12.07.2015 Views

Geophysical and hydrogeologic investigation of groundwater in the ...

Geophysical and hydrogeologic investigation of groundwater in the ...

Geophysical and hydrogeologic investigation of groundwater in the ...

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

956clearly identified because <strong>of</strong> <strong>the</strong> great depth <strong>of</strong> burial. In<strong>the</strong> borehole log for G3/463, <strong>the</strong> depth to <strong>the</strong> upfaultedLower Karoo Group is 200 m, <strong>and</strong> it must lie deeperoutside this upfaulted block.The CVES <strong>in</strong>version result from l<strong>in</strong>e 2 is presented <strong>in</strong>Fig. 8b. The first section <strong>of</strong> <strong>the</strong> l<strong>in</strong>e (from 0 to 4,600 m)shows essentially a three-layer structure. A 30-m-thickrelatively conductive top layer (a few tens <strong>of</strong> Ωm) overliesa 100-m-thick resistive layer (some hundred Ωm), which<strong>in</strong> turn overlies a lower resistivity base (a few tens <strong>of</strong> Ωm).This <strong>in</strong>terpretation agrees with <strong>the</strong> TEM model.Supported by outcrop <strong>in</strong>formation <strong>and</strong> borehole data,<strong>the</strong> three layers are <strong>in</strong>terpreted as conductive wea<strong>the</strong>redbasalts <strong>in</strong>terbedded with s<strong>and</strong>stones, underla<strong>in</strong> by resistivefresh basalts, followed by <strong>the</strong> relatively conductive UpperKaroo Group sediments. The high resistivity basalt layervaries significantly <strong>in</strong> resistivity along this section <strong>of</strong> <strong>the</strong>pr<strong>of</strong>ile, <strong>in</strong>dicat<strong>in</strong>g variations <strong>in</strong> electrical properties probablydue to variation <strong>in</strong> jo<strong>in</strong>t spac<strong>in</strong>g <strong>and</strong> associatedwea<strong>the</strong>r<strong>in</strong>g on jo<strong>in</strong>t surfaces. The thickness <strong>of</strong> <strong>the</strong> freshbasalt layer is expected to be exaggerated due to electricalanisotropy. There are small highly resistive spots <strong>in</strong> <strong>the</strong>shallow parts <strong>of</strong> <strong>the</strong> model, which may be expla<strong>in</strong>ed bylocal deposits <strong>of</strong> coarse-gra<strong>in</strong>ed alluvium.From 3,500 to 4,600 m, <strong>the</strong>re is a th<strong>in</strong> high resistivitysurface layer associated with exposures <strong>of</strong> fresh basalt.Between 4,600 <strong>and</strong> 5,400 m, <strong>the</strong> low resistivity bottomlayer, <strong>in</strong>terpreted as Upper Karoo Group sediments, hasbeen vertically uplifted closer to <strong>the</strong> surface. The highresistivity layer has been largely displaced, <strong>and</strong> where itpersists, it is th<strong>in</strong>ner <strong>and</strong> fragmented. Where this layerreaches <strong>the</strong> surface, it co<strong>in</strong>cides with <strong>the</strong> exposed basalt.The thickness <strong>of</strong> <strong>the</strong> high resistivity layer <strong>in</strong> this <strong>in</strong>terval alsoagrees with <strong>the</strong> thickness <strong>of</strong> <strong>the</strong> basalt recorded <strong>in</strong> boreholesG3/378 (48 m) <strong>and</strong> G3/463 (50 m; MacDonald 1970).Similar <strong>in</strong>terpretations as described above can be madefor <strong>the</strong> rest <strong>of</strong> <strong>the</strong> pr<strong>of</strong>ile from 5,400 m eastwards to <strong>the</strong>end <strong>of</strong> <strong>the</strong> l<strong>in</strong>e. The basal layer has low resistivity <strong>and</strong> isoverla<strong>in</strong> by a high resistivity layer represent<strong>in</strong>g UpperKaroo Group sediments <strong>and</strong> fresh basalt, respectively. Thetop section <strong>in</strong>dicates slightly greater complexity, <strong>and</strong> maybe ei<strong>the</strong>r a s<strong>in</strong>gle low-resistivity surface layer or a doublelayer with a th<strong>in</strong> high-resistivity surface layer followed bya low-resistivity layer. This result has been <strong>in</strong>terpreted asei<strong>the</strong>r wea<strong>the</strong>red basalt or an upper flow <strong>of</strong> fresh basaltoverly<strong>in</strong>g <strong>the</strong> wea<strong>the</strong>red basalt.Ano<strong>the</strong>r dist<strong>in</strong>ctive feature <strong>of</strong> this end <strong>of</strong> <strong>the</strong> pr<strong>of</strong>ile isthat <strong>the</strong> ma<strong>in</strong> zone <strong>of</strong> high-resistivity fresh basalts is morebroken by vertical zones <strong>of</strong> low resistivity, as compared to<strong>the</strong> western section. The vertical breaks may be due toblock fault<strong>in</strong>g or to variations <strong>in</strong> <strong>the</strong> spac<strong>in</strong>g <strong>of</strong> <strong>the</strong> jo<strong>in</strong>ts.This pattern can also be derived from <strong>the</strong> jo<strong>in</strong>t <strong>in</strong>vertedpr<strong>of</strong>ile <strong>in</strong> shown <strong>in</strong> Fig. 8c. The jo<strong>in</strong>t <strong>in</strong>version gives abetter estimate <strong>of</strong> <strong>the</strong> thickness <strong>and</strong> resistivity <strong>of</strong> <strong>the</strong> basaltlayer. This better estimate particularly applies to <strong>the</strong> west<strong>in</strong> <strong>the</strong> pr<strong>of</strong>ile, where <strong>the</strong> basalt/Karoo Group boundarysupposedly is deep <strong>and</strong> well below <strong>the</strong> penetration depthdeterm<strong>in</strong>ed with <strong>the</strong> CVES method. To <strong>the</strong> east, above9,000 m, <strong>the</strong> Upper Karoo Group comes closer to <strong>the</strong>Hydrogeology Journal (2007) 15: 945–960surface. The first yield<strong>in</strong>g horizon <strong>in</strong> <strong>the</strong> borehole <strong>in</strong> Fig. 4correlates well with <strong>the</strong> conductive layer at <strong>the</strong> boreholesite at an elevation <strong>of</strong> 975 m <strong>in</strong> <strong>the</strong> jo<strong>in</strong>t <strong>in</strong>vertedgeophysical pr<strong>of</strong>ile. This horizon (below <strong>the</strong> basalt/KarooGroup <strong>in</strong>terface) is apparently shallower <strong>in</strong> this part <strong>of</strong> <strong>the</strong>pr<strong>of</strong>ile <strong>and</strong>, presumably, less costly to drill. Optimization<strong>of</strong> <strong>the</strong> depth to <strong>the</strong> water-yield<strong>in</strong>g horizons is <strong>of</strong> majorimportance <strong>in</strong> such a geophysical survey. This horizon istoo deep to be consistently determ<strong>in</strong>ed by <strong>the</strong> CVES methodalone, whereas <strong>the</strong> st<strong>and</strong>-alone <strong>in</strong>terpretation <strong>of</strong> <strong>the</strong> TEMdata shown <strong>in</strong> Fig. 8a lacks <strong>the</strong> detail <strong>in</strong> <strong>the</strong> near-surface.One limitation to <strong>the</strong> <strong>in</strong>terpretation described above isthat <strong>the</strong> underly<strong>in</strong>g model assumption is one-dimensional.In areas with clear two-dimensional (or even three-dimensional)structure, <strong>the</strong> two-dimensional <strong>in</strong>version <strong>of</strong> CVES isbetter equipped to show <strong>the</strong> structure. This result happense.g. at <strong>the</strong> fault zone between 4,600 <strong>and</strong> 5,400 m. Luckily,<strong>the</strong> conductive layer <strong>in</strong> this area is closer to <strong>the</strong> surface <strong>and</strong>it is picked up on <strong>the</strong> CVES pr<strong>of</strong>ile. In this particular region,more confidence should be placed <strong>in</strong> <strong>the</strong> structure shown by<strong>the</strong> CVES model. All <strong>in</strong> all, it is convenient to have severalmodel displays <strong>and</strong> data representations, as no onerepresentation is best <strong>in</strong> all respects.L<strong>in</strong>e 5The <strong>in</strong>version results <strong>of</strong> l<strong>in</strong>e 5, which strikes l<strong>in</strong>e 2 at rightangles at <strong>the</strong> fault zone, are shown <strong>in</strong> Fig. 9. The TEM<strong>in</strong>verted multi-layer model shown <strong>in</strong> Fig. 9a appears ableto differentiate between <strong>the</strong> Lower <strong>and</strong> Upper KarooGroups. Below <strong>the</strong> high-resistivity layer, <strong>in</strong>terpreted asfresh basalt, a 50-m-thick layer with a conductivity <strong>of</strong> 15-20 Ωm is located above a 10-Ωm layer. The 15–20 Ωmlayer may be <strong>in</strong>terpreted as <strong>the</strong> Lower Karoo Group. This<strong>in</strong>terpretation is not supported by <strong>the</strong> CVES <strong>in</strong> Fig. 9b,<strong>and</strong> <strong>the</strong> <strong>in</strong>clusion <strong>of</strong> <strong>the</strong> CVES data <strong>in</strong> <strong>the</strong> jo<strong>in</strong>t <strong>in</strong>version(Fig. 9c) scheme subdues this feature. Also, <strong>the</strong> greatdepth <strong>of</strong> <strong>the</strong> Lower Karoo Group at borehole G3/463makes this <strong>in</strong>terpretation uncerta<strong>in</strong>.The Kalahari S<strong>and</strong> is clearly seen as <strong>the</strong> top highresistivitylayer <strong>in</strong> <strong>the</strong> CVES <strong>and</strong> <strong>the</strong> LCI pr<strong>of</strong>iles from 0to 1,000 m. The TEM one-dimensional pr<strong>of</strong>ile givesevidence <strong>of</strong> <strong>the</strong> presence <strong>of</strong> <strong>the</strong> Kalahari S<strong>and</strong> until itbecomes too th<strong>in</strong> at 800 m. It is well-known that <strong>the</strong>strength <strong>of</strong> <strong>the</strong> method is <strong>the</strong> detection <strong>of</strong> buried,conductive layers. At greater depth, coord<strong>in</strong>ates from 0to 1,000 m are <strong>the</strong> most resistive part on l<strong>in</strong>e 5, suggest<strong>in</strong>gthat <strong>the</strong> basalt here is fresh <strong>and</strong> <strong>in</strong>tact. This fresh <strong>and</strong> <strong>in</strong>tactbasalt is likely to reduce recharge to <strong>the</strong> underly<strong>in</strong>g KarooSupergroup sediments. Similarly, on l<strong>in</strong>e 2 (Fig. 8),resistivity values from coord<strong>in</strong>ates from 0 to 1,000 also<strong>in</strong>dicate fresh <strong>in</strong>tact basalt.In <strong>the</strong> <strong>in</strong>terval from 1,300 to 2,700 m, <strong>the</strong> fault zone isrecognized. L<strong>in</strong>e 5 strikes almost perpendicular to l<strong>in</strong>e 2;<strong>the</strong>refore, l<strong>in</strong>e 5 provides an image <strong>of</strong> <strong>the</strong> fault zone <strong>in</strong> <strong>the</strong>N–S direction. Aga<strong>in</strong>, <strong>the</strong> fault zone is most clearlyrecognized <strong>in</strong> <strong>the</strong> CVES two-dimensional pr<strong>of</strong>ile. TheTEM one-dimensional pr<strong>of</strong>ile conta<strong>in</strong>s a bad sound<strong>in</strong>g at1,200 m that was skipped. Skipp<strong>in</strong>g this sound<strong>in</strong>g loweredDOI 10.1007/s10040-007-0191-z

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!