12.07.2015 Views

Manin obstruction to strong approximation for homogeneous spaces

Manin obstruction to strong approximation for homogeneous spaces

Manin obstruction to strong approximation for homogeneous spaces

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

8 Mikhail Borovoi and Cyril Demarcheand if y ∈ Y (k), x = π(y), define Br 1,x (X, Y ) <<strong>strong</strong>>to</<strong>strong</strong>> beBr 1,x (X, Y ) := ker[x ∗ : Br 1 (X, Y ) → Br(k)] = {b ∈ Br(X) : π ∗ (b) ∈ Br 1,y (Y )} .We denote bythe evaluation map.〈, 〉: Br(X) × X(k) → Br(k): (b, x) ↦→ b(x)2.2. Be<strong>for</strong>e recalling the result of Sansuc, we give a few more definitions andnotations. Let A be an abelian category and F : Var/k → A be a contravariantfunc<<strong>strong</strong>>to</<strong>strong</strong>>r from the category of k-varieties <<strong>strong</strong>>to</<strong>strong</strong>> A . If X and Y are k-varieties, theprojections p X , p Y : X × k Y → X, Y induce a morphism in A (see [38], Section6.b):F (p X ) + F (p Y ): F (X) ⊕ F (Y ) → F (X × k Y )such thatF (p X ) + F (p Y ) = F (p X ) ◦ π X + F (p Y ) ◦ π Y , (3)where π X , π Y are the projections F (X) ⊕ F (Y ) → F (X), F (Y ) and the group lawin the right-hand side is the law in Hom(F (X) ⊕ F (Y ), F (X × k Y )).Let m: X × k Y → Y be a morphism of k-varieties. Assume that the morphismF (p X ) + F (p Y ) is an isomorphism. We define a mapϕ : F (Y ) → F (X × k Y ) → F (X) ⊕ F (Y ) → F (X)by the <strong>for</strong>mula(see [38], (6.4.1)).ϕ := π X ◦ (F (p X ) + F (p Y )) −1 ◦ F (m) (4)Lemma 2.3. Let F : Var/k → A be a contravariant func<<strong>strong</strong>>to</<strong>strong</strong>>r. Let X, Y be twok-varieties, m : X × k Y → Y be a k-morphism. Assume that:• F (Spec(k)) = 0.• F (p X ) + F (p Y ): F (X) ⊕ F (Y ) → F (X × k Y ) is an isomorphism.• There exists x ∈ X(k) such that the morphism m(x, .) : Y → Y is the identityof Y .Then F (m) = F (p X ) ◦ ϕ + F (p Y ): F (Y ) → F (X × k Y ).Proof. Consider the morphism x Y : Y → X × k Y defined by x. Then F (x Y ) ◦F (p X ) = 0, since the morphism p X ◦x Y : Y → X fac<<strong>strong</strong>>to</<strong>strong</strong>>rs through x : Spec(k) → Xand F (Spec(k)) = 0. Since p Y ◦ x Y = id Y , we have F (x Y ) ◦ F (p Y ) = id, and the

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!