29.11.2012 Views

The spectrum of delay-differential equations: numerical methods - KTH

The spectrum of delay-differential equations: numerical methods - KTH

The spectrum of delay-differential equations: numerical methods - KTH

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

28 Chapter 2. Computing the <strong>spectrum</strong><br />

x<br />

0.5<br />

0<br />

x<br />

0.5<br />

0<br />

−0.5<br />

−0.5<br />

−1 −0.5<br />

θ<br />

0<br />

(b) ϕ0(θ) = 0.5<br />

−1 0 1<br />

t<br />

2 3<br />

(a) <strong>The</strong> solution x(t). <strong>The</strong> dots • mark discontinuities in the derivatives<br />

x<br />

0.5<br />

0<br />

−0.5<br />

−1 −0.5 0<br />

θ<br />

(c) T (τ)ϕ0<br />

x<br />

0.5<br />

0<br />

−0.5<br />

−1 −0.5<br />

θ<br />

0<br />

(d) T (2τ)ϕ0 =T (τ) 2 ϕ0<br />

x<br />

0.5<br />

0<br />

−0.5<br />

−1 −0.5 0<br />

θ<br />

(e) T (3τ)ϕ0 =T (τ) 3 ϕ0<br />

Figure 2.2: Graphical interpretation <strong>of</strong> Example 2.12 with initial condition ϕ0 =<br />

0.5, τ = 1.<br />

We now search for eigenvalues <strong>of</strong> the operator T (τ), i.e., µ ∈ C, and nontrivial<br />

functions ϕ such that<br />

µϕ = T (τ)ϕ.<br />

Inserting the definition <strong>of</strong> T (2.15) for τ = h, yields<br />

Moreover, we have,<br />

µϕ ′ (θ) = − 3<br />

ϕ(θ). (2.20)<br />

2<br />

µϕ(−τ) = ϕ(0). (2.21)<br />

3 −<br />

From (2.20), the eigenfunctions are ϕ(θ) = αe 2µ θ , where α is a normalization<br />

constant. From the second condition (2.21) we have that ϕ(0) = α = µϕ(−τ) =<br />

αµe3τ/2µ , i.e., µ =<br />

with the corresponding eigenfunction ϕ(θ) =<br />

−3τ<br />

2Wk(−3τ/2)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!