group 6<br />

are kept in the soluti<strong>on</strong> obtained by mixing 50 ml<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> distilled water and 50 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> 32% hydrochloric<br />

acid for 30 minutes. After etching these samples<br />

are first <str<strong>on</strong>g>of</str<strong>on</strong>g> all washed in distilled water, and then<br />

in the compound <str<strong>on</strong>g>of</str<strong>on</strong>g> ethyl alcohol and acet<strong>on</strong>e in<br />

ratio 1:1. Figure 1 shows the characteristic <str<strong>on</strong>g>surface</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the sample prepared in this way recorded<br />

by a scanning electr<strong>on</strong>ic microscope (Tescan<br />

Vega TS5136LS, Tescan, Brno, Czech R) with<br />

the sec<strong>on</strong>dary electr<strong>on</strong> detector (SE).<br />

Al<strong>on</strong>g the middle <str<strong>on</strong>g>of</str<strong>on</strong>g> thus prepared <strong>metal</strong><br />

plates the <strong>ceramic</strong>s (Duceram Kiss, DeguDent,<br />

Hanau-Wolfgang, Germany) is fired (<strong>ceramic</strong><br />

furnace Focus 2006, Shenpaz, Tel Aviv, Israel) in<br />

the length <str<strong>on</strong>g>of</str<strong>on</strong>g> 8 mm, width <str<strong>on</strong>g>of</str<strong>on</strong>g> 3 mm, and thickness<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 1 mm. The <strong>ceramic</strong>s corresp<strong>on</strong>ds to the manufacturer’s<br />

instructi<strong>on</strong>s and bel<strong>on</strong>gs to the group<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>ceramic</strong>s with the fired temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> up to<br />

980°C, suitable for coating <str<strong>on</strong>g>of</str<strong>on</strong>g> the menti<strong>on</strong>ed alloy.<br />

The samples are tested by bending in three points<br />

<strong>on</strong> the tester machine (LRX Lloyd Instruments,<br />

Fareham, Great Britain) with installed Nexygen<br />

programme for the <str<strong>on</strong>g>process</str<strong>on</strong>g>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> results. The<br />

samples are set so that the <str<strong>on</strong>g>surface</str<strong>on</strong>g> with <strong>ceramic</strong>s<br />

is turned opposite to the pin, and the <strong>metal</strong> part<br />

resting <strong>on</strong> the supports at a distance <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 mm,<br />

and the diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> pin that loads the sample is 1<br />

mm. The shift <str<strong>on</strong>g>of</str<strong>on</strong>g> pin is c<strong>on</strong>stant during testing at<br />

a speed <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.5 mm/min, and the testing c<strong>on</strong>tinues<br />

Figure 3. Typical areas during three-point bending test<br />

Mehulić et al Surface <str<strong>on</strong>g>finishing</str<strong>on</strong>g> and b<strong>on</strong>d strength<br />

until the fracture, i.e. to full separati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>ceramic</strong>s<br />

from the <strong>metal</strong>.<br />

Testing procedure has been carried out according<br />

to the guidelines given in ISO 9693<br />

(15).<br />

After testing the samples type <str<strong>on</strong>g>of</str<strong>on</strong>g> fracture <str<strong>on</strong>g>surface</str<strong>on</strong>g>s<br />

(cohesive, adhesive or cohesive-adhesive)<br />

were examined by scanning electr<strong>on</strong>ic microscope<br />

(Tescan Vega TS5136LS, Tescan, Brno, Czech R).<br />

The same pers<strong>on</strong> has performed all the tests.<br />

The multiple range tests, Fischer’s LSD test<br />

and ANOVA have been used for statistic analysis.<br />

RESULTS<br />

The results <str<strong>on</strong>g>of</str<strong>on</strong>g> 3-point bending test performed<br />

<strong>on</strong> 6 groups <str<strong>on</strong>g>of</str<strong>on</strong>g> specimens, (each group has three<br />

specimens) are presented in Figure 2.<br />

The diagrams obtained by testing <strong>on</strong> the tester<br />

and presented in Figure 2 show the same trend,<br />

i.e. the behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> all samples during testing is<br />

inter-compatible. Therefore, Figure 3 can generally<br />

explain the behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> all <strong>metal</strong>-<strong>ceramic</strong><br />

systems in a three-point flexure b<strong>on</strong>d test.<br />

According to Figure 3 it is possible to define<br />

three characteristic areas during testing. The<br />

beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> testing where the force-deflecti<strong>on</strong><br />

diagram is a horiz<strong>on</strong>tal line, i.e. the pin is lowered<br />

without increase <str<strong>on</strong>g>of</str<strong>on</strong>g> force, represents the first<br />

area. Such behaviour is caused by preparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

testing and represents the period from beginning<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> testing to the moment <str<strong>on</strong>g>of</str<strong>on</strong>g> achieving the predefined<br />

pre-load.<br />

Point A (Figure 3), where a sudden increase<br />

in force is noticed, represents the moment <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

c<strong>on</strong>tact between the pin and the sample and the<br />

actual beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> the testing area 2. The linear<br />

part <str<strong>on</strong>g>of</str<strong>on</strong>g> the diagram that follows from this point<br />

represents comm<strong>on</strong> resistance to flexing <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

<strong>metal</strong>-<strong>ceramic</strong> sample, since in this area the b<strong>on</strong>d<br />

between <strong>metal</strong> and <strong>ceramic</strong>s is still str<strong>on</strong>g.<br />

Point B (Figure 3) represents the start <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

third area, i.e. the moment <str<strong>on</strong>g>of</str<strong>on</strong>g> loosening <str<strong>on</strong>g>of</str<strong>on</strong>g> the b<strong>on</strong>d<br />

between <strong>metal</strong> and <strong>ceramic</strong>s and the moment at<br />

239


240<br />

Medicinski Glasnik, Volumen 6, Number 2, August 2009<br />

which <strong>ceramic</strong>s starts to get separated from <strong>metal</strong>.<br />

After point B, there is a short relaxati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the material,<br />

which is reflected in the decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> force<br />

with simultaneous increase <str<strong>on</strong>g>of</str<strong>on</strong>g> deflecti<strong>on</strong>. After<br />

this relaxati<strong>on</strong> the force-deflecti<strong>on</strong> diagram corresp<strong>on</strong>ds<br />

to the diagram for <strong>metal</strong> al<strong>on</strong>e.<br />

Based <strong>on</strong> the performed analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> the results<br />

it may be c<strong>on</strong>cluded that in order to make<br />

valid c<strong>on</strong>clusi<strong>on</strong>s <strong>on</strong> the strength <str<strong>on</strong>g>of</str<strong>on</strong>g> the b<strong>on</strong>d between<br />

the <strong>metal</strong> and the <strong>ceramic</strong>s point B is the<br />

most important <strong>on</strong>e, i.e. force and deflecti<strong>on</strong> in<br />

which the <strong>ceramic</strong>s starts to get separated. Figures<br />

4 and 5 show the diagrams <str<strong>on</strong>g>of</str<strong>on</strong>g> these values.<br />

The method <str<strong>on</strong>g>of</str<strong>on</strong>g> separati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>ceramic</strong> layer<br />

in the performed tests is almost equal for all the<br />

groups <str<strong>on</strong>g>of</str<strong>on</strong>g> samples. The separati<strong>on</strong> always starts at<br />

the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the sample and propagates towards the<br />

middle, which corresp<strong>on</strong>ds to the guidelines <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

standard HRN EN ISO 9693. In Figure 4, which<br />

shows the deflecti<strong>on</strong> that has resulted in the separati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>ceramic</strong>s from the <strong>metal</strong> frame, <strong>on</strong>e may<br />

notice that the mean values <str<strong>on</strong>g>of</str<strong>on</strong>g> deflecti<strong>on</strong> in all<br />

the samples are approximate and range from 0.07<br />

mm (sample 6) to 0.17 mm (sample 1).<br />

Figure 5 shows that the highest mean value<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> force at which <strong>ceramic</strong>s separati<strong>on</strong> was recorded<br />

in sample 3, whereas the minimal mean<br />

value <str<strong>on</strong>g>of</str<strong>on</strong>g> force is recorded in sample 6. The forcedeflecti<strong>on</strong><br />

diagrams make it possible to quantify<br />

the difference in the b<strong>on</strong>d strength <str<strong>on</strong>g>of</str<strong>on</strong>g> the tested<br />

system based <strong>on</strong> the additi<strong>on</strong>al parameters.<br />

The analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> variance has been used to determine<br />

characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the difference between<br />

the samples (p < 0.05) for load <strong>on</strong>ly, because the<br />

separati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>ceramic</strong>s in all the samples occurs in<br />

the approximate amount <str<strong>on</strong>g>of</str<strong>on</strong>g> deflecti<strong>on</strong>. The arithmetic<br />

means <str<strong>on</strong>g>of</str<strong>on</strong>g> forces significantly differ am<strong>on</strong>g<br />

individual groups <str<strong>on</strong>g>of</str<strong>on</strong>g> samples at a risk <str<strong>on</strong>g>of</str<strong>on</strong>g> 5%. In<br />

sample 3 the force at which the separati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>ceramic</strong>s<br />

comes is significantly greater compared<br />

to other tested samples. In sample 6 the b<strong>on</strong>d between<br />

<strong>ceramic</strong>s and <strong>metal</strong> fractures at significantly<br />

lower forces than in all the other samples.<br />

Sample 5 treated with b<strong>on</strong>ding agent shows<br />

<strong>on</strong> the overall fracture area the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

layer, which corresp<strong>on</strong>ds to the fired agent. The<br />

value <str<strong>on</strong>g>of</str<strong>on</strong>g> force necessary to separate the <strong>ceramic</strong>s<br />

from <strong>metal</strong> in this sample is not substantially<br />

different.<br />

DISCUSSION<br />

An understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> the b<strong>on</strong>ding mechanism<br />

is essential for successful <strong>metal</strong>-<strong>ceramic</strong> restorati<strong>on</strong>s.<br />

Although number theories and c<strong>on</strong>cepts<br />

have been proposed for the actual mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

b<strong>on</strong>ding, it still remains elusive. Different tests<br />

have been used to determine <strong>metal</strong>-<strong>ceramic</strong> b<strong>on</strong>d<br />

strength and beam failure loads (16). Though it is<br />

difficult to accurately quantify real b<strong>on</strong>d strength,<br />

the 3-point flexural test is frequently used. Flexural<br />

tests were subjected to criticism because maximal<br />

tensile stresses were created the <str<strong>on</strong>g>surface</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>ceramic</strong>s<br />

and resulted in predictable tensile failures.<br />

The validity <str<strong>on</strong>g>of</str<strong>on</strong>g> these tests to evaluate different alloys<br />

has been questi<strong>on</strong>ed because <strong>ceramic</strong> breakage<br />

depended <strong>on</strong> the modulus <str<strong>on</strong>g>of</str<strong>on</strong>g> elasticity <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

<strong>metal</strong> tested. An alloy with an elevated modulus <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

elasticity would resist flexural to a greater extent,<br />

Figure 4. Deflecti<strong>on</strong> values (during a separati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>ceramic</strong>s<br />

from the <strong>metal</strong> frame) Figure 5. Load in which <strong>ceramic</strong>s were separated


creating a higher b<strong>on</strong>d (17). It is difficult to quantify<br />

the real b<strong>on</strong>d strength because in vitro testing<br />

is not usually in correlati<strong>on</strong> with <strong>ceramic</strong> breakdown<br />

in functi<strong>on</strong>. The shear strength <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>metal</strong><strong>ceramic</strong><br />

b<strong>on</strong>d was evaluated by the Shell-Nielsen<br />

test described by Dent (18) method similar to that<br />

used by Anth<strong>on</strong>y (19), M<str<strong>on</strong>g>of</str<strong>on</strong>g>fa (20), Diaz (21),<br />

Anusavice (22), Warpeha (23), Miller (24), Riley<br />

(25). The authors suggested that the differences<br />

in oxide compositi<strong>on</strong> and amount, influenced by<br />

different <str<strong>on</strong>g>surface</str<strong>on</strong>g> <str<strong>on</strong>g>finishing</str<strong>on</strong>g> procedures. Sandblasting<br />

the finished <str<strong>on</strong>g>surface</str<strong>on</strong>g> is though to remove furrows,<br />

overlaps, and flakes <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>metal</strong> created by the<br />

grinding <str<strong>on</strong>g>process</str<strong>on</strong>g>. A sandblasted <str<strong>on</strong>g>surface</str<strong>on</strong>g> may have<br />

higher <str<strong>on</strong>g>surface</str<strong>on</strong>g> energy that alloys increased wetting<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>metal</strong> during <strong>ceramic</strong> applicati<strong>on</strong>. Evidence<br />

suggested that this roughened <str<strong>on</strong>g>surface</str<strong>on</strong>g> could also<br />

provide mechanical interlocking and increase the<br />

<str<strong>on</strong>g>surface</str<strong>on</strong>g> area for <strong>metal</strong>-<strong>ceramic</strong> b<strong>on</strong>ding (26). According<br />

to Brantley (27), oxide layer is different<br />

before and after sandblasting. Graham (28) suggested<br />

final <str<strong>on</strong>g>finishing</str<strong>on</strong>g> <str<strong>on</strong>g>process</str<strong>on</strong>g> in the order: sandblasting,<br />

grinding, sandblasting and oxidati<strong>on</strong>.<br />

Smoother <str<strong>on</strong>g>surface</str<strong>on</strong>g> achieved the lowest values <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

b<strong>on</strong>d strength and b<strong>on</strong>ding agent did not improve<br />

b<strong>on</strong>d strength because <str<strong>on</strong>g>of</str<strong>on</strong>g> hermetical sealing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>cast</str<strong>on</strong>g><br />

<str<strong>on</strong>g>surface</str<strong>on</strong>g> (29). It created alumina layer <strong>on</strong> <str<strong>on</strong>g>cast</str<strong>on</strong>g> <str<strong>on</strong>g>surface</str<strong>on</strong>g><br />

and thus change oxide ratio <strong>on</strong> it (30). The gold<br />

rich b<strong>on</strong>ding agent reduced the interfacial stress by<br />

improving the compatibility between <strong>ceramic</strong> and<br />

<strong>metal</strong> (31). Basic elements oxidised selective; and<br />

created Fe 2 O 3 , In 2 O 3 i SnO 2 <strong>on</strong> <str<strong>on</strong>g>cast</str<strong>on</strong>g> <str<strong>on</strong>g>surface</str<strong>on</strong>g> (32).<br />

The amount <str<strong>on</strong>g>of</str<strong>on</strong>g> oxides is not always in proporti<strong>on</strong>s<br />

with elements, which were added. Rake (33) suggested<br />

opaque in two layers <strong>on</strong> unutilised <str<strong>on</strong>g>surface</str<strong>on</strong>g>s.<br />

In Ni-Cr alloy (34) and alloy with Pd (35) <strong>ceramic</strong><br />

fired in vacuum produced excessive amount <str<strong>on</strong>g>of</str<strong>on</strong>g> oxides,<br />

and arg<strong>on</strong> reduced their appearance.<br />

REFERENCES<br />

1.<br />

2.<br />

3.<br />

Mehulić K, Čvrljak Tomić I, Schauperl Z, Komar<br />

D. Wear Characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> Esthetical Prosthetic<br />

Materials. Acta Stom Croat 2006; 40:56-64<br />

Mehulić K. Glass<strong>ceramic</strong>s. Acta Stom Croat<br />

2005; 39:477-81.<br />

Musić S, Živko-Babić J, Mehulić K, Ristić M,<br />

Popović S, Furić K. Microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> leucite<br />

glass-<strong>ceramic</strong>s for dental use. Materials Letters<br />

1996; 27:195-9.<br />

Mehulić et al Surface <str<strong>on</strong>g>finishing</str<strong>on</strong>g> and b<strong>on</strong>d strength<br />

The most reliable evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>metal</strong>-<strong>ceramic</strong><br />

b<strong>on</strong>d strengths should be based <strong>on</strong> minimal experimental<br />

variables and least residual stresses<br />

at <strong>metal</strong>-<strong>ceramic</strong> interfaces. Evaluati<strong>on</strong> for types<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>metal</strong>-<strong>ceramic</strong> failures is critical even though<br />

cohesive failures within <strong>ceramic</strong> have been an indicati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> clinically acceptable <strong>metal</strong>-<strong>ceramic</strong>s<br />

b<strong>on</strong>d. Although laboratory studies <str<strong>on</strong>g>of</str<strong>on</strong>g>fer predictable<br />

guidance to comprehensive selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> materials,<br />

clinical l<strong>on</strong>gitudinal studies should also<br />

be encouraged to complement laboratory results<br />

and enhance clinical standards (17).<br />

It can be c<strong>on</strong>cluded that the analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> all the<br />

parameters used in assessing the strength <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

b<strong>on</strong>d between <strong>metal</strong> and <strong>ceramic</strong>s has c<strong>on</strong>firmed<br />

that the b<strong>on</strong>d is the str<strong>on</strong>gest in the <str<strong>on</strong>g>surface</str<strong>on</strong>g> treatment<br />

procedure sandblasting with 250 µm Al 2 O 3 ,<br />

oxidati<strong>on</strong>, and sandblasting again with 250 µm,<br />

and significantly weaker in the etched sample. It<br />

should be noted that, in spite <str<strong>on</strong>g>of</str<strong>on</strong>g> the recommendati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the producer <str<strong>on</strong>g>of</str<strong>on</strong>g> materials and the usual<br />

practice, the applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the b<strong>on</strong>ding medium<br />

has not shown any influence <strong>on</strong> the b<strong>on</strong>ding<br />

strength <str<strong>on</strong>g>of</str<strong>on</strong>g> the tested <strong>metal</strong>-<strong>ceramic</strong> system. The<br />

<strong>metal</strong> samples revealed an adhesive mode <str<strong>on</strong>g>of</str<strong>on</strong>g> failures<br />

<strong>on</strong> the most part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>surface</str<strong>on</strong>g>, and adhesivecohesive<br />

<strong>on</strong> the edges.<br />

ACKNOWLEDGEMENT<br />

Grant No. 065-0650446-0435, and No. 120-<br />

1201767-1762 from the Ministry <str<strong>on</strong>g>of</str<strong>on</strong>g> Science,<br />

Educati<strong>on</strong> and Sports <str<strong>on</strong>g>of</str<strong>on</strong>g> the Republic <str<strong>on</strong>g>of</str<strong>on</strong>g> Croatia<br />

supported this work.<br />

4.<br />

5.<br />

Competing interests: n<strong>on</strong>e declared.<br />

Fleming GJ, Nolan L, Harris JJ. The in-vitro<br />

clinical failure <str<strong>on</strong>g>of</str<strong>on</strong>g> all-<strong>ceramic</strong> crowns and the c<strong>on</strong>nector<br />

area <str<strong>on</strong>g>of</str<strong>on</strong>g> fixed partial dentures: the influence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> interfacial <str<strong>on</strong>g>surface</str<strong>on</strong>g> roughness. J Dent 2005;<br />

30:405-12.<br />

Thoms<strong>on</strong> GA. <str<strong>on</strong>g>Influence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> relative layer height<br />

and testing method <strong>on</strong> the failure mode and origin<br />

in a bilayered dental <strong>ceramic</strong> composite. Dent<br />

Mater 2000;16:235-43.<br />

241


242<br />

Medicinski Glasnik, Volumen 6, Number 2, August 2009<br />

6. Fleming GJ,El-Lakwah SFA, Harris JJ, Marquis<br />

PM. The influence <str<strong>on</strong>g>of</str<strong>on</strong>g> interfacial <str<strong>on</strong>g>surface</str<strong>on</strong>g> roughness<br />

<strong>on</strong> bilayered <strong>ceramic</strong> specimen performance.<br />

Dent Mater 2004; 20:142-9.<br />

7. Ford C, Bush MB, Hu XY, Zhao H. A numerical<br />

study <str<strong>on</strong>g>of</str<strong>on</strong>g> fracture mode in c<strong>on</strong>tact damage in<br />

porcelain/Pd-alloy bilayers. Mater Sci Eng 2004;<br />

202-6.<br />

8. Milleding P, Wennerberg A, Alaeddin S, Karls<strong>on</strong><br />

S, Sim<strong>on</strong> E. Surface corrosi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dental <strong>ceramic</strong>s<br />

in vitro. Biomater 1999; 20:733-46.<br />

9. Camacho GB, Vinha D, Panzeri H, N<strong>on</strong>aka T,<br />

G<strong>on</strong>calves M. Surface roughness <str<strong>on</strong>g>of</str<strong>on</strong>g> a dental <strong>ceramic</strong><br />

after polishing with different vehicles and<br />

diam<strong>on</strong>d pastes. Braz Dent J 2006; 17:145-9.<br />

10. Sarac D, Sarac YS, Yuzbasioglu E, Bal S. The effects<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> porcelain polishing systems <strong>on</strong> the color<br />

and <str<strong>on</strong>g>surface</str<strong>on</strong>g> texture <str<strong>on</strong>g>of</str<strong>on</strong>g> feldspatic porcelain. J Prosthet<br />

Dent 2006; 96:122-8.<br />

11. Mackert JR, Parry EE, Hashinger DT, Fairhurst<br />

CW. Measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> oxide adherence to PFM alloys.<br />

J Dent Res 1984; 63:1335-40.<br />

12. King BW, Tripp HP, Duckworth WH. Nature <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

adherence <str<strong>on</strong>g>of</str<strong>on</strong>g> porcelain enamels to <strong>metal</strong>s. J Am<br />

Cer Soc 1959; 42:504-25.<br />

13. Pask JA, Fulrath RM. Fundamentals <str<strong>on</strong>g>of</str<strong>on</strong>g> glass to<br />

<strong>metal</strong> b<strong>on</strong>ding: Nature <str<strong>on</strong>g>of</str<strong>on</strong>g> wetting and adherence.<br />

J Am Cer Soc 1962; 45:592-6.<br />

14. Ahmad R, Morgano S, Wu BM, Giordano RA.<br />

An evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> handpiece speed,<br />

abrasive characteristics, and polishing load <strong>on</strong> the<br />

flexural strength <str<strong>on</strong>g>of</str<strong>on</strong>g> polished <strong>ceramic</strong>s. J Prosthet<br />

Dent 2005; 94:421-9.<br />

15. ISO 9693 Internati<strong>on</strong>al Standards fot Dental Ceramics,<br />

Internati<strong>on</strong>al Organizati<strong>on</strong> for Standardizati<strong>on</strong>.<br />

Geneva, Switzerland, 1999.<br />

16. Papazoglou E, Brantley WA. Porcelain adherence<br />

vs force to failure for palladium-gallium alloys:<br />

a critique <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>metal</strong>-<strong>ceramic</strong> b<strong>on</strong>d testing. Dent<br />

Mater 1998; 14:112-9.<br />

17. Hammad IA, Yousef FT. Designs <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>d strength<br />

tests for <strong>metal</strong>-<strong>ceramic</strong> complexes: Review <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

literature. J Prosthet Dent 1996; 75:602-8.<br />

18. Dent RJ, Prest<strong>on</strong> JD, M<str<strong>on</strong>g>of</str<strong>on</strong>g>fa JP, Caputo A. Effect<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> oxidati<strong>on</strong> <strong>on</strong> ceramo<strong>metal</strong> b<strong>on</strong>d strength. J<br />

Prosthet Dent 1982; 47:59-62.<br />

19. Anth<strong>on</strong>y DH, Burnett AP, Smith DL, Brooks MS.<br />

Shear test for measuring b<strong>on</strong>ding in <str<strong>on</strong>g>cast</str<strong>on</strong>g> gold<br />

alloy-porcelain composites. J Dent Res 1970;<br />

49:27-33.<br />

20. M<str<strong>on</strong>g>of</str<strong>on</strong>g>fa JP, Lugassy AA, Guckes AS, Gettleman L.<br />

An evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>precious alloys for use with<br />

porcelain veneers. Part I. Physical properties. J<br />

Prosthet Dent 1973; 30:424-31.<br />

21. Diaz-Arnold A, Keller JC, Wightman JP, Williams<br />

VD. B<strong>on</strong>d strength and <str<strong>on</strong>g>surface</str<strong>on</strong>g> characterizati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a Ni-Cr-Be alloys. Dent Mater 1996;<br />

12:58-63.<br />

22. Anusavice KJ. Phillips` science <str<strong>on</strong>g>of</str<strong>on</strong>g> dental materials.<br />

10th ed. Philadelphia: WB Saunders; 1996.<br />

pp. 655-720.<br />

23. 23.Warpeha WS Jr, Goodkind RJ. Design and<br />

technique variables affecting fracture resistance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>metal</strong>-<strong>ceramic</strong> restorati<strong>on</strong>s. J Prosthet Dent<br />

1976; 35:291-8.<br />

24. Miller LL. Framework design in ceramo-<strong>metal</strong><br />

restorati<strong>on</strong>s. Dent Cl N Am 1977; 21:699-716.<br />

25. Riley EJ. Ceramo-<strong>metal</strong> restorati<strong>on</strong>. State <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

science. Dent Cl N Am 1977; 21:669-82.<br />

26. H<str<strong>on</strong>g>of</str<strong>on</strong>g>stede TM, Ercoli C, Graser GN, Tallents RH,<br />

Moss ME, Zero DT. <str<strong>on</strong>g>Influence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>metal</strong> <str<strong>on</strong>g>surface</str<strong>on</strong>g><br />

<str<strong>on</strong>g>finishing</str<strong>on</strong>g> <strong>on</strong> porcelain porosity and beam failure<br />

loads at the <strong>metal</strong>-<strong>ceramic</strong> interface. J Prosthet<br />

Dent 2000; 84:309-17.<br />

27. Brantley WA, Cai Z, Papazoglou E, Mitchell JC,<br />

Kerber SJ,.Mann GP, Barr TL. X-ray diffracti<strong>on</strong><br />

studies <str<strong>on</strong>g>of</str<strong>on</strong>g> oxidized high-palladium alloys. Dent<br />

Mater 1996;12:333-41.<br />

28. Graham JD, Johns<strong>on</strong> A, Wildgoose DG, Shareef<br />

MY, Cannavina G. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>surface</str<strong>on</strong>g> treatments<br />

<strong>on</strong> the b<strong>on</strong>d strength <str<strong>on</strong>g>of</str<strong>on</strong>g> a n<strong>on</strong>precious<br />

alloy-<strong>ceramic</strong> interface. In J Prosthod<strong>on</strong>t 1999;<br />

12:330-4.<br />

29. Al Mutawa NJ, Sato T, Shiozawa I, Hasegawa S,<br />

Miura H. A study <str<strong>on</strong>g>of</str<strong>on</strong>g> the b<strong>on</strong>d strength and color<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ultralow-fusing porcelain. In J Prosthod<strong>on</strong>.<br />

2000; 13:159-65.<br />

30. McLean JW. The search for improved <strong>metal</strong>-<strong>ceramic</strong>s.<br />

Quint Dental Technol 1978;2:51-9.<br />

31. Wu Y, Moser JB, James<strong>on</strong> LM, Mal<strong>on</strong>e WF. The<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> oxidati<strong>on</strong> heat treatment <strong>on</strong> porcelain<br />

b<strong>on</strong>d strength in selected base <strong>metal</strong> alloys. J<br />

Prosthet Dent 1991; 66:439-44.<br />

32. Miyagawa Y. X-ray difracti<strong>on</strong> at the <strong>metal</strong>-<strong>ceramic</strong><br />

interface. Surface oxides <str<strong>on</strong>g>of</str<strong>on</strong>g> 88% Au alloys c<strong>on</strong>taining<br />

Fe, In, Sn for porcelain fusing, Sh Rikog<br />

Zass 1978; 19:15-27.<br />

33. Rake PC, Goodacre CJ, Moore BK, Munoz<br />

CA. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> two opaquing techniques and two<br />

<strong>metal</strong> <str<strong>on</strong>g>surface</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> <strong>metal</strong>-<strong>ceramic</strong> b<strong>on</strong>d<br />

strength. J Prosthet Dent 1995; 74:8-17.<br />

34. Pask JA, Tomisia AP. Oxidati<strong>on</strong> and <strong>ceramic</strong><br />

coatings <strong>on</strong> 80Ni20Cr alloys. J Dent Res 1988;<br />

9:1164-71.<br />

35. Wagner WC, Asgar K, Bigelow WC, Flinn RA.<br />

Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> interfacial variables <strong>on</strong> <strong>metal</strong>-porcelain<br />

b<strong>on</strong>ding. J Biomed Mater Res. 1993; 27:531-7.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!