12.07.2015 Views

Impacts of Climate Change on the European Marine and Coastal ...

Impacts of Climate Change on the European Marine and Coastal ...

Impacts of Climate Change on the European Marine and Coastal ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Final draftPositi<strong>on</strong> Paper ##<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong><strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>mentEcosystems ApproachMarch 2007www.esf.org/marineboard 0


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal DraftWith it present memberships <str<strong>on</strong>g>of</str<strong>on</strong>g> 23 marine research organisati<strong>on</strong>s (institutes <strong>and</strong> agencies)from 16 countries, <strong>the</strong> <strong>Marine</strong> Board provides a unique forum to express <strong>the</strong> collective visi<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> how research can inform issues <str<strong>on</strong>g>of</str<strong>on</strong>g> societal c<strong>on</strong>cern.C<strong>on</strong>tact Details:Dr. Niamh C<strong>on</strong>nolly<strong>Marine</strong> Board Secretariat<strong>European</strong> Science Foundati<strong>on</strong>1, quai Lezay-MarnésiaBP 90015F-67080 Strasbourg Cedex2


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal Draft<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong>Envir<strong>on</strong>ment<strong>Marine</strong> Board Positi<strong>on</strong> Paper ##Coordinating Author <strong>and</strong> Editor:Catharina J.M. PhilippartAuthorsRicardo Anadón, Roberto Danovaro, Joachim W. Dippner, Kenneth F. Drinkwater, Stephen J. Hawkins,Ge<str<strong>on</strong>g>of</str<strong>on</strong>g>frey O’Sullivan, Temel Oguz, Philip C. Reid<strong>Marine</strong> Board - Series EditorsNiamh C<strong>on</strong>nolly, Nicolas Walter3


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal DraftCONTENTFOREWORD.............................................................................................................................................51 CLIMATE CHANGE...............................................................................................................................51.1 Global <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>and</strong> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>..............................................................................................51.2 <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>and</strong> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> Variability.........................................................................................71.3 Role <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Oceans in <str<strong>on</strong>g>Climate</str<strong>on</strong>g> Regulati<strong>on</strong>......................................................................................82 PROJECTIONS OF FUTURE CLIMATE.............................................................................................112.1 Forecasts <strong>and</strong> Scenarios..............................................................................................................112.2 Model Scenarios for Europe.........................................................................................................123 POSSIBLE RESPONSES AND IMPACTS...........................................................................................143.1 Physical resp<strong>on</strong>ses <strong>and</strong> impacts ..................................................................................................143.2 Biological resp<strong>on</strong>ses <strong>and</strong> impacts ................................................................................................154 REGIONAL RESPONSES AND IMPACTS .........................................................................................174.1 Introducti<strong>on</strong> ..................................................................................................................................174.2 Arctic Ocean.................................................................................................................................194.3 Barents Sea .................................................................................................................................224.4 Nordic Seas..................................................................................................................................254.5 Nor<strong>the</strong>ast Atlantic.........................................................................................................................284.6 North Sea .....................................................................................................................................314.7 Baltic Sea .....................................................................................................................................344.8 Celtic-Biscay Shelf .......................................................................................................................374.9 Iberian Upwelling Margin..............................................................................................................404.10 Mediterranean Sea.....................................................................................................................434.11 Black Sea ...................................................................................................................................484.12 General Trends <strong>and</strong> Regi<strong>on</strong>al-Specific Expectati<strong>on</strong>s .................................................................515 FUTURE NEEDS FOR MONITORING AND INDICATORS ................................................................535.1 Introducti<strong>on</strong> ..................................................................................................................................535.2 Indicators......................................................................................................................................535.3 Abiotic Indicators..........................................................................................................................545.4 Biotic indicators ............................................................................................................................555.5 Recommendati<strong>on</strong>s .......................................................................................................................576 FUTURE RESEARCH NEEDS ............................................................................................................58BIBLIOGRAPHY ....................................................................................................................................61APPENDICES.........................................................................................................................................70APPENDIX 1: GLOSSARY OF TERMS.............................................................................................71APPENDIX 2: LIST OF ACRONYMS.................................................................................................72APPENDIX 3:GLOSSARY OF LARGE-SCALE MONITORING PROGRAMMES AND RESEARCHACTIVITIES RELATED TO CLIMATE CHANGE IMPACTS ON THE EUROPEAN MARINE ANDCOASTAL ENVIRONMENT ...............................................................................................................73APPENDIX 4: EXTRACT FROM NAVIGATING THE FUTURE III ON CLIMATE CHANGE ..............77APPENDIX 5. MEMBERS OF THE WORKING GROUP ...................................................................824


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal DraftEXECUTIVE SUMMARYTerms <str<strong>on</strong>g>of</str<strong>on</strong>g> referenceIn September 2005, <strong>the</strong> <strong>Marine</strong> Board -ESFestablished a Working Group <str<strong>on</strong>g>of</str<strong>on</strong>g> experts toaddress <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong><strong>European</strong> <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Envir<strong>on</strong>ment.The objectives <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Working Group were: <strong>the</strong>following:1. Summarise <strong>the</strong> evidence for global climatechange in <strong>the</strong> marine <strong>and</strong> coastalenvir<strong>on</strong>ment;2. Review main anticipated impacts <str<strong>on</strong>g>of</str<strong>on</strong>g>climate change with regard to physical <strong>and</strong>biological features <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>European</strong> marine<strong>and</strong> coastal envir<strong>on</strong>ment;3. Recommend to <strong>the</strong> <strong>Marine</strong> Board<strong>European</strong> any future need in terms <str<strong>on</strong>g>of</str<strong>on</strong>g>climate change m<strong>on</strong>itoring, development <str<strong>on</strong>g>of</str<strong>on</strong>g>indicators, research <strong>and</strong> development, toassess impact <str<strong>on</strong>g>of</str<strong>on</strong>g> climate changeSocio-ec<strong>on</strong>omic <strong>and</strong> mitigati<strong>on</strong> issues were notwithin <strong>the</strong> Terms <str<strong>on</strong>g>of</str<strong>on</strong>g> Reference <str<strong>on</strong>g>of</str<strong>on</strong>g> this study.Structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> reportThis is <strong>the</strong> final report <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Working Group. Itsummarises <strong>the</strong> current state <str<strong>on</strong>g>of</str<strong>on</strong>g> knowledgewith regard to general <strong>and</strong> regi<strong>on</strong>al-specificimpacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong> <strong>European</strong> marine<strong>and</strong> coastal envir<strong>on</strong>ments, including <strong>the</strong> Arctic,Nor<strong>the</strong>ast Atlantic, Barents Sea, Nordic seas,North Sea, Baltic Sea, Celtic-Biscay Shelf,Iberian upwelling margin, Mediterranean Sea,<strong>and</strong> Black Sea. Results from earlier l<strong>on</strong>g-termstudies <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>European</strong> seas are used to examinepast changes, to put recent rapid changes intoc<strong>on</strong>text, <strong>and</strong> to forecast likely future ecosystemresp<strong>on</strong>ses to climate change. General <strong>and</strong>regi<strong>on</strong>al indicators <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change areidentified, <strong>and</strong> associatedchallenges for future research <strong>and</strong> m<strong>on</strong>itoringare highlighted.Evidence for climate changeRecent research, including <strong>the</strong> examinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>ice cores <strong>and</strong> growth rings <str<strong>on</strong>g>of</str<strong>on</strong>g> ancient trees,shows that <strong>the</strong> Nor<strong>the</strong>rn Hemisphere has beenwarmer since 1980 than at any o<strong>the</strong>r timeduring <strong>the</strong> last 2000 years. The observedincrease in temperature under climate changewas generally higher in nor<strong>the</strong>rn than insou<strong>the</strong>rn <strong>European</strong> seas.Although marine ecosystems are influenced bymany factors, such as eutrophicati<strong>on</strong> <strong>and</strong>overfishing, every regi<strong>on</strong> has shown at leastsome changes that were most likely toattributable to recent climate change. For <strong>the</strong>most nor<strong>the</strong>rn seas, such as <strong>the</strong> Arctic <strong>and</strong> <strong>the</strong>Barents Sea, <strong>the</strong> most obvious temperaturerelatedchange is <strong>the</strong> decline in sea-ice cover.For most open seas, <strong>the</strong>re is evidence <str<strong>on</strong>g>of</str<strong>on</strong>g>geographic displacement <str<strong>on</strong>g>of</str<strong>on</strong>g> speciespopulati<strong>on</strong>s northwards, with nor<strong>the</strong>rn speciesbeing replaced by more sou<strong>the</strong>rn species.Such changes not <strong>on</strong>ly impact <strong>on</strong> localecosystems, but also impact <strong>on</strong> <strong>the</strong> activities <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong> internati<strong>on</strong>al fishing fleet when commercialspecies are affected.The enclosed seas have noticeably underg<strong>on</strong>efar more dramatic changes than <strong>the</strong> more openseas during <strong>the</strong> past decades. Relatively smallchanges in <strong>the</strong> frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> inflow as in <strong>the</strong>Baltic Sea or in temperature as in <strong>the</strong> EasternMediterranean <strong>and</strong> Black Sea had a str<strong>on</strong>geffect <strong>on</strong> large parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ecosystem,indicating <strong>the</strong> high sensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se enclosedsystems towards climate change.Anticipated impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate changeAlthough <strong>the</strong>re can be no certainty regarding<strong>the</strong> precise nature <strong>and</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> future climatechange, even <strong>the</strong> more moderate <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>predicted scenarios is expected to fur<strong>the</strong>r alter<strong>the</strong> marine envir<strong>on</strong>ment, with associated majorenvir<strong>on</strong>mental <strong>and</strong> social impacts.It is expected that within open systems <strong>the</strong>rewill generally be (fur<strong>the</strong>r) northward movement<str<strong>on</strong>g>of</str<strong>on</strong>g> species, e.g. Atlantic species moving tomore nor<strong>the</strong>rn seas such as <strong>the</strong> Arctic, BarentsSea <strong>and</strong> <strong>the</strong> Nordic Seas, <strong>and</strong> subtropicalspecies moving northward to temperate regi<strong>on</strong>such as <strong>the</strong> Iberian upwelling margin.For seas that are highly influenced by riverrun<str<strong>on</strong>g>of</str<strong>on</strong>g>f, such as <strong>the</strong> Baltic Sea, an increase infreshwater due to enhanced rainfall will lead toa shift from marine to more brackish <strong>and</strong> evenfreshwater species. If enclosed systems suchas <strong>the</strong> Mediterranean <strong>and</strong> <strong>the</strong> Black Sea lose<strong>the</strong>ir endemic species, <strong>the</strong> associated nicheswill probably be filled by species originatingfrom adjacent waters <strong>and</strong>, possibly, withspecies transported from <strong>on</strong>e regi<strong>on</strong> to ano<strong>the</strong>rvia ballast water.C<strong>on</strong>clusi<strong>on</strong>s <strong>and</strong> Recommendati<strong>on</strong>sWhile <strong>on</strong>-going nati<strong>on</strong>al <strong>and</strong> internati<strong>on</strong>alacti<strong>on</strong>s to curtail <strong>and</strong> reduce greenhouse gasemissi<strong>on</strong>s are essential, <strong>the</strong> levels <str<strong>on</strong>g>of</str<strong>on</strong>g>greenhouse gases currently in <strong>the</strong> atmosphere,<strong>and</strong> <strong>the</strong>ir impact, are likely to persist for severaldecades. On-going <strong>and</strong> increased efforts tomitigate climate change through reducti<strong>on</strong> ingreenhouse gases are <strong>the</strong>refore crucial.2


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal DraftIn parallel, a better underst<strong>and</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> potentialclimate change impacts (scenarios) at bothregi<strong>on</strong>al <strong>and</strong> local levels, <strong>the</strong> development <str<strong>on</strong>g>of</str<strong>on</strong>g>improved methods to quantify <strong>the</strong> uncertainty <str<strong>on</strong>g>of</str<strong>on</strong>g>climate change projecti<strong>on</strong>s, <strong>the</strong> c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>usable climate change indicators, <strong>and</strong> animprovement <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> interface between science<strong>and</strong> policy formulati<strong>on</strong> in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> riskassessment will be essential to formulate <strong>and</strong>inform better adaptive strategies to address <strong>the</strong>inevitable c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change.The Working Group identified specificrecommendati<strong>on</strong>s <strong>on</strong> future m<strong>on</strong>itoring <strong>and</strong>indicators <strong>and</strong> with regards to future researchneeds, which are described in Secti<strong>on</strong> 5 <strong>and</strong>Secti<strong>on</strong> 6 <str<strong>on</strong>g>of</str<strong>on</strong>g> this report, respectively. Generalrecommendati<strong>on</strong>s were to:1. Enhance evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> impact <str<strong>on</strong>g>of</str<strong>on</strong>g>climate change <strong>on</strong> <strong>the</strong> <strong>European</strong> marine<strong>and</strong> coastal envir<strong>on</strong>ment; this will requirea c<strong>on</strong>certed effort to ga<strong>the</strong>r, store <strong>and</strong>analyse previously <strong>and</strong> presentlycollected marine envir<strong>on</strong>mental data(e.g. comm<strong>on</strong> open access database<strong>and</strong> annual Pan-<strong>European</strong> reportingbased <strong>on</strong> nati<strong>on</strong>al c<strong>on</strong>tributi<strong>on</strong>s);2. Identify <strong>the</strong> nature <strong>and</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g>c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change in<strong>European</strong> marine <strong>and</strong> coastal waters;this will require <strong>the</strong> maintainance <str<strong>on</strong>g>of</str<strong>on</strong>g>sustained m<strong>on</strong>itoring efforts <strong>and</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g>new technologies to increase <strong>the</strong>irspatial <strong>and</strong> temporal resoluti<strong>on</strong>;3. Predict <strong>the</strong> c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> climatechange for our marine envir<strong>on</strong>ment; thiswill require <strong>the</strong> development <strong>and</strong>measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters (e.g.indicators) which are indicative <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>underlying mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> climateinducedchanges;4. Predict <strong>the</strong> resp<strong>on</strong>se <strong>and</strong> feedback <str<strong>on</strong>g>of</str<strong>on</strong>g>marine envir<strong>on</strong>ments <strong>and</strong> ecosystems toclimate change; this will require <strong>the</strong>improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> regi<strong>on</strong>al climate models<strong>and</strong> <strong>the</strong> development <str<strong>on</strong>g>of</str<strong>on</strong>g> biophysicalmodels;5. Predict <strong>the</strong> impact <strong>on</strong> climate change <strong>on</strong><strong>the</strong> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> marine organisms <strong>and</strong><strong>on</strong> marine food webs; this will require<strong>the</strong> inclusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> knowledge <strong>on</strong> species’physiology, bioenergetics <strong>and</strong> behaviourin biophysical <strong>and</strong> ecosystem models.Signals: L<strong>on</strong>g-term variati<strong>on</strong> in area-averaged sea-surface temperatures (°C) in <strong>European</strong> marine <strong>and</strong>coastal envir<strong>on</strong>ments based <strong>on</strong> HadSST2 data from <strong>the</strong> Hadley Centre, UK (data compiled by PriscillaLic<strong>and</strong>ro/SAHFOS <strong>and</strong> Katja Philippart/NIOZ).Baltic SeaBarents Sea1039281930 1940 1950 1960 1970 1980 1990 20001930 1940 1950 1960 1970 1980 1990 2000Black SeaCeltic-Biscay shelf141613151930 1940 1950 1960 1970 1980 1990 2000121930 1940 1950 1960 1970 1980 1990 2000Central MediterraneanEastern Mediterranean21201920181930 1940 1950 1960 1970 1980 1990 2000191930 1940 1950 1960 1970 19903


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal DraftBaltic SeaBarents Sea1039281930 1940 1950 1960 1970 1980 1990 20001930 1940 1950 1960 1970 1980 1990 2000Black SeaCeltic-Biscay shelf141613151930 1940 1950 1960 1970 1980 1990 2000121930 1940 1950 1960 1970 1980 1990 2000Central MediterraneanEastern Mediterranean21201920181930 1940 1950 1960 1970 1980 1990 2000191930 1940 1950 1960 1970 1980 1990Potential Impact: Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> scenarios <str<strong>on</strong>g>of</str<strong>on</strong>g> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong> <strong>European</strong> SeasGENERAL TRENDSSEA-SPECIFIC EXPECTATIONSIncrease in temperature<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> ecosystemsNorthward movementsHigher in nor<strong>the</strong>rn than in sou<strong>the</strong>rn seasStr<strong>on</strong>ger for enclosed than for open seasStr<strong>on</strong>ger in sou<strong>the</strong>rn than in nor<strong>the</strong>rn seasStr<strong>on</strong>ger in open than in enclosed seasShifts in species compositi<strong>on</strong>From nor<strong>the</strong>rn to sou<strong>the</strong>rn species (open seas)From ice-bound to aquatic species (nor<strong>the</strong>rn seas)From marine to freshwater species (Baltic Sea)From endemic to c<strong>on</strong>generic species (enclosed seas)4


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal Draft1 CLIMATE CHANGE1.1 Global <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>and</strong> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>“Global climate change will affect <strong>the</strong>physical, biological <strong>and</strong> biogeochemicalcharacteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> oceans <strong>and</strong> coasts,modifying <strong>the</strong>ir ecological structure, <strong>the</strong>irfuncti<strong>on</strong>s, <strong>and</strong> <strong>the</strong> goods <strong>and</strong> services<strong>the</strong>y provide”.IPCC (2001)Our world is changing rapidly. During <strong>the</strong> last10-15 years, temperatures throughout much <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong> globe have been, warmer than everrecorded; Arctic sea-ice is rapidly disappearing;melting <str<strong>on</strong>g>of</str<strong>on</strong>g> both glaciers <strong>and</strong> <strong>the</strong> Greenl<strong>and</strong> icecap is accelerating; enormous ice sheets fromAntarctica are collapsing into <strong>the</strong> sea; sealevels are rising <strong>and</strong> seas are becomingstormier, increasing <strong>the</strong> risk <str<strong>on</strong>g>of</str<strong>on</strong>g> coastal floodingin low lying areas including major cities;precipitati<strong>on</strong> is more variable with morefrequent intense rainfall events leading toextensive flooding; <strong>the</strong> durati<strong>on</strong> <strong>and</strong> severity <str<strong>on</strong>g>of</str<strong>on</strong>g>droughts has increased; hurricane intensityappears to be greater; springtime is occurringearlier; <strong>the</strong>re is a poleward shift in <strong>the</strong>distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> many species; <strong>and</strong> <strong>the</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g>harmful algal blooms in coastal regi<strong>on</strong>sappears to have increased. Many <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>seevents are thought to be predominantly ac<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> human-induced climatechange.These changes have <strong>the</strong> potential to causeserious socio-ec<strong>on</strong>omic impacts at bothregi<strong>on</strong>al <strong>and</strong> local levels. Increased storminess,coastal inundati<strong>on</strong> <strong>and</strong> flooding impact <strong>on</strong>maritime transport <strong>and</strong> <strong>on</strong> coastal infrastructure(urban development, road <strong>and</strong> rail networks).These impacts in turn, have implicati<strong>on</strong>s <strong>on</strong>future investments <strong>and</strong> strategies related tocoastal developments <strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>fshorec<strong>on</strong>structi<strong>on</strong> (associated with oil <strong>and</strong> gasindustry, trans-shipment <strong>and</strong> renewable oceanenergy), not to menti<strong>on</strong> increased insurancecosts. <str<strong>on</strong>g>Change</str<strong>on</strong>g>s in species biogeography (i.e.<strong>the</strong> poleward movement <str<strong>on</strong>g>of</str<strong>on</strong>g> indigenous species<strong>and</strong> increased risk <str<strong>on</strong>g>of</str<strong>on</strong>g> invasi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>indigenousspecies) have implicati<strong>on</strong>s <strong>on</strong>commercial fisheries <strong>and</strong> aquaculture <strong>and</strong> <strong>on</strong><strong>the</strong> design <strong>and</strong> implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> effectivec<strong>on</strong>servati<strong>on</strong> <strong>and</strong> envir<strong>on</strong>mental m<strong>on</strong>itoringstrategies.Before <strong>the</strong> industrial age, natural processessuch as solar variability, Milankovitch cycles<strong>and</strong> volcanic outgassing were <strong>the</strong> dominantforcing factors producing l<strong>on</strong>g-term climatechanges over periods <str<strong>on</strong>g>of</str<strong>on</strong>g> decades, centuries<strong>and</strong> millennia. There is now c<strong>on</strong>vincingevidence that since <strong>the</strong> industrial revoluti<strong>on</strong>,human activities, resulting in increasingc<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> greenhouse gases havebecome a major agent <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change.These greenhouse gases affect <strong>the</strong> globalclimate by retaining heat in <strong>the</strong> troposphere,thus raising <strong>the</strong> average temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>planet <strong>and</strong> altering global atmosphericcirculati<strong>on</strong> <strong>and</strong> precipitati<strong>on</strong> patterns. <str<strong>on</strong>g>Climate</str<strong>on</strong>g>change influences <strong>the</strong> oceans <strong>and</strong> coasts invarious ways: through changes in temperature<strong>and</strong> sea level, ocean circulati<strong>on</strong>, storminess<strong>and</strong> hence vertical mixing <strong>and</strong> wave regimes,all <str<strong>on</strong>g>of</str<strong>on</strong>g> which in turn can influence marineecosystems <strong>and</strong> modify marine habitats. In thisc<strong>on</strong>text, <strong>on</strong>e can expect changes in nutrientavailability, biological productivity, phenology(<strong>the</strong> timing <str<strong>on</strong>g>of</str<strong>on</strong>g> biological events such asspawning), populati<strong>on</strong> biogeography <strong>and</strong>migratory patterns, community structure, <strong>and</strong>predator-prey relati<strong>on</strong>ships from <strong>the</strong> bottom to<strong>the</strong> top <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> food web.“The sec<strong>on</strong>d <str<strong>on</strong>g>of</str<strong>on</strong>g> February 2007 here inParis will perhaps <strong>on</strong>e day be rememberedas <strong>the</strong> day when <strong>the</strong> questi<strong>on</strong> mark wasremoved behind <strong>the</strong> debate whe<strong>the</strong>rclimate change had anything to do withhuman activities <strong>on</strong> this planet.”Steiner (IPCC Meeting Feb. 2007)Although species have resp<strong>on</strong>ded to variati<strong>on</strong>sin climate throughout <strong>the</strong>ir evoluti<strong>on</strong>ary history,a primary c<strong>on</strong>cern for species <strong>and</strong> <strong>the</strong>irecosystems is <strong>the</strong> rapid rate <str<strong>on</strong>g>of</str<strong>on</strong>g> changecurrently observed (Root et al. 2003). Regi<strong>on</strong>alchanges are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten more relevant in <strong>the</strong> c<strong>on</strong>text<str<strong>on</strong>g>of</str<strong>on</strong>g> ecological resp<strong>on</strong>ses to climate change thanare global averages (Wal<strong>the</strong>r et al. 2002).<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change should <strong>the</strong>refore not<strong>on</strong>ly be studied <strong>on</strong> ocean basin scales, but alsoat regi<strong>on</strong>al <strong>and</strong> local scales. Such regi<strong>on</strong>sencompass coastal areas from river basins <strong>and</strong>estuaries to <strong>the</strong> seaward boundaries <str<strong>on</strong>g>of</str<strong>on</strong>g>c<strong>on</strong>tinental shelves <strong>and</strong> <strong>the</strong> outer margins <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong> major current systems.In additi<strong>on</strong> to <strong>the</strong> specific characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> aparticular regi<strong>on</strong> (e.g. coastal versus shelfseas), <strong>the</strong> resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> marine systems toclimate change will also depend <strong>on</strong> o<strong>the</strong>rhuman-induced changes in <strong>the</strong> marineenvir<strong>on</strong>ment. For example, fishing has reduced<strong>the</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> large fish at higher trophic levelsworldwide (Pauly et al. 1998; Jacks<strong>on</strong> et al.2001; Myers <strong>and</strong> Worm 2003), whilstincreasing agricultural, industrial <strong>and</strong>household activities have resulted in nutrientenrichment <str<strong>on</strong>g>of</str<strong>on</strong>g> many coastal waters (Schindler2006). These <strong>and</strong> o<strong>the</strong>r global changes-5


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal Draftinduced effects, such as ocean acidificati<strong>on</strong>,c<strong>on</strong>taminati<strong>on</strong> <strong>and</strong> <strong>the</strong> introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>indigenousspecies, are likely to result in morefragile marine ecosystems, which will challenge<strong>the</strong> effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> management strategiesto reduce <strong>the</strong> impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change.Observed changes in (a) global mean temperature, (b) global average sea level rise from tide gauge(blue) <strong>and</strong> satellite (red) data, <strong>and</strong> (c) Nor<strong>the</strong>rn Hemisphere snow cover for March-April. All changes arerelative to <strong>the</strong> 1961-1990 average values. Dots represent yearly values, solid lines are 10-y runningmeans, <strong>and</strong> shaded areas indicate <strong>the</strong> uncertainty intervals around <strong>the</strong> running means (Internati<strong>on</strong>alPanel <strong>on</strong> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> 2007).While nati<strong>on</strong>al <strong>and</strong> internati<strong>on</strong>al acti<strong>on</strong>s tocurtail <strong>and</strong> reduce greenhouse gas emissi<strong>on</strong>sare being implemented, <strong>the</strong> levels <str<strong>on</strong>g>of</str<strong>on</strong>g>greenhouse gases currently in <strong>the</strong> atmosphere<strong>and</strong> <strong>the</strong>ir impacts are likely to persist forseveral decades. Accordingly, while <strong>on</strong>-goingefforts to mitigate climate change throughreducti<strong>on</strong>s in greenhouse gas emissi<strong>on</strong>s arecrucial, a more pro-active adaptive strategy isrequired. This could include a betterunderst<strong>and</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> potential climate changeimpacts at both regi<strong>on</strong>al <strong>and</strong> local levels(scenarios), <strong>the</strong> development <str<strong>on</strong>g>of</str<strong>on</strong>g> improvedmethods to quantify <strong>the</strong> uncertainty <str<strong>on</strong>g>of</str<strong>on</strong>g> climatechange projecti<strong>on</strong>s, <strong>the</strong> c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>“Although <strong>the</strong>re can be no certaintyregarding <strong>the</strong> precise nature <strong>and</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g>changes to <strong>the</strong> marine envir<strong>on</strong>ment due toalterati<strong>on</strong>s in climate, in <strong>the</strong> absence <str<strong>on</strong>g>of</str<strong>on</strong>g>policies <strong>and</strong> measures to prepare for <strong>and</strong>accommodate <strong>the</strong> changes, even <strong>the</strong> moremoderate <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> predicted scenarios wouldhave major social <strong>and</strong> ec<strong>on</strong>omic impacts.”Boelens et al. (2005)usable climate change indicators, <strong>and</strong> animprovement <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> interface betweenscience <strong>and</strong> policy formulati<strong>on</strong> in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> riskmanagement (American Meteorological Society2003).6


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal DraftThe Millennial Temperature Record © Copyright 2000, Climatic Research Unit (www.cru.uea.ac.uk)1.2 <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>and</strong> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> Variability“Recent research, including <strong>the</strong> examinati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> ice cores <strong>and</strong> growth rings <str<strong>on</strong>g>of</str<strong>on</strong>g> ancient trees,shows that <strong>the</strong> Nor<strong>the</strong>rn Hemisphere hasbeen warmer since 1980 than at any timeduring <strong>the</strong> last 2000 years.”Mann et al. (2003)Moberg et al. (2005)Whilst wea<strong>the</strong>r c<strong>on</strong>diti<strong>on</strong>s fluctuate daily,m<strong>on</strong>thly <strong>and</strong> seas<strong>on</strong>ally, climatic regimes vary<strong>on</strong> decadal to millennial time scales. Thegeological record shows that climate haschanged significantly over time. For example,during <strong>the</strong> last Ice Age (began 130.000 yearsago, ended 10.000 years ago) most <str<strong>on</strong>g>of</str<strong>on</strong>g> nor<strong>the</strong>rnEurope was under snow <strong>and</strong> ice. In c<strong>on</strong>trast,Europe experienced periods <str<strong>on</strong>g>of</str<strong>on</strong>g> significantwarmth during medieval times (890 – 1170)<strong>and</strong> colder periods during <strong>the</strong> so-called LittleIce Age (1580 – 1850) (Osborn <strong>and</strong> Briffa2006). In <strong>the</strong> last century <strong>the</strong>re was a warmperiod (1930 – 1960s) followed by a coolerperiod (1970s) with temperatures rising againafter 1980 (Johannessen et al. 2004). In o<strong>the</strong>rwords, climate is always changing. However,today’s c<strong>on</strong>cern is: are <strong>the</strong> observed changesin climate bey<strong>on</strong>d previously observedranges? If so, what will be <strong>the</strong> future rates <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong>se changes <strong>and</strong> what are <strong>the</strong> implicati<strong>on</strong>sfor our world?The 4th Assessment Report <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>Intergovernmental Panel for <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>(IPCC 2007) c<strong>on</strong>cludes that 11 <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> last 12years rank am<strong>on</strong>g <strong>the</strong> eleven warmest years in<strong>the</strong> instrumental record <str<strong>on</strong>g>of</str<strong>on</strong>g> global surfacetemperature (since 1850). The totaltemperature increase from 1850-1899 to 2001-2005 is 0.76°C, <strong>and</strong> this increase in mainly dueto <strong>the</strong> linear warming trend over <strong>the</strong> last 50years <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.13°C per decade. For <strong>the</strong> next twodecades, a warming <str<strong>on</strong>g>of</str<strong>on</strong>g> about 0.2°C per decadeis projected for a range <str<strong>on</strong>g>of</str<strong>on</strong>g> emissi<strong>on</strong> scenarios.Even if <strong>the</strong> c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> all greenhousegases <strong>and</strong> aerosols had been kept c<strong>on</strong>stant atyear 2000 levels, a fur<strong>the</strong>r warming <str<strong>on</strong>g>of</str<strong>on</strong>g> about0.1°C per decade would be expected mainlydue to <strong>the</strong> slow resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> oceans inadapting to absorb <strong>the</strong>se levels <str<strong>on</strong>g>of</str<strong>on</strong>g> greenhousegases (IPCC 2007). Depending <strong>on</strong> <strong>the</strong> scenarioapplied, temperatures are predicted to rise by1.8°C to 4.0°C in 2090-2099 as compared with1980-1999 (IPCC 2007).Because <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> uncertainties outlined above,<strong>the</strong>re is much speculati<strong>on</strong> regarding associatedchanges in regi<strong>on</strong>al climatic c<strong>on</strong>diti<strong>on</strong>s <strong>and</strong> <strong>the</strong>implicati<strong>on</strong>s for aquatic <strong>and</strong> terrestrialecosystems.7


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal DraftBOX 1 Signals <str<strong>on</strong>g>of</str<strong>on</strong>g> large-scale interacti<strong>on</strong>s between ocean <strong>and</strong> atmosphereTwo <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> largest signals <str<strong>on</strong>g>of</str<strong>on</strong>g> ocean/atmosphere interacti<strong>on</strong> are <strong>the</strong> El Niño-Sou<strong>the</strong>rn Oscillati<strong>on</strong>(ENSO) in <strong>the</strong> equatorial Pacific Ocean <strong>and</strong> <strong>the</strong> North Atlantic Oscillati<strong>on</strong> (NAO). The latter is <strong>the</strong>Atlantic part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Arctic Oscillati<strong>on</strong> (AO), also called <strong>the</strong> Nor<strong>the</strong>rn Hemisphere Annual Mode (NAM)(Delworth <strong>and</strong> Dix<strong>on</strong> 2000; Thomps<strong>on</strong> <strong>and</strong> Wallace 1998, 2001). The atmospheric variability over<strong>the</strong> North Atlantic is predominantly determined by <strong>the</strong> NAO.The NAO index is <strong>the</strong> difference in sea level pressure anomalies between two stati<strong>on</strong>s representing<strong>the</strong> Azores High <strong>and</strong> <strong>the</strong> Icel<strong>and</strong>ic Low pressure systems <strong>and</strong> is a measure <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> strength <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>westerly winds across <strong>the</strong> North Atlantic. During a positive NAO <strong>the</strong> westerly winds are str<strong>on</strong>ger <strong>and</strong>c<strong>on</strong>diti<strong>on</strong>s are colder <strong>and</strong> drier than average over <strong>the</strong> Northwest Atlantic (eastern Canada toGreenl<strong>and</strong>) <strong>and</strong> <strong>the</strong> Mediterranean regi<strong>on</strong>, whereas c<strong>on</strong>diti<strong>on</strong>s in nor<strong>the</strong>rn Europe <strong>and</strong> <strong>the</strong> easternUnited States are warmer <strong>and</strong> wetter than average. Winter temperature, precipitati<strong>on</strong>, sea-icedistributi<strong>on</strong> <strong>and</strong> movement in <strong>the</strong> Arctic, winter storminess, ocean wave heights, marine ecosystems,fisheries, sea-ice coverage in marginal seas, hurricane occurrence <strong>and</strong> tracks in <strong>the</strong> Caribbean <strong>and</strong><strong>the</strong> severity <str<strong>on</strong>g>of</str<strong>on</strong>g> winters over an extensive area stretching from Siberia to central USA <strong>and</strong> Norway toMorocco have been shown to be modulated by <strong>the</strong> NAO (Marshall et al. 2001).1.3 Role <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Oceans in <str<strong>on</strong>g>Climate</str<strong>on</strong>g> Regulati<strong>on</strong>The oceans play a key role in <strong>the</strong> regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>climate. They store, distribute <strong>and</strong> dissipateenergy from solar radiati<strong>on</strong> <strong>and</strong> exchange with<strong>the</strong> atmosphere. In turn, <strong>the</strong> oceans areaffected by <strong>the</strong> climatic c<strong>on</strong>diti<strong>on</strong>s <strong>the</strong>y help tocreate. C<strong>on</strong>stituting more than 70% <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Earth, <strong>the</strong> oceans <strong>and</strong> shelf seasimplement <strong>the</strong>ir role as a regulator <str<strong>on</strong>g>of</str<strong>on</strong>g> climate:as <strong>the</strong> main reservoir <strong>and</strong> distributor <str<strong>on</strong>g>of</str<strong>on</strong>g> heat<strong>and</strong> salt; by influencing wea<strong>the</strong>r patterns <strong>and</strong>storm tracks; as <strong>the</strong> primary water source <strong>on</strong><strong>the</strong> globe <strong>and</strong> modulator <str<strong>on</strong>g>of</str<strong>on</strong>g> evaporati<strong>on</strong>,precipitati<strong>on</strong> <strong>and</strong> water vapour in <strong>the</strong>atmosphere; by c<strong>on</strong>tributing to <strong>the</strong> formati<strong>on</strong>,distributi<strong>on</strong> <strong>and</strong> melting <str<strong>on</strong>g>of</str<strong>on</strong>g> sea-ice; as <strong>the</strong>primary storage medium for greenhouse gasessuch as carb<strong>on</strong> dioxide (CO 2 ),via an activebiological system that plays a crucial role in <strong>the</strong>carb<strong>on</strong> cycle; <strong>and</strong> through rising sea levels <strong>and</strong>an increasing frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> storm surges.The oceans have an immense capacity to storeheat (when compared with <strong>the</strong> atmosphere).They also show great variability in <strong>the</strong>c<strong>on</strong>centrati<strong>on</strong> in salinity due to <strong>the</strong> changingbalance between evaporati<strong>on</strong> <strong>and</strong> precipitati<strong>on</strong>.Spatial differences in temperature <strong>and</strong> salinitygenerate density-driven circulati<strong>on</strong> patternsthat redistribute water masses between <strong>the</strong>equator <strong>and</strong> <strong>the</strong> poles. In <strong>the</strong> Atlantic, thisThermohaline Circulati<strong>on</strong> (THC) helps toensure that Europe is much warmer thanequivalent latitudes in North America, ; Europeis 6°C warmer at 44°N <strong>and</strong> 15°C at 63°N thanis Nor<strong>the</strong> America. Slowing down <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> AtlanticTHC could have a severe, <strong>and</strong> possiblysudden, impact <strong>on</strong> <strong>the</strong> climate <str<strong>on</strong>g>of</str<strong>on</strong>g> Europe.8


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal DraftThe <strong>the</strong>rmohaline circulati<strong>on</strong> (THC) is a global ocean circulati<strong>on</strong> pattern that distributes water <strong>and</strong> heatboth vertically, through <strong>the</strong> water column, <strong>and</strong> horiz<strong>on</strong>tally across <strong>the</strong> globe. As cold water sinks at highlatitudes, it pulls warmer water from lower latitudes to replace it (Credit: Intergovernmental panel <strong>on</strong><str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>)The amount <str<strong>on</strong>g>of</str<strong>on</strong>g> heat in <strong>the</strong> upper ocean <strong>and</strong>how it is geographically distributed governsatmospheric pressure, storm tracks <strong>and</strong> <strong>the</strong>development <str<strong>on</strong>g>of</str<strong>on</strong>g> severe wea<strong>the</strong>r such ashurricanes <strong>and</strong> cycl<strong>on</strong>es; a majorreorganisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> heat patterns would havesevere impacts <strong>on</strong> wea<strong>the</strong>r c<strong>on</strong>diti<strong>on</strong>s. With avolume <str<strong>on</strong>g>of</str<strong>on</strong>g> close to 1400 milli<strong>on</strong> km³, <strong>the</strong> oceansplay a vital role in <strong>the</strong> water cycle <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Earth.Evaporati<strong>on</strong> <strong>and</strong> precipitati<strong>on</strong> patterns willchange as temperatures rise, <strong>and</strong> with <strong>the</strong>distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> atmospheric pressure. Thesemodificati<strong>on</strong>s can alter <strong>the</strong> timing <strong>and</strong> intensity<str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>so<strong>on</strong>s, droughts <strong>and</strong> floods, <strong>and</strong> <strong>the</strong>occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> excepti<strong>on</strong>al wea<strong>the</strong>r events.Variati<strong>on</strong>s in <strong>the</strong> extent <str<strong>on</strong>g>of</str<strong>on</strong>g> sea-ice cover inpolar regi<strong>on</strong>s have a major impact <strong>on</strong> climate,as ice reflects 30% <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> incoming solarradiati<strong>on</strong>. A warming ocean in seas<strong>on</strong>ally icecoveredseas will c<strong>on</strong>tribute to more rapidmelting <str<strong>on</strong>g>of</str<strong>on</strong>g> sea-ice.The oceans are able to absorb large quantities<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> greenhouse gas CO 2 (37,000gigat<strong>on</strong>nes <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> are stored in <strong>the</strong> deepocean). CO 2 at <strong>the</strong> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ocean is inequilibrium with <strong>the</strong> air <strong>and</strong> moves freelybetween <strong>the</strong> two media. When chemicallytransformed into dissolved <strong>and</strong> particulateforms <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong>, CO 2 is transferred to <strong>the</strong> deepocean by mixing <strong>and</strong> sinking <strong>and</strong> by a steadyrain <str<strong>on</strong>g>of</str<strong>on</strong>g> particulate carb<strong>on</strong> sourced from <strong>the</strong>plankt<strong>on</strong> <strong>and</strong> from shelf export. Without thisoceanic uptake, c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 in <strong>the</strong>atmosphere would be much higher. Since <strong>the</strong>beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> XIX h century <strong>the</strong> oceans areestimated to have taken up approximately 50%<str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuel emissi<strong>on</strong>s <strong>and</strong> approximately 30%<str<strong>on</strong>g>of</str<strong>on</strong>g> all anthropogenic emissi<strong>on</strong>s (including thoseoriginating from l<strong>and</strong>-use change). The NorthAtlantic plays a particularly key role as it hasstored 23% <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> total CO 2 sink in an area thatcovers <strong>on</strong>ly 15% <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> global ocean. Warming<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ocean is expected toreduce its capacity to take up CO 2 .Phytoplankt<strong>on</strong> accounts for approximately 50%<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> total photosyn<strong>the</strong>sis <strong>on</strong> Earth, <strong>and</strong>provides food for higher trophic levels. Thesemicroalgae <strong>and</strong> photosyn<strong>the</strong>tic bacteriac<strong>on</strong>tribute to <strong>the</strong> removal <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 , because aproporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir producti<strong>on</strong> is transferred asdetritus to <strong>the</strong> deep ocean, ei<strong>the</strong>r by sinking orvia food webs. Changing compositi<strong>on</strong> <strong>and</strong>seas<strong>on</strong>al timing <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> plankt<strong>on</strong>, due to risingtemperatures, may affect <strong>the</strong> efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> thisdownward transfer known as <strong>the</strong> biologicalpump. Many plankt<strong>on</strong>ic groups, including <strong>the</strong>larval stages <str<strong>on</strong>g>of</str<strong>on</strong>g> shellfish, have calcareous bodyparts. Their existence is threatened by <strong>the</strong>increasing acidity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ocean caused byhigher levels <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 <strong>and</strong> may provide afeedback that could fur<strong>the</strong>r reduce <strong>the</strong> ability <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong> oceans to take up CO 2 from <strong>the</strong>atmosphere.9


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal Draft2 PROJECTIONS OF FUTURE CLIMATE2.1 Forecasts <strong>and</strong> ScenariosEstimates <str<strong>on</strong>g>of</str<strong>on</strong>g> what <strong>the</strong> future climate will be like(projecti<strong>on</strong>s) are typically made using coupledocean/atmosphere/sea ice/l<strong>and</strong> models. GlobalCirculati<strong>on</strong> Models (GCMs) describe <strong>the</strong> timeevoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> atmospheric variables such astemperature, winds, precipitati<strong>on</strong>, water vapour<strong>and</strong> atmospheric pressure throughout <strong>the</strong> globein resp<strong>on</strong>se to increasing atmospheric CO 2c<strong>on</strong>centrati<strong>on</strong>s. When a projecti<strong>on</strong> iscategorised as most likely it becomes aforecast or predicti<strong>on</strong>. A scenario, <strong>on</strong> <strong>the</strong>o<strong>the</strong>r h<strong>and</strong>, is a plausible descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> apossible future state <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> world. It is not aforecast; ra<strong>the</strong>r, each scenario is <strong>on</strong>ealternative image <str<strong>on</strong>g>of</str<strong>on</strong>g> how <strong>the</strong> future may unfold.The baseline is <strong>the</strong> st<strong>and</strong>ard against whichchanges are measured, usually present-dayc<strong>on</strong>diti<strong>on</strong>s or <strong>the</strong> 30-year st<strong>and</strong>ard period from1961 to 1990 used by meteorologists.Because <strong>the</strong>re is uncertainty as to how rapidlyatmospheric c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 will increase,<strong>the</strong> primary body leading investigati<strong>on</strong>s int<str<strong>on</strong>g>of</str<strong>on</strong>g>uture climate change, namely <strong>the</strong> IPCC, hasdevised several possibilities (scenarios) based<strong>on</strong> <strong>the</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong> increase, ec<strong>on</strong>omicdevelopment <strong>and</strong> technology change. Manystudies (for example, <strong>the</strong> Arctic <str<strong>on</strong>g>Climate</str<strong>on</strong>g> ImpactAssessment: ACIA 2005) use <strong>the</strong> B2intermediate scenario which describes aworld with moderate populati<strong>on</strong> growth,ec<strong>on</strong>omic development <strong>and</strong> technologychange. This scenari<strong>on</strong> predicts in a doubling<str<strong>on</strong>g>of</str<strong>on</strong>g> atmospheric CO 2 after approximately 80years.Variati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Earth’s surface temperature between 1900 <strong>and</strong> 2100 as predicted under six scenarios(B1, A1T, B2, A1B, A2, A1FI) where solid lines represent average measured (black) <strong>and</strong> predictedvalues <strong>and</strong> shading denotes <strong>the</strong> plus/minus <strong>on</strong>e st<strong>and</strong>ard deviati<strong>on</strong> range <str<strong>on</strong>g>of</str<strong>on</strong>g> individual model annualmeans. The gray bars at <strong>the</strong> right indicate <strong>the</strong> best estimate (solid line within each bar) <strong>and</strong> <strong>the</strong> likelyrange assessed for <strong>the</strong> six scenarios (Internati<strong>on</strong>al panel <strong>on</strong> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>).A set <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 scenarios can be used to reflect<strong>the</strong> range <str<strong>on</strong>g>of</str<strong>on</strong>g> uncertainty in projecti<strong>on</strong>s from aparticular model. In additi<strong>on</strong>, <strong>the</strong>ir results willnot be identical because different GCMs c<strong>and</strong>iffer in <strong>the</strong>ir spatial resoluti<strong>on</strong>, representati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> physical processes <strong>and</strong> boundary c<strong>on</strong>diti<strong>on</strong>s.Since no <strong>on</strong>e model can be indicated as <strong>the</strong>correct <strong>on</strong>e, model results tend to be averagedto produce a multi-model average, as if eachmodel is <strong>on</strong>e experimental representati<strong>on</strong>. Thespread in <strong>the</strong> model estimates is c<strong>on</strong>sidered torepresent our uncertainty.The horiz<strong>on</strong>tal spatial resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> GCMs hasgenerally been too coarse (with typical grid11


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal Draftsizes <str<strong>on</strong>g>of</str<strong>on</strong>g> 200-400 km) to resolve local orregi<strong>on</strong>al topography. For regi<strong>on</strong>al <strong>and</strong> localimpact studies, <strong>the</strong>refore, <strong>the</strong> approach hasbeen to develop higher resoluti<strong>on</strong> (with typicalgrid sizes <str<strong>on</strong>g>of</str<strong>on</strong>g> 1-20 km) regi<strong>on</strong>al climatemodels, using <strong>the</strong> results from <strong>the</strong> GCMs asboundary c<strong>on</strong>diti<strong>on</strong>s.Some <strong>European</strong> countries, such as <strong>the</strong> UK,Sweden <strong>and</strong> Spain, have developed regi<strong>on</strong>alforecasts with a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> different emissi<strong>on</strong>scenarios based <strong>on</strong> low, medium-low, mediumhigh,<strong>and</strong> high emissi<strong>on</strong>s, for three thirty-yeartime periods (centred <strong>on</strong> <strong>the</strong> 2020s, 2050s <strong>and</strong>2080s). The baseline c<strong>on</strong>venti<strong>on</strong> for <strong>the</strong>sescenarios is 1961-1990 (Hulme et al. 2002).2.2 Model Scenarios for EuropeIt is estimated that annual air temperatures willrise throughout Europe relative to recentc<strong>on</strong>diti<strong>on</strong>s, with <strong>the</strong> lowest increase (1°C to2°C) in <strong>the</strong> Mediterranean, Iberian, North Sea,Nor<strong>the</strong>ast Atlantic <strong>and</strong> south Nordic Searegi<strong>on</strong>s (IPCC 2001). Temperature increaseswill be higher (4°C to 6°C) in <strong>the</strong> more nor<strong>the</strong>rnregi<strong>on</strong>s such as <strong>the</strong> nor<strong>the</strong>rn Nordic Seas <strong>and</strong><strong>the</strong> Barents Sea, <strong>and</strong> highest (up to 7°C) in <strong>the</strong>Arctic (ACIA 2005). Due to its high capacity tostore heat, <strong>the</strong> ocean will not warm quite asmuch as <strong>the</strong> l<strong>and</strong> will. The frequency <str<strong>on</strong>g>of</str<strong>on</strong>g>extremely high air <strong>and</strong> ocean temperatures willincrease <strong>and</strong> <strong>the</strong> frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> extremely lowtemperatures will decrease throughout Europe(IPCC 2001). There will be a decrease in <strong>the</strong>daily temperature range, with night time lowsincreasing more than daytime highs.Precipitati<strong>on</strong> <strong>and</strong> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f will increase innor<strong>the</strong>rn Europe <strong>and</strong> <strong>the</strong> Arctic, but willdecrease in warmer regi<strong>on</strong>s such as <strong>the</strong>Mediterranean (IPCC 2001). In <strong>the</strong> Arcticannual precipitati<strong>on</strong> is projected to increase by20%, with a 30% increase during <strong>the</strong> winter(ACIA 2005). With <strong>the</strong> increase in temperature,more precipitati<strong>on</strong> will fall as rain in nor<strong>the</strong>rn<strong>and</strong> upl<strong>and</strong> regi<strong>on</strong>s resulting in an increase inwinter run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>and</strong> a decrease in spring run<str<strong>on</strong>g>of</str<strong>on</strong>g>f. Athigher altitudes, much <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> precipitati<strong>on</strong> willc<strong>on</strong>tinue to fall as snow in winter, but <strong>the</strong> springpeak in run<str<strong>on</strong>g>of</str<strong>on</strong>g>f will occur slightly earlier. Theintensity <str<strong>on</strong>g>of</str<strong>on</strong>g> winter rainfall events north <str<strong>on</strong>g>of</str<strong>on</strong>g> 45°Nis expected to increase while to <strong>the</strong> south <strong>the</strong>rewill be an insignificant change or a decrease inintensity (Frei et al. 2006). In central Europeriver run<str<strong>on</strong>g>of</str<strong>on</strong>g>f will change by approximately 10%by <strong>the</strong> 2050s, but this is smaller than <strong>the</strong>observed natural multidecadal variability(Hulme et al. 1999). In Mediterranean regi<strong>on</strong>s,<strong>the</strong> range in river flows between winter <strong>and</strong>summer is likely to increase c<strong>on</strong>siderably whilein maritime Western Europe <strong>the</strong>re will be asmaller increase..As temperatures rise, sea-ice coverage willdecrease; most climate models suggest an icefreesummer in <strong>the</strong> Arctic by 2100 (IPCC 2001;Teng 2006). In <strong>the</strong> Barents Sea, <strong>the</strong> winter iceedgeis projected to retreat at an approximaterate <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 km per year northward; <strong>the</strong> BarentsSea is predicted to be ice-free by 2070 (Fureviket al. 2002). A significant loss <str<strong>on</strong>g>of</str<strong>on</strong>g> ice cover in<strong>the</strong> western Nordic Seas is expected, which by2070 will be restricted to <strong>the</strong> northwesternGreenl<strong>and</strong> Sea <strong>and</strong> <strong>the</strong> Baltic.The projected melting ice <strong>and</strong> increasedprecipitati<strong>on</strong> <strong>and</strong> river run<str<strong>on</strong>g>of</str<strong>on</strong>g>f in nor<strong>the</strong>rnlatitudes will lead to decreases in surfacesalinity in <strong>the</strong> order <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.5 to 1 ppm in <strong>the</strong>Arctic Ocean, <strong>the</strong> western regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> NordicSeas <strong>and</strong> in <strong>the</strong> Baltic by <strong>the</strong> 2070s (Furevik etal. 2002).Based <strong>on</strong> current model simulati<strong>on</strong>s, it is verylikely that <strong>the</strong> Meridi<strong>on</strong>al OverturningCirculati<strong>on</strong> (MOC, see Secti<strong>on</strong> 3 for adescripti<strong>on</strong>) will slow down during <strong>the</strong> 21 stcentury (IPCC 2007). This gradual weakening<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> MOC may be in <strong>the</strong> order <str<strong>on</strong>g>of</str<strong>on</strong>g> 20% to 25%(Hadley Centre; www.met-<str<strong>on</strong>g>of</str<strong>on</strong>g>fice.gov.uk/corporate/scitech0304/MetOfficeScience0304.pdf), depending <strong>on</strong> future emissi<strong>on</strong>s (IPCC2007). However, temperatures in <strong>the</strong> Atlanticregi<strong>on</strong>, including Europe, will c<strong>on</strong>tinue to warm,due to <strong>the</strong> atmospheric warming effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>greenhouse gases (IPCC 2007).“Under scenarios <str<strong>on</strong>g>of</str<strong>on</strong>g> faster industrialdevelopment leading to higher CO 2 levelsthan those assumed for <strong>the</strong> B2 scenario,temperatures in <strong>the</strong> Arctic are projected toincrease up to 14°C by 2100.”Teng et al. (2006)With melting ice caps <strong>and</strong> higher oceantemperatures, sea level is expected to risethroughout <strong>the</strong> globe by 18 cm to 59 cm by <strong>the</strong>2090s (IPCC 2007). If <strong>the</strong> c<strong>on</strong>tributi<strong>on</strong> to <strong>the</strong>seprojecti<strong>on</strong>s by <strong>the</strong> ice flow from Greenl<strong>and</strong> <strong>and</strong>Antarctica were included, it is estimated thatsea levels would rise by an additi<strong>on</strong>al 10 cm to20 cm (IPCC 2007). Low-lying areas adjacentto regi<strong>on</strong>s with low tidal range such as al<strong>on</strong>g<strong>the</strong> coasts <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Mediterranean, Baltic <strong>and</strong>Black Sea are more vulnerable than most <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong> Atlantic Ocean <strong>and</strong> North Sea coasts(Nicholls <strong>and</strong> Mimura 1998).12


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal DraftIt is predicted that after CO 2 emissi<strong>on</strong>s are reduced <strong>and</strong> atmospheric c<strong>on</strong>centrati<strong>on</strong>s stabilise, surfaceair temperature will c<strong>on</strong>tinue to rise slowly for a century or more. Thermal expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ocean willc<strong>on</strong>tinue l<strong>on</strong>g after CO 2 emissi<strong>on</strong>s have been reduced, <strong>and</strong> melting <str<strong>on</strong>g>of</str<strong>on</strong>g> ice sheets will c<strong>on</strong>tribute to sealevel rise for many centuries into <strong>the</strong> future (Credit: Intergovernmental Panel <strong>on</strong> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>).13


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal Draft3 POSSIBLE RESPONSES AND IMPACTS3.1 Physical resp<strong>on</strong>ses <strong>and</strong> impacts<str<strong>on</strong>g>Change</str<strong>on</strong>g>s in <strong>the</strong> ocean to <strong>the</strong> west <str<strong>on</strong>g>of</str<strong>on</strong>g> Europewill have important effects <strong>on</strong> <strong>the</strong> wea<strong>the</strong>rpatterns <str<strong>on</strong>g>of</str<strong>on</strong>g> Europe. The Atlantic Meridi<strong>on</strong>alOverturning Circulati<strong>on</strong> (MOC) refers to <strong>the</strong>northward flow <str<strong>on</strong>g>of</str<strong>on</strong>g> ocean water, its subsequentcooling <strong>and</strong> sinking in <strong>the</strong> North Atlantic <strong>and</strong><strong>the</strong> return southward flow at intermediate <strong>and</strong>near bottom depths. This process c<strong>on</strong>tributesabout 90% to <strong>the</strong> oceanic south–north heatfluxes in <strong>the</strong> North Atlantic <strong>and</strong> is thus mostsignificant for <strong>European</strong> climate <strong>and</strong> itsvariability (Quadfasel 2005). A slowdown <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>Atlantic MOC has been suggested as possiblycausing a drop in temperatures over Europe <str<strong>on</strong>g>of</str<strong>on</strong>g>as much as 4°C (Quadfasel 2005). However,while recent observati<strong>on</strong>s indicate that <strong>the</strong>returned subsurface flow associated with <strong>the</strong>MOC has slowed down due to reducedc<strong>on</strong>vective sinking, <strong>the</strong>re is no evidence that<strong>the</strong> near surface flows have decreased (Brydenet al. 2005).<str<strong>on</strong>g>Climate</str<strong>on</strong>g>-induced changes in Arctic sea-icecover <strong>and</strong> thickness represent <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>largest uncertainties in <strong>the</strong> predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> futuretemperature rise (Lax<strong>on</strong> et al. 2003; Macd<strong>on</strong>aldet al. 2005). The extent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> perennial Arcticsea-ice has decreased in extent by about 15%since 1980 (Francis et al. 2005). Fur<strong>the</strong>rmore,<strong>the</strong> ice became less thick <strong>and</strong> its compositi<strong>on</strong>shifted towards more first-year ice, which meltsfaster than multi-year ice (Macd<strong>on</strong>ald et al.2005). A c<strong>on</strong>tinuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> observed increasein <strong>the</strong> length <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> melt seas<strong>on</strong> is expected tolead to fur<strong>the</strong>r overall thinning <str<strong>on</strong>g>of</str<strong>on</strong>g> sea-ice(Lax<strong>on</strong> et al. 2003), resulting in an ice-freeArctic during summer within 100 years(Johannessen et al. 2004).“New evidence <strong>on</strong> <strong>the</strong> melting <str<strong>on</strong>g>of</str<strong>on</strong>g> icesheets indicates that a sea level rise <str<strong>on</strong>g>of</str<strong>on</strong>g> 7m could occur within 500 ra<strong>the</strong>r than 1000years.”Alley et al. (2005)Dowdeswell (2006)Elevated summer temperatures will streng<strong>the</strong>nnear-surface stratificati<strong>on</strong> <strong>and</strong> decrease <strong>the</strong>ability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> winter winds to mix <strong>the</strong> watercolumn (e.g. McClain et al. 2004; Llope et al.2006). Several coupled ocean-atmospheremodels have shown global warming to beaccompanied by an increase in verticalstratificati<strong>on</strong> (IPCC 2001).<strong>Coastal</strong> communities in <strong>the</strong> Arctic have used sea walls <strong>and</strong> o<strong>the</strong>r man-made barriers to hold backerosi<strong>on</strong>. These measures have worked to an extent, but as areas <str<strong>on</strong>g>of</str<strong>on</strong>g> open water become larger, wave<strong>and</strong> wind effects also increase <strong>and</strong> eat away at <strong>the</strong>se temporary soluti<strong>on</strong>s (Credit: T<strong>on</strong>y A. WeyiouannaSr).Increased storminess will exacerbate <strong>the</strong> effect<str<strong>on</strong>g>of</str<strong>on</strong>g> sea level rise in coastal systems due to <strong>the</strong>higher frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> storm surges <strong>and</strong> extremewave acti<strong>on</strong>. Wetl<strong>and</strong> losses due to sea levelrise are expected to be in <strong>the</strong> order <str<strong>on</strong>g>of</str<strong>on</strong>g> 17%al<strong>on</strong>g <strong>the</strong> Atlantic coasts, 31%-100% al<strong>on</strong>g <strong>the</strong>Mediterranean coast <strong>and</strong> 84%-98% al<strong>on</strong>g <strong>the</strong>Baltic coast (IPCC 2001). Greater defence <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong>se coastlines to prevent coastal flooding willlead to additi<strong>on</strong>al loss <str<strong>on</strong>g>of</str<strong>on</strong>g> coastal habitats(IPCC 1990). Offshore structures <strong>and</strong>installati<strong>on</strong>s for hydrocarb<strong>on</strong> extracti<strong>on</strong> <strong>and</strong>renewable energy will also be at greater risk.14


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal Draft3.2 Biological resp<strong>on</strong>ses <strong>and</strong> impacts<str<strong>on</strong>g>Climate</str<strong>on</strong>g> change is expected to have a range <str<strong>on</strong>g>of</str<strong>on</strong>g>effects <strong>on</strong> marine systems. Some effects maybe related to changing water temperatures,circulati<strong>on</strong> or habitat, while o<strong>the</strong>rs occurthrough altered pathways withinbiogeochemical cycles <strong>and</strong> foodwebs. <str<strong>on</strong>g>Climate</str<strong>on</strong>g>change may influence nutrient <strong>and</strong> c<strong>on</strong>taminantc<strong>on</strong>centrati<strong>on</strong>s via ocean currents <strong>and</strong>fluctuati<strong>on</strong>s in <strong>the</strong> depth <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> surface mixedlayer <strong>and</strong> period <str<strong>on</strong>g>of</str<strong>on</strong>g> vertical stratificati<strong>on</strong>.<str<strong>on</strong>g>Climate</str<strong>on</strong>g>-induced changes in microorganisms,such as bacteria <strong>and</strong> Archea, will affectbiogeochemical cycles, e.g. those <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen,ir<strong>on</strong> <strong>and</strong> sulphites. In estuaries <strong>and</strong> upwellingareas, changes in strength <strong>and</strong> seas<strong>on</strong>ality <str<strong>on</strong>g>of</str<strong>on</strong>g>circulati<strong>on</strong> patterns can affect <strong>the</strong> retenti<strong>on</strong>dispersi<strong>on</strong>mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> plankt<strong>on</strong>ic larvae(Gaines <strong>and</strong> Bertness 1992). An increase inprecipitati<strong>on</strong>-driven flooding will particularlyaffect estuaries through enhanced river run<str<strong>on</strong>g>of</str<strong>on</strong>g>f<strong>and</strong> changes in nutrients <strong>and</strong> salinity incoastalregi<strong>on</strong>s, including aquaculture areas.Summer droughts will lead to increasedsalinisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> upper reaches in nor<strong>the</strong>rnEurope <strong>and</strong> hypersalinisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> estuaries <strong>and</strong>lago<strong>on</strong>s in <strong>the</strong> south.Increasing temperatures <strong>and</strong> enhancedstratificati<strong>on</strong> could affect <strong>the</strong> amount <strong>and</strong>producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phytoplankt<strong>on</strong>. Because <strong>the</strong>sepelagic microalgae are resp<strong>on</strong>sible forremoving CO 2 from <strong>the</strong> atmosphere <strong>and</strong>transferring <strong>the</strong> carb<strong>on</strong> to higher trophic levels,any change in <strong>the</strong> timing, abundance orspecies compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se primaryproducers will have c<strong>on</strong>sequences <strong>on</strong> <strong>the</strong> rest<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> marine foodweb. A meta-analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> anumber <str<strong>on</strong>g>of</str<strong>on</strong>g> models suggests an increase inglobal primary producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> between 1% <strong>and</strong>8% by 2050, when compared to pre-industrialtimes (Sarmiento et al. 2004).In open marine ecosystems <strong>the</strong> populati<strong>on</strong>dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> many species <str<strong>on</strong>g>of</str<strong>on</strong>g> marineinvertebrates <strong>and</strong> fish are driven byrecruitment processes. Recruitment refers to<strong>the</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> young that are added to <strong>the</strong>populati<strong>on</strong> each year. Recruitment in coldtemperate species is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten synchr<strong>on</strong>ised withseas<strong>on</strong>al producti<strong>on</strong> cycles <str<strong>on</strong>g>of</str<strong>on</strong>g> phytoplankt<strong>on</strong>. Ifwarming results in advancement <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> timing<str<strong>on</strong>g>of</str<strong>on</strong>g> reproducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se species, this mayresult in a mismatch with <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>irmain food source (phytoplankt<strong>on</strong>). Anysubsequent decrease in recruitment successwill inevitably lead to shifts in speciescompositi<strong>on</strong>.In general, a rapidly warming envir<strong>on</strong>mentwould be expected to result in apoewardmovement <str<strong>on</strong>g>of</str<strong>on</strong>g> species. Such a change ingeographical distributi<strong>on</strong> occurred at <strong>the</strong> end<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> last glacial maximum with <strong>the</strong>col<strong>on</strong>isati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nor<strong>the</strong>rn seas <strong>and</strong> coasts. Morerecently, during <strong>the</strong> cold period <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> 1970ssome species shifted southwards. Sincewarming accelerated in <strong>the</strong> late 1980s,poleward advances <str<strong>on</strong>g>of</str<strong>on</strong>g> sou<strong>the</strong>rn species <strong>and</strong>retreats <str<strong>on</strong>g>of</str<strong>on</strong>g> nor<strong>the</strong>rn species have beenrecorded in zooplankt<strong>on</strong>, fish <strong>and</strong> benthicspecies, including those found <strong>on</strong> rocky shores(Br<strong>and</strong>er et al. 2003; Southward et al. 2005).When encountering unfavourableenvir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s, species distributi<strong>on</strong>may not always exhibit displavcementnorthwards. For example, when <strong>the</strong> main prey<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> harp seals in <strong>the</strong> Barents Sea collapsed,<strong>the</strong>se seals migrated southward al<strong>on</strong>g <strong>the</strong>coast <str<strong>on</strong>g>of</str<strong>on</strong>g> Norway <strong>and</strong> into <strong>the</strong> North Sea insearch <str<strong>on</strong>g>of</str<strong>on</strong>g> food (Harkönen et al. 2006).<str<strong>on</strong>g>Climate</str<strong>on</strong>g>-induced decoupling <str<strong>on</strong>g>of</str<strong>on</strong>g> phenologicalrelati<strong>on</strong>ships (relative timing <str<strong>on</strong>g>of</str<strong>on</strong>g> life cycleevents) may locally affect community structure<strong>and</strong> food webs by altering <strong>the</strong> interacti<strong>on</strong>between a species <strong>and</strong> its competitors,mutualists, predators, prey or pathogens. Forexample, in <strong>the</strong> case <str<strong>on</strong>g>of</str<strong>on</strong>g> sea birds, chick dietcompositi<strong>on</strong> during development is likely to bean important mechanistic link between climatevariability <strong>and</strong> <strong>the</strong> observed decline in seabirdpopulati<strong>on</strong>s (Kitaysky et al. 2005). Also, withreference to cod populati<strong>on</strong>, a shift from largeto smaller copepod species resulted in anenhanced prey availability <strong>and</strong> subsequentsurvival <str<strong>on</strong>g>of</str<strong>on</strong>g> cod larvae during <strong>the</strong> 1970s, <strong>the</strong> socalled“gadoid-outburst” (Beaugr<strong>and</strong> et al.2003). Fur<strong>the</strong>r temperature rises are likely toinfluence entire ecosystem assemblages(Genner et al. 2004), as well as havingpr<str<strong>on</strong>g>of</str<strong>on</strong>g>ound impacts <strong>on</strong> exploitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> livingmarine resources (Perry et al. 2005).“In <strong>the</strong> North Sea, nearly two-thirds <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>fish species have shifted <strong>the</strong>ir meanlatitude <strong>and</strong>/or depth over <strong>the</strong> last 25years”Perry et al. (2005)Rapid warming can accelerate establishment<str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-indigenous species, many <str<strong>on</strong>g>of</str<strong>on</strong>g> whichhave been shown to do better under <strong>the</strong>warmer c<strong>on</strong>diti<strong>on</strong>s experienced in recent years(Stachowicz et al. 2002). When <strong>the</strong> Pacificoyster (Crasostrea gigas) was introduced innorthwestern Europe as a potential aquaculturespecies, it was not expected to reproduce, dueto <strong>the</strong> relatively cold water temperatures.However, <strong>the</strong> recent warming (in associati<strong>on</strong>with its possible adaptati<strong>on</strong> to its newenvir<strong>on</strong>ment) has now removed this species’reproductive barrier, resulting in massiveproliferati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> C. gigas, especially in <strong>the</strong>Ne<strong>the</strong>rl<strong>and</strong>s, but also in <strong>the</strong> UK (Reise et al.2004). N<strong>on</strong>-native species from coastlines witha str<strong>on</strong>g c<strong>on</strong>tinental influence <strong>and</strong> seas<strong>on</strong>alextremes (e.g; Asia, east coast <str<strong>on</strong>g>of</str<strong>on</strong>g> America)whose larvae are transported to <strong>European</strong>15


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal Draftwaters by means <str<strong>on</strong>g>of</str<strong>on</strong>g> ballast water, may alreadybe very well adapted to <strong>the</strong> warmed waters <str<strong>on</strong>g>of</str<strong>on</strong>g>Europe.<strong>European</strong> policies <strong>on</strong> management <str<strong>on</strong>g>of</str<strong>on</strong>g> marineresources (e.g. <strong>European</strong> Comm<strong>on</strong> FisheriesPolicy, <strong>Marine</strong> Thematic Strategy) <strong>and</strong> marinec<strong>on</strong>servati<strong>on</strong> (e.g. <strong>the</strong> Bird <strong>and</strong> HabitatDirectives <strong>and</strong> Natura 2000 network) can neverassume that <strong>the</strong> marine envir<strong>on</strong>ment isrelatively stable.Even without human-induced climate change,natural variability <strong>and</strong> evoluti<strong>on</strong>ary processesc<strong>on</strong>tinuously alter biodiversity <strong>and</strong>biogeography <str<strong>on</strong>g>of</str<strong>on</strong>g> species (Leslie et al. 2005).<str<strong>on</strong>g>Climate</str<strong>on</strong>g> change may cause serious problemsfor this type <str<strong>on</strong>g>of</str<strong>on</strong>g> management when marinesystems become even more dynamic <strong>and</strong>variable than before.A climatic regime shift during <strong>the</strong> mid-1970s in <strong>the</strong> North Pacificresulted in decreased availability <str<strong>on</strong>g>of</str<strong>on</strong>g> lipid-rich fish to seabirds <strong>and</strong>was followed by a dramatic decline in number <str<strong>on</strong>g>of</str<strong>on</strong>g> kittiwakes.Experiments revealed that diets low in lipids induce nutriti<strong>on</strong>alstress <strong>and</strong> impair cognitive abilities in young red-leggedkittiwakes, which is likely to result in <strong>the</strong>ir increased mortality<strong>and</strong> low recruitment rates(Kitaysky et al. 2005) (Photo by DeanKildaw /U.S. Fish <strong>and</strong> Wildlife Service).16


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal Draft4 REGIONAL RESPONSES AND IMPACTS4.1 INTRODUCTION<str<strong>on</strong>g>Climate</str<strong>on</strong>g> change is expected to affect differentregi<strong>on</strong>s in different ways, including:• Observed trends <strong>and</strong> expectedchanges str<strong>on</strong>gly differ throughout <strong>the</strong>globe. Warming will be morepr<strong>on</strong>ounced at <strong>the</strong> poles than at <strong>the</strong>equator (MacD<strong>on</strong>ald et al. 2005).• The resp<strong>on</strong>ses to climate change areexpected to differ for different marinesystems. For example, while openoceans are more affected by <strong>the</strong>influence <str<strong>on</strong>g>of</str<strong>on</strong>g> wind <strong>on</strong> <strong>the</strong> timing <strong>and</strong>strength <str<strong>on</strong>g>of</str<strong>on</strong>g> stratificati<strong>on</strong>, coastal areasare more vulnerable to <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g>wind via storm surges. In additi<strong>on</strong> toexpected warming <str<strong>on</strong>g>of</str<strong>on</strong>g> seawater, polarregi<strong>on</strong>s will experience changes in icecover.“Between 1993 <strong>and</strong> 2003, in Australia, sealevel increased at a rate <str<strong>on</strong>g>of</str<strong>on</strong>g> more than 30mm y -1 whilst a decrease in sea level <str<strong>on</strong>g>of</str<strong>on</strong>g>more than 20 mm y -1 was observed in parts<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> nor<strong>the</strong>astern Pacific.”Holgate & Woodworth (2005)75Nordic Seas7065Barents Sea60Nor<strong>the</strong>ast Atlantic55North SeaBaltic Sea504540Celtic-Biscay ShelfIberian upwellingmarginWestern MediterraneanBlack SeaEastern Mediterranean3530Central Mediterranean-40-35 -30 -25 -20 -15 -10 - 0 5 1 15 20 25 30 35 40 45 50<strong>European</strong> marine <strong>and</strong> coastal envir<strong>on</strong>ments for which temperature time series were compiled (Mapcompiled by Priscilla Lic<strong>and</strong>ro/SAHFOS <strong>and</strong> Katja Philippart/NIOZ)During <strong>the</strong> past 10 years, sea-surfacetemperatures (SST) appear to be rising <strong>and</strong>excepti<strong>on</strong>ally high temperatures have occurredin all <strong>European</strong> marine waters, except for <strong>the</strong>Black Sea. During <strong>the</strong> past 75 years, areaaveragedsea-surface temperatures werelowest in <strong>the</strong> Barents Sea (less than 5°C),followed by <strong>the</strong> Nordic Seas <strong>and</strong> <strong>the</strong> Baltic Sea(5°C to 10°C temperature range), <strong>and</strong> <strong>the</strong> NorthSea <strong>and</strong> Celtic-Biscay shelf (10°C to 15°C),<strong>and</strong> higher in <strong>the</strong> Nor<strong>the</strong>ast Atlantic <strong>and</strong> <strong>the</strong>Black Sea (15°C to 17°C), whilst warmestwaters were found in <strong>the</strong> Iberian upwellingmargin <strong>and</strong> Mediterranean basins (18°C to20°C). Due to <strong>the</strong> ice coverage, l<strong>on</strong>g-termobservati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> sea-surface temperature arenot available for <strong>the</strong> Arctic. Variati<strong>on</strong>s in sea-iceextent, however, may be c<strong>on</strong>sidered as anindex <str<strong>on</strong>g>of</str<strong>on</strong>g> changes in sea surface temperature(see Secti<strong>on</strong> 4.2).17


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal DraftBaltic SeaBarents Sea1039281930 1940 1950 1960 1970 1980 1990 20001930 1940 1950 1960 1970 1980 1990 2000Black SeaCeltic-Biscay shelf141613151930 1940 1950 1960 1970 1980 1990 2000121930 1940 1950 1960 1970 1980 1990 2000Central MediterraneanEastern Mediterranean21201920181930 1940 1950 1960 1970 1980 1990 2000Iberian upwelling margin19191930 1940 1950 1960 1970 1980 1990 2000Nordic Seas7.6186.8171930 1940 1950 1960 1970 1980 1990 20006.01930 1940 1950 1960 1970 1980 1990 200016North East Atlantic11North Sea1510141930 1940 1950 1960 1970 1980 1990 200091930 1940 1950 1960 1970 1980 1990 2000Western Mediterranean2019181930 1940 1950 1970 1980 1990 2000L<strong>on</strong>g-term variati<strong>on</strong> in area-averaged sea-surface temperatures (°C) in <strong>European</strong> marine <strong>and</strong> coastalenvir<strong>on</strong>ments based <strong>on</strong> HadSST2 data from <strong>the</strong> Hadley Centre, UK (data compiled by PriscillaLic<strong>and</strong>ro/SAHFOS <strong>and</strong> Katja Philippart/NIOZ).18


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal Draft4.2 ARCTIC OCEANDescripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> areaThe Arctic Ocean c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> deep (> 4000m) Eurasian, Markov <strong>and</strong> Canada Basins, <strong>the</strong>surrounding c<strong>on</strong>tinental shelf seas (Barents,White, Kara, Laptev, East Siberian, Chucki,<strong>and</strong> Beaufort Seas) <strong>and</strong> <strong>the</strong> CanadianArchipelago.Pacific waters enter <strong>the</strong> Arctic Ocean through<strong>the</strong> Bering Strait (Woodgate <strong>and</strong> Aagaard,2005) <strong>and</strong>, augmented by freshwater run<str<strong>on</strong>g>of</str<strong>on</strong>g>f<strong>and</strong> forced by <strong>the</strong> mean winds, most flowtowards <strong>the</strong> Atlantic Ocean in <strong>the</strong> Trans-ArcticDrift. The clockwise Beaufort Gyre is locatedl<strong>and</strong>ward <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Trans-Arctic Drift <strong>on</strong> <strong>the</strong>Canadian side.The majority <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> water from <strong>the</strong> Arctic exits<strong>the</strong> regi<strong>on</strong> through <strong>the</strong> Fram Strait <str<strong>on</strong>g>of</str<strong>on</strong>g>fnor<strong>the</strong>astern Greenl<strong>and</strong>, although some wateralso makes its way through <strong>the</strong> CanadianArchipelago. Water from <strong>the</strong> Atlantic Oceanenters <strong>the</strong> Arctic through <strong>the</strong> Barents Sea <strong>and</strong><strong>the</strong> eastern Fram Strait.The Arctic Ocean (Credit: SAHFOS - <strong>Marine</strong> Institute )19


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal DraftSignals <str<strong>on</strong>g>of</str<strong>on</strong>g> climate changeThe Arctic climate has varied <strong>on</strong> geological tointerannual time scales. In <strong>the</strong> last century <strong>the</strong>climate shifted from generally cold c<strong>on</strong>diti<strong>on</strong>s in<strong>the</strong> early 1900s to a warm period from <strong>the</strong>1920s to <strong>the</strong> 1950s, cooled again through <strong>the</strong>1960s <strong>and</strong> 1970s before <strong>the</strong> recent warming(Johannessen et al. 2004). Decreases <strong>and</strong>increases in <strong>the</strong> seas<strong>on</strong>al ice coverage <strong>and</strong>thickness have been recorded c<strong>on</strong>current with<strong>the</strong>se warm <strong>and</strong> cool periods (Johannessen etal. 2004; ACIA 2005).The recent warming in <strong>the</strong> Arctic has beenunprecedented, with annual mean airtemperatures rising at a rate 50% greater thanfrom Icel<strong>and</strong> to <strong>the</strong> equator (ACIA 2005) <strong>and</strong> in<strong>the</strong> advecti<strong>on</strong> pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> warm air from <strong>the</strong>south (Overl<strong>and</strong> et al. 2004). The recentwarming has resulted in vast reducti<strong>on</strong>s in <strong>the</strong>amount <str<strong>on</strong>g>of</str<strong>on</strong>g> multi-year ice, a 20% decrease in<strong>the</strong> summer extent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Arctic sea-ice during<strong>the</strong> last 30 years <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> last century(Johannessen et al. 1999) <strong>and</strong> a thinning <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ice by up to 2 m in <strong>the</strong> central Arctic between<strong>the</strong> 1960s <strong>and</strong> <strong>the</strong> 1990s (Rothrock <strong>and</strong> Zhang2005).With less sea-ice, <strong>the</strong> decrease in <strong>the</strong> albedoeffect led to increased absorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> solarheating, <strong>the</strong>reby adding to <strong>the</strong> increased rate <str<strong>on</strong>g>of</str<strong>on</strong>g>warming (ACIA 2005). Additi<strong>on</strong>al warming(over 1°C) occurred at intermediate depths in<strong>the</strong> Arctic Ocean, especially in <strong>the</strong> EurasianBasin, due to increased inflow <str<strong>on</strong>g>of</str<strong>on</strong>g> warm Atlanticwater (Polyakov et al. 2005). The boundarybetween Atlantic <strong>and</strong> Pacific waters shiftedtowards <strong>the</strong> Pacific from <strong>the</strong> Lom<strong>on</strong>osov Ridgeto <strong>the</strong> Mendeleyev-Alpha Ridge <strong>and</strong> <strong>the</strong>percent Atlantic waters in <strong>the</strong> Canada Basinincreased (McLaughlin et al. 2002). Sea-icemelt, coupled with increased river run<str<strong>on</strong>g>of</str<strong>on</strong>g>f into<strong>the</strong> Arctic, led to freshening <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> surfacelayers <strong>and</strong> a rise in sea level (ACIA 2005).Because <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> extensive ice cover, difficultlogistics, few inhabitants, <strong>and</strong> no commercialfisheries in <strong>the</strong> high Arctic, <strong>the</strong>re are fewpublished studies <strong>on</strong> <strong>the</strong> biologicalc<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> past climate changes in thisregi<strong>on</strong> (ACIA 2005). However, benthic studiesin <strong>the</strong> Chukchi Sea north <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Bering Seahave shown populati<strong>on</strong> changes in <strong>the</strong>dominant species, which are thought to berelated to changing hydrographic c<strong>on</strong>diti<strong>on</strong>s(Grebmeier et al. 1995).“Sea-ice coverage will fur<strong>the</strong>r decreasewith suggesti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> an ice-free Arcticduring summer before 2100 <strong>and</strong> thus nomulti-year ice in winter.”ACIA (2005)Recent projecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> future climate scenariosindicate c<strong>on</strong>tinued warming with temperatureincreases in <strong>the</strong> order <str<strong>on</strong>g>of</str<strong>on</strong>g> 2° to 10°C over thiscentury (ACIA 2005). Increased precipitati<strong>on</strong>will result in higher river run<str<strong>on</strong>g>of</str<strong>on</strong>g>f adding to <strong>the</strong>freshwater additi<strong>on</strong>s through ice melt. In <strong>the</strong>absence <str<strong>on</strong>g>of</str<strong>on</strong>g> ice, surface waters will be exposedto wind-driven circulati<strong>on</strong> (ACIA 2005). TheTranspolar Drift would shift eastwards to favourflow directly toward <strong>the</strong> Fram Strait. TheBeaufort Gyre may weaken <strong>and</strong> retreat into <strong>the</strong>Canada Basin with <strong>the</strong> positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Atlantic/Pacific Fr<strong>on</strong>t tending to alignpermanently with <strong>the</strong> Mendeleyev-Alpha Ridge.Also, when summer ice retreats seaward <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>c<strong>on</strong>tinental slope, enhanced deep basin-shelfexchange <str<strong>on</strong>g>of</str<strong>on</strong>g> seawater will occur throughincreased wind-induced upwelling <strong>and</strong>downwelling (Carmack <strong>and</strong> Chapman 2003).The retracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sea-ice <strong>and</strong> <strong>the</strong> enhancedexchange <str<strong>on</strong>g>of</str<strong>on</strong>g> deep-basin seawater will result inhigher light levels <strong>and</strong> nutrient c<strong>on</strong>centrati<strong>on</strong>s<strong>on</strong> <strong>the</strong> shelves, leading to increased primaryproducti<strong>on</strong>. Wind-driven vertical mixing is likelyto increase <strong>the</strong> depth <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> surface mixedlayer. If <strong>the</strong> Arctic becomes ice-free in winter,<strong>the</strong> Nansen Basin may become a regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>str<strong>on</strong>g c<strong>on</strong>vecti<strong>on</strong> (sinking <str<strong>on</strong>g>of</str<strong>on</strong>g> cold dense water)<strong>and</strong> water mass formati<strong>on</strong>. Predictedstreng<strong>the</strong>ning <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> westerly winds in <strong>the</strong>Nordic Seas is expected to increase <strong>the</strong>transport <str<strong>on</strong>g>of</str<strong>on</strong>g> Atlantic water entering <strong>the</strong> Arcticvia <strong>the</strong> Fram Strait <strong>and</strong> <strong>the</strong> Barents Sea (ACIA2005).Based up<strong>on</strong> our underst<strong>and</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> biologicalprocesses in <strong>the</strong> Arctic, some predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change can be made.Where sea-ice coverage is reduced, ice algalproducti<strong>on</strong> will significantly decrease (ACIA2005). This loss <str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong> will be more thanmade up for by increased open ocean plankt<strong>on</strong>producti<strong>on</strong> in <strong>the</strong>se ice-free regi<strong>on</strong>s because <str<strong>on</strong>g>of</str<strong>on</strong>g>higher light levels <strong>and</strong> increased nutrientc<strong>on</strong>centrati<strong>on</strong>s through enhanced verticalmixing. This producti<strong>on</strong> may be limited in someareas by <strong>the</strong> negative effects <str<strong>on</strong>g>of</str<strong>on</strong>g> increasedstratificati<strong>on</strong> from increased sea-ice melt <strong>and</strong>higher surface layer temperatures. Benthicproducti<strong>on</strong> is likely to decrease, but this willdepend up<strong>on</strong> <strong>the</strong> match/mismatch betweenphytoplankt<strong>on</strong> <strong>and</strong> zooplankt<strong>on</strong>, i.e. <strong>the</strong> amount<str<strong>on</strong>g>of</str<strong>on</strong>g> phytoplankt<strong>on</strong> that sinks to <strong>the</strong> bottom beforebeing eaten (ACIA 2005).Higher producti<strong>on</strong> at <strong>the</strong> lower trophic levels isexpected to lead to increased zooplankt<strong>on</strong> <strong>and</strong>fish producti<strong>on</strong> in <strong>the</strong> Arctic, although <strong>the</strong> extent<str<strong>on</strong>g>of</str<strong>on</strong>g> such an increase is uncertain (ACIA 2005).In c<strong>on</strong>trast, <strong>the</strong> abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> ice-dependentspecies such as polar bears, as well as someseals <strong>and</strong> seabirds is likely to decrease.Already polar bears are showing some signs <str<strong>on</strong>g>of</str<strong>on</strong>g>being in poor c<strong>on</strong>diti<strong>on</strong>, associated with <strong>the</strong>Projecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change20


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal Draftdecrease <str<strong>on</strong>g>of</str<strong>on</strong>g> seal prey availability, which islinked to <strong>the</strong> decline in ice coverage.Distributi<strong>on</strong>al shifts in organisms, fromphytoplankt<strong>on</strong> to marine mammals <strong>and</strong>seabirds, may result in <strong>the</strong> establishment <str<strong>on</strong>g>of</str<strong>on</strong>g>n<strong>on</strong>-indigenous species in <strong>the</strong> Arctic, forcing afur<strong>the</strong>r geographical retracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> native Arcticspecies <strong>and</strong> <strong>the</strong> possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> some speciesdisappearing altoge<strong>the</strong>r.In 2006, polar bears were placed <strong>on</strong> <strong>the</strong> Red List <str<strong>on</strong>g>of</str<strong>on</strong>g> Threatened Species <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> World C<strong>on</strong>servati<strong>on</strong>Uni<strong>on</strong> (IUCN). Due to <strong>the</strong>ir slow reproducti<strong>on</strong> cycle <strong>and</strong> <strong>the</strong> speed <str<strong>on</strong>g>of</str<strong>on</strong>g> global warming, it seems unlikelythat polar bears will be able to adapt to <strong>the</strong> current warming trend in <strong>the</strong> Arctic. If climatic trendsc<strong>on</strong>tinue polar bears may diminish from most <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir range within 100 years (www.iucnredlist.org)(credit: Ansgar Walk/Creative Comm<strong>on</strong>s Attributi<strong>on</strong> ShareAlike 2.5 License applies).Current m<strong>on</strong>itoring <strong>and</strong> researchprogrammes <strong>and</strong> projects in <strong>the</strong> Arctic• M<strong>on</strong>itoring <strong>and</strong> research programmes <strong>and</strong>projects for <strong>the</strong> Arctic have beenexp<strong>and</strong>ing during recent years althoughmost regi<strong>on</strong>s generally remainundersampled;• The internati<strong>on</strong>al Arctic <str<strong>on</strong>g>Climate</str<strong>on</strong>g> ImpactAssessment was recently completed(ACIA 2005);• The Arctic M<strong>on</strong>itoring <strong>and</strong> AssessmentProgram (AMAP) has <strong>on</strong>going activities,especially related to c<strong>on</strong>taminants;• Transports <str<strong>on</strong>g>of</str<strong>on</strong>g> water, heat <strong>and</strong> freshwaterto <strong>and</strong> from <strong>the</strong> Arctic are m<strong>on</strong>itored <strong>and</strong>examined by <strong>the</strong> Arctic/Subarctic OceanFluxes (ASOF);• The Circumpolar Biodiversity M<strong>on</strong>itoringProgram (CBMP) has been initiated in <strong>the</strong>Arctic <str<strong>on</strong>g>of</str<strong>on</strong>g> which <strong>the</strong> first report is due outshortly;• Activities during <strong>the</strong> Internati<strong>on</strong>al PolarYear (IPY 2007-2008) are expected togreatly increase research <strong>and</strong>underst<strong>and</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> role <str<strong>on</strong>g>of</str<strong>on</strong>g> climate <strong>on</strong> <strong>the</strong>marine ecosystems, as well as to exp<strong>and</strong>m<strong>on</strong>itoring activities in <strong>the</strong> Arctic.21


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal Draft4.3 BARENTS SEADescripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> areaThe Barents Sea is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> shallow shelfseas that collectively form <strong>the</strong> Arctic c<strong>on</strong>tinentalshelf. Its western boundary is defined by <strong>the</strong>shelf break towards <strong>the</strong> Norwegian Sea, <strong>the</strong>eastern boundary by <strong>the</strong> Novaya Zemlyaarchipelago, <strong>the</strong> sou<strong>the</strong>rn boundary by Norway<strong>and</strong> Russia, <strong>and</strong> <strong>the</strong> nor<strong>the</strong>rn boundary by <strong>the</strong>c<strong>on</strong>tinental shelf break towards <strong>the</strong> deep ArcticOcean. The Barents Sea covers 1.4 milli<strong>on</strong>km2 with an average depth <str<strong>on</strong>g>of</str<strong>on</strong>g> 230 m <strong>and</strong> amaximum depth <str<strong>on</strong>g>of</str<strong>on</strong>g> approximately 500 m near<strong>the</strong> western entrance.Atlantic waters enter <strong>the</strong> Barents Sea betweenBear Isl<strong>and</strong> <strong>and</strong> nor<strong>the</strong>rn Norway; <strong>the</strong>y cool<strong>and</strong> freshen before exiting principally to <strong>the</strong>north <str<strong>on</strong>g>of</str<strong>on</strong>g> Novaya Zemlya. Most Arctic watersenter between Spitzbergen <strong>and</strong> Franz JosefL<strong>and</strong> <strong>and</strong> exit south <str<strong>on</strong>g>of</str<strong>on</strong>g> Spitzbergen (Loeng etal. 1995). A narrow transiti<strong>on</strong> z<strong>on</strong>e, called <strong>the</strong>Polar Fr<strong>on</strong>t, separates <strong>the</strong> Atlantic <strong>and</strong> Arcticwater masses. Winter c<strong>on</strong>vecti<strong>on</strong> in <strong>the</strong>Barents Sea also provides cold intermediatewater to <strong>the</strong> Arctic Ocean to a depth <str<strong>on</strong>g>of</str<strong>on</strong>g> 1200 mthrough sinking <strong>and</strong> subsequent northwardadvecti<strong>on</strong> (Schauer et al. 1997). Sea-icetypically covers <strong>the</strong> nor<strong>the</strong>rn <strong>and</strong> easternregi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Barents Sea in winter.The Barents Sea (Credit: SAHFOS <strong>and</strong> <strong>Marine</strong> Institute)Signals <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change<str<strong>on</strong>g>Climate</str<strong>on</strong>g> variability in <strong>the</strong> Barents Sea, aselsewhere, occurs <strong>on</strong> a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> time scales.At multidecadal periods, <strong>the</strong> waters in <strong>the</strong>Barents Sea have underg<strong>on</strong>e similar changesto those in <strong>the</strong> Arctic, being relatively cold in<strong>the</strong> late 19 th century <strong>and</strong> <strong>the</strong> early part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>20 th century, warm from <strong>the</strong> 1920s to <strong>the</strong>1950s, cool through <strong>the</strong> 1960s to <strong>the</strong> 1980s<strong>and</strong> warm during <strong>the</strong> last decade or more(Drinkwater 2006). These changes are due to acombinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> atmospheric heating <strong>and</strong>cooling <strong>and</strong> variability in both <strong>the</strong> volume <strong>and</strong>temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> incoming Atlantic waters(Ingvaldsen et al. 2003). In associati<strong>on</strong> withwarm <strong>and</strong> cool periods, sea-ice coverage hasc<strong>on</strong>tracted <strong>and</strong> exp<strong>and</strong>ed, respectively.Recently, sea-ice coverage has been near itslowest recorded level, although <strong>the</strong> 1930s wasano<strong>the</strong>r period <str<strong>on</strong>g>of</str<strong>on</strong>g> low ice coverage.During <strong>the</strong> warm period <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> 1920s to 1950s,<strong>the</strong> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fish species such as cod,haddock <strong>and</strong> herring exp<strong>and</strong>ed northward <strong>and</strong>eastward (Drinkwater 2006). A similargeographic expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Atlantic associatedbenthic species occurred, while Arctic speciesdeclined (Berge et al. 2005).“During recent warming large numbers <str<strong>on</strong>g>of</str<strong>on</strong>g>blue whiting have extended northward asfar as <strong>the</strong> western entrance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> BarentsSea, <strong>and</strong> blue mussels have appeared inSvalbard after a 1000 year absence.”Berge et al. (2005)At interannual to decadal time scales, oceantemperature variability is correlated with <strong>the</strong>NAO with higher temperatures generallyassociated with <strong>the</strong> positive phase <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> NAO(Ingvaldsen et al. 2003). The higher correlati<strong>on</strong>after <strong>the</strong> early 1970s is attributed to <strong>the</strong>eastward shift in <strong>the</strong> Icel<strong>and</strong>ic Low (Ottersen etal. 2003). Interannual variati<strong>on</strong> in <strong>the</strong> positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>22


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal Draft<strong>the</strong> ice-edge in a particular m<strong>on</strong>th is about 3°Cto 4°C <str<strong>on</strong>g>of</str<strong>on</strong>g> latitude.Projecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> climate changeFurevik et al. (2002) modelled future climatescenarios for <strong>the</strong> Barents Sea. They suggestthat by 2080, surface ocean temperatures willwarm by 1°C to 2°C, winter sea-ice will almostdisappear, Atlantic waters will spread far<strong>the</strong>reastward <strong>and</strong> northward, <strong>the</strong>re will be morec<strong>on</strong>tinental run<str<strong>on</strong>g>of</str<strong>on</strong>g>f but this will be partiallycompensated by influx <str<strong>on</strong>g>of</str<strong>on</strong>g> higher salinity inAtlantic waters, <strong>and</strong> <strong>the</strong> surface mixed layerdepth will increase due to str<strong>on</strong>ger winds.Under <strong>the</strong> projected warming in <strong>the</strong> BarentsSea, Atlantic water species <str<strong>on</strong>g>of</str<strong>on</strong>g> fish <strong>and</strong> benthosare expected to extend fur<strong>the</strong>r east <strong>and</strong> north.Modelling studies (Slagstad <strong>and</strong> Wassmann1996) suggest primary producti<strong>on</strong> levels are400% higher in ice-free regi<strong>on</strong>s in a warm yearcompared to when <strong>the</strong>se same areas are icecovered.Relative to <strong>the</strong> entire Barents Searegi<strong>on</strong>, reduced ice cover will result in between8% (Ellingsen et al. 2006) to 30% (Slagstad<strong>and</strong> Wassmann 1996) increase in primaryproducti<strong>on</strong> in years free <str<strong>on</strong>g>of</str<strong>on</strong>g> summer ice. This isdue to a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> higher light levels inareas <str<strong>on</strong>g>of</str<strong>on</strong>g> decreased ice cover, higher nutrientlevels in <strong>the</strong> Atlantic waters where <strong>the</strong>yextended northward <strong>and</strong> eastward, <strong>and</strong> fasterturn-over times <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> phytoplankt<strong>on</strong>,associated with higher temperatures.This higher producti<strong>on</strong> is expected to result inincreased abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> cod, haddock <strong>and</strong>o<strong>the</strong>r species (ACIA 2005). Improved growthrates toge<strong>the</strong>r with expected increasedrecruitment will lead to increased yields inspecies such as cod, although this will dependto a large degree up<strong>on</strong> fishing intensity. Morefish will spawn far<strong>the</strong>r north, as observed forcod (Drinkwater 2005), <strong>and</strong> new spawning sitesare likely to be established. Herring <strong>and</strong> bluewhiting will spread fur<strong>the</strong>r eastward <strong>and</strong> salm<strong>on</strong>abundance is likely to increase in Russianwaters as previously observed (Lajus et al.2005) <strong>and</strong> to extend to nor<strong>the</strong>rn Spitzbergen.Capelin will follow <strong>the</strong> Polar Fr<strong>on</strong>t fur<strong>the</strong>r to <strong>the</strong>nor<strong>the</strong>ast to feed, but are expected to c<strong>on</strong>tinueto spawn <str<strong>on</strong>g>of</str<strong>on</strong>g>f nor<strong>the</strong>rn Norway. The distributi<strong>on</strong>shifts <str<strong>on</strong>g>of</str<strong>on</strong>g> fish populati<strong>on</strong>s will bring more <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>major commercial species (such as cod <strong>and</strong>haddock) into Russian waters, this distributi<strong>on</strong>shift <str<strong>on</strong>g>of</str<strong>on</strong>g> commercial populati<strong>on</strong>s may requirerenegotiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> present fisheries treatiesbetween Norway <strong>and</strong> Russia.Historical <strong>and</strong> forecast sea-surface temperatures <strong>and</strong> sea-ice during March based <strong>on</strong> <strong>the</strong> Bergen<str<strong>on</strong>g>Climate</str<strong>on</strong>g> Model (Data Compiled by T. Furevik/UIB).23


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal DraftCurrent m<strong>on</strong>itoring <strong>and</strong> researchprogrammes <strong>and</strong> projects in <strong>the</strong> BarentsSea• Russia has maintained <strong>the</strong> Kola Secti<strong>on</strong> (ahydrographic transect north <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Murmancoast) for over 100 years <strong>and</strong> has alsocarried out numerous benthic <strong>and</strong> fishsurveys;• Norway has undertaken annual fishsurveys to assess fish stocks for over 35years <strong>and</strong> in recent years <strong>the</strong>se have beenexp<strong>and</strong>ed to include o<strong>the</strong>r comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong> ecosystem;• Norway has led projects investigating <strong>the</strong>impact <str<strong>on</strong>g>of</str<strong>on</strong>g> climate evoluti<strong>on</strong> <strong>on</strong> <strong>the</strong> BarentsSea ecosystem, for example <strong>the</strong> earliercompleted Barents Sea Impact Study(BASIS); projects completed at <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g>2006 include <strong>the</strong> Carb<strong>on</strong> Flux <strong>and</strong>Ecosystem Feed Back in <strong>the</strong> Nor<strong>the</strong>rnBarents Sea in an era <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>(CABANERA), Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> North Atlantic<str<strong>on</strong>g>Climate</str<strong>on</strong>g> Variability <strong>on</strong> <strong>the</strong> Barents SeaEcosystem (ECOBE), Co-evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> lifehistories <str<strong>on</strong>g>of</str<strong>on</strong>g> Calanus <strong>and</strong> herring in <strong>the</strong>Norwegian Sea (ADAPT), <strong>the</strong> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <strong>and</strong>Producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Marine</strong> Resources (CliMar),<strong>and</strong> <strong>the</strong> Norwegian comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>Ecosystem Study <str<strong>on</strong>g>of</str<strong>on</strong>g> Sub-ArcticEcosystems (NESSAS) will c<strong>on</strong>tinue until2008;• In 2007-2008, several Internati<strong>on</strong>al PolarYear (IPY) activities are planned that focus<strong>on</strong> <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> climate variability <strong>and</strong>change <strong>on</strong> <strong>the</strong> Barents Sea ecosystem;<strong>the</strong>se include ESSAR <strong>and</strong> ARCTOS-FLUXES .24


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal Draft4.4 NORDIC SEASDescripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> areaThe Nordic Seas, which include <strong>the</strong> Greenl<strong>and</strong>,Norwegian <strong>and</strong> Icel<strong>and</strong> Seas, are a transiti<strong>on</strong>z<strong>on</strong>e for warm <strong>and</strong> saline Atlantic water <strong>on</strong> itsway to <strong>the</strong> Arctic, <strong>and</strong> for cold <strong>and</strong> less salinewaters flowing from <strong>the</strong> Arctic to <strong>the</strong> AtlanticOcean. The Greenl<strong>and</strong>-Scotl<strong>and</strong> Ridge forms abarrier between <strong>the</strong> deep waters <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> NordicSeas <strong>and</strong> <strong>the</strong> North Atlantic.The eastern Norwegian Sea c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g>relatively warm Atlantic water in <strong>the</strong> upperlayers (


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal DraftLarge ecosystem changes have been observedin <strong>the</strong> past. For example, <strong>the</strong> abundance <str<strong>on</strong>g>of</str<strong>on</strong>g>Norwegian spring spawning herring increasedduring <strong>the</strong> warming <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> 1920s, decreasedduring <strong>the</strong> cooling period in <strong>the</strong> 1960s but hasrisen again since <strong>the</strong> temperature increases in<strong>the</strong> 1990s (Toresen <strong>and</strong> Østvedt 2000). Duringwarm periods, i.e. 1920s-1950s, herringmigrated from <strong>the</strong>ir spawning locati<strong>on</strong>s <strong>on</strong> <strong>the</strong>west coast <str<strong>on</strong>g>of</str<strong>on</strong>g> Norway <strong>and</strong> around <strong>the</strong> Faroes,<strong>and</strong> <strong>the</strong>ir nursery areas in <strong>the</strong> western BarentsSea to <strong>the</strong> feeding grounds <str<strong>on</strong>g>of</str<strong>on</strong>g>f nor<strong>the</strong>asternIcel<strong>and</strong> (Vilhjálmss<strong>on</strong> 1997). The overwinteringgrounds were primarily to <strong>the</strong> east <str<strong>on</strong>g>of</str<strong>on</strong>g> Icel<strong>and</strong>;<strong>the</strong>n in spring <strong>the</strong> herring migrated back to <strong>the</strong>irspawning grounds.As <strong>the</strong> Arctic Fr<strong>on</strong>t shifted sou<strong>the</strong>astwardduring <strong>the</strong> colder 1960s, <strong>the</strong> herring feedinggrounds moved far<strong>the</strong>r eastward <strong>and</strong> <strong>the</strong>n to<strong>the</strong> southwest <str<strong>on</strong>g>of</str<strong>on</strong>g> Spitzbergen. When <strong>the</strong>herring populati<strong>on</strong> declined to drastically lowlevels, those individuals remaining no l<strong>on</strong>germigrated out into <strong>the</strong> Norwegian <strong>and</strong> Greenl<strong>and</strong>seas but stayed near <strong>the</strong> Norwegian coast toboth feed <strong>and</strong> spawn (Vilhjálmss<strong>on</strong> 1997). In<strong>the</strong> 1990s, as temperatures warmed <strong>and</strong> <strong>the</strong>populati<strong>on</strong> increased, <strong>the</strong> populati<strong>on</strong> againbegan migrating back towards Icel<strong>and</strong> to feed(ACIA 2005).Capelin, <strong>the</strong> major prey <str<strong>on</strong>g>of</str<strong>on</strong>g> adult cod <str<strong>on</strong>g>of</str<strong>on</strong>g>f Icel<strong>and</strong>,have moved fur<strong>the</strong>r northwest during <strong>the</strong> recentwarming requiring <strong>the</strong> capelin fleet to travelfur<strong>the</strong>r in order to obtain <strong>the</strong>ir catches. Thisdistributi<strong>on</strong>al shift is somewhat similar to <strong>the</strong>resp<strong>on</strong>se observed during <strong>the</strong> early XX thcentury warming period when <strong>the</strong> capelinpopulati<strong>on</strong> shifted northward. Cod spawn al<strong>on</strong>g<strong>the</strong> south <strong>and</strong> southwest coasts <str<strong>on</strong>g>of</str<strong>on</strong>g> Icel<strong>and</strong> <strong>and</strong><strong>the</strong>ir larvae drift northwards with manydeveloping <str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>the</strong> north coast <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> isl<strong>and</strong>.In recent years, warm c<strong>on</strong>diti<strong>on</strong>s due to <strong>the</strong>increased influx <str<strong>on</strong>g>of</str<strong>on</strong>g> Atlantic waters <str<strong>on</strong>g>of</str<strong>on</strong>g>f nor<strong>the</strong>rnIcel<strong>and</strong> have led to higher level <str<strong>on</strong>g>of</str<strong>on</strong>g> codrecruitment (Jónss<strong>on</strong> <strong>and</strong> Vladimarss<strong>on</strong> 2005).This may be due to shorter time spent during<strong>the</strong> vulnerable larval stages, increased foodbecause <str<strong>on</strong>g>of</str<strong>on</strong>g> higher primary <strong>and</strong> sec<strong>on</strong>daryproducti<strong>on</strong> (Astthorss<strong>on</strong> <strong>and</strong> Vilhjálmss<strong>on</strong>2002) or a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> both. The presence<str<strong>on</strong>g>of</str<strong>on</strong>g> Atlantic waters provides for an enhancedphytoplankt<strong>on</strong> bloom that lasts l<strong>on</strong>ger due toreduced stratificati<strong>on</strong> <strong>and</strong> higher nutrientc<strong>on</strong>centrati<strong>on</strong>s than are found in Arctic waters.Time series <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature with depth (left panel) in <strong>the</strong> central Greenl<strong>and</strong> Sea (area shown in rightpanel). The black dots in <strong>the</strong> left panel represent stati<strong>on</strong> data (Credit: ICES Oceanographic Database<strong>and</strong> Service.)Projecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> climate changeFurevik et al. (2002) reported <strong>on</strong> future climatescenarios for <strong>the</strong> Nordic Seas up to 2080.These included a 1°C to 2°C increase in seasurfacetemperatures, increased Atlantic flow to<strong>the</strong> Norwegian Sea <strong>and</strong> north <str<strong>on</strong>g>of</str<strong>on</strong>g> Icel<strong>and</strong> but areducti<strong>on</strong> in <strong>the</strong> overturning circulati<strong>on</strong>, aweakening <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Nordic Sea Gyre, little if anyice <strong>on</strong> <strong>the</strong> East Greenl<strong>and</strong> shelf, reducti<strong>on</strong> inwinter c<strong>on</strong>vecti<strong>on</strong> in <strong>the</strong> Greenl<strong>and</strong> Sea,reduced outflow through <strong>the</strong> Fram Strait, <strong>and</strong>fresher waters al<strong>on</strong>g <strong>the</strong> Greenl<strong>and</strong> <strong>and</strong>Norwegian shelves due to increased run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>and</strong>in <strong>the</strong> case <str<strong>on</strong>g>of</str<strong>on</strong>g> Greenl<strong>and</strong>, ice melt from <strong>the</strong>Greenl<strong>and</strong> ice cap <strong>and</strong> sea-ice melt from <strong>the</strong>Arctic.The biological resp<strong>on</strong>se to <strong>the</strong>se changes areexpected to include a slight increase in primaryproducti<strong>on</strong> occurring north <str<strong>on</strong>g>of</str<strong>on</strong>g> Icel<strong>and</strong>, due togreater presence <str<strong>on</strong>g>of</str<strong>on</strong>g> Atlantic waters, <strong>and</strong> also<str<strong>on</strong>g>of</str<strong>on</strong>g>f East Greenl<strong>and</strong>, associated with increasedlight levels due to <strong>the</strong> absence <str<strong>on</strong>g>of</str<strong>on</strong>g> ice. However,producti<strong>on</strong> in <strong>the</strong> ice-free areas will also beaffected by a limited nutrient supply due to <strong>the</strong>26


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal Draftincreased freshwater input from nutrient poorArctic rivers, which will increase verticalstratificati<strong>on</strong>. It is expected that <strong>the</strong> abundance<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Arctic zooplankt<strong>on</strong> species Calanushyperboreus <strong>and</strong> C. glacialis will decrease,while <strong>the</strong> smaller C. finmarchicus that inhabit<strong>the</strong> Atlantic waters should increase.The growth <strong>and</strong> c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cod, haddock <strong>and</strong>capelin should improve <strong>and</strong> <strong>the</strong>se species willc<strong>on</strong>tinue <strong>the</strong>ir movement northward, eventuallyoccupying <strong>the</strong> waters around Jan Mayen isl<strong>and</strong><strong>on</strong> a regular basis. Atlantic herring shouldagain begin to overwinter to <strong>the</strong> east <str<strong>on</strong>g>of</str<strong>on</strong>g> Icel<strong>and</strong><strong>and</strong> move northwestwards with <strong>the</strong> Arctic Fr<strong>on</strong>t.More sou<strong>the</strong>rn species will invade <strong>the</strong> NordicSeas with some becoming frequent visitors.These invasi<strong>on</strong>s may lead to an increase <str<strong>on</strong>g>of</str<strong>on</strong>g>biodiversity within <strong>the</strong> fish communities <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>Nordic Seas.Current research <strong>and</strong> m<strong>on</strong>itoringprogrammes <strong>and</strong> projects• The l<strong>on</strong>gest c<strong>on</strong>tinuous m<strong>on</strong>itoring <str<strong>on</strong>g>of</str<strong>on</strong>g>ocean temperature <strong>and</strong> salinity in <strong>the</strong> openNordic Seas is from <strong>the</strong> Ocean Wea<strong>the</strong>rStati<strong>on</strong> Mike (1948 to present);• Direct measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> water massexchanges between <strong>the</strong> Nordic Seas <strong>and</strong>both <strong>the</strong> Atlantic <strong>and</strong> <strong>the</strong> Arctic Oceans by<strong>the</strong> internati<strong>on</strong>al community have been<strong>on</strong>going for over a decade as part <str<strong>on</strong>g>of</str<strong>on</strong>g>several different programmes <strong>and</strong> projects,most recently <strong>the</strong> ASOF project <strong>on</strong> Arctic<strong>and</strong> Subarctic Ocean Fluxes (Hansen et al.2001);• Annual ecosystem m<strong>on</strong>itoring <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>Icel<strong>and</strong> Sea <strong>and</strong> <strong>the</strong> Norwegian Sea iscarried out by Icel<strong>and</strong> <strong>and</strong> Norway,respectively, as part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir fisheriesassessment work;• Much less attenti<strong>on</strong> has been paid to <strong>the</strong>Greenl<strong>and</strong> Sea with most work c<strong>on</strong>ductedas part <str<strong>on</strong>g>of</str<strong>on</strong>g> special programmes such as <strong>the</strong>1957 Internati<strong>on</strong>al Geophysical Year(IGY);• The activities planned for Internati<strong>on</strong>alPolar Year (IPY 2007-2008) include amajor study <str<strong>on</strong>g>of</str<strong>on</strong>g> capelin undertaken byIcel<strong>and</strong> (Ecosystem <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Icel<strong>and</strong> SeaProject) <strong>and</strong> ecosystem studies in <strong>the</strong>vicinity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Arctic Fr<strong>on</strong>t undertaken byNorway.27


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal Draft4.5 NORTHEAST ATLANTICDescripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> areaThe Nor<strong>the</strong>ast Atlantic is referred to here as <strong>the</strong>ocean to <strong>the</strong> east <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>European</strong> shelf, to <strong>the</strong>north <str<strong>on</strong>g>of</str<strong>on</strong>g> a line from Gibraltar eastward to a linefrom <strong>the</strong> sou<strong>the</strong>rn tip <str<strong>on</strong>g>of</str<strong>on</strong>g> Greenl<strong>and</strong>, with <strong>the</strong>Nordic Seas north <str<strong>on</strong>g>of</str<strong>on</strong>g> 62°N as its nor<strong>the</strong>rnboundary. These are <strong>the</strong> oceanic waters withdepths mostly over 1000 m, which are closestto Europe. Topographically, <strong>the</strong> regi<strong>on</strong> includes<strong>the</strong> north-south trending Mid-Atlantic Ridge withdeep abyssal plains to ei<strong>the</strong>r side that extenddown to 5800 m in <strong>the</strong> sou<strong>the</strong>ast, <strong>and</strong> <strong>the</strong>Rockall Bank that lies west <str<strong>on</strong>g>of</str<strong>on</strong>g> Scotl<strong>and</strong>.Occasi<strong>on</strong>al sea mounts dot this l<strong>and</strong>scape with<strong>the</strong> volcanic archipelagos <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Azores,Madeira <strong>and</strong> Canary Isl<strong>and</strong>s to <strong>the</strong> south.This regi<strong>on</strong> plays a key role in <strong>the</strong> climate <str<strong>on</strong>g>of</str<strong>on</strong>g>Europe as heat is transferred to <strong>the</strong>atmosphere from <strong>the</strong> warm extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>Gulf Stream, <strong>the</strong> nor<strong>the</strong>astward directed NorthAtlantic Current (NAC). To <strong>the</strong> north <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>NAC, <strong>the</strong> circulati<strong>on</strong> is anticlockwise in <strong>the</strong>colder waters <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> subpolar gyre <strong>and</strong> to <strong>the</strong>south <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> NAC clockwise in <strong>the</strong> warmsubtropical gyre. Water with a subtropicalcomp<strong>on</strong>ent is also transferred from <strong>the</strong> south ina current that roughly follows <strong>the</strong> margin <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><strong>European</strong> shelf. Saline water from <strong>the</strong>Mediterranean overflows into <strong>the</strong> Atlantic atmid-water depths (1000 m), up to <strong>the</strong>southwest coast <str<strong>on</strong>g>of</str<strong>on</strong>g> France.The heat transferred from <strong>the</strong> ocean to <strong>the</strong>atmosphere as <strong>the</strong> oceanic waters are mixedby <strong>the</strong> wind <strong>and</strong> cool down in <strong>the</strong>ir generallynor<strong>the</strong>ast-ward movement helps ensure,toge<strong>the</strong>r with nor<strong>the</strong>ast-ward storm tracks, thatNorthwest Europe is much warmer <strong>on</strong> anannual basis than equivalent latitudes <strong>on</strong> <strong>the</strong>western side <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Atlantic (see Secti<strong>on</strong> 1.3).During <strong>the</strong> last Pleistocene glaciati<strong>on</strong>, sea-iceextended as far south as 45°N with ice capsover <strong>the</strong> British Isles <strong>and</strong> much <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinentalEurope. These colder c<strong>on</strong>diti<strong>on</strong>s arehypo<strong>the</strong>sised to have been generated by aslowing down by <strong>the</strong> North Atlantic Meridi<strong>on</strong>alOverturning Circulati<strong>on</strong>, MOC (see Secti<strong>on</strong>3.1).The Nor<strong>the</strong>ast Atlantic (Credit: SAHFOS <strong>and</strong> <strong>Marine</strong> Institute)28


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal DraftThe Nor<strong>the</strong>ast Atlantic plays a key role in thiscirculati<strong>on</strong> as <strong>the</strong> warmer water is pulled into<strong>the</strong> Arctic Ocean by deep c<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> colddense water. This flows out into <strong>the</strong> Atlanticthrough <strong>the</strong> Faeroe-Shetl<strong>and</strong> Channel flowingas a deep current to join a similar outflowthrough <strong>the</strong> Denmark Strait between Icel<strong>and</strong><strong>and</strong> Greenl<strong>and</strong> around <strong>the</strong> western margin <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong> Labrador Sea <strong>and</strong> <strong>the</strong>nce south al<strong>on</strong>g <strong>the</strong>eastern margin <str<strong>on</strong>g>of</str<strong>on</strong>g> North America. The balancebetween <strong>the</strong>se surface <strong>and</strong> deep-water flows isbelieved to be <strong>the</strong> key to large-scale climaticvariability in Northwest Europe.Signals <str<strong>on</strong>g>of</str<strong>on</strong>g> climate changeIt has been dem<strong>on</strong>strated that <strong>the</strong> sou<strong>the</strong>rlyoutflow through <strong>the</strong> Faeroe-Shetl<strong>and</strong> Channeldecreased by 20% in <strong>the</strong> last 50 years (Hansenet al. 2001) <strong>and</strong> <strong>the</strong>re is evidence from satelliteobservati<strong>on</strong>s that <strong>the</strong> northward flow <str<strong>on</strong>g>of</str<strong>on</strong>g> surfacewaters has reduced since <strong>the</strong> 1970s (Häkkinen<strong>and</strong> Rhines 2004). While recent observati<strong>on</strong>sindicate that <strong>the</strong> returned subsurface flowassociated with <strong>the</strong> MOC has slowed down dueto reduced c<strong>on</strong>vective sinking, <strong>the</strong>re is noevidence that <strong>the</strong> near surface flows havedecreased (Bryden et al. 2005).In <strong>the</strong> Nor<strong>the</strong>ast Atlantic to <strong>the</strong> south <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>subpolar gyre, sea-surface temperatures(SSTs) are highly positively correlated withsurface l<strong>and</strong> <strong>and</strong> sea temperatures averagedfor <strong>the</strong> whole <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Nor<strong>the</strong>rn Hemisphere. In<strong>the</strong> subboreal gyre, SST is inversely correlatedwith <strong>the</strong> North Atlantic Oscillati<strong>on</strong> (NAO).Reduced circulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> North AtlanticCurrent (NAC) <strong>and</strong> increased northward flow in<strong>the</strong> shelf edge current are correlated withnegative winter NAO. This means that <strong>the</strong>strength <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> NAC <strong>and</strong> <strong>the</strong> poleward flowal<strong>on</strong>g <strong>the</strong> c<strong>on</strong>tinental edge are out <str<strong>on</strong>g>of</str<strong>on</strong>g> phase(Pingree 2002, 2005).“Over <strong>the</strong> last 40 years, warmer watergroups <str<strong>on</strong>g>of</str<strong>on</strong>g> plankt<strong>on</strong> to <strong>the</strong> west <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>British Isles have moved north by 1000km.”Beaugr<strong>and</strong> et al. (2002)L<strong>on</strong>g-term changes from 1960 to 1999 in <strong>the</strong> mean number <str<strong>on</strong>g>of</str<strong>on</strong>g> warm-temperate species such asCalanus helgol<strong>and</strong>icus. In <strong>the</strong> eastern North Atlantic Ocean <strong>and</strong> <strong>European</strong> shelf seas, str<strong>on</strong>gbiogeographical shifts in all copepod assemblages have occurred with a northward extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> morethan 10° latitude (Data compiled by G. Beaugr<strong>and</strong>).The increase in sea temperatures especially inwinter m<strong>on</strong>ths since <strong>the</strong> mid-1980s has had amarked effect <strong>on</strong> plankt<strong>on</strong> populati<strong>on</strong> <strong>and</strong>higher trophic levels. Both plankt<strong>on</strong> (Beaugr<strong>and</strong>et al. 2002) <strong>and</strong> mid-water to surface-water fish(Quero et al. 1998; Br<strong>and</strong>er 2003) have shownsimilar northward range extensi<strong>on</strong>s. There isclear evidence that <strong>the</strong> levels <str<strong>on</strong>g>of</str<strong>on</strong>g> phytoplankt<strong>on</strong>c<strong>on</strong>centrati<strong>on</strong>s as measured by chlorophyllhave increased <strong>and</strong> that <strong>the</strong>ir seas<strong>on</strong> hasleng<strong>the</strong>ned since <strong>the</strong> mid-1980s (Edwards etal. 2006).The number <str<strong>on</strong>g>of</str<strong>on</strong>g> Atlantic salm<strong>on</strong> returning tospawn in Nor<strong>the</strong>astern Europe has str<strong>on</strong>glydeclined; this appears to be linked to climaticvariability (Beaugr<strong>and</strong> <strong>and</strong> Reid 2003). Mosto<strong>the</strong>r exploited fish species in <strong>the</strong> regi<strong>on</strong>,including deepwater species, have alsounderg<strong>on</strong>e large reducti<strong>on</strong>s in stock size, animpact that is believed to be due, in largemeasure, to overfishing, but which may includean envir<strong>on</strong>mental comp<strong>on</strong>ent.Deeper water organisms are less likely to beimpacted by climate change o<strong>the</strong>r than throughchanges to <strong>the</strong>ir food by settling <str<strong>on</strong>g>of</str<strong>on</strong>g> particulatematerial through <strong>the</strong> water column. Reefs <str<strong>on</strong>g>of</str<strong>on</strong>g>cold water corals are currently threatened by29


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal Drafthuman activities such as fishing, <strong>and</strong> by oceanacidificati<strong>on</strong>.Projecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> climate changeThere is str<strong>on</strong>g evidence that changes seen in<strong>the</strong> North Atlantic are at a scale not previouslyrecorded. The ocean is freshening both at <strong>the</strong>surface <strong>and</strong> at depth (Curry et al. 2003;G<strong>on</strong>zález-Pola et al. 2005) <strong>and</strong> has underg<strong>on</strong>ea period <str<strong>on</strong>g>of</str<strong>on</strong>g> rapid warming (Levitus 2000).Associated changes have taken place in <strong>the</strong>circulati<strong>on</strong> <strong>and</strong> in <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> deep water,both in <strong>the</strong> Nordic Seas <strong>and</strong> in <strong>the</strong> LabradorSea.Taken toge<strong>the</strong>r, <strong>the</strong>se c<strong>on</strong>diti<strong>on</strong>s are likely toimpact <strong>on</strong> <strong>the</strong> Thermohaline Circulati<strong>on</strong> (seeSecti<strong>on</strong> 1.3) which could lead to a cooling <str<strong>on</strong>g>of</str<strong>on</strong>g>Europe’s climate. Modelling studies to date,however, suggest that this is unlikely to happenin <strong>the</strong> next 100 years <strong>and</strong> that <strong>the</strong> current trend<str<strong>on</strong>g>of</str<strong>on</strong>g> warming is likely to c<strong>on</strong>tinue with increases<str<strong>on</strong>g>of</str<strong>on</strong>g> 2°C <strong>and</strong> more over this time frame. <str<strong>on</strong>g>Change</str<strong>on</strong>g>s<str<strong>on</strong>g>of</str<strong>on</strong>g> this scale (+ 2°C) over such a period aren<strong>on</strong>e<strong>the</strong>less likely to have significant effects <strong>on</strong><strong>the</strong> circulati<strong>on</strong> <strong>and</strong> ecosystems <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Nor<strong>the</strong>astAtlantic.Perhaps <strong>the</strong> greatest impact <str<strong>on</strong>g>of</str<strong>on</strong>g> climate changewithin <strong>the</strong> Atlantic will be <strong>on</strong> <strong>the</strong> biologicalpump (see Secti<strong>on</strong> 1.3).Current research <strong>and</strong> m<strong>on</strong>itoringprogrammes <strong>and</strong> projects in <strong>the</strong> Nor<strong>the</strong>astAtlantic• The Internati<strong>on</strong>al Council for <strong>the</strong>Explorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Sea (ICES) is <strong>the</strong>intergovernmental organisati<strong>on</strong> thatcoordinates <strong>and</strong> promotes marine researchin <strong>the</strong> North Atlantic <strong>and</strong> <strong>the</strong> adjacent seassuch as <strong>the</strong> Baltic Sea <strong>and</strong> North Sea.ICES comprises 19 member countries.The scientific advice prepared by <strong>the</strong>Advisory Committee <strong>on</strong> FisheriesManagement (ACFM) <str<strong>on</strong>g>of</str<strong>on</strong>g> ICES is examinedby <strong>the</strong> Scientific, Technical <strong>and</strong> Ec<strong>on</strong>omicCommittee for Fisheries, who c<strong>on</strong>sults withindustry <strong>and</strong> o<strong>the</strong>r parties beforeformulating proposals for quotas, fordiscussi<strong>on</strong> at <strong>the</strong> annual Decembermeetings <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Council <str<strong>on</strong>g>of</str<strong>on</strong>g> FisheriesMinisters <strong>and</strong> for advice to <strong>the</strong> Comm<strong>on</strong>Fisheries Policy (CFP)• ICCAT (Internati<strong>on</strong>al Commissi<strong>on</strong> for <strong>the</strong>C<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Atlantic Tuna), NASCO(North Atlantic Salm<strong>on</strong> C<strong>on</strong>servati<strong>on</strong>Organisati<strong>on</strong>) <strong>and</strong> NEAFC (North EastAtlantic Fisheries Commissi<strong>on</strong>) alsoprovides input to <strong>the</strong> CFP;• As an open ocean regi<strong>on</strong> m<strong>on</strong>itoring islargely restricted to periodic cruises byresearch vessels. An excepti<strong>on</strong> is <strong>the</strong>m<strong>on</strong>thly sampling by <strong>the</strong> 75 year-oldC<strong>on</strong>tinuous Plankt<strong>on</strong> Recorder (CPR,coordinated by SAHFOS) survey al<strong>on</strong>gst<strong>and</strong>ard tracks <str<strong>on</strong>g>of</str<strong>on</strong>g> ships <str<strong>on</strong>g>of</str<strong>on</strong>g> opportunity;• A number <str<strong>on</strong>g>of</str<strong>on</strong>g> strategic hydrographicalsecti<strong>on</strong>s are operated, e.g. across <strong>the</strong>Faeroe Shetl<strong>and</strong> Channel <strong>and</strong> <strong>the</strong> RockallTrough (Ellett Line) <strong>and</strong> an ocean widesecti<strong>on</strong> is being m<strong>on</strong>itored just to <strong>the</strong> southal<strong>on</strong>g 26°N (Bryden et al. 2005);• A wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> studies have been carriedout at <strong>the</strong> Stati<strong>on</strong> Papa site in <strong>the</strong>Porcupine Sea Bight, formerly at OceanWea<strong>the</strong>r Ship stati<strong>on</strong>s India <strong>and</strong> Juliet;• L<strong>on</strong>g-term current meter studies are beingundertaken in <strong>the</strong> Denmark Strait <strong>and</strong> in<strong>the</strong> Faeroe-Shetl<strong>and</strong> Channel to measureoverflow waters.• Surveys <str<strong>on</strong>g>of</str<strong>on</strong>g> seabirds <strong>and</strong> cetaceans at seafrom ships <strong>and</strong> aircraft have been obtainedsince 1979 as part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>European</strong>Seabird at Sea (ESAS) programme, <strong>and</strong>are managed by <strong>the</strong> UK Joint NatureC<strong>on</strong>servati<strong>on</strong> Council (JNCC);30


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal Draft4.6 NORTH SEADescripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> areaThe topography <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> North Sea can broadlybe described as a gradual slope from shallow(


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal DraftThe resp<strong>on</strong>se to <strong>the</strong>se events was at timesregi<strong>on</strong>ally different. For example, a delay in <strong>the</strong>timing <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> spring phytoplankt<strong>on</strong> bloomoccurred in <strong>the</strong> Wadden Sea after <strong>the</strong> mid-1980s, while over much <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> open North Sea<strong>the</strong> bloom occurred earlier. At <strong>the</strong> same time<strong>the</strong> first appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> juvenile shrimp in <strong>the</strong>Wadden Sea advanced, as did <strong>the</strong> firstappearance <str<strong>on</strong>g>of</str<strong>on</strong>g> fish larvae in <strong>the</strong> German Bight.Patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> change in sea-surface temperaturethat distinguish <strong>the</strong>se two periods are str<strong>on</strong>glycorrelated with two indices <str<strong>on</strong>g>of</str<strong>on</strong>g> climaticvariability: The Nor<strong>the</strong>rn HemisphereTemperature (NHT) <strong>and</strong> <strong>the</strong> North AtlanticOscillati<strong>on</strong> (NAO). Ecological resp<strong>on</strong>ses to<strong>the</strong>se signals in <strong>the</strong> North Sea are wide ranging<strong>and</strong> encompass changes in timing <str<strong>on</strong>g>of</str<strong>on</strong>g>reproducti<strong>on</strong>, <strong>the</strong> length <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> growing seas<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> phytoplankt<strong>on</strong>, <strong>the</strong> timing <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> springmigrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> birds, as well as <strong>the</strong> populati<strong>on</strong>dynamics, abundance, competiti<strong>on</strong> <strong>and</strong>predator-prey relati<strong>on</strong>ships, <strong>and</strong> <strong>the</strong>geographical distributi<strong>on</strong> <strong>and</strong> abundance <str<strong>on</strong>g>of</str<strong>on</strong>g>populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> many fish species (e.g.Beaugr<strong>and</strong> <strong>and</strong> Reid 2003; Br<strong>and</strong>er et al. 2003;Drinkwater et al. 2003; Perry et al. 2005). While<strong>the</strong>se indices <strong>on</strong>ly partly explain observedclimatic variability, <strong>the</strong>y str<strong>on</strong>gly impact <strong>on</strong> <strong>the</strong>North Sea <strong>and</strong>, at least in <strong>the</strong> case <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> NHT,are linked to global warming <strong>and</strong> <strong>the</strong> increasein atmospheric level <str<strong>on</strong>g>of</str<strong>on</strong>g> greenhouse gases(IPCC 2001).In terms <str<strong>on</strong>g>of</str<strong>on</strong>g> phenology, seas<strong>on</strong>al changes inresp<strong>on</strong>se to warming in <strong>the</strong> timing <str<strong>on</strong>g>of</str<strong>on</strong>g> biologicalevents for different plankt<strong>on</strong>ic functi<strong>on</strong>al groupsare leading to a mismatch in <strong>the</strong> timingbetween phytoplankt<strong>on</strong> <strong>and</strong> zooplankt<strong>on</strong>,between zooplankt<strong>on</strong> <strong>and</strong> fish, between bivalvelarvae <strong>and</strong> shrimp, <strong>and</strong> between fish <strong>and</strong>seabirds (e.g. Beaugr<strong>and</strong> <strong>and</strong> Reid 2003;Philippart et al. 2003; Edwards <strong>and</strong> Richards<strong>on</strong>2004; Wiltshire <strong>and</strong> Manley 2004). In <strong>the</strong> past40 years, <strong>the</strong> warming <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> North Sea hasaffected cod recruitment via changes at <strong>the</strong>base <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> food web (Beaugr<strong>and</strong> et al. 2003).“Many warm-water rocky shore snails <strong>and</strong>barnacles formerly absent or just extendinginto <strong>the</strong> North Sea have spread south al<strong>on</strong>g <strong>the</strong>North Sea coast <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> UK from <strong>the</strong> tip <str<strong>on</strong>g>of</str<strong>on</strong>g>Scotl<strong>and</strong>.”Mieszkowska et al. (2005)Hawkins <strong>and</strong> Burrows (pers<strong>on</strong>al observati<strong>on</strong>s)Nor<strong>the</strong>rly range extensi<strong>on</strong>s or changes in <strong>the</strong>geographical distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> plankt<strong>on</strong> <strong>and</strong> fishpopulati<strong>on</strong>s are associated with <strong>the</strong> abovechanges <strong>and</strong> have been related to regi<strong>on</strong>alclimate warming (Beaugr<strong>and</strong> et al. 2003;Br<strong>and</strong>er et al. 2003; Perry et al. 2005). Warmerwater species <str<strong>on</strong>g>of</str<strong>on</strong>g> plankt<strong>on</strong>, for example, haveextended <strong>the</strong>ir range northward by 1000 km in<strong>on</strong>ly 40 years <strong>and</strong> colder species haveretreated out <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> North Sea (Beaugr<strong>and</strong> etal. 2003). Sardines <strong>and</strong> anchovies have movednorthward in <strong>the</strong> North Sea <strong>and</strong> red mullet <strong>and</strong>bass have extended <strong>the</strong>ir ranges north towestern Norway (e.g. Br<strong>and</strong>er et al. 2003).Relati<strong>on</strong>ship between food supply (indexed as plankt<strong>on</strong> change, Beaugr<strong>and</strong> et al. 2003) <strong>and</strong> totalbiomass <str<strong>on</strong>g>of</str<strong>on</strong>g> cod for <strong>the</strong> North Sea for <strong>the</strong> period 1958-1999. Note that changes in food supply had aneffect <strong>on</strong> cod biomass with <strong>on</strong>e- to two-year lags (Beaugr<strong>and</strong>, unpublished).Projecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change32


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal DraftRegi<strong>on</strong>al climate change scenarios predict anincrease in air temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> 2°C to 3.5°C by<strong>the</strong> 2080s, with high summer temperaturesbecoming more frequent <strong>and</strong> very cold wintersbecoming increasingly rare (e.g. Hulme et al.2002; van den Hurk et al. 2006). Watertemperatures will also increase, but not asrapidly as temperature over l<strong>and</strong>. Sea level riseis expected to rise with 18 to 59 cm at 2090-2099 relative to 1980-1999 (IPCC 2007).However, <strong>the</strong>se projecti<strong>on</strong>s do not includepossible future rapid dynamical changes in iceflow. For example, if this c<strong>on</strong>tributi<strong>on</strong> were togrow linearly with temperature change, thismay add an additi<strong>on</strong>al 10 to 20 cm to <strong>the</strong> upperranges <str<strong>on</strong>g>of</str<strong>on</strong>g> sea level rise (IPCC 2007).Observed correlati<strong>on</strong>s str<strong>on</strong>gly suggest that <strong>the</strong>North Sea ecosystem is vulnerable to variati<strong>on</strong>in climatic c<strong>on</strong>diti<strong>on</strong>s in general, <strong>and</strong> toanomalies in temperature <strong>and</strong> hydrodynamicsin particular. Several processes within <strong>the</strong>North Sea food web appear to rely <strong>on</strong>temperature as a trigger, <strong>and</strong> fur<strong>the</strong>r increasesin temperature may disrupt <strong>the</strong> c<strong>on</strong>nectednessbetween species potentially leading to changesin community structures <strong>and</strong> possibly localextincti<strong>on</strong>s. For many marine species, includingcommercially caught fish, <strong>the</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g>recruits mainly determines <strong>the</strong> year-to-yearvariati<strong>on</strong> in <strong>the</strong> size <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> adult stocks. If <strong>the</strong>annual sea-surface temperature increasesfur<strong>the</strong>r, efforts to maintain previous fisheryyields from reduced stocks (due to northwardmovement <strong>and</strong> lowered recruitment levels)have <strong>the</strong> potential to significantly impactfisheries <strong>and</strong> have str<strong>on</strong>g effects <strong>on</strong> <strong>the</strong> localecosystem.Because <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> str<strong>on</strong>g tidal regime <strong>and</strong> <strong>the</strong>effects <str<strong>on</strong>g>of</str<strong>on</strong>g> storm surges many <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> coastalregi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> North Sea, especially in <strong>the</strong>south, are particularly susceptible to rising sealevels <strong>and</strong> to an increase in <strong>the</strong> frequency <strong>and</strong>severity <str<strong>on</strong>g>of</str<strong>on</strong>g> storms. If existing natural <strong>and</strong> manmadesea defences are breached, floodingcould be extensive since parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sou<strong>the</strong>rnUK <strong>and</strong> <strong>the</strong> Ne<strong>the</strong>rl<strong>and</strong>s are slowly sinking dueto gradual settling. Greater defence by artificialcoastal defences in order to minimise <strong>the</strong> risk<str<strong>on</strong>g>of</str<strong>on</strong>g> future flooding <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se coastlines will lead toloss <str<strong>on</strong>g>of</str<strong>on</strong>g> coastal habitats (IPCC 1990), <strong>and</strong> maybecome far more difficult in <strong>the</strong> future,threatening major coastal cities such asL<strong>on</strong>d<strong>on</strong> <strong>and</strong> Amsterdam.Current research <strong>and</strong> m<strong>on</strong>itoringprogrammes <strong>and</strong> projects in <strong>the</strong> North Sea• Most countries around <strong>the</strong> North Seaundertake meteorological <strong>and</strong>hydrodynamic m<strong>on</strong>itoring for nati<strong>on</strong>alpurposes, which in a number <str<strong>on</strong>g>of</str<strong>on</strong>g> cases islinked to <strong>the</strong> Global Ocean ObservingSystem (GOOS) <strong>and</strong> EuroGOOS;• The German Federal Maritime <strong>and</strong>Hydrographic Agency produces weeklymaps <str<strong>on</strong>g>of</str<strong>on</strong>g> sea-surface temperature;• The Internati<strong>on</strong>al Council for <strong>the</strong>Explorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Sea (ICES) maintains abank <str<strong>on</strong>g>of</str<strong>on</strong>g> oceanographic data, dating backto <strong>the</strong> early 1900s <strong>and</strong> coordinates a suite<str<strong>on</strong>g>of</str<strong>on</strong>g> annual <strong>and</strong> triennial fish surveys;• North Sea plankt<strong>on</strong> has been m<strong>on</strong>itored by<strong>the</strong> C<strong>on</strong>tinuous Plankt<strong>on</strong> Recorder (CPR)survey now operated by <strong>the</strong> Sir AlisterHardy Foundati<strong>on</strong> for Ocean Science(SAHFOS), since 1931;• Several marine institutes (e.g. AlfredWegener Institute (AWI), Centre forEnvir<strong>on</strong>ment, Fisheries <strong>and</strong> AquacultureScience (CEFAS), Fisheries ResearchServices (FRS), Royal Ne<strong>the</strong>rl<strong>and</strong>sInstitute for Sea Research (NIOZ),Universities <str<strong>on</strong>g>of</str<strong>on</strong>g> Lille <strong>and</strong> Newcastle)undertake local l<strong>on</strong>g-term (> 30 yrs) fieldobservati<strong>on</strong>s <strong>on</strong> envir<strong>on</strong>mental parameters<strong>and</strong> marine organisms,. The UKobservati<strong>on</strong>s are coordinated via <strong>the</strong><strong>Marine</strong> Envir<strong>on</strong>mental <str<strong>on</strong>g>Change</str<strong>on</strong>g> (MECN)network;• Some <strong>European</strong> initiative networkm<strong>on</strong>itoring <strong>and</strong> research efforts <strong>on</strong> effects<str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong> <strong>the</strong> North Sea,.These network include Implementati<strong>on</strong> <strong>and</strong>Networking <str<strong>on</strong>g>of</str<strong>on</strong>g> large-scale l<strong>on</strong>g-term<strong>Marine</strong> Biodiversity research in Europe(BIOMARE), <strong>Marine</strong> Genomics Europe(MGE), <strong>and</strong> <strong>Marine</strong> Biodiversity <strong>and</strong>Ecosystem Functi<strong>on</strong>ing (MarBEF).MarBEF has developed a <strong>European</strong>database <str<strong>on</strong>g>of</str<strong>on</strong>g> biogeographic informati<strong>on</strong> <strong>on</strong>ocean envir<strong>on</strong>mental parameters <strong>and</strong>marine organisms (EurOBIS) <strong>and</strong> hosts<strong>the</strong> <strong>European</strong> Register <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Marine</strong> Species(ERMS).33


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal Draft4.7 BALTIC SEADescripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> areaThe Baltic Sea is a semi-enclosed basin with atotal area <str<strong>on</strong>g>of</str<strong>on</strong>g> 415,000 km 2 that includes itsnarrow entrance, <strong>the</strong> Kattegat. The catchmentarea is four times larger than <strong>the</strong> sea itself <strong>and</strong>is populated by approximately 85 milli<strong>on</strong>inhabitants. Because <str<strong>on</strong>g>of</str<strong>on</strong>g> its locati<strong>on</strong> with respectto <strong>the</strong> expansi<strong>on</strong>s <strong>and</strong> c<strong>on</strong>tracti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>Sc<strong>and</strong>inavian ice sheet, <strong>the</strong> Baltic Sea hasnever been in a steady state since itsformati<strong>on</strong>. Postglacial processes have shaped<strong>the</strong> Baltic’s coastline, topography, basicchemistry <strong>and</strong> sedimentary envir<strong>on</strong>ment <strong>on</strong>millennium scales.<str<strong>on</strong>g>Climate</str<strong>on</strong>g> variability acts <strong>on</strong> centennial <strong>and</strong>decadal scales <strong>and</strong>, particularly in <strong>the</strong> last 150years, overlaps with human activity in <strong>the</strong>drainage basin <strong>and</strong> <strong>the</strong> coastal z<strong>on</strong>e have ledto c<strong>on</strong>siderable change in <strong>the</strong> biogeochemistry<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Baltic Sea basin. The Baltic Sea ischaracterised by a closed circulati<strong>on</strong> in <strong>the</strong>central basin, low salinities, <strong>and</strong> by str<strong>on</strong>ghoriz<strong>on</strong>tal gradients both in salinity <strong>and</strong> inecosystem variables resulting in lowbiodiversity.The Baltic Sea (Credit: SAHFOS <strong>and</strong> <strong>Marine</strong> Institute)34


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal DraftThe inter-annual variability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Baltic Sea ismodulated by <strong>the</strong> North Atlantic Oscillati<strong>on</strong>(NAO) <strong>and</strong> by <strong>the</strong> inflow <str<strong>on</strong>g>of</str<strong>on</strong>g> Atlantic water from<strong>the</strong> North Sea into this area, referred to asmajor Baltic inflows. These inflows represent<strong>the</strong> <strong>on</strong>ly mechanism by which <strong>the</strong> Baltic deepwater is displaced <strong>and</strong> renewed to a significantdegree relatively high salinity (17-25 ppm) <strong>and</strong>oxygenated water. In <strong>the</strong> l<strong>on</strong>ger lastingstagnati<strong>on</strong> periods between inflow events, all <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong> oxygen in <strong>the</strong> deep waters is used up,resulting in anoxic c<strong>on</strong>diti<strong>on</strong>s.Major Baltic inflows (blue bars) between 1880 <strong>and</strong> 2005 <strong>and</strong> <strong>the</strong>ir seas<strong>on</strong>al distributi<strong>on</strong> (upper right),shown in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir relative intensity after Matthäus <strong>and</strong> Frank (1992) <strong>and</strong> <strong>the</strong> total amount <str<strong>on</strong>g>of</str<strong>on</strong>g> riverrun<str<strong>on</strong>g>of</str<strong>on</strong>g>f (red) after Bergström <strong>and</strong> Carlss<strong>on</strong> (1994). The time series have been supplemented <strong>and</strong>updated by Matthäus (2006).Signals <str<strong>on</strong>g>of</str<strong>on</strong>g> climate changesAnalysis <str<strong>on</strong>g>of</str<strong>on</strong>g> a cumulative Baltic winter indexindicates that during <strong>the</strong> last 350 years, sixregime shifts have occurred (Hagen <strong>and</strong> Feistel2005). The Baltic Sea ecosystem appeared tobe str<strong>on</strong>gly influenced by <strong>the</strong> interplay <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>periodicshifts from lake to sea <strong>and</strong> back during<strong>the</strong> late quaternary period (Dippner et al. 2006).This in turn resulted in changes betweenmarine <strong>and</strong> limnic (freshwater) speciescompositi<strong>on</strong>, shifts from cold water to warmwater species <strong>and</strong> back, changes betweenoxygen-rich <strong>and</strong> oxygen-poor c<strong>on</strong>diti<strong>on</strong>s in <strong>the</strong>deep basins, <strong>and</strong> <strong>the</strong> occasi<strong>on</strong>al intrusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>n<strong>on</strong>-indigenous species.Projecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change<str<strong>on</strong>g>Climate</str<strong>on</strong>g> change simulati<strong>on</strong>s with differentregi<strong>on</strong>al climate models, hydrological models<strong>and</strong> circulati<strong>on</strong> models for a number <str<strong>on</strong>g>of</str<strong>on</strong>g>greenhouse gas emissi<strong>on</strong> scenarios givevariable results for changes in Baltic climatevariables. N<strong>on</strong>e<strong>the</strong>less, some general trendsare projected (Graham et al. 2006). Allscenarios <strong>and</strong> all climate models predicttemperature increases during all seas<strong>on</strong>s witha mean warming <str<strong>on</strong>g>of</str<strong>on</strong>g> 3ºC to 5ºC in <strong>the</strong>atmosphere <strong>and</strong> 2ºC to 4°C in <strong>the</strong> sea-surfacetemperature in <strong>the</strong> Baltic by <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> 21 stcentury. One c<strong>on</strong>sequence is a decrease insea-ice extent by 50% to 80% over <strong>the</strong> sameperiod. Projected changes in precipitati<strong>on</strong> arevariable. Winters will probably be wetter <strong>and</strong> insou<strong>the</strong>rn parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> regi<strong>on</strong> summers arepredicted to be drier under many climatescenarios. As a c<strong>on</strong>sequence, river run<str<strong>on</strong>g>of</str<strong>on</strong>g>fduring winter is expected to increase by asmuch as 50%, with <strong>the</strong> opposite patternoccurring in summer.Each <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> predicted changes has a differentc<strong>on</strong>sequence for <strong>the</strong> ecosystem. Uncertainty iscreated by <strong>the</strong> fact that while much is knowabout <strong>the</strong> c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> change in salinityor temperature, little is known about <strong>the</strong>c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir interacti<strong>on</strong>s or <str<strong>on</strong>g>of</str<strong>on</strong>g>combined changes. An increase in temperatureprevents late winter c<strong>on</strong>vecti<strong>on</strong>, which isessential for nutrient supply in <strong>the</strong> upper layer.Higher temperatures during winter may result inincreased metabolic rates for bacteria <strong>and</strong> ashift in species compositi<strong>on</strong> from cold to warmwater species, whereas higher temperature insummer may enhance blooms <str<strong>on</strong>g>of</str<strong>on</strong>g> cyanobacteriablooms (that is bacteria that obtain <strong>the</strong>ir energyvia photosyn<strong>the</strong>sis). An increase inprecipitati<strong>on</strong> will result in higher river run<str<strong>on</strong>g>of</str<strong>on</strong>g>f,reduced salinity, higher nutrient input by rivers<strong>and</strong> enhanced eutrophicati<strong>on</strong> in near coastalareas with higher phytoplankt<strong>on</strong> <strong>and</strong> benthicbiomass (Dippner <strong>and</strong> Ikauniece 2001).35


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal DraftProjecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change do not indicate arobust signal with respect to windiness.Never<strong>the</strong>less, possible increasing windinessduring late winter would lead to str<strong>on</strong>gervertical mixing with <strong>the</strong> c<strong>on</strong>sequence thatnutrients would be mixed into <strong>the</strong> euphoticz<strong>on</strong>e <strong>and</strong> would be directly available forprimary producti<strong>on</strong>. This process would providehigher than normal phosphate c<strong>on</strong>centrati<strong>on</strong>sin early spring which would be used bycyanobacteria later in summer (Janssen et al.2004). An increase in windiness might alsocause remobilisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>taminants frombottom sediment. Lower salinities would causeosmotic stress for phyto- <strong>and</strong> zooplankt<strong>on</strong> <strong>and</strong>may result in a shift in species compositi<strong>on</strong>from marine to limnic species. Such a shiftwould influence <strong>the</strong> food quality <strong>and</strong> <strong>the</strong>refore<strong>the</strong> growth rate <strong>and</strong> fat c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> fish.Decreasing salinity in combinati<strong>on</strong> with oxygenpoor<strong>and</strong> oxygen-depleted c<strong>on</strong>diti<strong>on</strong>s due tocyanobacteria blooms would result in benthicdeserts in <strong>the</strong> deep basins <strong>and</strong> poor survivalc<strong>on</strong>diti<strong>on</strong>s for cod eggs. In c<strong>on</strong>trast, highertemperatures would lead to an increase in <strong>the</strong>carrying capacity for sprat stocks <strong>and</strong> likelyalter food web structure (Möllmann et al. 2005).Reducing salinities would result in distributi<strong>on</strong>alchanges <strong>and</strong> favour <strong>the</strong> invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>indigenousspecies.Current research <strong>and</strong> m<strong>on</strong>itoringprogrammes <strong>and</strong> projects• Nati<strong>on</strong>al Baltic Sea m<strong>on</strong>itoringprogrammes <strong>and</strong> projects <str<strong>on</strong>g>of</str<strong>on</strong>g> physical,chemical or biological properties are coordinatedby HELCOM (www.helcom.fi);• Data collecti<strong>on</strong> <strong>on</strong> fish <strong>and</strong> fisheries is coordinatedby ICES;• In <strong>the</strong> framework <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> BONUS ERA-NETproject (networking <str<strong>on</strong>g>of</str<strong>on</strong>g> funding agencies –funded by <strong>the</strong> <strong>European</strong> Uni<strong>on</strong> SixthFramework Programme), <strong>the</strong> BONUS-169Baltic Sea Science Plan has beendeveloped to create prudent, l<strong>on</strong>g-term,holistic multidisciplinary soluti<strong>on</strong>s involvingsustainable use <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sea by i)underst<strong>and</strong>ing <strong>and</strong> quantifying <strong>the</strong> role <str<strong>on</strong>g>of</str<strong>on</strong>g>climate change <strong>and</strong> variability <strong>and</strong> itsimplicati<strong>on</strong>s for <strong>the</strong> dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>regi<strong>on</strong>’s ecosystem, ii) underst<strong>and</strong>ing <strong>the</strong>physical, chemical <strong>and</strong> biologicalfuncti<strong>on</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> marine ecosystem <strong>and</strong>underst<strong>and</strong>ing <strong>and</strong> quantifying humanimpacts, <strong>and</strong> iii) developing <strong>the</strong> scientificbasis for sustainable use <strong>and</strong> protecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong> marine envir<strong>on</strong>ment <strong>and</strong> its associatedbiodiversity.36


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal Draft4.8 CELTIC-BISCAY SHELFDescripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> areaThe regi<strong>on</strong> c<strong>on</strong>sidered as <strong>the</strong> Celtic-BiscayShelf includes <strong>the</strong> coastal <strong>and</strong> shelf seas <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>nor<strong>the</strong>rn Bay <str<strong>on</strong>g>of</str<strong>on</strong>g> Biscay, <strong>the</strong> Celtic Sea, EnglishChannel <strong>and</strong> <strong>the</strong> Irish Sea, plus <strong>the</strong> coastalseas to <strong>the</strong> west <str<strong>on</strong>g>of</str<strong>on</strong>g> Scotl<strong>and</strong> <strong>and</strong> Irel<strong>and</strong>. Thisregi<strong>on</strong> has a complex topography, with patterns<str<strong>on</strong>g>of</str<strong>on</strong>g> water movement primarily from <strong>the</strong> south<strong>and</strong> west penetrating into <strong>the</strong> English Channel<strong>and</strong> <strong>the</strong> Irish Sea. Water also leaves <strong>the</strong> regi<strong>on</strong>to enter <strong>the</strong> North Sea from <strong>the</strong> south <strong>and</strong> westvia <strong>the</strong> English Channel <strong>and</strong> from <strong>the</strong> north <strong>and</strong>west around Scotl<strong>and</strong>. The deeper water <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>Bay <str<strong>on</strong>g>of</str<strong>on</strong>g> Biscay is best c<strong>on</strong>sidered as part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>wider North East Atlantic.The water masses in <strong>the</strong>se coast <strong>and</strong> shelfregi<strong>on</strong>s are primarily <str<strong>on</strong>g>of</str<strong>on</strong>g> North Atlantic origin butwith some influence from Mediterranean waterin <strong>the</strong> Bay <str<strong>on</strong>g>of</str<strong>on</strong>g> Biscay. In NAO negative years(Navidad years), warm water enters <strong>the</strong> Bay <str<strong>on</strong>g>of</str<strong>on</strong>g>Biscay <strong>and</strong> can propagate northwards west <str<strong>on</strong>g>of</str<strong>on</strong>g>Irel<strong>and</strong> (Pingree <strong>and</strong> Le Cann 1989; Pingree2002).The Celtic Sea <strong>and</strong> western English Channelstratifies str<strong>on</strong>gly leading to pr<strong>on</strong>ouncedsurface fr<strong>on</strong>ts. Much <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Irish Sea is tidallymixed except for a stratified patch west <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>Isle <str<strong>on</strong>g>of</str<strong>on</strong>g> Man bound to <strong>the</strong> north <strong>and</strong> south byfr<strong>on</strong>ts. The English Channel becomes lessstratified from west to east; <strong>the</strong> eastern basin istidally mixed (Pingree <strong>and</strong> Griffiths 1978).The Celtic-Biscay Sea regi<strong>on</strong> including <strong>the</strong>English Channel <strong>and</strong> Irish Sea is known to sitastride a biogeographic boundary z<strong>on</strong>e (Forbes1958). Many boreal <strong>and</strong> cold temperaturespecies reach <strong>the</strong>ir sou<strong>the</strong>rn limits in this area(e.g. kelp, herring, cod), while warm-temperatelusitanean species exist at <strong>the</strong>ir nor<strong>the</strong>rn limit(e.g. sardines, breams, red mullet, Cystoceira).Thus, this regi<strong>on</strong> is particularly sensitive toclimate change in both <str<strong>on</strong>g>of</str<strong>on</strong>g>fshore <strong>and</strong> inshorewaters.The Celtic-Biscay shelf (Credit: SAHFOS <strong>and</strong> <strong>Marine</strong> Institute)37


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal DraftSignals <str<strong>on</strong>g>of</str<strong>on</strong>g> climate changeObservati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> sea-surface temperatureshave been made in <strong>the</strong> Celtic-Biscay regi<strong>on</strong>since <strong>the</strong> middle <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> 19th century. Seasurfacetemperatures show that, following awarm period in <strong>the</strong> 1880s, temperatures cooleduntil <strong>the</strong> early 20th century before increasingfrom around 1920, <strong>and</strong> remained warm until <strong>the</strong>1960s. A cooler period followed <strong>the</strong> extremelycold winter <str<strong>on</strong>g>of</str<strong>on</strong>g> 1962/1963 <strong>and</strong> c<strong>on</strong>tinued wellinto <strong>the</strong> 1980s. Since <strong>the</strong>n, acceleratedwarming has been apparent (see Southward etal. 2005 for fur<strong>the</strong>r details). Similar changeshave been seen in <strong>the</strong> Bay <str<strong>on</strong>g>of</str<strong>on</strong>g> Biscay (Planqueet al. 2003; Blanchard <strong>and</strong> V<strong>and</strong>ermeirsch2005), <strong>the</strong> Irish Sea (Evans et al. 2003) <strong>and</strong> <strong>the</strong>eastern English Channel (Woehrling et al.2005).The CPR survey clearly shows that in <strong>the</strong>1960s warm temperate zooplankt<strong>on</strong> speciesjust reached <strong>the</strong> regi<strong>on</strong>. Since <strong>the</strong> late 1980s<strong>the</strong>se species have spread northwardsencompassing much <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> west coast <str<strong>on</strong>g>of</str<strong>on</strong>g>France, Britain <strong>and</strong> Irel<strong>and</strong> (Beaugr<strong>and</strong> et al.2002). A l<strong>on</strong>ger term picture <str<strong>on</strong>g>of</str<strong>on</strong>g> changes in thisregi<strong>on</strong> can be derived from <strong>the</strong> time-seriescollected by <strong>the</strong> CPR. Rapid warming occurringfrom <strong>the</strong> late 1980s <strong>on</strong>wards can be put into<strong>the</strong> c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> past changes including warmingup to around 1960.L<strong>on</strong>g-term changes in nor<strong>the</strong>rn (Semibalanus balanoides) <strong>and</strong> sou<strong>the</strong>rn (Chthamalus spp) barnaclesaveraged for several shores at different submersi<strong>on</strong> levels (HWN: High Water Neap; MTL: Mean TidalLow; LWN: Low Water Neap) <strong>on</strong> <strong>the</strong> South coast <str<strong>on</strong>g>of</str<strong>on</strong>g> Dev<strong>on</strong> <strong>and</strong> Cornwall (Southward 1991; Southwardet al. 1995; Southward <strong>and</strong> Hawkins, unpublished)During <strong>the</strong> warming in <strong>the</strong> 1930s <strong>the</strong> herringfishery in <strong>the</strong> English Channel collapsed,associated with much change in <strong>the</strong> rest <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ecosystem, indicating that overfishing wasprobably not <strong>the</strong> main underlying cause <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>decline <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> herring populati<strong>on</strong>. Coldtemperate herring were replaced by warmerwater pilchards (sardines). These ecosystemwidechanges were subsequently ascribed toclimate change (Southward 1980). Historicalresearch has since shown that such switches inspecies populati<strong>on</strong>s were comm<strong>on</strong>place <strong>and</strong>have occurred at least since <strong>the</strong> 13th centuryduring alternating cold or warm periods(Southward et al. 1988).In <strong>the</strong> 1960s <strong>the</strong>re was a switch back to colderc<strong>on</strong>diti<strong>on</strong>s <strong>and</strong> <strong>the</strong> plankt<strong>on</strong>ic communitiesreturned to <strong>the</strong>ir previous colder watercharacteristics. Populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Pilchardsdeclined again. Herring populati<strong>on</strong>s did notrecover – perhaps because at that time in <strong>the</strong>1970s stocks were at historically low levels in<strong>the</strong> eastern English Channel <strong>and</strong> North Sea<strong>and</strong> recol<strong>on</strong>isati<strong>on</strong> was not possible (Hawkinset al. 2003). Sardines are now abundant again<strong>and</strong> <strong>the</strong> warmer water chaetognath Sagittasetosa with o<strong>the</strong>r sou<strong>the</strong>rn speciespredominates in <strong>the</strong> plankt<strong>on</strong>.In additi<strong>on</strong> to changes in <strong>the</strong> plankt<strong>on</strong> <strong>and</strong> inpelagic <strong>and</strong> demersal fish assemblages,parallel changes were described <strong>on</strong> rockyshores, using barnacles as a sensitive indicator<str<strong>on</strong>g>of</str<strong>on</strong>g> wider changes in marine life (Southward etal. 1995, 2005). These showed switchesbetween warm water barnacles in <strong>the</strong> 1950s togreater dominance by <strong>the</strong> cold water barnacleSemibalanus balanoides in <strong>the</strong> 1960s <strong>and</strong>1970s. On rocky shores warm water barnaclesnow exceed <strong>the</strong> levels found in <strong>the</strong> 1950s <strong>and</strong>sou<strong>the</strong>rn species <str<strong>on</strong>g>of</str<strong>on</strong>g> gastropods <strong>and</strong> limpetshave increased in abundance <strong>and</strong> recoveredground lost during <strong>the</strong> cold winter <str<strong>on</strong>g>of</str<strong>on</strong>g>38


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal Draft1962/1963. In some cases range extensi<strong>on</strong>shave occurred bey<strong>on</strong>d <strong>the</strong> limits <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> 1950s.This is particularly <strong>the</strong> case in <strong>the</strong> easternEnglish Channel <strong>and</strong> <strong>on</strong> <strong>the</strong> north west <str<strong>on</strong>g>of</str<strong>on</strong>g>Scotl<strong>and</strong> where several species havepenetrated far bey<strong>on</strong>d <strong>the</strong>ir previous limits(Mieszkowska et al. 2005).southwest Britain <strong>and</strong> Irel<strong>and</strong>. The possibilitystill remains <str<strong>on</strong>g>of</str<strong>on</strong>g> cooling at some stage, should<strong>the</strong>rmohaline circulati<strong>on</strong> be slowed down,leading to a weakened Gulf Stream. Shouldthis occur, <strong>the</strong>n re-adjustment to nor<strong>the</strong>rnassemblages is likely, as occurred after <strong>the</strong> lastextremely cold winter <str<strong>on</strong>g>of</str<strong>on</strong>g> 1962-1963 (Genner etal. 2004; Sims et al. unpublished).Projecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> climate changeRapid resp<strong>on</strong>ses are likely with acceleratingclimate change in this biogeographic boundaryregi<strong>on</strong>. Previous changes involving majorfluctuati<strong>on</strong>s in dominant species <str<strong>on</strong>g>of</str<strong>on</strong>g> pelagic <strong>and</strong>demersal fish, zooplankt<strong>on</strong> <strong>and</strong> benthos werein resp<strong>on</strong>se to changes <str<strong>on</strong>g>of</str<strong>on</strong>g> less than 1°C inaverage annual temperatures (Southward1980). Predicted changes are in <strong>the</strong> order <str<strong>on</strong>g>of</str<strong>on</strong>g>1.5°C to 5°C over <strong>the</strong> next 100 years.“By extrapolati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> trends from catches <str<strong>on</strong>g>of</str<strong>on</strong>g>sou<strong>the</strong>rn fish <str<strong>on</strong>g>of</str<strong>on</strong>g>f Plymouth over <strong>the</strong> last 80years it is possible to forecast that by 2025,even under low emissi<strong>on</strong> scenarios, <strong>the</strong>fish assemblage <str<strong>on</strong>g>of</str<strong>on</strong>g>f Plymouth will resemblethat currently found far to <strong>the</strong> south in <strong>the</strong>Iberian Peninsula.”Genner et al. (2004)Sims et al. (unpublished)Forecast models <str<strong>on</strong>g>of</str<strong>on</strong>g> intertidal assemblagessuggest that nor<strong>the</strong>rn species (such as <strong>the</strong>barnacle Semibalanus balanoides) will becomeextinct in much <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> southwest <str<strong>on</strong>g>of</str<strong>on</strong>g> Engl<strong>and</strong><strong>and</strong> probably also in northwest France in <strong>the</strong>next 20 to 30 years. Some species, such as <strong>the</strong>kelp Alaria esculenta, were badly impacted by<strong>the</strong> last warm period <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> 1950s <strong>and</strong> seem tohave retracted fur<strong>the</strong>r in recent years(Mieszkowska et al. 2005).Many commercial fishery species now foundmore comm<strong>on</strong>ly fur<strong>the</strong>r north in <strong>the</strong> EnglishChannel comm<strong>and</strong> high market prices inFrance, Spain <strong>and</strong> Portugal. With goodtransport links from <strong>the</strong> UK <strong>the</strong>re are now highvaluemarkets for species such as cuttlefish(Sepia), spider crabs (Maja) <strong>and</strong> various bream<strong>and</strong> red mullet, encouraging exports fromCurrent research <strong>and</strong> m<strong>on</strong>itoring programs<strong>and</strong> projects in <strong>the</strong> Celtic-Biscay Shelf• C<strong>on</strong>siderable effort has been made via <strong>the</strong>MarCLIMproject(www.mab.ac.uk/marclim) to resurveyexisting baseline studies <str<strong>on</strong>g>of</str<strong>on</strong>g> rocky shores inBritain <strong>and</strong> Irel<strong>and</strong>• Many <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> l<strong>on</strong>g-term time series recordscollected by <strong>the</strong> <strong>Marine</strong> BiologicalAssociati<strong>on</strong> at Plymouth have beenreactivated in recent years, e.g.observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrography <strong>and</strong> plankt<strong>on</strong>at stati<strong>on</strong> E1, benthos <strong>and</strong> fish at stati<strong>on</strong>L4, <strong>and</strong> broadscale surveys <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> EnglishChannel benthos (see Southward et al.2005 for details). The Plymouth <strong>Marine</strong>Laboratory has collected informati<strong>on</strong> <strong>on</strong>zooplankt<strong>on</strong> <strong>and</strong> much <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> pelagicecosystem at stati<strong>on</strong> L4 since 1988.• The SAHFOS-CPR surveys provide goodcoverage <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> pelagic species <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>English Channel <strong>and</strong> <strong>the</strong> Bay <str<strong>on</strong>g>of</str<strong>on</strong>g> Biscay.The resumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Plymouth - Rosc<str<strong>on</strong>g>of</str<strong>on</strong>g>f<strong>and</strong> <strong>the</strong> Portsmouth – Bilbao CPR tows areparticularly valuable <strong>and</strong> toge<strong>the</strong>r <strong>the</strong>seobservati<strong>on</strong>s will form <strong>the</strong> core <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>proposed western English Channelobservatory based in Plymouth. Similarapproaches are underway via <strong>the</strong>observatory at Rosc<str<strong>on</strong>g>of</str<strong>on</strong>g>f;• There are also l<strong>on</strong>g-term time seriesrecords for <strong>the</strong> benthos <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> easternChannel collected by <strong>the</strong> WimereauxLaboratory in Fl<strong>and</strong>ers.39


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal Draft4.9 IBERIAN UPWELLING MARGINDescripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> areaThe Iberian coastal area includes <strong>the</strong>c<strong>on</strong>tinental shelf regi<strong>on</strong> <strong>and</strong> <strong>the</strong> oceanic part <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong> Eastern Atlantic Ocean, lying between 35ºNto 44ºN. The deep ocean floor is around 4000m deep. The west <strong>and</strong> north Iberian Peninsulapresent a narrow shelf when compared with <strong>the</strong>North Bay <str<strong>on</strong>g>of</str<strong>on</strong>g> Biscay <strong>and</strong> Celtic Sea. This shelfis crossed by several submarine cany<strong>on</strong>s in <strong>the</strong>Bay <str<strong>on</strong>g>of</str<strong>on</strong>g> Biscay <strong>and</strong> <strong>on</strong> <strong>the</strong> Portuguese coast;several rivers enter al<strong>on</strong>g <strong>the</strong> Galician coast.The east-west orientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> coast in <strong>the</strong>nor<strong>the</strong>rn part breaks <strong>the</strong> normal north-southorientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>European</strong> Atlantic coast.The Iberian coastal area has a weak circulati<strong>on</strong>pattern, with seas<strong>on</strong>al variability (Valdés <strong>and</strong>Lavín 2002). The main oceanographic featuresare: <strong>the</strong> Iberian Poleward Current, coastalupwelling (more intense <strong>and</strong> extended in <strong>the</strong>west Iberian coast) <strong>and</strong> <strong>the</strong> seas<strong>on</strong>alstratificati<strong>on</strong> in oceanic waters. The exchange<str<strong>on</strong>g>of</str<strong>on</strong>g> waters between <strong>the</strong> Atlantic <strong>and</strong> <strong>the</strong>Mediterranean is also relevant. As a result <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong> Iberian Poleward Current, severalanticycl<strong>on</strong>ic eddies are shed into oceanicwaters, <str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>the</strong> nor<strong>the</strong>ast corner <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> IberianPeninsula, <strong>and</strong> in <strong>the</strong> Central Bay <str<strong>on</strong>g>of</str<strong>on</strong>g> Biscay.As a result <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> summer upwelling, twoparallel biogeographical gradients can bedistinguished in Atlantic waters <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> IberianPeninsula (that is North-South in <strong>the</strong> west <strong>and</strong>West-East in <strong>the</strong> north). Many nor<strong>the</strong>rn speciesare much more comm<strong>on</strong> in <strong>the</strong> northwestIberian Peninsula <strong>and</strong> some sou<strong>the</strong>rn speciesare recorded as absent or less abundant beforereappearing in <strong>the</strong> inner Bay <str<strong>on</strong>g>of</str<strong>on</strong>g> Biscay <strong>and</strong>south Portugal (Fischer-Piette 1963; Ardré1970; Anadón <strong>and</strong> Niell 1980). A similarbiogeographical anomaly appears <str<strong>on</strong>g>of</str<strong>on</strong>g>f NorthAfrica, associated with upwelling (Lüning1990).The Iberian upwelling margin (Credit: SAHFOS <strong>and</strong> <strong>Marine</strong> Institute)40


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal DraftSignals <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change<str<strong>on</strong>g>Change</str<strong>on</strong>g>s in <strong>the</strong> sea-surface temperatures(SST) derived from <strong>the</strong> 1860-2000Comprehensive Ocean-Atmosphere Data Set(COADS) for <strong>the</strong> Bay <str<strong>on</strong>g>of</str<strong>on</strong>g> Biscay (Planque et al.2003) show two cold temperature periods,around 1910 <strong>and</strong> 1970, <strong>and</strong> warm temperateperiods in 1870 <strong>and</strong> 1960. Rapid warming insurface temperatures (0.055 ºC y -1 over 30years) has occurred in <strong>the</strong> last few decades(Koutsikopoulos et al. 1998; Llope et al. 2006)in all <strong>the</strong> oceanic areas <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Bay. Due to highvariability, <strong>the</strong> increase was not significant incoastal areas. In very near coast locati<strong>on</strong>sal<strong>on</strong>g nor<strong>the</strong>rn Spain, l<strong>on</strong>g-term trend inchanges in SST could be negative (Borja et al.2002). A decreasing salinity trend in <strong>the</strong>surface <strong>and</strong> sub-surface waters towards <strong>the</strong>sou<strong>the</strong>rn Bay <str<strong>on</strong>g>of</str<strong>on</strong>g> Biscay was observed in <strong>the</strong>past fifteen years (G<strong>on</strong>zález-Pola et al. 2005).An averaged sea level rise <str<strong>on</strong>g>of</str<strong>on</strong>g> 2.12 mm y -1 to2.91 mm y -1 in <strong>the</strong> last 50 years was detectedin <strong>the</strong> northwest Iberian Peninsula (Marcos etal. 2005), with a 6.5 mm y -1 rise between 1991<strong>and</strong> 2001. A decreasing trend in <strong>the</strong> upwellingindex <strong>and</strong> <strong>the</strong> seas<strong>on</strong>ality <str<strong>on</strong>g>of</str<strong>on</strong>g> upwelling <str<strong>on</strong>g>of</str<strong>on</strong>g>fnor<strong>the</strong>rn Spain has also been detected (Llopeet al. 2006).Biological resp<strong>on</strong>ses to climate change havebeen detected for various organisms <strong>and</strong>ecosystems. Both primary productivity <strong>and</strong>species compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> phytoplankt<strong>on</strong> areaffected by l<strong>on</strong>g-term changes in chemicallydifferent water masses. A rapid increase (1993-1994) in abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> rare warmtemperate copepod Temora stylifera occured inBay <str<strong>on</strong>g>of</str<strong>on</strong>g> Biscay, which correlated with <strong>the</strong>decreasing abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> coastal Temoral<strong>on</strong>gicornis.Several o<strong>the</strong>r organisms <str<strong>on</strong>g>of</str<strong>on</strong>g> subtropical originhave been detected during recent years(Guerra et al. 2002). There have been changesin species abundance <strong>and</strong> diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> intertidalcommunities (Sánchez et al. 2005), <strong>and</strong>northward displacement <str<strong>on</strong>g>of</str<strong>on</strong>g> sou<strong>the</strong>rn originspecies (i.e. Patella rustica, Lima et al. 2006).Decreases <str<strong>on</strong>g>of</str<strong>on</strong>g> biomass <str<strong>on</strong>g>of</str<strong>on</strong>g> some seaweeds wereobserved over <strong>the</strong> past fifteen years(Fernández, unpublished).There have been changes in exploited fishpopulati<strong>on</strong>s such as pilchard sardine, anchovy,mackerel <strong>and</strong> horse mackerel, but it is quitedifficult to differentiate between impact <str<strong>on</strong>g>of</str<strong>on</strong>g>climate <strong>and</strong> fishing effects. Many changes inmigratory routes <strong>and</strong> spawning areas, however,are associated with fluctuati<strong>on</strong>s in <strong>the</strong> NAOindex, indicating a climate effect (Borja et al.2002).Intensity (Mean <strong>and</strong> S.E.) <strong>and</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> days with upwelling per year averaged from April-Septembervalues. The straight line is <strong>the</strong> linear fit for intensity (Llope et al. 2006) (Copyright 2006 AmericanGeophysical Uni<strong>on</strong> - Reproduced by permissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> American Geophysical Uni<strong>on</strong>)..41


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal DraftProjecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> climate changeThe Iberian coast supports intense fisheries<strong>and</strong> aquaculture, involving traditi<strong>on</strong>al musselrafts <strong>and</strong> modern intensive fish <strong>and</strong> molluscfarming. Several impacts related with climatechange could have socioec<strong>on</strong>omic impacts.The observed increase in harmful algal bloomscould affect <strong>the</strong>se commercial activities. Thechanges in primary productivity related withupwelling intensity <strong>and</strong> seas<strong>on</strong>ality affectinggrowth will impact up<strong>on</strong> <strong>the</strong> quality <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>mussels (Blant<strong>on</strong> et al. 1987).“The increase in parasites <str<strong>on</strong>g>of</str<strong>on</strong>g> subtropicalorigin (such as Perkinsus) endangers <strong>the</strong>extensive mollusc farming al<strong>on</strong>g <strong>the</strong>Spanish coasts.”Labarta (pers<strong>on</strong>al observati<strong>on</strong>)The predicted changes in SST as well <strong>the</strong>observed <strong>and</strong> predicted changes in circulati<strong>on</strong><strong>and</strong> stratificati<strong>on</strong> could influence <strong>the</strong> retenti<strong>on</strong>dispersi<strong>on</strong>mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> larval stages <str<strong>on</strong>g>of</str<strong>on</strong>g> fish<strong>and</strong> shellfish with unknown c<strong>on</strong>sequences forspecies recruitment. <str<strong>on</strong>g>Change</str<strong>on</strong>g>s in <strong>the</strong> distributi<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> seaweed <strong>and</strong> invertebrate fauna al<strong>on</strong>gnorthwest Iberian <strong>and</strong> Atlantic French coastswill be evident in <strong>the</strong> first half <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> 21 stcentury, based up<strong>on</strong> <strong>the</strong> actual temperaturelimits <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir distributi<strong>on</strong> <strong>and</strong> predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g>global circulati<strong>on</strong> models <strong>on</strong> future SST (Alcock2003). Beaches, infrastructures <strong>and</strong> urbanfacilities could be seriously impacted by <strong>the</strong> sealevel rise (Cendrero et al. 2005).Current research <strong>and</strong> m<strong>on</strong>itoringprogrammes <strong>and</strong> projects• The main programme devoted to <strong>the</strong>oceanographic research in <strong>the</strong> globalchange c<strong>on</strong>text in Spain is a part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>Nati<strong>on</strong>al Programme <strong>on</strong> Envir<strong>on</strong>mentalScience <strong>and</strong> Technology. The planidentifies, as a special task, <strong>the</strong> functi<strong>on</strong>alrole <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> oceans global change <strong>and</strong> <strong>the</strong>impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> global change <strong>on</strong> <strong>the</strong> regi<strong>on</strong>al<strong>and</strong> local seas in which Spain has aninterest. The programme also financedcooperative research in <strong>the</strong> internati<strong>on</strong>alarena;• The Spanish Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Oceanography(IEO) RADIALES project to m<strong>on</strong>itorsphysical, chemical <strong>and</strong> biologicalc<strong>on</strong>diti<strong>on</strong>s in coastal waters <str<strong>on</strong>g>of</str<strong>on</strong>g> Spain. Thisproject was initiated in 1991 <strong>and</strong> coversfive localities sampled m<strong>on</strong>thly;• The IEO has supported <strong>the</strong> deployment <str<strong>on</strong>g>of</str<strong>on</strong>g>three tide gauges for more than 50 years(www.ieo.es/centrodatos);• Moored buoys that take c<strong>on</strong>tinuousphysical data including currents <strong>and</strong> waveheight are maintained by Puertos delEstado (State Ports);• The HIPOCAS project (Funded by <strong>the</strong><strong>European</strong> Uni<strong>on</strong>’s Fifth FrameworkProgramme - FP5) carried outretrospective analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> climatic <strong>and</strong>oceanographic parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Iberiancoast. Some Spanish regi<strong>on</strong>al instituti<strong>on</strong>shave recently implemented automatic nearcoast observati<strong>on</strong> platform (e.g. AZTI, in<strong>the</strong> Basque Country);• Some Portuguese universities carry outresearch <strong>on</strong> <strong>the</strong> impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change<strong>on</strong> intertidal species (e.g. Porto University,see Lima et al. 2006), includingcompetiti<strong>on</strong> between species at <strong>the</strong>irsou<strong>the</strong>rn limits with warmer water species(Boaventura et al. 2002);• Oceanographic <strong>and</strong> fisheries m<strong>on</strong>itoring<strong>and</strong> research is also c<strong>on</strong>duct by IPIMAR innor<strong>the</strong>rn Portugal.42


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal Draft4.10 MEDITERRANEAN SEADescripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> areaThe Mediterranean basin is ca. 3,680 km l<strong>on</strong>gwith an average width <str<strong>on</strong>g>of</str<strong>on</strong>g> 700 km <strong>and</strong> is dividedinto <strong>the</strong> Western <strong>and</strong> Eastern Mediterranean,separated by <strong>the</strong> straits <str<strong>on</strong>g>of</str<strong>on</strong>g> Sicily, <strong>and</strong> <strong>the</strong> CentralMediterranean. The Western Mediterranean(mean depth, ca. 1,600 m) c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> two deepbasins: <strong>the</strong> Algero Provençal basin <strong>and</strong> <strong>the</strong>Tyrrhenian Sea. The Central Mediterraneanincludes <strong>the</strong> Adriatic <strong>and</strong> I<strong>on</strong>ian seas, while <strong>the</strong>Eastern Mediterranean includes <strong>the</strong> Aegean Sea<strong>and</strong> <strong>the</strong> Levantine basin.The principal traits <str<strong>on</strong>g>of</str<strong>on</strong>g> this semi-enclosedminiature ocean are:• Limited freshwater input (<strong>the</strong>Mediterranean basin is characterised by afreshwater deficit <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.9 m y -1 asevaporati<strong>on</strong> exceeds precipitati<strong>on</strong> <strong>and</strong>run<str<strong>on</strong>g>of</str<strong>on</strong>g>f). The major water exchanges arethrough <strong>the</strong> Straits <str<strong>on</strong>g>of</str<strong>on</strong>g> Gibraltar with surfaceinflow <str<strong>on</strong>g>of</str<strong>on</strong>g> Atlantic (top 300 m), <strong>and</strong> deepoutflow <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> deep, high-salinity,Mediterranean waters (Béthoux et al.2002);• Small amplitude tides (microtidal regime);• High oxygen c<strong>on</strong>centrati<strong>on</strong>s;• High deep-sea temperatures (> 12.8°C);• Oligotrophic c<strong>on</strong>diti<strong>on</strong>s, with low nutrientc<strong>on</strong>centrati<strong>on</strong>s that typically decreaseeastward.As a result <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se characteristics, <strong>the</strong>Western <strong>and</strong> Eastern Mediterranean arecharacterised by different primary productivity.In <strong>the</strong> Western Mediterranean, primaryproducti<strong>on</strong> is about 350-450 mgC m -2 d -1 ,whereas in <strong>the</strong> Eastern Mediterranean primaryproducti<strong>on</strong> is much lower (about 150 mgC m -2d -1 ; Turley et al. 2000). The low productivity in<strong>the</strong> Eastern Mediterranean regi<strong>on</strong>, toge<strong>the</strong>rwith <strong>the</strong> str<strong>on</strong>g summer stratificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>water column <strong>and</strong> <strong>the</strong> tight microbial loopc<strong>on</strong>trol, result in excepti<strong>on</strong>ally low exports <str<strong>on</strong>g>of</str<strong>on</strong>g>primary organic matter to <strong>the</strong> seabed (Turley etal. 2000).The Mediterranean Sea (Credit: SAHFOS <strong>and</strong> <strong>Marine</strong> Institute)Although it occupies <strong>on</strong>ly 0.82% <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> world’socean surface <strong>and</strong> 0.32% <str<strong>on</strong>g>of</str<strong>on</strong>g> its volume, <strong>the</strong>Mediterranean is a hot spot for biodiversity.Species richness (ca. 8500 species <str<strong>on</strong>g>of</str<strong>on</strong>g>metazoa) accounts for 7.5% <str<strong>on</strong>g>of</str<strong>on</strong>g> all describedmarine species (range 4%-18% according to<strong>the</strong> group c<strong>on</strong>sidered): 67% <str<strong>on</strong>g>of</str<strong>on</strong>g> Mediterraneanspecies are found in <strong>the</strong> WesternMediterranean, 38% in <strong>the</strong> Adriatic Sea, 35% in<strong>the</strong> Central Mediterranean, 44% in <strong>the</strong> AegeanSea <strong>and</strong> 28% in <strong>the</strong> Levantine Sea.This trend in species richness indicates a westeastimpoverishment <str<strong>on</strong>g>of</str<strong>on</strong>g> species, reflectingclimatic <strong>and</strong> trophic gradients. Mediterraneanmarine assemblages are different from <strong>the</strong>irAtlantic counterparts, <strong>and</strong> Mediterraneanorganisms are typically characterised bysmaller individual sizes.The Mediterranean Sea is biologically diverseas it is a warm sea at temperate latitudes thushosting both temperate <strong>and</strong> subtropicalspecies, <strong>and</strong> has been fur<strong>the</strong>r diversified by itscomplex geological history. In <strong>the</strong> last fivemilli<strong>on</strong> years, <strong>the</strong> Mediterranean has formedten distinct biogeographic regi<strong>on</strong>s (Bianchi <strong>and</strong>Morri 2000). According to Bianchi (1997), <strong>the</strong>present marine biota <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Mediterranean iscomposed <str<strong>on</strong>g>of</str<strong>on</strong>g> species characterised asoriginating from:• A temperate Atlantic-Mediterraneanbackground;43


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal Draft• Cosmopolitan/panoceanic species;• Endemic elements, comprising bothpaleoendemic <strong>and</strong> neoendemic species;• Subtropical Atlantic species (interglacialremnants);• Boreal Atlantic species (ice-age remnants);• Red Sea migrants (especially into <strong>the</strong>Levant Sea);• Eastern Atlantic migrants (especially into<strong>the</strong> Alboran Sea).Signals <str<strong>on</strong>g>of</str<strong>on</strong>g> climate changeWestern Mediterranean“In <strong>the</strong> western Mediterranean, climatechanges during <strong>the</strong> 1980s altered plankt<strong>on</strong>assemblages <strong>and</strong> food webs with highpositive temperature anomalies favouringjellyfish outbreaks, which resulted in astr<strong>on</strong>g decrease in <strong>the</strong> copepodabundance.”Molinero et al. (2005)In <strong>the</strong> Western Mediterranean, climate changeinfluences <strong>the</strong> boundaries <str<strong>on</strong>g>of</str<strong>on</strong>g> biogeographicregi<strong>on</strong>s, with some warm water speciesextending <strong>the</strong>ir ranges <strong>and</strong> col<strong>on</strong>ising newregi<strong>on</strong>s where <strong>the</strong>y were previously absent.The northward migrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> species with awarmer affinity has been dem<strong>on</strong>strated inseveral regi<strong>on</strong>s (Bianchi <strong>and</strong> Morri 1994; Morri<strong>and</strong> Bianchi 2001). The Ligurian Sea, <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong> coldest areas in <strong>the</strong> Mediterranean Sea,has a lower number <str<strong>on</strong>g>of</str<strong>on</strong>g> subtropical species <strong>and</strong>a higher abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> species characteristic <str<strong>on</strong>g>of</str<strong>on</strong>g>cold-temperate waters. The warming <str<strong>on</strong>g>of</str<strong>on</strong>g>Ligurian Sea waters (Béthoux et al. 1990;Astraldi et al. 1995) has favoured <strong>the</strong>penetrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> warm-water species, includingfor example <strong>the</strong> ornate wrasse Thalassomapavo, which from 1985 <strong>on</strong>ward establishedlarge <strong>and</strong> stable populati<strong>on</strong>s (Bianchi <strong>and</strong> Morri1994).However, <strong>the</strong> increase in numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> tropicalAtlantic species found in <strong>the</strong> nor<strong>the</strong>rnMediterranean may result from a combinati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> anthropogenic <strong>and</strong> climate factors. Recentstudies have identified a correlati<strong>on</strong> between<strong>the</strong> NAO <strong>and</strong> <strong>the</strong> climate variability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>Northwestern Mediterranean (Molinero et al.2005).A large mass-mortality event was observed in1999 (Cerrano et al. 2000; Perez et al. 2000),when a positive <strong>the</strong>rmal anomaly duringsummer combined with an increase in <strong>the</strong>warm mixed layer down to a depth <str<strong>on</strong>g>of</str<strong>on</strong>g> 40 m(Romano et al. 2000) resulted in an extensivemortality <str<strong>on</strong>g>of</str<strong>on</strong>g> 28 invertebrate species (Perez etal. 2000). The area impacted by this climateanomaly extended from <strong>the</strong> French to <strong>the</strong>Italian coast <strong>and</strong>, to a lesser extent, impacted<strong>the</strong> isl<strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Corsica. Am<strong>on</strong>g benthicorganisms, <strong>the</strong> most severely affected weresp<strong>on</strong>ges <strong>and</strong> gorg<strong>on</strong>ians, such as Paramuriceaclavata, Eunicella singularis, Lophogorgiaceratophyta, <strong>and</strong> Eunicella cavolini (Cerrano etal. 2000; Perez et al. 2000; Romano et al.2000; Garrabou et al. 2001). It is evident thattemperature anomalies, even <str<strong>on</strong>g>of</str<strong>on</strong>g> short durati<strong>on</strong>,can dramatically change Mediterranean faunaldiversity. Once a species disappears, o<strong>the</strong>rspecies, pre-adapted to <strong>the</strong> new c<strong>on</strong>diti<strong>on</strong>s,can replace <strong>the</strong>m, thus hampering <strong>the</strong>ecosystem resilience to pre-impact c<strong>on</strong>diti<strong>on</strong>s.High <strong>the</strong>rmal anomalies can also impact <strong>the</strong>fauna inhabiting marine caves, replacingendemic species by warm water species(Chevald<strong>on</strong>ne <strong>and</strong> Lejeusne 2003).The colourful warm-water fish Thalassoma pavo was favoured by rising temperatures in <strong>the</strong> westernMediterranean, establishing large <strong>and</strong> stable populati<strong>on</strong>s from 1985 <strong>on</strong>wards (Bianchi <strong>and</strong> Morri 1994)(Credit: F Cardigos/ImagDOP).<str<strong>on</strong>g>Climate</str<strong>on</strong>g> change in <strong>the</strong> Mediterranean als<str<strong>on</strong>g>of</str<strong>on</strong>g>avours epidemiological outbreaks, as mostpathogens are temperature sensitive. Studiesperformed <strong>on</strong> <strong>the</strong> coral Oculina patag<strong>on</strong>ica44


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal Draftidentified <strong>the</strong> coral-bleaching bacteria Vibrioshiloi, as an agent involved in <strong>the</strong>Mediterranean mass mortalities <str<strong>on</strong>g>of</str<strong>on</strong>g> coral(Kushmaro et al. 1998). Mass mortalities <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>gorg<strong>on</strong>ian Paramunicea clavata, scleractiniancorals, zoanthids, <strong>and</strong> sp<strong>on</strong>ges observed in1999 in <strong>the</strong> Ligurian Sea were indeed promotedby a temperature shift, in c<strong>on</strong>juncti<strong>on</strong> with <strong>the</strong>growth <str<strong>on</strong>g>of</str<strong>on</strong>g> opportunistic pathogens (includingsome fungi <strong>and</strong> protozoans; Cerrano et al.2000). Fur<strong>the</strong>rmore, viral life strategies may bepromoted by rising temperatures. Althoughdata are limited, morbilliviruses that causediseas epidemics in seal have been identifiedin Mediterranean m<strong>on</strong>k seals (van de Bildt etal. 1999), potentially impacting <strong>the</strong> survival <str<strong>on</strong>g>of</str<strong>on</strong>g>this rare <strong>and</strong> endangered species.Adriatic SeaMost informati<strong>on</strong> dealing with climate changeimpacts <strong>on</strong> marine ecosystems in <strong>the</strong> centralpart <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Mediterranean has been collected in<strong>the</strong> Adriatic Sea. During <strong>the</strong> past 30 years in<strong>the</strong> Adriatic Sea, <strong>the</strong> <strong>the</strong>rmophilic species <str<strong>on</strong>g>of</str<strong>on</strong>g>ichthy<str<strong>on</strong>g>of</str<strong>on</strong>g>auna have increased (Dulcic <strong>and</strong> Grbec2000). Fish <strong>and</strong> zooplankt<strong>on</strong> species that werepreviously rare are becoming more abundant,<strong>and</strong> o<strong>the</strong>r new species are being recorded(Dulcic <strong>and</strong> Grbec 2000; Kamburska <strong>and</strong>F<strong>on</strong>da-Umani 2006). These observati<strong>on</strong>s arerelated to warming temperatures <strong>and</strong> salinityvariati<strong>on</strong>s in <strong>the</strong> Adriatic Sea, which intensifiedafter 1988 (Russo et al. 2002).O<strong>the</strong>r climate changes (increases in stormfrequency <strong>and</strong> rainfall, <strong>and</strong> changes in windspeed <strong>and</strong> directi<strong>on</strong>) also had an impact <strong>on</strong>water properties (e.g. salinity, mixing, alteredturbidity), which in turn affect <strong>the</strong> whole AdriaticSea ecosystem (Russo et al. 2002). A number<str<strong>on</strong>g>of</str<strong>on</strong>g> phenomena such as blomms <str<strong>on</strong>g>of</str<strong>on</strong>g> jellyfish(Pelagia noctiluca) <strong>and</strong> thaliacea (Boero 1996),harmful algal blooms (by several species <str<strong>on</strong>g>of</str<strong>on</strong>g>din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates) <strong>and</strong> red tides, were triggered by<strong>the</strong>se meteorological <strong>and</strong> oceanographicchanges (Boero 2001). Increased surfacetemperatures, altered circulati<strong>on</strong>, <strong>and</strong>precipitati<strong>on</strong> changes causing increasedstratificati<strong>on</strong> have been invoked to explain <strong>the</strong>increased frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> bottom water hypoxia(low oxygen) or anoxia in coastal areas <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>nor<strong>the</strong>rn Adriatic. These phenomena, <str<strong>on</strong>g>of</str<strong>on</strong>g>tenassociated with mass mortalities <str<strong>on</strong>g>of</str<strong>on</strong>g> fish <strong>and</strong>benthic fauna, alter foodwebs <strong>and</strong> may haveimportant cascade effects <strong>on</strong> biodiversity.The Adriatic Sea, fur<strong>the</strong>rmore, has underg<strong>on</strong>edramatic changes related to low temperatures.In <strong>the</strong> winter <str<strong>on</strong>g>of</str<strong>on</strong>g> 2001, <strong>the</strong> Adriatic Seaexperienced a period <str<strong>on</strong>g>of</str<strong>on</strong>g> abnormally low surfacetemperatures (from 9°C to freezing) that led tomass mortalities <str<strong>on</strong>g>of</str<strong>on</strong>g> sardines (Sardinella aurita)(Guidetti et al. 2002), with c<strong>on</strong>sequentalterati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> foodwebs. The Adriatic Basinis also <strong>the</strong> site for deep-water formati<strong>on</strong>, as aresult <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Bora winds (nor<strong>the</strong>rn-easternwinds passing through <strong>the</strong> valleys <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>Dinaric Alps) associated with decreasedtemperatures, although recent studies havereported a lack <str<strong>on</strong>g>of</str<strong>on</strong>g> open-sea c<strong>on</strong>vecti<strong>on</strong> relatedto higher temperatures (<strong>and</strong> mild winterc<strong>on</strong>diti<strong>on</strong>s). This phenomen<strong>on</strong> alters deepwater<strong>and</strong> str<strong>on</strong>gly reduces springphytoplankt<strong>on</strong> blooms <strong>and</strong> export producti<strong>on</strong> to<strong>the</strong> deep layers.Eastern MediterraneanMost <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> n<strong>on</strong>-indigenous species in <strong>the</strong>Mediterranean are <strong>the</strong>rmophilic originating in<strong>the</strong> tropical Indo-Pacific (Lessepsianmigrati<strong>on</strong>s, Galil 1993). The list <str<strong>on</strong>g>of</str<strong>on</strong>g> exoticanimals <strong>and</strong> plants that have invaded <strong>the</strong>Mediterranean, <strong>and</strong> particularly <strong>the</strong> EasternMediterranean, is c<strong>on</strong>tinuously increasing. Therise <str<strong>on</strong>g>of</str<strong>on</strong>g> seawater temperatures may be partlyresp<strong>on</strong>sible for changes in <strong>the</strong> range <str<strong>on</strong>g>of</str<strong>on</strong>g> somespecies creating maritime corridors linking thisregi<strong>on</strong> to o<strong>the</strong>r seas <strong>and</strong> regi<strong>on</strong>s. The invasi<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-indigenous species has resulted in <strong>the</strong>dislocati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> o<strong>the</strong>r species <strong>and</strong> possiblycascade effects <strong>on</strong> foodwebs (CIESM 2002).“In <strong>the</strong> nor<strong>the</strong>rn Adriatic, <strong>the</strong> frequency <str<strong>on</strong>g>of</str<strong>on</strong>g>appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> mucilaginous aggregates(associated with a malfuncti<strong>on</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>microbial loop) has doubled in <strong>the</strong> last 25year, c<strong>on</strong>comitantly with a significantincrease in sea surface temperature <str<strong>on</strong>g>of</str<strong>on</strong>g>circa 1.5°C.”Russo et al. (2002)45


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal Draft30<str<strong>on</strong>g>Change</str<strong>on</strong>g>s in Biodiversity(variati<strong>on</strong> in SR)25201510500.00 0.10 0.20 0.30Temperature shift (°C)Relati<strong>on</strong>ship between temperature changes <strong>and</strong> species richness (nematodes) in <strong>the</strong> c<strong>on</strong>tinentalmargins <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Eastern Mediterranean (data compiled by R. Danovaro).Despite an overall tendency towards seasurfacewarming, <strong>the</strong> Eastern Mediterraneanhas also experienced a temperature decrease.This major climatic event, defined as <strong>the</strong>Eastern Mediterranean transient, with a declinein temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> about 0.4°C, caused a drasticdecrease in faunal abundance <strong>and</strong> a significantchange in faunal diversity (Danovaro et al.2001). Between 1992 <strong>and</strong> 1994, a temperatureshift <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.3°C resulted in a reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>approximately 50% <str<strong>on</strong>g>of</str<strong>on</strong>g> nematode diversity (<strong>and</strong>possibly <strong>the</strong> diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> o<strong>the</strong>r groups).Moreover, <strong>the</strong> extent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> impact <strong>on</strong>nematode diversity was directly related to <strong>the</strong>extent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> temperature shift. Temperaturedeclines also caused a decrease in functi<strong>on</strong>aldiversity <strong>and</strong> species evenness, resulting inincreased similarity between <strong>the</strong> nematodefauna <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> warm deep-Eastern Mediterranean<strong>and</strong> <strong>the</strong> colder deep-Atlantic. After 1994, when<strong>the</strong> temperatures gradually recovered to pretransientvalues, <strong>the</strong> biodiversity began torevert towards more evenness. However, <strong>the</strong>community compositi<strong>on</strong> in 1998 still differedfrom that observed in 1989 (Danovaro et al.2004).Projecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change (Adriatic Sea,Eastern <strong>and</strong> Western Mediterranean)Due to its depth (<strong>on</strong> average ca 1450 m), rapiddeep-water turnover time (40-50 year), <strong>and</strong> <strong>the</strong>presence <str<strong>on</strong>g>of</str<strong>on</strong>g> many endemic species (circa 25%<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> species are restricted to <strong>the</strong>Mediterranean), it is expected that <strong>the</strong> impacts<str<strong>on</strong>g>of</str<strong>on</strong>g> climate change may be amplified with earlierchanges in biodiversity than witnessed in o<strong>the</strong>rseas.Recent evidence points to large-scale warming<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Mediterranean basin (Béthoux et al.1990; Astraldi et al. 1995; Wal<strong>the</strong>r et al. 2002)<strong>and</strong> changing biodiversity in resp<strong>on</strong>se(Francour et al. 1994). However, <strong>the</strong> richness<str<strong>on</strong>g>of</str<strong>on</strong>g> microclimates in <strong>the</strong> Mediterranean (rangingfrom climate c<strong>on</strong>diti<strong>on</strong>s similar to those <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>Nor<strong>the</strong>rn Sea in <strong>the</strong> Adriatic to almost tropicalc<strong>on</strong>diti<strong>on</strong>s in <strong>the</strong> Eastern Mediterranean)makes any predicti<strong>on</strong> at large spatial scalesdifficult. Indeed, most effects <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change(or climate anomalies) <strong>on</strong> marine biodiversityhave so far been identified <strong>on</strong>ly at regi<strong>on</strong>alscales.These results indicate that: i) Mediterraneanfauna is highly vulnerable to climate change; ii)both structural <strong>and</strong> functi<strong>on</strong>al biodiversity <str<strong>on</strong>g>of</str<strong>on</strong>g>c<strong>on</strong>tinental margins are significantly affected byvery small temperature changes, <strong>and</strong> iii) <strong>the</strong>impact <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong> marine biodiversitymight be irreversible. Moreover, <strong>the</strong>se eventsindicate that not <strong>on</strong>ly coastal ecosystems butalso c<strong>on</strong>tinental-margin ecosystems mayexperience abrupt climate-driven temperatureshifts, which reflect changes in <strong>the</strong> prevailingclimate c<strong>on</strong>diti<strong>on</strong>s occurring <strong>on</strong> a regi<strong>on</strong>al scale(Bethoux et al. 1990). Since <strong>the</strong>re are closeinteracti<strong>on</strong>s between deep-sea <strong>and</strong> coastalecosystems, <strong>the</strong> vulnerability <str<strong>on</strong>g>of</str<strong>on</strong>g> deep-seaecosystems to climatic changes may have46


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal Draftimportant implicati<strong>on</strong> <strong>on</strong> <strong>the</strong> biodiversity <strong>and</strong>functi<strong>on</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinental shelf ecosystems.Current research <strong>and</strong> m<strong>on</strong>itoringprogrammes <strong>and</strong> projects• <strong>European</strong> Uni<strong>on</strong>’s FrameworkProgrammes - funded projectsinvestigating aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> impacts <str<strong>on</strong>g>of</str<strong>on</strong>g>climate change (including seawater -atmosphere interacti<strong>on</strong>) in <strong>the</strong>Mediterranean Sea include ADIOS(Atmospheric depositi<strong>on</strong> <strong>and</strong> impact <str<strong>on</strong>g>of</str<strong>on</strong>g>pollutants, key elements <strong>and</strong> nutrients <strong>on</strong><strong>the</strong> open Mediterranean -http://forecast.uoa.gr/adios/index.html),INTERPOL (Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> natural <strong>and</strong> trawlingevents <strong>on</strong> resuspensi<strong>on</strong>, dispersi<strong>on</strong> <strong>and</strong>fate <str<strong>on</strong>g>of</str<strong>on</strong>g> pollutants), HERMES (HotspotEcosystem Research <strong>on</strong> Europe's Deep -Ocean Margin - www.eu-hermes.net),ORFOIS (Origin <strong>and</strong> fate <str<strong>on</strong>g>of</str<strong>on</strong>g> biogenicparticle fluxes in <strong>the</strong> ocean <strong>and</strong> <strong>the</strong>irinteracti<strong>on</strong> with <strong>the</strong> atmospheric CO 2c<strong>on</strong>centrati<strong>on</strong> as well as <strong>the</strong> marinesediment -http://www.pangaea.de/Projects/ORFOIS/)<strong>and</strong> SESAME (Sou<strong>the</strong>rn <strong>European</strong> Seas:Assessing <strong>and</strong> Modelling Ecosystemchanges);• The CIESM financially supported <strong>the</strong>programme CIESM-SUB (sur-un-bateau)aimed at investigating <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> recentlclimate change in <strong>the</strong> deep-Mediterranean;• The projects CoMarge <strong>and</strong> Nagisapromoted by <strong>the</strong> Census <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Marine</strong> Life<strong>and</strong> sustained by EuroCOML allow ga<strong>the</strong>rinformati<strong>on</strong> <strong>on</strong> l<strong>on</strong>g-term changes <str<strong>on</strong>g>of</str<strong>on</strong>g>marine biodiversity to improveunderst<strong>and</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climatechange <strong>on</strong> coastal <strong>and</strong> deep-seaecosystems;• Programmes <strong>and</strong> projects implemented atnati<strong>on</strong>al level include SINAPSI <strong>and</strong>VECTOR, financially supported by <strong>the</strong>Italian government.47


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal Draft4.11 BLACK SEADescripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> areaThe Black Sea is a deep (about 2000 m) ovalshapedbasin with <strong>the</strong> z<strong>on</strong>al <strong>and</strong> meridi<strong>on</strong>aldimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> ~1000 km <strong>and</strong> ~400 km,respectively, located approximately between28° <strong>and</strong> 42°E l<strong>on</strong>gitudes, 41° <strong>and</strong> 46°Nlatitudes. The Black Sea has <strong>on</strong>ly a narrowopening to <strong>the</strong> shallow (


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal DraftOnce <strong>the</strong> small pelagic fish became <strong>the</strong> maintarget <str<strong>on</strong>g>of</str<strong>on</strong>g> industrial fisheries, <strong>the</strong>ir catchesbegan to decrease <strong>and</strong> gradually shiftedtowards newly recruited, small-sized fishspecies during <strong>the</strong> 1980s. The catches finallyexceeded a sustainable level in 1987 <strong>and</strong> 1988(Shiganova 1998; Gucu 2002; Daskalov 2002)<strong>and</strong> collapsed in 1989 <strong>and</strong> 1990.The niche vacated by <strong>the</strong>se fish was graduallyreplaced by gelatinous zooplankt<strong>on</strong> (inparticular <strong>the</strong> jellyfish Aurelia aurita) <strong>and</strong> o<strong>the</strong>ropportunistic species (e.g. Noctilucascintillans).Temporal variati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> atmospheric index (ATI) (squares), marine physical climate index (PCI)(dots), <strong>and</strong> ecological index (ECOI) (stars) from 1960 to 1999. All three indices possess remarkablesynchr<strong>on</strong>ous oscillati<strong>on</strong>s with a period <str<strong>on</strong>g>of</str<strong>on</strong>g> 10-12 years (Oguz et al. 2006).WAITING FOR AGREEMENTThe increase in Aurelia Aurita biomass in <strong>the</strong>1970s may have been associated withoverfishing <strong>and</strong> removal <str<strong>on</strong>g>of</str<strong>on</strong>g> mackerel, whichwas a main predator <str<strong>on</strong>g>of</str<strong>on</strong>g> this jellyfish in <strong>the</strong> BlackSea. Because <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir competitive advantagefor food, when compared with small pelagic fishspecies, <strong>and</strong> <strong>the</strong>ir predati<strong>on</strong> <strong>on</strong> eggs <strong>and</strong> larvae<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se fish species, <strong>the</strong> total gelatinousbiomass, mostly <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> jellyfish Aurelia aurita,reached 1.5 kg m -2 during <strong>the</strong> mid-1980s, <strong>and</strong>finally attained <strong>the</strong> peak value <str<strong>on</strong>g>of</str<strong>on</strong>g> about 2.5 kgm -2 in 1989 when <strong>the</strong> populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ctenophore Mnemiopsis leidyi exploded.Relaxati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fishing pressure during <strong>the</strong>sec<strong>on</strong>d half <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> 1980s may be resp<strong>on</strong>siblefor a gradual increase in <strong>the</strong> mesozooplankt<strong>on</strong>biomass up to its maximum value <str<strong>on</strong>g>of</str<strong>on</strong>g> 15 g m -2 in1990, when <strong>the</strong> small pelagic fish stockcollapsed <strong>and</strong> <strong>the</strong> Mnemiopsis populati<strong>on</strong>exploded. Predati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Mnemiopsis <strong>on</strong> fishlarvae fur<strong>the</strong>r accelerated depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> smallpelagic stock at <strong>the</strong> expense <str<strong>on</strong>g>of</str<strong>on</strong>g> an additi<strong>on</strong>alincrease in Mnemiopsis biomass.Str<strong>on</strong>g changes c<strong>on</strong>tinued to prevail in 1991-1993. As phytoplankt<strong>on</strong> biomass c<strong>on</strong>tinued toretain its maximum level <strong>and</strong> <strong>the</strong> entire pelagicstocks were depleted, herbivorous zooplankt<strong>on</strong><strong>and</strong> gelatinous carnivore st<strong>and</strong>ing stockscollapsed abruptly within a year. Completecollapse <str<strong>on</strong>g>of</str<strong>on</strong>g> st<strong>and</strong>ing stocks at all trophic levelsabove <strong>the</strong> first level, reflects a uniquecatastrophic event experienced by any largemarine ecosystem over <strong>the</strong> world to date.The Black Sea has been impacted by <strong>the</strong>adverse effect <str<strong>on</strong>g>of</str<strong>on</strong>g> climatic warming after <strong>the</strong>mid-1990s, which led to poor nutrientenrichment <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> surface layer <strong>and</strong>subsequent decrease in phytoplankt<strong>on</strong>abundance. Poor productivity <str<strong>on</strong>g>of</str<strong>on</strong>g> all highertrophic levels occurred due to limited foodavailability. The decline <str<strong>on</strong>g>of</str<strong>on</strong>g> Mnemiopsishowever helped small pelagic fish to recover, totake over <strong>the</strong> c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> food web, <strong>and</strong> toestablish gradually <strong>the</strong> classical food chain.The introducti<strong>on</strong> in 1998 <str<strong>on</strong>g>of</str<strong>on</strong>g> ano<strong>the</strong>r gelatinouscarnivore Beroe ovata into <strong>the</strong> Black Sea (viaballast waters), which preyed mainly <strong>on</strong>Mnemiopsis, also c<strong>on</strong>tributed to recovery <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ecosystem at <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> 1990s. Beroe ovataadapted quickly <strong>and</strong> easily to <strong>the</strong> Black Seac<strong>on</strong>diti<strong>on</strong>s, <strong>and</strong> spread a year later over mostparts <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sea. Predati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Mnemiopsis byBeroe was immediately reflected by a two-tothreefold increase in mesozooplankt<strong>on</strong>biomass, ichtyoplankt<strong>on</strong> biomass, <strong>and</strong> fishstocks (Kideys 2002; Shiganova et al. 2003).The impact <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong> <strong>the</strong> rise <strong>and</strong>fall <str<strong>on</strong>g>of</str<strong>on</strong>g> small pelagic st<strong>and</strong>ing stocks emergesvery clearly in <strong>the</strong> temporal distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g>sprat <strong>and</strong> anchovy abundance (Oguz et al.2006). Sprat <strong>and</strong> anchoys are <strong>the</strong> two mostdominant small pelagic fish species in <strong>the</strong>Black Sea <strong>and</strong> acted as <strong>the</strong> top predators in <strong>the</strong>ecosystem following <strong>the</strong> depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> higherpredators due to overfishing during <strong>the</strong> 1960s<strong>and</strong> <strong>the</strong> early 1970s. Sprat is a cold-waterspecies spawning in autumn <strong>and</strong> winterm<strong>on</strong>ths. Sprat stocks <strong>the</strong>refore increased up to49


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal Draft500-600 kt<strong>on</strong>s during <strong>the</strong> cold years (during <strong>the</strong>mid-1970s <strong>and</strong> mid-1980s) <strong>and</strong> dropped to aminimum level <str<strong>on</strong>g>of</str<strong>on</strong>g> about 100-200 kt<strong>on</strong>s during<strong>the</strong> warm years (early 1970s <strong>and</strong> 1980s). On<strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, anchovy is a warm waterspecies, spawns preferentially during summer<strong>and</strong> autumn m<strong>on</strong>ths, <strong>and</strong> <strong>the</strong>refore follows anopposite trend in variati<strong>on</strong>s to those <str<strong>on</strong>g>of</str<strong>on</strong>g> spratstocks between <strong>the</strong> extreme values <str<strong>on</strong>g>of</str<strong>on</strong>g> 300 <strong>and</strong>700 kt<strong>on</strong>s. The cyclic variati<strong>on</strong>s in both sprat<strong>and</strong> anchovy stocks were however disrupted byan abrupt drop in <strong>the</strong>ir stocks to about 100kt<strong>on</strong>s at <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> 1980s as <strong>the</strong>y hadexceeded a sustainable level in 1987 due tostr<strong>on</strong>g overfishing (Prodanov et al. 1997; Gucu2002). In additi<strong>on</strong>, excessive feeding pressureintroduced by high Mnemiopsis leidyipopulati<strong>on</strong>s may have c<strong>on</strong>tributed to depleti<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sprat stocks (e.g. Shulman et al. 1994;Shiganova 1998; Kideys et al. 2000).Projecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> climate changeAt present, no projecti<strong>on</strong> <strong>on</strong> how climatechange may affect this regi<strong>on</strong> is available. Thedata show well defined oscillati<strong>on</strong>s during <strong>the</strong>past 100 years <strong>and</strong> <strong>the</strong>re is no reas<strong>on</strong> toexpect that <strong>the</strong>se oscillati<strong>on</strong>s will not c<strong>on</strong>tinueinto <strong>the</strong> future. However, <strong>the</strong>se oscillati<strong>on</strong>s maybe superimposed <strong>on</strong> a more well-definedgeneral trend <str<strong>on</strong>g>of</str<strong>on</strong>g> warming. The Black Searegi<strong>on</strong> is influenced by several telec<strong>on</strong>necti<strong>on</strong>patterns, making future predicti<strong>on</strong>s morechallenging than areas that are mainlymodulated by, for example, <strong>the</strong> NAO al<strong>on</strong>e. Inadditi<strong>on</strong>, this regi<strong>on</strong> was str<strong>on</strong>gly influenced byexternal factors o<strong>the</strong>r than climate changeal<strong>on</strong>e, such as eutrophicati<strong>on</strong> <strong>and</strong> overfishing.Both eutrophicati<strong>on</strong> <strong>and</strong> overfishing have hadtremendous impacts <strong>on</strong> <strong>the</strong> ecosystem <strong>and</strong> stillhave a str<strong>on</strong>g influence.Current research <strong>and</strong> m<strong>on</strong>itoringprogrammes <strong>and</strong> projects in <strong>the</strong> Black Sea• The various research <strong>and</strong> m<strong>on</strong>itoringprogrammes <strong>and</strong> projects which arepresently carried out from nati<strong>on</strong>al fundingin different countries bordering <strong>the</strong> BlackSea are mostly decoupled, except for afew small-scale collaborative effortsfunded by various internati<strong>on</strong>al bodies including<strong>the</strong> <strong>European</strong> Uni<strong>on</strong>;• Truly interdisciplinary, internati<strong>on</strong>alcollaborative research efforts are neededto detect <strong>and</strong> m<strong>on</strong>itor <strong>the</strong> evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>present post-eutrophicati<strong>on</strong> phase <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ecosystem.50


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal Draft4.12 GENERAL TRENDS AND REGIONAL-SPECIFIC EXPECTATIONSRecent research, including <strong>the</strong> examinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>ice cores <strong>and</strong> growth rings <str<strong>on</strong>g>of</str<strong>on</strong>g> ancient trees,shows that <strong>the</strong> Nor<strong>the</strong>rn Hemisphere has beenwarmer since 1980 than at any o<strong>the</strong>r timeduring <strong>the</strong> last 2000 years (Mann <strong>and</strong> J<strong>on</strong>es2003; Moberg et al. 2005). The observed <strong>and</strong>predicted increase in temperature underclimate change is generally higher in nor<strong>the</strong>rnthan in sou<strong>the</strong>rn <strong>European</strong> seas. For <strong>the</strong> mostnor<strong>the</strong>rn seas, such as <strong>the</strong> Arctic <strong>and</strong> <strong>the</strong>Barents Sea, <strong>the</strong> most obvious temperaturerelatedchange is <strong>the</strong> decline in sea-ice cover.Both <strong>the</strong> Arctic <strong>and</strong> <strong>the</strong> Barents Sea arepredicted to be ice-free during summer within<strong>the</strong> next 100 years. The reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>formerly ice-covered area is expected to resultin a decline, <strong>and</strong> possible extincti<strong>on</strong>, <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>species that depend <strong>on</strong> this habitat, such asringed seals <strong>and</strong> polar bears. Thedisappearance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ice may increase localproductivity level in <strong>the</strong> sea. At a larger scale,<strong>the</strong> reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ice-covered areas maylead to an increase in heat absorpti<strong>on</strong> <strong>and</strong>changes in c<strong>on</strong>vecti<strong>on</strong> <strong>and</strong> water massformati<strong>on</strong>, possibly affecting temperature <strong>and</strong>ocean currents globally.Although all ecosystems have been influencedby many o<strong>the</strong>r factors, such as eutrophicati<strong>on</strong><strong>and</strong> overfishing, every regi<strong>on</strong> examined hasshown at least some changes which are mostlikely direct or indirect result <str<strong>on</strong>g>of</str<strong>on</strong>g> recent climatechange. Although <strong>the</strong>re can be no certaintyregarding <strong>the</strong> precise nature <strong>and</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> futureclimate change, even <strong>the</strong> more moderate <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>predicted scenarios is expected to fur<strong>the</strong>r alter<strong>the</strong> marine envir<strong>on</strong>ment. For future planning<strong>and</strong> development <str<strong>on</strong>g>of</str<strong>on</strong>g> adaptati<strong>on</strong> strategies toclimate change, improved underst<strong>and</strong>ing <strong>and</strong>previsi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ultimate c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g>climate change in relati<strong>on</strong> to c<strong>on</strong>current effects<str<strong>on</strong>g>of</str<strong>on</strong>g> o<strong>the</strong>r stressors such as changes in nutrientloads, invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-indigenous species <strong>and</strong>exploitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> marine living resources isneeded.The populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> many marine species areexhibiting a displacement northward. The rate<strong>and</strong> directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this movement, however,differs am<strong>on</strong>gst <strong>the</strong> various seas <strong>and</strong> species.Enclosed seas, such as <strong>the</strong> Baltic Sea, <strong>the</strong>Mediterranean <strong>and</strong> <strong>the</strong> Black Sea, have <strong>on</strong>lysmall <strong>and</strong> primarily east-west orientatedmovement corridors, which may restrictnorthward displacement in <strong>the</strong>se areas. Fur<strong>the</strong>rwarming will presumably drive <strong>the</strong> marinespecies with a preference for cooler waters upto <strong>the</strong> nor<strong>the</strong>rn coastlines <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se areas,followed by extincti<strong>on</strong> if <strong>the</strong>y are not able toadapt to <strong>the</strong> new circumstances. Invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>warm-water species into <strong>the</strong> North Sea <strong>and</strong>English Channel could occur by speciesoriginating from <strong>the</strong> south or <strong>the</strong> east, <strong>and</strong> byspecies originating from <strong>the</strong> more oceanicwaters <str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>the</strong> western coasts <str<strong>on</strong>g>of</str<strong>on</strong>g> Britain, Irel<strong>and</strong><strong>and</strong> France, which have relatively high wintertemperatures. Noticeably, <strong>the</strong> enclosed seasappear to have underg<strong>on</strong>e far more dramaticchanges than <strong>the</strong> more open seas during <strong>the</strong>past decades. Relatively small changes in <strong>the</strong>frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> inflow (as in <strong>the</strong> Baltic Sea) or intemperature (as in <strong>the</strong> Eastern Mediterranean<strong>and</strong> Black Sea) have had str<strong>on</strong>g effects <strong>on</strong>large parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ecosystem. This implies thatalthough <strong>the</strong> temperature increase is predictedto be relatively small in <strong>the</strong> more sou<strong>the</strong>rnwaters, <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change are stilllikely to be quite large in <strong>the</strong>se waters.For most open seas, <strong>the</strong>re is evidence <str<strong>on</strong>g>of</str<strong>on</strong>g>species moving northwards <strong>and</strong>/or nor<strong>the</strong>rnspecies being replaced by more sou<strong>the</strong>rn <strong>on</strong>es.Such changes not <strong>on</strong>ly affect <strong>the</strong> localecosystems, but also <strong>the</strong> internati<strong>on</strong>al fishingindustry when commercial species are affected.It must be noted, however, that a climateinduceddecline in species abundance <strong>and</strong>biodiversity may trigger over-fishing if <strong>on</strong>e triesto gain <strong>the</strong> same yield from a (locally) reducedstock. Under such circumstances, it isimpossible to distinguish between <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g>climate change <strong>and</strong> over-fishing. Even in <strong>the</strong>more open seas, however, species do notalways move northwards if prey are notavailable. Both in <strong>the</strong> Barents Sea <strong>and</strong> in <strong>the</strong>North Sea, marine mammals were observed tomove southwards when <strong>the</strong>ir prey stockscollapsed. Such changes indicate that detailedknowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> species’ physiology,bioenergetics <strong>and</strong> behaviour is needed toadequately predict <strong>the</strong> impact <str<strong>on</strong>g>of</str<strong>on</strong>g> climatechange <strong>on</strong> <strong>the</strong> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> marine organisms<strong>and</strong> marine food webs.It is expected that within open systems <strong>the</strong>rewill generally be northward movement <str<strong>on</strong>g>of</str<strong>on</strong>g>species, for example Arctic species will bereplaced by Atlantic species in <strong>the</strong> morenor<strong>the</strong>rn seas such as <strong>the</strong> Arctic, Barents Sea<strong>and</strong> <strong>the</strong> Nordic Seas, while temperate specieswill be replaced byb more subtropical speciesin <strong>the</strong> sou<strong>the</strong>rn seas such as <strong>the</strong> Iberianupwelling margin. For seas that are highlyinfluenced by river run<str<strong>on</strong>g>of</str<strong>on</strong>g>f, such as <strong>the</strong> BalticSea, an increase in freshwater due toenhanced rainfall will lead to a shift frommarine to more brackish <strong>and</strong> even freshwaterspecies. If enclosed systems such as <strong>the</strong>Mediterranean <strong>and</strong> <strong>the</strong> Black Sea lose <strong>the</strong>irendemic species, <strong>the</strong>ir associated niches willprobably be filled by species originating fromadjacent waters <strong>and</strong>, possibly, from o<strong>the</strong>rsources such as ballast water.<strong>European</strong> seas c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> more than 68,000kilometres <str<strong>on</strong>g>of</str<strong>on</strong>g> coastline, harbouringinternati<strong>on</strong>ally important wetl<strong>and</strong>s, <strong>and</strong> majorcities <strong>and</strong> ports. The combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>accelerating sea level rise (<strong>and</strong> a possible51


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal Draftincrease in <strong>the</strong> frequency <strong>and</strong> intensity <str<strong>on</strong>g>of</str<strong>on</strong>g>storms), as predicted for most <strong>European</strong> seas,will severely increase <strong>the</strong> risk <str<strong>on</strong>g>of</str<strong>on</strong>g> flooding <strong>and</strong>subsequent loss <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se areas. Fur<strong>the</strong>rextensi<strong>on</strong>, raising <strong>and</strong> reinforcement <str<strong>on</strong>g>of</str<strong>on</strong>g> artificialcoastal defences may protect populated areas,but result in loss <str<strong>on</strong>g>of</str<strong>on</strong>g> sedimentary nourishment <str<strong>on</strong>g>of</str<strong>on</strong>g>coastal marine habitats, with c<strong>on</strong>sequences forliving marine resources, including aquaculture.Many marine organisms such as fish spendpart <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir life cycle in <strong>the</strong> relatively shelteredareas al<strong>on</strong>g <strong>the</strong> coast. Loss <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se areas mayimpact <strong>on</strong> <strong>the</strong>se animals during that specificpart <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir life cycle. In additi<strong>on</strong>, changes in<strong>the</strong> strength <strong>and</strong> seas<strong>on</strong>ality <str<strong>on</strong>g>of</str<strong>on</strong>g> upwelling inareas al<strong>on</strong>g <strong>the</strong> coast could influence <strong>the</strong>retenti<strong>on</strong>-dispersal mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> (juvenile)fish <strong>and</strong> shellfish between coastal waters <strong>and</strong>open sea, with unknown c<strong>on</strong>sequences forspecies’ recruitment.52


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal Draft5 FUTURE NEEDS FOR MONITORING AND INDICATORS5.1 Introducti<strong>on</strong>Although marine waters are relatively wellm<strong>on</strong>itored throughout Europe, most <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>sem<strong>on</strong>itoring programmes <strong>and</strong> projects arelimited to regi<strong>on</strong>al seas (or parts <strong>the</strong>re<str<strong>on</strong>g>of</str<strong>on</strong>g>) <strong>and</strong>/orto a few parameters selected as indicators <str<strong>on</strong>g>of</str<strong>on</strong>g> aparticular state (e.g. temperature,c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a particular c<strong>on</strong>taminant, size<str<strong>on</strong>g>of</str<strong>on</strong>g> a commercial fish stock). At present, pan-<strong>European</strong> m<strong>on</strong>itoring programmes <strong>and</strong> projectsare being developed in <strong>the</strong> c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> EUWater Framework Directive <strong>and</strong> <strong>the</strong> EU <strong>Marine</strong>Thematic Strategy (see Box 3). A c<strong>on</strong>certedeffort is needed to ensure that previously <strong>and</strong>currently collected marine envir<strong>on</strong>mental data<strong>and</strong> those that are planned as part <str<strong>on</strong>g>of</str<strong>on</strong>g> futurepan-<strong>European</strong> initiatives c<strong>on</strong>tribute to a betterevaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>and</strong> its impacts.5.2 IndicatorsAn indicator (e.g. temperature or length <str<strong>on</strong>g>of</str<strong>on</strong>g>growing seas<strong>on</strong>) is defined as a variable ormeasure that reveals some key element <str<strong>on</strong>g>of</str<strong>on</strong>g> asystem. Its value <strong>and</strong> l<strong>on</strong>g-term trend indicates<strong>the</strong> present state relative to a reference point<strong>and</strong> thus measures dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> system.Specific indicators can be used to m<strong>on</strong>itortrends <strong>and</strong> detect sudden changes inenvir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s which are c<strong>on</strong>sideredto be <strong>the</strong> result <str<strong>on</strong>g>of</str<strong>on</strong>g> climate variability.Indicators should be simple, reliable <strong>and</strong>affordable; simplicity implies easy tounderst<strong>and</strong> <strong>and</strong> to measure. To be reliable,indicators should be c<strong>on</strong>ceptually <strong>and</strong>methodologically well founded. Indicatorsbased <strong>on</strong> <strong>on</strong>going l<strong>on</strong>g-term m<strong>on</strong>itoringprogrammes <strong>and</strong> projects can takeadvantage <str<strong>on</strong>g>of</str<strong>on</strong>g> tested protocols for routinecollecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> data, historical data for estimati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> reference values (for example, an averagetemperature for <strong>the</strong> period 1961-1990) <strong>and</strong>To predict <strong>the</strong> c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> climate changefor our marine envir<strong>on</strong>ment, it is necessary tomeasure parameters that are indicative <str<strong>on</strong>g>of</str<strong>on</strong>g>underlying mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> climate-inducedchanges. Since <strong>the</strong> indicative value <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>parameters may change in time, <strong>the</strong> applicati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> such mechanistic indicators should go h<strong>and</strong>in h<strong>and</strong> with in-depth research <strong>on</strong> <strong>the</strong>semechanisms. New technologies should beemployed to measure <strong>the</strong>se types <str<strong>on</strong>g>of</str<strong>on</strong>g> indicators(e.g. fluxes) <strong>and</strong> to reach <strong>the</strong> appropriatetemporal <strong>and</strong> spatial resoluti<strong>on</strong> (e.g. usingautomatic sampling equipment <strong>and</strong> satelliteimages).build up c<strong>on</strong>fidence in interpretati<strong>on</strong>. If l<strong>on</strong>gtermm<strong>on</strong>itoring protocols have to be adaptedfor new indicators, however, some c<strong>on</strong>flict mayarise between c<strong>on</strong>sistency <strong>and</strong> improvement.Applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> indicators <strong>on</strong> a pan-<strong>European</strong>scale requires that <strong>the</strong> indicators arec<strong>on</strong>sistently measured over time <strong>and</strong> over abroad range <str<strong>on</strong>g>of</str<strong>on</strong>g> ecosystems. Intercalibrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>similar indicators (e.g. primary producti<strong>on</strong>) isdesirable, but not essential if <strong>the</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g>change, <strong>and</strong> not <strong>the</strong> actual value is desired.N<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> individual indicators is likely to beinfluenced by climate change al<strong>on</strong>e. Groups <str<strong>on</strong>g>of</str<strong>on</strong>g>indicators will <strong>the</strong>refore be needed toc<strong>on</strong>clusively dem<strong>on</strong>strate if <strong>and</strong> how climatechange affects marine systems.53


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentBox 3: Towards Pan-<strong>European</strong> m<strong>on</strong>itoring Final Draft activitiesOn 23 October 2000, <strong>the</strong> Directive 2000/60/EC <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>European</strong> Parliament <strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Councilestablishing a framework for <strong>the</strong> Community acti<strong>on</strong> in <strong>the</strong> field <str<strong>on</strong>g>of</str<strong>on</strong>g> water policy; known as <strong>the</strong> EU WaterFramework Directive (WFD) was adopted (http://ec.europa.eu/envir<strong>on</strong>ment/water/water-framework).The key objectives at <strong>European</strong> level are general protecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> aquatic ecology, specific protecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>unique <strong>and</strong> valuable habitats, protecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> drinking water resources, <strong>and</strong> protecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> bathing water. All<strong>the</strong>se objectives must be integrated for each River Basin District, defined by natural geographical <strong>and</strong>hydrological boundaries <strong>and</strong> including coastal waters, up to <strong>on</strong>e nautical mile bey<strong>on</strong>d shoreline. Thegeneral objective <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> WFD is to achieve "good ecological status" (for ecological protecti<strong>on</strong>) <strong>and</strong> goodchemical status (minimum chemical st<strong>and</strong>ard) for all surface waters by 2015. The first deadline in <strong>the</strong>Directive relating to m<strong>on</strong>itoring is at <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> 2007, when Member States should have <strong>the</strong>ir m<strong>on</strong>itoringprogrammes defined <strong>and</strong> ready for commencement.On 7 June 2006, <strong>the</strong> <strong>European</strong> Commissi<strong>on</strong> adopted a Green Paper <strong>on</strong> a Future Maritime Policy for<strong>the</strong> <strong>European</strong> Uni<strong>on</strong> (http://ec.europa.eu/maritimeaffairs). One <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> motivati<strong>on</strong>s for <strong>the</strong> EU to beinvolved in such as policy is that it recognises that <strong>the</strong> protecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> marine ecosystems <strong>and</strong> fisheriesresources in <strong>European</strong> waters cannot be tackled by Member States individually. Meanwhile, a <strong>Marine</strong>Thematic Strategy Directive will establish <strong>European</strong> <strong>Marine</strong> Regi<strong>on</strong>s <strong>on</strong> <strong>the</strong> basis <str<strong>on</strong>g>of</str<strong>on</strong>g> geographical <strong>and</strong>envir<strong>on</strong>mental criteria. Each Member State, in close cooperati<strong>on</strong> with <strong>the</strong> relevant o<strong>the</strong>r Member States<strong>and</strong> third countries within a <strong>Marine</strong> Regi<strong>on</strong>, will be required to develop <strong>Marine</strong> Strategies for its marinewaters. The <strong>Marine</strong> Strategies will c<strong>on</strong>tain a detailed assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> state <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> envir<strong>on</strong>ment, adefiniti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> good envir<strong>on</strong>mental status at regi<strong>on</strong>al level <strong>and</strong> <strong>the</strong> establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> clear envir<strong>on</strong>mentaltargets <strong>and</strong> m<strong>on</strong>itoring programmes. The key aim is to achieve good status <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> EU’s marineenvir<strong>on</strong>ment by 2021. One proposal <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Green Paper is to establish a <strong>European</strong> <strong>Marine</strong>Observati<strong>on</strong> <strong>and</strong> Data Network which would provide a sustainable focus for improving systematicobservati<strong>on</strong> (in situ <strong>and</strong> from space), interoperability <strong>and</strong> increasing access to data, based <strong>on</strong> robust,open <strong>and</strong> generic informati<strong>on</strong> <strong>and</strong> communicati<strong>on</strong> technology soluti<strong>on</strong>s. In this c<strong>on</strong>text, <strong>the</strong> GlobalM<strong>on</strong>itoring for Envir<strong>on</strong>ment <strong>and</strong> Security (GMES) initiative will implement a number <str<strong>on</strong>g>of</str<strong>on</strong>g> publicinformati<strong>on</strong> services in support <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>European</strong> policies, derived from in situ <strong>and</strong> space observati<strong>on</strong>s(http://www.gmes.info). It is proposed that GMES should c<strong>on</strong>stitute a major comp<strong>on</strong>ent for <strong>the</strong> DataNetwork <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Maritime Policy.5.3 Abiotic IndicatorsAbiotic indicators <str<strong>on</strong>g>of</str<strong>on</strong>g> potential climate changec<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> ocean forcing functi<strong>on</strong>s(atmospheric <strong>and</strong> hydrological) as well as seaice<strong>and</strong> oceanographic properties. Theserepresent a minimum suite <str<strong>on</strong>g>of</str<strong>on</strong>g> indicators neededto address climate change issues <strong>and</strong>determine possible causes <str<strong>on</strong>g>of</str<strong>on</strong>g> ecosystemchanges. Many <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se indicators are alreadybeing measured or estimated, but suchmeasurments must be maintained. O<strong>the</strong>rsneed to be exp<strong>and</strong>ed. Year-to-year variati<strong>on</strong>s<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> indicators should be c<strong>on</strong>sidered, <strong>and</strong>also <strong>the</strong> seas<strong>on</strong>al variati<strong>on</strong> (e.g. <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g>stratificati<strong>on</strong> <strong>and</strong> upwelling). Abiotic indicatorsinclude:Atmospheric Indicators• Large-scale atmospheric pressureindices (e.g. NAO, AO, etc.);• Atmospheric temperatures at st<strong>and</strong>ardmeteorological sites;• Winds, directly measured as well asmodelled values that provide broad spatialcoverage throughout <strong>European</strong> waters;• Precipitati<strong>on</strong> directly measured atst<strong>and</strong>ard meteorological sites plusmodelled values over marine areas.Hydrological Indicators• River run<str<strong>on</strong>g>of</str<strong>on</strong>g>f in all <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> major rivers inEurope <strong>and</strong> flowing into <strong>the</strong> Arctic;• Estimated total river run<str<strong>on</strong>g>of</str<strong>on</strong>g>f into each <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong> major <strong>European</strong> marine regi<strong>on</strong>s(including human activities in catchmentareas such as agriculture irrigati<strong>on</strong> <strong>and</strong>canalisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> rivers).Sea-ice Indicators• Sea-ice area coverage in <strong>the</strong> Baltic,Barents <strong>and</strong> Nordic Seas <strong>and</strong> <strong>the</strong> Arctic;• Sea-ice c<strong>on</strong>centrati<strong>on</strong>s, thickness <strong>and</strong>ice type, including amount <str<strong>on</strong>g>of</str<strong>on</strong>g> multi-yearice.54


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal DraftOceanographic Indicators• Temperature <strong>and</strong> salinity: This shouldinclude c<strong>on</strong>tinuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g-termm<strong>on</strong>itoring such as <strong>the</strong> Kola Secti<strong>on</strong> in <strong>the</strong>Barents Sea <strong>and</strong> <strong>the</strong> Wea<strong>the</strong>r Stati<strong>on</strong> Mikein <strong>the</strong> Norwegian Sea, as well asnumerous coastal sites, st<strong>and</strong>ard oceantransects, etc; m<strong>on</strong>itoring <str<strong>on</strong>g>of</str<strong>on</strong>g> sea-surfacetemperatures by satellite; <strong>and</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> newtechnology such as gliders forundersampled regi<strong>on</strong>s (e.g. <strong>the</strong> Arctic) <strong>and</strong>seas<strong>on</strong>s (winter);• Mixed Layer Depth: The depth <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>surface mixed layer;• Stratificati<strong>on</strong>: The strength <str<strong>on</strong>g>of</str<strong>on</strong>g> verticalchange in density between <strong>the</strong> mixed layer<strong>and</strong> subsurface waters;• Heat c<strong>on</strong>tent: The amount <str<strong>on</strong>g>of</str<strong>on</strong>g> heat in <strong>the</strong>upper 200 m <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ocean;• Ocean Fr<strong>on</strong>ts: The positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> largescaleocean fr<strong>on</strong>ts separating watermasses with different temperature <strong>and</strong>salinity characteristics, e.g. <strong>the</strong> Arctic Fr<strong>on</strong>tbetween Arctic <strong>and</strong> Atlantic water massesin <strong>the</strong> Nordic <strong>and</strong> Barents Seas;• Sea level elevati<strong>on</strong>s: directmeasurements at l<strong>on</strong>g-term coastal sealevel m<strong>on</strong>itoring sites <strong>and</strong> estimates fromsatellite informati<strong>on</strong>;• Frequency, intensity <strong>and</strong> locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>storm surges;• Volume transports: Currentmeasurements should focus <strong>on</strong> waterexchanges in channels <strong>and</strong> straits such as<strong>the</strong> Fram Strait, Denmark Strait, <strong>the</strong>entrances to <strong>the</strong> Barents Sea <strong>and</strong> NorthSea as well as <strong>the</strong> Baltic (Kattegat), <strong>the</strong>Mediterranean (Straits <str<strong>on</strong>g>of</str<strong>on</strong>g> Gibraltar) <strong>and</strong> <strong>the</strong>Black Sea (Bosphorus <strong>and</strong> Dardenelles);• North Atlantic currents: Detected fromsatellite altimetry <strong>and</strong> annual hydrologicaldata al<strong>on</strong>g 26°N <strong>and</strong> al<strong>on</strong>g 22°W;• Regi<strong>on</strong>al currents: e.g. <strong>the</strong> Iberianpoleward current (IPC);• Upwelling indices (based <strong>on</strong> measure <str<strong>on</strong>g>of</str<strong>on</strong>g>upwelling frequency <strong>and</strong> intensity):obtained from wind data, satellite <strong>the</strong>rmalimagery <strong>and</strong> in situ observati<strong>on</strong>s forregi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>the</strong> Iberian Peninsula <strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>f<strong>the</strong> Bay <str<strong>on</strong>g>of</str<strong>on</strong>g> Biscay.Coastline indicators• Number <str<strong>on</strong>g>of</str<strong>on</strong>g> stormy days (above a fixedwind speed);• Rise in sea level relative to l<strong>and</strong>;• Frequency <strong>and</strong> intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> floodingevents;• <strong>Coastal</strong> erosi<strong>on</strong> <strong>and</strong> accreti<strong>on</strong>: length <str<strong>on</strong>g>of</str<strong>on</strong>g>protected <strong>and</strong> defended coastline; area<strong>and</strong> volume <str<strong>on</strong>g>of</str<strong>on</strong>g> s<strong>and</strong> nourishment;• Status <strong>and</strong> trend <str<strong>on</strong>g>of</str<strong>on</strong>g> specified coastalhabitats; salt marsh, tidal flats, s<strong>and</strong>dunes, s<strong>and</strong>y beaches.5.4 Biotic indicatorsBiotic indicators <str<strong>on</strong>g>of</str<strong>on</strong>g> potential climate change canbe categorised into four groups, as indicatorsrelated to : i) community compositi<strong>on</strong>, ii)species abundance, iii) phenology <str<strong>on</strong>g>of</str<strong>on</strong>g>biological events, <strong>and</strong> iv) distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>marine organisms. Some aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>seindicators are already being measured orestimated, but <strong>the</strong>y must be recalculated to beused as an indicator for climate change; o<strong>the</strong>raspects still need to be developed. Bioticindicators include:Community compositi<strong>on</strong> indicators• The ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> species with colderaffinities to those with warmer affinitieswithin phytoplankt<strong>on</strong>, zooplankt<strong>on</strong>,macrozoobenthos, fish, bird <strong>and</strong> mammalcommunities;• The ratio between diatoms <strong>and</strong>din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates within phytoplankt<strong>on</strong>communities;• The biomass ratio between populati<strong>on</strong>s<str<strong>on</strong>g>of</str<strong>on</strong>g> demersal <strong>and</strong> pelagic fish; biomass ratioin catch <strong>and</strong> l<strong>and</strong>ing statistics may also beused.• The (functi<strong>on</strong>al) biodiversity <str<strong>on</strong>g>of</str<strong>on</strong>g>microbes <strong>and</strong> changes <strong>the</strong>re<str<strong>on</strong>g>of</str<strong>on</strong>g> in space<strong>and</strong> time, as detected via new rapidsequence techniques.Abundance indicators• Phytoplankt<strong>on</strong>: CPR colour index(chlorophyll) <strong>and</strong> satellite-derivedmeasures <str<strong>on</strong>g>of</str<strong>on</strong>g> chlorophyll c<strong>on</strong>centrati<strong>on</strong>s;• St<strong>and</strong>ing stocks <str<strong>on</strong>g>of</str<strong>on</strong>g> fish as a measure <str<strong>on</strong>g>of</str<strong>on</strong>g>producti<strong>on</strong> at this higher trophic level (<strong>the</strong>yare str<strong>on</strong>gly influenced by fishing effort, butwill still to some extent reflect climatevariability).55


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal DraftPhenology indicators• Onset <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> phytoplankt<strong>on</strong> springbloom <strong>and</strong> timing <str<strong>on</strong>g>of</str<strong>on</strong>g> flowering <str<strong>on</strong>g>of</str<strong>on</strong>g>seagrass;• Timing <str<strong>on</strong>g>of</str<strong>on</strong>g> reproducti<strong>on</strong> <strong>and</strong> seas<strong>on</strong>almigrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> selected species <str<strong>on</strong>g>of</str<strong>on</strong>g>zooplankt<strong>on</strong>, macrozoobenthos, fish,birds <strong>and</strong> mammals.SeaWiFS satellite images <str<strong>on</strong>g>of</str<strong>on</strong>g> chlorophyll c<strong>on</strong>centrati<strong>on</strong>s in <strong>the</strong> North-east Atlantic. (Data collecti<strong>on</strong>:NASA’s SeaWiFS Project – GeoEye/Data analysis: Plymouth <strong>Marine</strong> Laboratory for analysis/).Reproducti<strong>on</strong> indicators• Recruitment indices (indices for yearclass strength) for macrozoobenthos <strong>and</strong>fish;• Recruitment-spawning stockrelati<strong>on</strong>ships for macrozoobenthos <strong>and</strong>fish;• Reproductive parameters: age <strong>and</strong> sizeat maturity, size <str<strong>on</strong>g>of</str<strong>on</strong>g> reproductive output,development time, <strong>and</strong> c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>juveniles;• Reproductive volume: <strong>the</strong> water masssuitable for reproducti<strong>on</strong> (e.g. for cod in <strong>the</strong>Baltic Sea <strong>the</strong> reproductive volume isestimated from informati<strong>on</strong> <strong>on</strong> salinity, ascod eggs float at salinity > 11 ppm, <strong>and</strong>from informati<strong>on</strong> <strong>on</strong> oxygen c<strong>on</strong>tent, as <strong>the</strong>minimum oxygen c<strong>on</strong>centrati<strong>on</strong> for codeggs to survive is 2 ml l -1 ). Cod recruitmentis poor if <strong>the</strong> reproductive volume is small.Distributi<strong>on</strong> indicators• Range extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> existing species(presence/absence);• Annual <strong>and</strong> seas<strong>on</strong>al c<strong>on</strong>nectivitybetween subpopulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> specieswith pelagic larvae;• Records <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-indigenous species;• Abundance-weighted centres <str<strong>on</strong>g>of</str<strong>on</strong>g>distributi<strong>on</strong>.56


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal Draft5.5 Recommendati<strong>on</strong>sWith regard to future m<strong>on</strong>itoring <strong>and</strong> <strong>the</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g>indicators, <strong>the</strong> authors recommend <strong>the</strong>following acti<strong>on</strong>s:• Maintenance <str<strong>on</strong>g>of</str<strong>on</strong>g> sustained m<strong>on</strong>itoringefforts (large-scale <strong>and</strong> l<strong>on</strong>g-termprogrammes <strong>and</strong> projects <strong>and</strong> localefforts);• Use <str<strong>on</strong>g>of</str<strong>on</strong>g> new technologies to increasespatial <strong>and</strong> temporal resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>measurements (e.g. ARGO floats, ferryboxes, gliders, satellite images, genomics);• New or increased m<strong>on</strong>itoring at keylocati<strong>on</strong>s, e.g. encouragement <str<strong>on</strong>g>of</str<strong>on</strong>g>m<strong>on</strong>itoring efforts by Russia (in <strong>the</strong> BeringStrait) <strong>and</strong> Canada (in <strong>the</strong> CanadianArchipelago);• Development <str<strong>on</strong>g>of</str<strong>on</strong>g> new indicators to fill ingaps in knowledge <strong>on</strong> particular statevariables <strong>and</strong> processes. There is a realneed to develop a benthic habitat indicatorat <strong>the</strong> scale <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>European</strong> shelf. Thiscould be achieved by using newtechnology based <strong>on</strong> multi-beam side-scans<strong>on</strong>ar (in combinati<strong>on</strong> with in situmeasurements,e.g.www.searchmesh.net);• Development <str<strong>on</strong>g>of</str<strong>on</strong>g> both general large-scale<strong>and</strong> specific regi<strong>on</strong>al indicators;• Establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> a pan-<strong>European</strong> (orpreferably global) database with openaccess;• Pan-<strong>European</strong> annual reporting based <strong>on</strong>nati<strong>on</strong>al c<strong>on</strong>tributi<strong>on</strong>s (e.g.www.marlab.ac.uk).ARGO is a global array <str<strong>on</strong>g>of</str<strong>on</strong>g> 3,000 free-driftingpr<str<strong>on</strong>g>of</str<strong>on</strong>g>iling floats that measures <strong>the</strong> temperature <strong>and</strong>salinity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> upper 2000 m <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ocean. Thisallows c<strong>on</strong>tinuous m<strong>on</strong>itoring <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> temperature,salinity, <strong>and</strong> velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> upper ocean, with alldata being relayed <strong>and</strong> made publicly availablewithin hours after collecti<strong>on</strong> (Provor float waiting tobe recovered by <strong>the</strong> Japanese Coast Guard boat,<strong>the</strong> Takuro credit: www.argo.ucsd.edu).57


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal Draft6 FUTURE RESEARCH NEEDSArising from <strong>the</strong> preceding analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> climatechange impacts <strong>on</strong> <strong>European</strong> marine <strong>and</strong>coastal waters, a number <str<strong>on</strong>g>of</str<strong>on</strong>g> research needscan be identified. TFuture research needsinclude i) <strong>the</strong> identificati<strong>on</strong> <strong>and</strong> fur<strong>the</strong>r analysis<str<strong>on</strong>g>of</str<strong>on</strong>g> historical data to describe past ocean climate<strong>and</strong> ecosystem development, <strong>and</strong> ii) a betterunderst<strong>and</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> biogeochemical fluxes, foodweb dynamics <strong>and</strong> ecosystem functi<strong>on</strong>ing,including feedback mechanisms, under currentpredicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change. Increasedunderst<strong>and</strong>ing will enable <strong>the</strong> development <str<strong>on</strong>g>of</str<strong>on</strong>g>improved regi<strong>on</strong>al climate models <strong>and</strong>predictive ecosystem models. As part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>global ecosystem, <strong>European</strong> researchprogrammes <strong>and</strong> projects <strong>on</strong> <strong>the</strong> marineenvir<strong>on</strong>ment must be integral to internati<strong>on</strong>alresearch initiatives with a climate comp<strong>on</strong>ent,for example, IMBER, SOLAS, GLOBEC <strong>and</strong>CLIVAR.Historical Data <strong>and</strong> Sustained Observati<strong>on</strong>s1. Rec<strong>on</strong>structing past climates(Palaeoceanography): Fur<strong>the</strong>r research isneeded to identify <strong>and</strong> analyse proxy datasets (ice <strong>and</strong> sediment cores, growth rings,etc) <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change to recreate pastocean climate scenarios with <strong>the</strong> finestpossible spatial <strong>and</strong> temporal resoluti<strong>on</strong> tobetter underst<strong>and</strong> geographic variati<strong>on</strong>s<strong>and</strong> <strong>the</strong>ir causes under natural c<strong>on</strong>diti<strong>on</strong>s.2. Harnessing existing envir<strong>on</strong>mentaldata: Increased effort is needed to identify,quality c<strong>on</strong>trol, assess, <strong>and</strong> make available<strong>the</strong> wealth <str<strong>on</strong>g>of</str<strong>on</strong>g> existing envir<strong>on</strong>mental datacollected as part <str<strong>on</strong>g>of</str<strong>on</strong>g> regi<strong>on</strong>al seasm<strong>on</strong>itoring programmes <strong>and</strong> projects <strong>and</strong>annual fish stock assessment surveys, tobetter detect <strong>and</strong> quantify climate inducedecosystem changes.3. Support for <strong>the</strong> c<strong>on</strong>tinuati<strong>on</strong> <strong>and</strong> linking<str<strong>on</strong>g>of</str<strong>on</strong>g> existing m<strong>on</strong>itoring <strong>and</strong> time seriesprogrammes <strong>and</strong> projects <strong>and</strong>improvement in <strong>the</strong> spatial <strong>and</strong> temporalresoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> variables. This wouldinclude, for example, <strong>the</strong> extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>CPR (C<strong>on</strong>tinuous Plankt<strong>on</strong> Recorder)surveys to all <strong>European</strong> Seas <strong>and</strong> <strong>the</strong>establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> new sustainedobservati<strong>on</strong>s in important regi<strong>on</strong>s (e.g.Iberian upwelling margin, Alboran Sea,Inner Bay <str<strong>on</strong>g>of</str<strong>on</strong>g> Biscay) by means <str<strong>on</strong>g>of</str<strong>on</strong>g> bothtraditi<strong>on</strong>al <strong>and</strong> new techniques (e.g.moorings <strong>and</strong> cabled networks).Oceanographic observati<strong>on</strong>s need to beintegrated with observati<strong>on</strong>s <strong>on</strong>biodiversity <strong>and</strong> ecological processes inboth <strong>the</strong> pelagic <strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>fshore benthos, aswell as <strong>the</strong> littoral z<strong>on</strong>es (intertidal <strong>and</strong>subtidal).4. Syn<strong>the</strong>sis <strong>and</strong> overview <str<strong>on</strong>g>of</str<strong>on</strong>g> climatechange in <strong>European</strong> marine waters: Thecompilati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Regi<strong>on</strong>al <strong>European</strong> Reportsusing a similar approach to ACIA (Arctic<str<strong>on</strong>g>Climate</str<strong>on</strong>g> Impact Assessment) <strong>and</strong> <strong>the</strong> BalticBACC (Baltex Assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g><str<strong>on</strong>g>Change</str<strong>on</strong>g>).Drivers <strong>and</strong> Ecosystem Resp<strong>on</strong>ses5. Large-Scale climate forcing: <strong>European</strong>seas are str<strong>on</strong>gly influenced by large-scaleatmospheric variability as reflected indifferent air pressure patterns throughindices such as <strong>the</strong> North AtlanticOscillati<strong>on</strong> <strong>and</strong> <strong>the</strong> Arctic Oscillati<strong>on</strong>.Research is needed to address <strong>the</strong>relati<strong>on</strong>ships between <strong>the</strong> differentpressure patterns <strong>and</strong> <strong>the</strong>ir interacti<strong>on</strong>s,<strong>the</strong> temporal variability in <strong>the</strong> strength <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong> patterns, <strong>the</strong> mechanisms resp<strong>on</strong>siblefor <strong>the</strong>ir generati<strong>on</strong> <strong>and</strong> variability,including far-field effects <strong>and</strong>telec<strong>on</strong>necti<strong>on</strong> (e.g. <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>Aleutian low pressure variability <strong>on</strong> <strong>the</strong>NAO) <strong>and</strong> <strong>the</strong> relative importance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>sefar-field effects compared to localprocesses.6. Ocean circulati<strong>on</strong> <strong>and</strong> hydrodynamics:Research is needed to enhanceunderst<strong>and</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> how ocean circulati<strong>on</strong><strong>and</strong> hydrodynamic c<strong>on</strong>diti<strong>on</strong>s(temperature, salinity <strong>and</strong> stratificati<strong>on</strong>) willresp<strong>on</strong>d to predicted climate change, withparticular emphasis <strong>on</strong> regi<strong>on</strong>al resp<strong>on</strong>ses,time lapse to measurable resp<strong>on</strong>se,variability <strong>and</strong> possible feed backmechanisms.7. Sea-ice <strong>and</strong> albedo effect: Sea-ice playsan important role in climate changethrough feedback mechanisms, e.g. as <strong>the</strong>result <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> high reflectivity <str<strong>on</strong>g>of</str<strong>on</strong>g> ice-coveredcompared to open ocean surfaces.Research is needed <strong>on</strong> <strong>the</strong> relati<strong>on</strong>shipsbetween air-sea heat fluxes <strong>and</strong> sea-icec<strong>on</strong>centrati<strong>on</strong>s, leads <strong>and</strong> melt p<strong>on</strong>ds.8. Biogeochemical fluxes: Research isneeded <strong>on</strong> <strong>the</strong> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change<strong>on</strong> microbially-driven biogeochemicalfluxes between ocean <strong>and</strong> atmosphere incoastal <strong>and</strong> in open waters, <strong>the</strong> influences<str<strong>on</strong>g>of</str<strong>on</strong>g> changes in <strong>the</strong> carb<strong>on</strong> <strong>and</strong> o<strong>the</strong>r cycles<strong>on</strong> sedimentati<strong>on</strong>, <strong>and</strong> subsequentbenthic-pelagic coupling. There is a needto define <strong>the</strong> importance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> nitrogencycle (including nitrogen fixati<strong>on</strong>) <strong>and</strong>atmospheric ir<strong>on</strong> fertilisati<strong>on</strong> for elementcycling in <strong>the</strong> ocean under <strong>the</strong> aspects <str<strong>on</strong>g>of</str<strong>on</strong>g>climate change, <strong>and</strong> to know how <strong>the</strong>sechanges affect <strong>the</strong> ratios between58


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal Draftelements such as carb<strong>on</strong>, nitrogen, <strong>and</strong>phosphorus in <strong>the</strong> water. Much is stillunknown <strong>on</strong> <strong>the</strong> impact <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change<strong>on</strong> oxygen levels <strong>and</strong> <strong>on</strong> anoxic areas (inparticular in enclosed seas such as <strong>the</strong>Baltic Sea <strong>and</strong> <strong>the</strong> Black Sea).9. Ecosystem structure <strong>and</strong> functi<strong>on</strong>ing:To underst<strong>and</strong> <strong>and</strong> predict <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g>climate change <strong>on</strong> marine ecosystemstructure <strong>and</strong> functi<strong>on</strong>ing, <strong>the</strong>re is arequirement to examine how climatechange will affect structural <strong>and</strong> functi<strong>on</strong>albiodiversity, how <strong>the</strong> structure (e.g.species compositi<strong>on</strong>, food web lengths,size distributi<strong>on</strong>) <strong>and</strong> functi<strong>on</strong>ing (e.g.biomass, producti<strong>on</strong> <strong>and</strong> decompositi<strong>on</strong>processes, predator-prey interacti<strong>on</strong>s) <str<strong>on</strong>g>of</str<strong>on</strong>g>marine ecosystems will change undercurrent predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change, <strong>and</strong>how changes in <strong>the</strong> chemical compositi<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> elements in <strong>the</strong> ocean will influence foodweb dynamics. Research is needed <strong>on</strong> <strong>the</strong>possible c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change<strong>on</strong> <strong>the</strong> nature <strong>and</strong> strength <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>interacti<strong>on</strong>s between <strong>the</strong> various trophiclevels <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> system. Fur<strong>the</strong>r research isneeded to predict when <strong>and</strong> under whatc<strong>on</strong>diti<strong>on</strong>s climate-induced regime shifts <str<strong>on</strong>g>of</str<strong>on</strong>g>marine ecosystems will occur, if suchchanges will be reversible, <strong>and</strong> if so, whatare <strong>the</strong> recovery dynamics would be.Col<strong>on</strong>ies <str<strong>on</strong>g>of</str<strong>on</strong>g> Phaeocystis globosa in <strong>the</strong> Wadden Sea. How well a model will predict <strong>the</strong> extent to whichmarine ecosystems are affected by climate change will depend <strong>on</strong> <strong>the</strong> detailed underst<strong>and</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> species toward changes in temperature. For example, climate-driven changes in blooms <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong> highly abundant <strong>and</strong> harmful alga Phaeocystis globosa may have feed-back effects <strong>on</strong> <strong>the</strong> ocean’stemperature via its producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> cloud-forming gas dimethylsulphide (Credit: J.M. van Iperen/NIOZ).10. Adaptati<strong>on</strong> <strong>and</strong> evoluti<strong>on</strong>: <str<strong>on</strong>g>Climate</str<strong>on</strong>g>change will result in a change in <strong>the</strong>physical <strong>and</strong> biological envir<strong>on</strong>ment formany marine organisms. It is as yetunknown, however, to what extentindividuals are able to change <strong>the</strong>irphysical or biochemical (phenotypic)characteristics in order to adapt to <strong>the</strong>sechanges (e.g. faster growth at highertemperatures), how populati<strong>on</strong>s willresp<strong>on</strong>d genetically to <strong>the</strong> changes inselecti<strong>on</strong> pressure (e.g. shifts in timing <str<strong>on</strong>g>of</str<strong>on</strong>g>spawning), or how climate change willmodify <strong>the</strong> reproductive potential <str<strong>on</strong>g>of</str<strong>on</strong>g> marineorganisms. Part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> required informati<strong>on</strong>may be derived from using latitudinaldifferences in life-history patterns.11. <strong>Coastal</strong> habitats: Current models <str<strong>on</strong>g>of</str<strong>on</strong>g>climate change predict sea level rise <strong>and</strong>increased frequency <strong>and</strong> intensity <str<strong>on</strong>g>of</str<strong>on</strong>g>storminess that will impact <strong>on</strong> <strong>the</strong> coastalz<strong>on</strong>e. There is a need to examine if moreaccurate regi<strong>on</strong>al predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> sea levelrise in Europe can be derived, taking intoaccount ice cap <strong>and</strong> glacial melting,alterati<strong>on</strong> in <strong>the</strong> strength <str<strong>on</strong>g>of</str<strong>on</strong>g> oceancirculati<strong>on</strong>, heating <strong>and</strong> freshening <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>water column <strong>and</strong> <strong>the</strong> rising or sinking <str<strong>on</strong>g>of</str<strong>on</strong>g>coastlines. This will facilitate research <strong>on</strong><strong>the</strong> socio-ec<strong>on</strong>omic <strong>and</strong> ecologicalimplicati<strong>on</strong>s for coastal protecti<strong>on</strong> <strong>and</strong> <strong>the</strong>development <str<strong>on</strong>g>of</str<strong>on</strong>g> adaptive strategies.59


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal DraftPredictive Models12. Improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> regi<strong>on</strong>al climatemodels: In particular with respect to <strong>the</strong>hydrological cycle, e.g. river run-<str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>and</strong><strong>the</strong> role <str<strong>on</strong>g>of</str<strong>on</strong>g> clouds in evaporati<strong>on</strong>.13. Development <strong>and</strong> validati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>(regi<strong>on</strong>al) biophysical models:Biophysical models are being developed toinvestigate <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> physical forcing<strong>on</strong> primary producti<strong>on</strong>, zooplankt<strong>on</strong>distributi<strong>on</strong> <strong>and</strong> advecti<strong>on</strong>, fish <strong>and</strong>invertebrate larval drift, <strong>and</strong> fish migrati<strong>on</strong>.Improvements in <strong>and</strong> validati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> suchmodels need to be encouraged.14. Species loss: Modelling <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g>climate change <strong>on</strong> species distributi<strong>on</strong>,abundance <strong>and</strong> competiti<strong>on</strong> <strong>and</strong> mappingpotential local <strong>and</strong> larger scale extincti<strong>on</strong>.15. Triggers <str<strong>on</strong>g>of</str<strong>on</strong>g> biological events: Little isknown about <strong>the</strong> mechanisms triggeringevents such as spawning, diapause,migrati<strong>on</strong>, <strong>and</strong> temperature tolerance formost species. Some biological events aretemperature dependent while o<strong>the</strong>rs arelight dependent. Since temperature willrise under climate change, while light willmore or less stay <strong>the</strong> same (except forchanges in cloud cover), <strong>the</strong>re is a largepotential for a future mismatch in timing <str<strong>on</strong>g>of</str<strong>on</strong>g>lifecycle between some species <strong>and</strong> <strong>the</strong>irprey or predators. In order to make reliableecosystem predicti<strong>on</strong>s, knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>triggering mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> biological eventsis absolutely essential.16. Food webs <strong>and</strong> species c<strong>on</strong>nectance inecosystems: Research is needed <strong>on</strong>predator-prey relati<strong>on</strong>ships <strong>and</strong> functi<strong>on</strong>algroups. This informati<strong>on</strong> is necessary todetermine <strong>the</strong> energy flows in <strong>the</strong>ecosystem (i.e. balancing producti<strong>on</strong>,c<strong>on</strong>sumpti<strong>on</strong> <strong>and</strong> mortality <str<strong>on</strong>g>of</str<strong>on</strong>g> species orspecies groups), <strong>and</strong> <strong>the</strong> influence <str<strong>on</strong>g>of</str<strong>on</strong>g>hydrology. To accurately assess impacts<str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong> ecosystem, willrequire enhanced underst<strong>and</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>interacti<strong>on</strong>s am<strong>on</strong>g different species.17. The roles <str<strong>on</strong>g>of</str<strong>on</strong>g> fishing, eutrophicati<strong>on</strong> <strong>and</strong>climate change: <str<strong>on</strong>g>Climate</str<strong>on</strong>g> change isoccurring in combinati<strong>on</strong> with fishing <strong>and</strong>eutrophicati<strong>on</strong>. Research is needed <strong>on</strong>what can be assigned to each cause,including potential synergistic effects (e.g.fishing can cause fish stocks to becomemore vulnerable to climate change).Enabling Technologies <strong>and</strong> SupportingInitiatives18. Development <str<strong>on</strong>g>of</str<strong>on</strong>g> new technologies:Research is needed to design newobservati<strong>on</strong>al <strong>and</strong> measurement systems(e.g. sensors for air-sea interacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g>specific substances for identifying l<strong>on</strong>gtermchanges in hydrodynamic regimes<strong>and</strong> changes in deep-water temperatures)to support climate change research.19. Participati<strong>on</strong> in <strong>and</strong> c<strong>on</strong>tributi<strong>on</strong> tointernati<strong>on</strong>al climate change researchprogrammes <strong>and</strong> projects should besuppported.20. Good <strong>and</strong> fast data access, includingpictures <str<strong>on</strong>g>of</str<strong>on</strong>g> changes in plankt<strong>on</strong>assemblage compositi<strong>on</strong> <strong>and</strong> ocean colourdata (data centres, real time data, basicprocessing <strong>and</strong> computer programmes) isessential.60


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal DraftBIBLIOGRAPHYAACIA (2005). Arctic <str<strong>on</strong>g>Climate</str<strong>on</strong>g> Impact Assessment. Cambridge University Press, 1042 pAlcock R (2003). The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong> rocky shore communities in <strong>the</strong> Bay <str<strong>on</strong>g>of</str<strong>on</strong>g> Biscay, 1895-2050. PhDThesis Biodiversity <strong>and</strong> Ecology Divisi<strong>on</strong>. University <str<strong>on</strong>g>of</str<strong>on</strong>g> Southampt<strong>on</strong>, 286 pAlley RB, Clark PU, Huybrechts P, Joughin I (2005). Ice-sheet <strong>and</strong> sea level changes. Science 310, 456-460American Meteorological Society (2003). <str<strong>on</strong>g>Climate</str<strong>on</strong>g> change research: issues for <strong>the</strong> atmospheric <strong>and</strong> related sciences.Bull Amer Met Soc 84, 508-515Anadón R, Niell FX (1980). Distribución l<strong>on</strong>gitudinal de macrófitos en la costa asturiana (N de España). InvestigaciónPesquera 45, 143-156Ardré F (1970). C<strong>on</strong>tributi<strong>on</strong> à l'étude des algues marines du Portugal: I. La Flore. Portugalia Acta Biologica 10, 1-423Astraldi M, Bianchi CN, Gasparini GP, Morri C (1995). Climatic fluctuati<strong>on</strong>s, current variability <strong>and</strong> marine speciesdistributi<strong>on</strong>: a case study in <strong>the</strong> Ligurian Sea (north-west Mediterranean). Oceanol Acta, 18, 139-149Astthorss<strong>on</strong> OS., Vilhjálmss<strong>on</strong> H (2002). Icel<strong>and</strong> Shelf LME: Decadal assessment <strong>and</strong> resource sustainability. In:Sherman K, Skjoldal HR (Eds) Large <strong>Marine</strong> Ecosystems <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> North Atlantic: Changing States <strong>and</strong>Sustainability. Elsevier Amsterdam, pp 219-243BBeaugr<strong>and</strong> G (2004). The North Sea regime shift: evidence, causes, mechanisms <strong>and</strong> c<strong>on</strong>sequences. ProgrOceanogr 60, 245–262Beaugr<strong>and</strong> G, Br<strong>and</strong>er KM, Lindley JA, Souissi S, Reid PC (2003). Plankt<strong>on</strong> effect <strong>on</strong> cod recruitment in <strong>the</strong> NorthSea. Nature 426, 661-664Beaugr<strong>and</strong> G, Reid PC (2003). L<strong>on</strong>g-term changes in phytoplankt<strong>on</strong>, zooplankt<strong>on</strong> <strong>and</strong> salm<strong>on</strong> related to climate.Global <str<strong>on</strong>g>Change</str<strong>on</strong>g> Biol 9, 801-817Beaugr<strong>and</strong> G, Reid PC, Ibañez F, Lindley JA, Edwards M (2002). Reorganizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> North Atlantic <strong>Marine</strong> CopepodBiodiversity <strong>and</strong> <str<strong>on</strong>g>Climate</str<strong>on</strong>g>. Science 296, 1692-1694Berge J, Johnsen G, Nilsen F, Gulliksen B, Slagstad D (2005). Ocean temperature oscillati<strong>on</strong>s enable reappearance<str<strong>on</strong>g>of</str<strong>on</strong>g> blue mussels Mytilus edulis in Svalbard after a 1000 year absence. Mar Ecol Progr Ser 303, 167-175Bergström S, Carlss<strong>on</strong> B (1994). River run<str<strong>on</strong>g>of</str<strong>on</strong>g>f to <strong>the</strong> Baltic Sea: 1950–1990. Ambio 23, 280-287Béthoux JP, Durieu de Madr<strong>on</strong> X, Nyffeler F, Tailliez D (2002). Deep water in <strong>the</strong> Western Mediterranea : peculiar1999 <strong>and</strong> 2000 characteristics, formati<strong>on</strong> variability since 1970 <strong>and</strong> geochemical inferences. J Mar Syst 33-34,117-131Béthoux JP, Gentili B, Raunet J, Tailliez D (1990). Warming trend in <strong>the</strong> western Mediterranean deep water. Nature347, 660–662Bianchi CN (1997). <str<strong>on</strong>g>Climate</str<strong>on</strong>g> change <strong>and</strong> biological resp<strong>on</strong>se in <strong>the</strong> marine benthos. In: Piccazzo M (Ed.) Atti del 12°C<strong>on</strong>gresso dell'Associazi<strong>on</strong>e Italiana di Oceanologia e Limnologia 1. AIOL, Genova, pp. 3-20Bianchi CN, Morri C (1994). Sou<strong>the</strong>rn species in <strong>the</strong> Ligurian Sea (nor<strong>the</strong>rn Mediterranean): new records <strong>and</strong> areview. Bollettino dei Musei e degli Istituti Biologici dell'Università di Genova 58-59 (1992-1993), 181-197Bianchi CN, Morri C (2000). <strong>Marine</strong> biodiversity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Mediterranean Sea: situati<strong>on</strong>, problems <strong>and</strong> prospects forfuture research. Mar Poll Bull 40, 367–376Bildt van de MWG, Vedder EJ, Martina BEE, Sidi BA, Jiddou AB, Barham MEO, Androukaki A, Kommenou A,Niesters HGM, Osterhaus ADME (1999). Morbilliviruses in Mediterranean m<strong>on</strong>k seals. Veterinary Microbiology69, 19–21Blanchard F, V<strong>and</strong>ermeirsch F (2005). Warming <strong>and</strong> exp<strong>on</strong>ential abundance increase <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> subtropical fish Caprosaper in <strong>the</strong> Bay <str<strong>on</strong>g>of</str<strong>on</strong>g> Biscay (1973-2002). C R Biol. 2005 May 328, 505-509Blant<strong>on</strong> JO, Tenore KR, Castillejo F, Atkins<strong>on</strong> LP, Schwing FB, Lavin A (1987). The relati<strong>on</strong>ship <str<strong>on</strong>g>of</str<strong>on</strong>g> upwelling tomussel producti<strong>on</strong> in <strong>the</strong> Rias <strong>on</strong> <strong>the</strong> western coast <str<strong>on</strong>g>of</str<strong>on</strong>g> Spain. J Mar Res 45, 497-57161


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal DraftBoaventura D, da F<strong>on</strong>seca LC, Hawkins SJ (2002). Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> competitive interacti<strong>on</strong>s between <strong>the</strong> limpets Patelladepressa Pennant <strong>and</strong> Patella vulgata L. <strong>on</strong> <strong>the</strong> nor<strong>the</strong>rn coast <str<strong>on</strong>g>of</str<strong>on</strong>g> Portugal. J Exp Mar Biol Ecol 271, 171-188Boelens R, Minchin D, O’Sullivan G (2005). <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>: Implicati<strong>on</strong>s for Irel<strong>and</strong>’s <strong>Marine</strong> Envir<strong>on</strong>ment <strong>and</strong>Resources. <strong>Marine</strong> Institute, Foresight Series, No. 2. 38pp.Boero F (2001). Adriatic ecological history: a link between jellyfish outbreaks, red tides, mass mortalities, overfishing,mucilages, <strong>and</strong> thaliacean plankt<strong>on</strong>? CIESM, 2001. Gelatinous Zooplankt<strong>on</strong> Outbreaks: Theory <strong>and</strong> Practice.CIESM Workshop M<strong>on</strong>ographs, M<strong>on</strong>aco www.ciesm.org/publicati<strong>on</strong>s/Boero F (1996). Episodic events: <strong>the</strong>ir relevance to ecology <strong>and</strong> evoluti<strong>on</strong>. PSZNI: Mar Ecol 17, 237-250Borja A, Uriarte A, Egaña J (2002). Envir<strong>on</strong>mental factors <strong>and</strong> recruitment <str<strong>on</strong>g>of</str<strong>on</strong>g> mackerel, Scomber scombrus L. 1758,al<strong>on</strong>g <strong>the</strong> north-east Atlantic coast <str<strong>on</strong>g>of</str<strong>on</strong>g> Europe. Fish Oceanogr 11, 116-127Br<strong>and</strong>er K, Blom G, Borges MF, Erzini K, Henders<strong>on</strong> G, MacKenzie BR, Mendes H, Ribeiro J, Santos AMP, ToresenR (2003). <str<strong>on</strong>g>Change</str<strong>on</strong>g>s in fish distributi<strong>on</strong> in <strong>the</strong> eastern North Atlantic: Are we seeing a coherent resp<strong>on</strong>se tochanging temperature? ICES Mar Sci Symp 219, 261-270Bryden HL, L<strong>on</strong>gworth HR, Cunningham SA (2005). Slowing <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Atlantic meridi<strong>on</strong>al overturning circulati<strong>on</strong> at25°N. Nature 438, 655-657CCarmack E, Chapman DC (2003). Wind-driven shelf/basin exchange <strong>on</strong> an Arctic shelf: The joint roles <str<strong>on</strong>g>of</str<strong>on</strong>g> ice coverextent <strong>and</strong> shelf-break bathymetry. Geophysical Research Letters, 30, 1778, doi:10.1029/2003GL017526Cendrero A, Sánchez-Arcilla A, Zazo C (2005). Impactos sobre las z<strong>on</strong>as costeras. In: Moreno JM (ed) Evaluaciónpreliminar de los Impactos en España por efecto del Cambio Climático. Oficina Española de Cambio Climático,Madrid, pp 469-524Cerrano C, Bavestrello G, Bianchi CN, Cattaneo-vietti R, Bava S, Morganti C, Morri C, Picco P, Sara G, SchiaparelliS, Siccardi A, Sp<strong>on</strong>ga F (2000). A catastrophic mass-mortality episode <str<strong>on</strong>g>of</str<strong>on</strong>g> gorg<strong>on</strong>ians <strong>and</strong> o<strong>the</strong>r organisms in<strong>the</strong> Ligurian Sea (North-western Mediterranean), summer 1999. Ecol Lett 3, 284–293.Chevald<strong>on</strong>ne P, Lejeusne C (2003). Regi<strong>on</strong>al warming-induced species shift in north-west Mediterranean marinecaves. Ecol Lett 6, 371–379CIESM (2002). Alien species introduced by ships in <strong>the</strong> Mediterranean <strong>and</strong> black sea. CIESM WorkshopM<strong>on</strong>ographs, 20, 136 pp M<strong>on</strong>aco www.ciesm.org/publicati<strong>on</strong>s/Curry R, Dicks<strong>on</strong> R, Yashayaev I (2003). A change in <strong>the</strong> freshwater balance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Atlantic Ocean over <strong>the</strong> past fourdecades. Nature 426, 826-829.DDanovaro R, Dell’Anno A, Fabiano M, Pusceddu A, Tselepides A (2001). Deep-sea ecosystem resp<strong>on</strong>se to climatechanges: <strong>the</strong> eastern Mediterranean case study. TREE 16, 505-510.Danovaro R, Dell’Anno A, Fabiano M, Pusceddu A (2004). Biodiversity resp<strong>on</strong>se to climate change in a warm deepsea. Ecol Lett 7, 821-828.Daskalov GM (2002). Overfishing drives a trophic cascade in <strong>the</strong> Black Sea. Mar Ecol Progr Ser 225, 53-63Delworth TL, Dix<strong>on</strong> KW (2000). Implicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> recent trend in <strong>the</strong> Arctic/North Atlantic Oscillati<strong>on</strong> from <strong>the</strong> NorthAtlantic <strong>the</strong>rmohaline circulati<strong>on</strong>. J <str<strong>on</strong>g>Climate</str<strong>on</strong>g> 13, 3721-3727Dicks<strong>on</strong> R, Yashayaev I, Meincke J, Turrell W, Dye S, Holfort J (2002). Rapid freshening <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> deep North AtlanticOcean over <strong>the</strong> past four decades. Nature 416, 832-837Dicks<strong>on</strong> RR, Curry R, Yashayaev I (2003). Recent changes in <strong>the</strong> North Atlantic. Phil Trans R Soc L<strong>on</strong>d A 361, 1917-1934Dippner JW, Ikauniece A (2001). L<strong>on</strong>g-term zoobenthos variability in <strong>the</strong> Gulf <str<strong>on</strong>g>of</str<strong>on</strong>g> Riga in relati<strong>on</strong> to climate variability.J Mar Syst 30, 155-164Dippner JW, Vuorinen I (2006). <str<strong>on</strong>g>Climate</str<strong>on</strong>g> related ecosystem change. In: v<strong>on</strong> Storch H (Ed.) BALTEX Assessment <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>, Springer Verlag Berlin, Chapter 5Dowdeswell JA (2006). The Greenl<strong>and</strong> Ice Sheet <strong>and</strong> global sea level rise. Science 311, 963-96462


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal DraftDrinkwater KF (2005). The resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> Atlantic cod (Gadus morhua) to future climate change. ICES J Mar Sci 62,1327-1337Drinkwater KF (2006). The regime shift <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> 1920s <strong>and</strong> 1930s in <strong>the</strong> North Atlantic. Progr Oceanogr 68, 134-151Drinkwater K, Belgrano A, Borja A, C<strong>on</strong>versi A, Edwards M, Greene C, Ottersen G, Pershing A, Walker H. (2003).The Resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Marine</strong> Ecosystems to <str<strong>on</strong>g>Climate</str<strong>on</strong>g> Variability Associated with <strong>the</strong> North Atlantic Oscillati<strong>on</strong>. In:Hurrell J, Kushnir Y, Ottersen G, Visbeck M (Eds) The North Atlantic Oscillati<strong>on</strong>: Climatic Significance <strong>and</strong>Envir<strong>on</strong>mental Impact: American Geophysical Uni<strong>on</strong>, pp. 211-234Dulcic J, Grbec B (2000). <str<strong>on</strong>g>Climate</str<strong>on</strong>g> change <strong>and</strong> Adriatic ichthy<str<strong>on</strong>g>of</str<strong>on</strong>g>auna. Fisheries Oceanography 9, 187–191EEdwards M, Johns DG, Leterme SC, Svendsen E, Richards<strong>on</strong> AJ (2006). Regi<strong>on</strong>al climate change <strong>and</strong> harmful algalblooms in <strong>the</strong> nor<strong>the</strong>ast Atlantic. Limnol Oceanogr 51, 820–829Edwards M, Richards<strong>on</strong> AJ (2004). Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong> marine pelagic phenology <strong>and</strong> trophic mismatch.Nature 430, 881-884Ellingsen IH, Dalpadado P, Slagstad D, Loeng H (2006). Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> present <strong>and</strong> future climatic c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> <strong>the</strong>physical <strong>and</strong> biological envir<strong>on</strong>ment <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Barents Sea. Climatic <str<strong>on</strong>g>Change</str<strong>on</strong>g> (in press).Evans GL, Williams P J le B, Mitchels<strong>on</strong>-Jacob EG (2003). Physical <strong>and</strong> anthropogenic effects <strong>on</strong> observed l<strong>on</strong>gtermnutrient changes in <strong>the</strong> Irish Sea. Est Coast Shelf Sci 57, 1159-1168FFischer-Piette E (1963). La distributi<strong>on</strong> des principaux organismes intercotidaux Nord-Iberiques. Annales del InstituteOcéanographique, Paris 40, 165-311.Forbes E (1958). The distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> marine life, illustrated chiefly by fishes <strong>and</strong> molluscs <strong>and</strong> radiate. In: A.K.Johnst<strong>on</strong>’s Physical Atlas. W, AK Johnst<strong>on</strong>: Edinburgh, pp. 99-101.Francis JA, Hunter E, Key JR, Wang X (2005). Clues to variability in Arctic minimum sea-ice extent. Geophys ResLett 32, L21501Francour P., Boudouresque C.F., Harmelin J.G., Harmelin-Vivien M.L., Quignard J.P., (1994). Are <strong>the</strong> Mediterraneanwaters becoming warmer ? Informati<strong>on</strong> from biological indicators. Mar. Pollut. Bull., 28 (9) : 523-526.Frei C, Scholl R, Fukutome S, Jurg Schmidli J, PL Vidale PL (2006). Future change <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitati<strong>on</strong> extremes inEurope: Intercomparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> scenarios from regi<strong>on</strong>al climate models. J Geophys Res 111, D06105,doi:10.1029/2005JD005965Furevik T, Drange H, Sorteberg A (2002). Anticipated changes in <strong>the</strong> Nordic Seas marine climate: Scenarios for2020, 2050 <strong>and</strong> 2080. Fisken og Havet 4.GGaines SD, Bertness MD (1992). Dispersal <str<strong>on</strong>g>of</str<strong>on</strong>g> juveniles <strong>and</strong> variable recruitment in sessile marine species. Nature360, 579-580.Galil BS (1993). Lessepsian migrati<strong>on</strong>: new findings <strong>on</strong> <strong>the</strong> foremost anthropogenic change in <strong>the</strong> Levant basinfauna. In Della Croce NFR (Ed.) Symposium Mediterranean Seas 2000. University <str<strong>on</strong>g>of</str<strong>on</strong>g> Genova, Istituto diScienze Ambientali <strong>Marine</strong>, Santa Margherita Ligure, pp. 307-323Garrabou J, Perez T, Sartoretto S, Harmelin JG (2001). Mass mortality event in red coral Corallium rubrumpopulati<strong>on</strong>s in <strong>the</strong> Provence regi<strong>on</strong> (France, NW Mediterranean). Mar Ecol Prog Ser 217, 263–272Genner MJ, Sims DW, Wearmouth VJ, Southall EJ, Southward AJ, Henders<strong>on</strong> PA, Hawkins SJ (2004). Regi<strong>on</strong>alclimatic warming drives l<strong>on</strong>g-term community changes <str<strong>on</strong>g>of</str<strong>on</strong>g> British marine fish. Proc R Soc L<strong>on</strong>d B 271, 655-661G<strong>on</strong>zález-Pola C, Lavín A, Vargas-Yáñez M (2005). Intense warming <strong>and</strong> salinity modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> intermediate watermasses in <strong>the</strong> sou<strong>the</strong>rn corner <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Bay <str<strong>on</strong>g>of</str<strong>on</strong>g> Biscay for <strong>the</strong> period 1992-2003. J Geophys Res 110, 1-14Graham LP, Chen D, Christensen OB, Kjellström E, Krysanova V, Meier HEM, Radziewski M, Rockel B, RuosteenojaK, Räisänen J (2006). Projecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> future climate change. In: v<strong>on</strong> Storch H (Ed.) BALTEX Assessment <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>, Springer Verlag Berlin, Chapter 363


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal DraftGrebmeier JM, Smith WO, C<strong>on</strong>over RJ (1995). Biological processes <strong>on</strong> Arctic c<strong>on</strong>tinental shelves: ice-ocean-bioticinteracti<strong>on</strong>s. In: Smith WO <strong>and</strong> Grebmeier JM (Eds). Arctic Oceanography: Marginal Z<strong>on</strong>es <strong>and</strong> C<strong>on</strong>tinentalShelves. <strong>Coastal</strong> <strong>and</strong> Estuarine Studies 49, 231-261Gucu AC (2002). Can overfishing be resp<strong>on</strong>sible for <strong>the</strong> successful establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> Mnemiopsis leidyi in <strong>the</strong> BlackSea? Est Coast Shelf Sci 54, 439-451Guerra A, G<strong>on</strong>zález AF, Rocha F (2002). Appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> comm<strong>on</strong> paper nautilus, Arg<strong>on</strong>auta argo related to <strong>the</strong>increase <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sea-surface temperature in <strong>the</strong> north-eastern Atlantic. J Mar Biol Assoc UK 82, 855-858Guidetti P, Boero F, Dulcic J (2002). Mass mortality <str<strong>on</strong>g>of</str<strong>on</strong>g> gilt sardine, Sardinella aurita (Clupeidae), in <strong>the</strong> Adriatic <strong>and</strong>I<strong>on</strong>ian seas. Cybium 26, 317-319Guinotte JM, Orr J, Cairns S, Freiwald A, Morgan LE, George R (2006)- Will human-induced changes in seawaterchemistry alter <strong>the</strong> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> deep-sea scleractinian? Fr<strong>on</strong>tiers in Ecology <strong>and</strong> <strong>the</strong> Envir<strong>on</strong>ment 4, 141-146.HHagen E, Feistel R (2005). Climatic turning points <strong>and</strong> regime shifts in <strong>the</strong> Baltic Sea regi<strong>on</strong>: <strong>the</strong> Baltic winter index(WIBIX) 1659-2002. Boreal Envir<strong>on</strong>m Res 10, 211-224Häkkinen S, Rhines PB (2004). Decline <str<strong>on</strong>g>of</str<strong>on</strong>g> Subpolar North Atlantic Circulati<strong>on</strong> During <strong>the</strong> 1990s. Science 304, 555-559Hansen B, Turrell WR, Østerhus S (2001). Decreasing overflow from <strong>the</strong> Nordic seas into <strong>the</strong> Atlantic Ocean through<strong>the</strong> Faroe Bank channel since 1950. Nature 411, 927-930.Härkönen T, Dietz R, Reijnders P, Teilmann J, Harding KC, Hall A, Brasseur S, Siebert U, Goodman S, Jeps<strong>on</strong> P,Rasmussen TD, Thomps<strong>on</strong> P (2006). A review <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> 1988 <strong>and</strong> 2002 phocine distemper virus epidemics in<strong>European</strong> harbour seals. Dis Aquat Org 68, 115–130Hasselmann K (1976). Stochastic climate models. Part I. Theory. Tellus 28,473-485Hawkins SJ, Southward AJ, Genner MJ (2003). Detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental change in a marine ecosystem –evidence from <strong>the</strong> western English Channel. Sci Tot Envir<strong>on</strong>m 310, 245-246Hoepffner, N et al. (2006). <strong>Marine</strong> <strong>and</strong> <strong>Coastal</strong> Dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> in Europe – A Report to <strong>the</strong> <strong>European</strong>Water Directors. <strong>European</strong> Commissi<strong>on</strong> – Joint Research Centre - Institute for Envir<strong>on</strong>ment <strong>and</strong> SustainabilityHolgate SJ, Woodworth PL (2004). Evidence for enhanced coastal sea level rise during <strong>the</strong> 1990s. Geophys Res Lett31, L07305, doi:10.1029/2004GL019626, 2004Hulme M, Barrow E, Arnell NW, Harris<strong>on</strong> P, Downing T, Johns R (1999). Relative impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> human-induced climatechange <strong>and</strong> natural variability. Nature 397, 688-691Hulme M, Jenkins GJ, X. L, Turnpenny JR, Mitchell TD, J<strong>on</strong>es RG, Lowe J, Murphy JM, Hassell D, Boorman P,McD<strong>on</strong>ald R, Hill S (2002). <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> Scenarios for <strong>the</strong> United Kingdom: The UKCIP02 Scientific Report,Tyndall Centre for <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> Research, School <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Sciences, University <str<strong>on</strong>g>of</str<strong>on</strong>g> East Anglia,Norwich UKvan den Hurk B, Klein Tank A, Lenderink G, van Ulden A, van Oldenborgh GJ, Katsman C, van den Brink H, Keller F,Bessembinder J, Burgers G, Komen G, Hazeleger W, Drijfhout S (2006). KNMI <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> Scenarios 2006for <strong>the</strong> Ne<strong>the</strong>rl<strong>and</strong>s, KNMI Scientific Report WR 2006-01, Utrecht, 82 pHurrell JW, Dicks<strong>on</strong> RR (2004). <str<strong>on</strong>g>Climate</str<strong>on</strong>g> variability over <strong>the</strong> North Atlantic. In: Stenseth NC, Ottersen G, Hurrell JW,Belgrano A (Eds) <strong>Marine</strong> Ecosystems <strong>and</strong> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> Variati<strong>on</strong> - <strong>the</strong> North Atlantic.Oxford University Press, pp. 15-31IIngvaldsen R, Loeng H, Ottersen G, Ådl<strong>and</strong>svik B (2003). <str<strong>on</strong>g>Climate</str<strong>on</strong>g> variability in <strong>the</strong> Barents Sea during <strong>the</strong> 20thcentury with focus <strong>on</strong> <strong>the</strong> 1990s. ICES Mar Sci Symp 219, 160-168IPCC (1990). Resp<strong>on</strong>se Strategies Working Group, 1990IPCC (2001). <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> 2001: The Scientific Basis, C<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Working Group I to <strong>the</strong> Third AssessmentReport <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Intergovernmental Panel <strong>on</strong> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>. J.T. Hought<strong>on</strong>, Y. Ding, D.J. Griggs, M. Noguer,P.J. van der Linden, X. Dai, K. Maskell <strong>and</strong> C.A. Johns<strong>on</strong> (Eds.). Cambridge University Press, 881 p64


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal DraftIPCC (2001). <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> 2001: Syn<strong>the</strong>sis Report. Wats<strong>on</strong>, R.T. <strong>and</strong> <strong>the</strong> Core Writing Team (Eds.)Intergovernmental Panel <strong>on</strong> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>, Geneva, Switzerl<strong>and</strong>.IPCC (2007). <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> 2007: The Physical Science Basis - Summary for Policymakers C<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Working Group I to <strong>the</strong> Fourth Assessment Report <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Intergovernmental Panel <strong>on</strong> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>.Intergovernmental Panel <strong>on</strong> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>, Geneva, Switzerl<strong>and</strong>.JJacks<strong>on</strong> JBC, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury RH, Cooke R, Erl<strong>and</strong>s<strong>on</strong> J,Estes JA, Hughes TP, Kidwell S, Lange CB, Lenihan HS, P<strong>and</strong>olfi JM, Peters<strong>on</strong> CH, Steneck RS, Tegner MJ,Warner RR (2001). Historical overfishing <strong>and</strong> <strong>the</strong> recent collapse <str<strong>on</strong>g>of</str<strong>on</strong>g> coastal ecosystems. Science 293, 629 –637. doi: 10.1126/science.1059199Janssen F, Neumann T, Schmidt M (2004). Inter-annual variability in cyanobacteria blooms in <strong>the</strong> Baltic Seac<strong>on</strong>trolled by wintertime hydrographic c<strong>on</strong>diti<strong>on</strong>s. Mar Ecol Prog Ser 275, 59-68Johannessen OM, Bengtss<strong>on</strong> L, Miles MW, Kuzmina SI, Semenov VA, Alekseev GV, Nagurnyi AP, Zakharov VF,Bobylev LP, Petterss<strong>on</strong> LH, Hasselmann K, Cattle HP (2004). Arctic climate change: observed <strong>and</strong> modelledtemperature <strong>and</strong> sea-ice variability. Tellus 56A, 328-341Johannessen OM, Shalina EV, Miles M (1999). Satellite evidence for an Arctic sea-ice coverage in transformati<strong>on</strong>.Science 286, 1937-1939Jónss<strong>on</strong> S, Vladimarss<strong>on</strong> H (2005). The flow <str<strong>on</strong>g>of</str<strong>on</strong>g> Atlantic water to <strong>the</strong> North Icel<strong>and</strong>ic Shelf <strong>and</strong> its relati<strong>on</strong> to <strong>the</strong> drift<str<strong>on</strong>g>of</str<strong>on</strong>g> cod larvae. ICES J Mar Sci 62, 1350-1359KKamburska L, F<strong>on</strong>da-Umani S (2006). L<strong>on</strong>g-term copepod dynamics in <strong>the</strong> Gulf <str<strong>on</strong>g>of</str<strong>on</strong>g> Trieste (Nor<strong>the</strong>rn Adriatic Sea):recent changes <strong>and</strong> trends. Clim Res 31, 195-203.Kideys AE (2002). Fall <strong>and</strong> Rise <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Black Sea ecosystem. Science 297, 1482-1484Kideys AE, Kovalev AV, Shulman G, Gordina A, Bingel F (2000). A review <str<strong>on</strong>g>of</str<strong>on</strong>g> zooplankt<strong>on</strong> investigati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> BlackSea over <strong>the</strong> last decade. J Mar Syst 24, 355-371Kitaysky AS, Kitaiskaia EV, Piatt JF, Wingfield JC (2005). A mechanistic link between chick diet <strong>and</strong> decline inseabirds? Proc Biol Sci Proc R Soc B 273, 445–450Koutsikopoulos C, Beillois P, Leroy C, Taillefer F (1998). Temporal trends <strong>and</strong> spatial structures <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sea-surfacetemperature in <strong>the</strong> Bay <str<strong>on</strong>g>of</str<strong>on</strong>g> Biscay. Oceanol Acta 21, 335-344Kushmaro A, Rosenberg E, Fine M, Ben Haim Y, Loya Y (1998). Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature <strong>on</strong> <strong>the</strong> bleaching <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> coralOculina patag<strong>on</strong>ica by <strong>the</strong> Vibrio AK-1. Mar Ecol Prog Ser 171, 131-137LLajus DL, Lajus JA, Dmitrieva ZV, Kraikovski AV, Alex<strong>and</strong>rov DA (2005). The use <str<strong>on</strong>g>of</str<strong>on</strong>g> historical catch data to trace <strong>the</strong>influence <str<strong>on</strong>g>of</str<strong>on</strong>g> climate <strong>on</strong> fish populati<strong>on</strong>s: examples from <strong>the</strong> White <strong>and</strong> Barents Sea fisheries in <strong>the</strong> 17th <strong>and</strong> 18thcenturies. ICES J mar Sci 62, 1426-1435Lax<strong>on</strong> S, Peacock N, Smith D (2003). High interannual variability <str<strong>on</strong>g>of</str<strong>on</strong>g> sea-ice thickness in <strong>the</strong> Arctic regi<strong>on</strong>. Nature425, 947-950Leslie HM, Breck EN, Chan F, Lubchenco J, Menge BA (2005). Barnacle reproductive hotspots linked to near shoreocean c<strong>on</strong>diti<strong>on</strong>s. PNAS 102, 10534-10539Levitus S, Ant<strong>on</strong>ov JI, Boyer TP, Stephens C (2000). Warming <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> world oceans. Science 287, 2225-2229Lima FP, Queiroz N, Ribeiro PA, Hawkins SJ, Santos AM (2006). Geographic expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a marine gastropod,Patella rustica Linnaeus, 1758, <strong>and</strong> its relati<strong>on</strong> with unusual climatic events. J Biogeogr 33, 812–822Llope M, Anadón R, Viesca L, Quevedo M, G<strong>on</strong>zález-Quirós R, Stenseth NC (2006). Hydrographic dynamics in <strong>the</strong>Sou<strong>the</strong>rn Bay <str<strong>on</strong>g>of</str<strong>on</strong>g> Biscay: integrating multi-scale physical variability over <strong>the</strong> last decade (1993-2003). J GeophysRes 111, C0921Loeng H, Bjorke H, Ottersen G (1995). Larval fish growth in <strong>the</strong> Barents Sea. Can Spec Publ Fish Aquat Sci 121,691–69865


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal DraftLüning K (1990). Seaweeds: <strong>the</strong>ir envir<strong>on</strong>ment, biogeography, <strong>and</strong> ecophysiology, Wiley-Interscience Pub, NewYork, 527 pMMacd<strong>on</strong>ald RW, Harnerb T, Fyfe J (2005). Recent climate change in <strong>the</strong> Arctic <strong>and</strong> its impact <strong>on</strong> c<strong>on</strong>taminantpathways <strong>and</strong> interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> temporal trend data. Sci Tot Envir<strong>on</strong>m 342, 5-86.doi:10.1016/j.scitotenv.2004.12.059Mann ME, J<strong>on</strong>es PD (2003). Global surface temperatures over <strong>the</strong> past two millennia. Geophys Res Lett 30, 1820,doi:10.1029/2003GL017814Marcos M, Gomis D, M<strong>on</strong>serrat S, Álvarez E, Pérez B, García-Lafuente J (2005). C<strong>on</strong>sistency <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g sea level timeseries in <strong>the</strong> Nor<strong>the</strong>rn coast <str<strong>on</strong>g>of</str<strong>on</strong>g> Spain. J Geophys Res 110, 1-13Marshall J, Kushnir Y, Battisti D, Chang P, Czaja A, Dicks<strong>on</strong> R, Hurrell J, McCartney M, Saravanan R, Visbeck M(2001). North Atlantic climate variability: Phenomena, impacts <strong>and</strong> mechanisms. Int J Climatol 21,1863-1898,doi:10.1002/joc.693.Matthäus W, Frank H (1992). Characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> major Baltic inflows – a statistical analysis. C<strong>on</strong>t Shelf Res 12, 1375-1400Matthäus, W., (2006). The history <str<strong>on</strong>g>of</str<strong>on</strong>g> investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> salt water inflow into <strong>the</strong> Baltic Sea – from <strong>the</strong> early beginning to<strong>the</strong> recent results. <strong>Marine</strong> Science Reports, No. 65, Baltic Sea Research Institute Warnemünde, 81pp.McCalin CR, Signorini SR, Christian JR (2004). Subtropical gyre variability observed by ocean-color satellites. Deep-Sea Res II 51, 281-301McLaughlin F, Carmack E, Macd<strong>on</strong>ald R, Weaver AJ, Smith J (2002). The Canada Basin, 1989-1995: Upstreamevents <strong>and</strong> far-field effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Barents Sea. J Geophys Res (Oceans) 107, 19.1-19.20Mieszkowska N, Leaper R, Moore P, Kendall MA, Burrows MT, Lear D, Poloczanska E, Hiscock K, Moschella PS,Thomps<strong>on</strong> RC, Herbert RJ, Laffoley D, Baxter J, Southward AJ, Hawkins SJ (2005). <strong>Marine</strong> Biodiversity <strong>and</strong><str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>: Assessing <strong>and</strong> Predicting <strong>the</strong> Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> Climatic <str<strong>on</strong>g>Change</str<strong>on</strong>g> Using Intertidal Rocky Shore Biota.Occasi<strong>on</strong>al Publicati<strong>on</strong>s. Mar Biol Assoc UK20, 53 p.Moberg A, S<strong>on</strong>echkin DM, Holmgren K, Datsenko NM, Karlen W, Lauritzen (2005). Highly variable Nor<strong>the</strong>rnHemisphere temperatures rec<strong>on</strong>structed from low- <strong>and</strong> high-resoluti<strong>on</strong> proxy data. Nature 433, 613-617Molinero JC, Ibanez F, Nival P, Buecher I, Souissi S (2005). North Atlantic climate <strong>and</strong> northwestern Mediterraneanplankt<strong>on</strong> variability. Limnol Oceanogr 50, 1213-1220Möllmann C, Kornilovs G, Fetter M, Köster FW (2005). <str<strong>on</strong>g>Climate</str<strong>on</strong>g>, zooplankt<strong>on</strong>, <strong>and</strong> pelagic fish growth in <strong>the</strong> centralBaltic Sea. ICES J Mar Sci 62, 1270-1280Morri C, Bianchi CN (2001). Recent changes in biodiversity in <strong>the</strong> Ligurian Sea (NW Mediterranean): is <strong>the</strong>re aclimatic forcing? In: Far<strong>and</strong>a FM, Guglielmo L, Spezie G (Eds) Structure <strong>and</strong> Processes in <strong>the</strong> MediterraneanEcosystems. Springer, Milano, pp 375–384Myers RA, Worm B (2003). Rapid worldwide depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> predatory fish communities. Nature 423, 280-283NNicholls RJ, Mimura N (1998). Regi<strong>on</strong>al issues raised by sea level rise <strong>and</strong> <strong>the</strong>ir policy implicati<strong>on</strong>s. Clim Res 11, 5-18OOguz T, Dippner JW, Kaymaz Z (2006). Climatic Regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Black Sea hydro-meteorological <strong>and</strong> ecologicalproperties at interannual-to-decadal time scales. J Mar Syst 60, 235-254Osborn TJ, Briffa KR (2006). The spatial extent <str<strong>on</strong>g>of</str<strong>on</strong>g> 20th-century warmth in <strong>the</strong> c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> past 1200 years. Science311, 841-844Østerhus S, Gammelsrød T (1999). The abyss <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Nordic Seas is warming. J <str<strong>on</strong>g>Climate</str<strong>on</strong>g> 12, 3297-3304Ottersen G, Loeng H, Ådl<strong>and</strong>svik B, Ingvaldsen R (2003). Temperature variability in <strong>the</strong> Nor<strong>the</strong>ast Atlantic. ICES MarSci Symp 219, 86-9466


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal DraftOverl<strong>and</strong> JE, Spillane MC, Percival DB, Wang M, M<str<strong>on</strong>g>of</str<strong>on</strong>g>jeld HO (2004). Seas<strong>on</strong>al <strong>and</strong> regi<strong>on</strong>al variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pan-Arcticsurface air temperature over <strong>the</strong> instrumental record. J <str<strong>on</strong>g>Climate</str<strong>on</strong>g> 17, 3263–3282PPauly D, Christensen V, Dalsgaard J, Froese R, Torres Jr. FC (1998). Fishing down marine food webs. Science 279:860-863Perez T, Garrabou J, Sartoretto S, Harmelin JG, Francour P, Vacelet J (2000). Mortalité massive d’invertébrésmarins: unévénement sans précédent en Méditerranée nord-occidentale. C R Acad Sci Paris, Sci Vie 323, 853–865Perry AL, Low PJ, Ellis JR, Reynolds JD (2005). <str<strong>on</strong>g>Climate</str<strong>on</strong>g> change <strong>and</strong> distributi<strong>on</strong> shifts in marine fishes. Science 308,1912-1915.Philippart CJM, van Aken HM, Beukema JJ, Bos OG, Cadee GC, Dekker R (2003). <str<strong>on</strong>g>Climate</str<strong>on</strong>g>-related changes inrecruitment <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> bivalve Macoma balthica. Limnol Oceanogr 48, 2171–2185Pingree R (2002). Ocean structure <strong>and</strong> climate (Eastern North Atlantic): in situ measurement <strong>and</strong> remote sensing. JMar Biol Assoc UK 82, 681-707Pingree R (2005). North Atlantic <strong>and</strong> North Sea climate change: curl up, shut down, NAO <strong>and</strong> ocean colour. J MarBiol Assoc UK 85, 1301-1315Pingree RD, Griffiths DK (1978). Tidal fr<strong>on</strong>ts <strong>on</strong> <strong>the</strong> shelf seas around <strong>the</strong> British Isles. J Geophys Res (Oceans <strong>and</strong>Atmospheres) 83, 4615-4622Pingree RD, Le Cann B. (1989). Celtic <strong>and</strong> Armorican slope <strong>and</strong> shelf residual currents. Progr Oceanogr 23, 303-338Planque B, Beillois P, Jégou AM, Lazure P, Petitgas P, Puillat I (2003). Large-scale hydroclimatic variability in <strong>the</strong>Bay <str<strong>on</strong>g>of</str<strong>on</strong>g> Biscay: <strong>the</strong> 1990s in <strong>the</strong> c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> interdecadal changes, ICES Mar Sci Symp 219, 61–70Polyakov IG, Beszczynska A, Carmack EC, Dmitrenko IA, Fahrbach E, Frolov IE, Gerdes R, Hansen E, Holfort J,Ivanov VV, Johns<strong>on</strong> MA, Karcher M, Dauker F, Moris<strong>on</strong> J, Orvik KA, Schauer U, Simm<strong>on</strong>s HL, Skagseth Ø,Sokolov VT, Steele M, Timokhov LA, Walsh D, Walsh JE (2005). One more step toward a warmer Arctic.Geophys Res Lett 32, LI7605, doi:10.1029/2005GL023740Prodanov K, Mikhaylov K, Daskalov G, Maxim K, Ozdamar E, Shlyakhov V, Chashcin A, Arkhipov A (1997).Envir<strong>on</strong>mental management <str<strong>on</strong>g>of</str<strong>on</strong>g> fish resources in <strong>the</strong> Black Sea <strong>and</strong> <strong>the</strong>ir rati<strong>on</strong>al exploitati<strong>on</strong>. General FisheriesCouncil <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Mediterranean Studies <strong>and</strong> Reviews 68, 1-178QQuadfasel D (2005). The Atlantic heat c<strong>on</strong>veyor slows. Nature 438, 565-566Quero JC, Du Buit MH, Vayne JJ (1998). The records <str<strong>on</strong>g>of</str<strong>on</strong>g> tropical fishes <strong>and</strong> <strong>the</strong> warming <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>European</strong> Atlanticwaters. Oceanol Acta 21, 345-351RReid PC, Edwards M, Beaugr<strong>and</strong> G, Skogen M, Stevens D (2003). Periodic changes in <strong>the</strong> zooplankt<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> NorthSea during <strong>the</strong> twentieth century linked to oceanic inflow. Fish Oceanogr 12, 260-269Reise K, Dankers N, Essink K (2004). Introduced species. In: Essink K, Dettmann C, Farke H, Laursen K, Lüerßen G,Marencic H, Wiersinga W (Eds) Wadden Sea Quality Status Report 2004. Wadden Sea Ecosystem 19 – 2005,pp 155-161Roberts JM, Wheeler AJ, Freiwald A (2006). Reefs <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> deep: <strong>the</strong> biology <strong>and</strong> geology <str<strong>on</strong>g>of</str<strong>on</strong>g> cold-water coralecosystems. Science 312, 543-547Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003). Fingerprints <str<strong>on</strong>g>of</str<strong>on</strong>g> global warming <strong>on</strong> wildanimals <strong>and</strong> plants. Nature 421, 57-60Romano JC, Bensoussan N, Younes WAN, Arlhac D (2000). Anomalie <strong>the</strong>rmique dans les eaux du golfe deMarseille dur<strong>and</strong> l’été 1999. Une explicati<strong>on</strong> partielle de la mortalite´ d’invertébrés fixés? C R Acad Sci Paris,Sci Vie 323, 415–427Rothrock DA, Zhang J (2005). Arctic Ocean sea-ice volume: What explains its recent depleti<strong>on</strong>? J Geophys Res 110,C01002, doi:10.1029/2004JC00228267


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal DraftRusso A, Rabitti S, Bastianini M (2002). Decadal Climatic Anomalies in <strong>the</strong> Nor<strong>the</strong>rn Adriatic Sea Inferred from aNew Oceanographic Data Set. PSZNI Mar Ecol 23, 340-351SSánchez I, Fernández C, Arr<strong>on</strong>tes J (2005). L<strong>on</strong>g-term changes in <strong>the</strong> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> intertidal assemblages followinginvasi<strong>on</strong> by Sargassum muticum (Phaeophyta). J Phycol 41, 942-949Sarmiento JL, Slater R, Barber R, Bopp L, D<strong>on</strong>ey SC, Hirst AC, Kleypas J, Matear R, Mikolajewicz U, M<strong>on</strong>fray P,Soldatov V, Spall SA, Stouffer R (2004). Resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> ocean ecosystems to climate warming. Glob BiogeochCycles 18, 3Schauer U, Muench RD, Rudels B, Timokhov L (1997). The impact <str<strong>on</strong>g>of</str<strong>on</strong>g> eastern Arctic Shelf Waters <strong>on</strong> <strong>the</strong> NansenBasin intermediate layers. J Geophys Res 102, 3371-3382Schindler DW (2006). Recent advances in <strong>the</strong> underst<strong>and</strong>ing <strong>and</strong> management <str<strong>on</strong>g>of</str<strong>on</strong>g> eutrophicati<strong>on</strong>. Limnol Oceanogr51, 356-363Shiganova TA (1998). Invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Black Sea by <strong>the</strong> ctenophore Mnemiopsis leidyi <strong>and</strong> recent changes in pelagiccommunity structure. Fish Oceanogr 7, 305-310Shiganova TA, Musaeva EI, Bulgakova YV, Mirzoyan ZA, Martynyuk ML (2003). Invaders Ctenophores Mnemiopsisleidyi (A. Agassiz) <strong>and</strong> Beroe ovata Mayer 1912, <strong>and</strong> <strong>the</strong>ir influence <strong>on</strong> <strong>the</strong> pelagic ecosystem <str<strong>on</strong>g>of</str<strong>on</strong>g> nor<strong>the</strong>asternBlack Sea, Oceanology (Engl. Trans.) 30, 180-190Shulman GE, Chashchin AK, Minyuk GS, Shchepkin VY et al. (1994). L<strong>on</strong>gterm m<strong>on</strong>itoring <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> BlackSea sprat. Doklady Rossiyskoy Akademii Nauk, v. 335, ¹ 1, pp 124 - 126Slagstad D, Wassmann P (1996). <str<strong>on</strong>g>Climate</str<strong>on</strong>g> change <strong>and</strong> carb<strong>on</strong> flux in <strong>the</strong> Barents Sea: 3-D simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> icedistributi<strong>on</strong>, primary producti<strong>on</strong> <strong>and</strong> vertical export <str<strong>on</strong>g>of</str<strong>on</strong>g> particulate organic carb<strong>on</strong>. Memoirs <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Nati<strong>on</strong>alInstitute for Polar Research, Special Issue 51, 119-141Southward AJ (1980). The western English Channel - an inc<strong>on</strong>stant ecosystem? Nature 285, 361-366Southward AJ (1991). Forty years <str<strong>on</strong>g>of</str<strong>on</strong>g> changes in species compositi<strong>on</strong> <strong>and</strong> populati<strong>on</strong>-density <str<strong>on</strong>g>of</str<strong>on</strong>g> barnacles <strong>on</strong> a rockyshore near Plymouth. J Mar Biol Assoc UK 71, 495–523Southward AJ, Boalch GT, Maddock L (1988). Fluctuati<strong>on</strong>s in <strong>the</strong> herring <strong>and</strong> pilchard fisheries <str<strong>on</strong>g>of</str<strong>on</strong>g> Dev<strong>on</strong> <strong>and</strong>Cornwall linked to change in climate since <strong>the</strong> 16 th century. J Mar Biol Assoc UK 68, 423-445Southward AJ, Hawkins SJ, Burrows MT (1995). Seventy years’ observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> changes in distributi<strong>on</strong> <strong>and</strong>abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> zooplankt<strong>on</strong> <strong>and</strong> intertidal organisms in <strong>the</strong> western English Channel in relati<strong>on</strong> to rising seatemperature. J Therm Biol 20, 127-155Southward AJ, Langmead O, Hardman-Mountford NJ, Aiken J, Boalch GT, D<strong>and</strong>o PR, Genner MJ, Joint I, Kendall M,Halliday NC, Harris RP, Leaper R, Mieszkowska N, Pingree RD, Richards<strong>on</strong> AJ, Sims DW, Smith T, Walne AW,Hawkins S.J (2005). L<strong>on</strong>g-term oceanographic <strong>and</strong> ecological research in <strong>the</strong> western English Channel. AdvMar Biol 47, 1-105.Stachowicz JJ, Terwin JR, Whitlatch RB, Osman RW (2002). Linking climate change <strong>and</strong> biological invasi<strong>on</strong>s: oceanwarming facilitates n<strong>on</strong>-indigenous species invasi<strong>on</strong>. Proc Nat Acad Sc USA 99, 15497-15500Stern, N (2006). Stern Review <strong>on</strong> <strong>the</strong> ec<strong>on</strong>omics <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change. HM Treasury, UKTTeng H, Washingt<strong>on</strong> WM, Meehl GA, Buja LE, Str<strong>and</strong> GW (2006). Twenty-first century Arctic climate change in <strong>the</strong>CCSM3 IPCC scenario simulati<strong>on</strong>s. <str<strong>on</strong>g>Climate</str<strong>on</strong>g> Dynamics 26, 601-616The Royal Society (2005). Ocean acidificati<strong>on</strong> due to increasing atmospheric carb<strong>on</strong> dioxide. Policy Document 12/0Thomps<strong>on</strong> DJW, Wallace JM (1998). The Arctic Oscillati<strong>on</strong> signature in <strong>the</strong> wintertime geopotential height <strong>and</strong>temperature fields. Geophys Res Lett 25, 1297-1300Thomps<strong>on</strong> DJW, Wallace JM (2001). Regi<strong>on</strong>al climate impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> nor<strong>the</strong>rn hemisphere annular mode <strong>and</strong>associated climate trends. Science 293, 85-89Toresen R, Østvedt LJ (2000). Variati<strong>on</strong> in abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> Norwegian spring-spawning herring (Clupea harengus,Clupeidae) throughout <strong>the</strong> 20th century <strong>and</strong> <strong>the</strong> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> climatic fluctuati<strong>on</strong>s. Fish <strong>and</strong> Fisheries 1, 231-25668


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal DraftTurley CM, Bianchi A, Christaki U, Harris JRW, Psarra S, Ruddy G, Stutt ED, Tselepides A, van Wambeke (2000).Relati<strong>on</strong>ship between primary producers <strong>and</strong> bacteria in an oligotrophic sea: <strong>the</strong> Mediterranean <strong>and</strong>biogeochemical implicati<strong>on</strong>s. Mar Ecol Progr Ser 193, 11-18VValdés L, Lavín A (2002). Dynamics <strong>and</strong> Human Impact in <strong>the</strong> Bay <str<strong>on</strong>g>of</str<strong>on</strong>g> Biscay: An ecological perspective. In: ShermanK, Skjoldal HR (Eds) Large marine Ecosystems <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> North Atlantic, Elsevier Science, pp 293-320Vilhjálmss<strong>on</strong> H (1997). Climatic variati<strong>on</strong>s <strong>and</strong> some examples <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir effects <strong>on</strong> <strong>the</strong> marine ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> Icel<strong>and</strong>ic <strong>and</strong>Greenl<strong>and</strong> waters, in particular during <strong>the</strong> present century. Rit Fiskideildar 40, 7-29WWal<strong>the</strong>r GR, Post E, C<strong>on</strong>vey P, Menzel A, Parmesan C, Beebe TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F(2002). Ecological resp<strong>on</strong>ses to recent climate change. Nature 416, 389-395Weijerman M, Lindeboom H, Zuur AF (2005). Regime shifts in marine ecosystems in <strong>the</strong> North Sea <strong>and</strong> WaddenSea. Mar Ecol Progr Ser 298, 21-39Wiltshire KH, Manly BFJ (2004). The warming trend at Helgol<strong>and</strong> Roads, North Sea: phytoplankt<strong>on</strong> resp<strong>on</strong>se,Helgol<strong>and</strong> mar Res 58, 269-273Woehrling D, Lefebvre A, Le Fevre-Lehorff G, Delesm<strong>on</strong>t R (2005). Seas<strong>on</strong>al <strong>and</strong> l<strong>on</strong>ger term trends in seatemperature al<strong>on</strong>g <strong>the</strong> French North Sea coast 1975 to 2002. J Mar Biol Assoc UK 85, 39-48Woodgate RA, Aagaard K (2005). M<strong>on</strong>thly temperature, salinity <strong>and</strong> transport variability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Bering Strait throughflow. Geophys Res Lett 32, L04601, doi:10.1029/2004GL021880World Meteorological Organizati<strong>on</strong> (2001). World Meteorological Organizati<strong>on</strong>/United Nati<strong>on</strong>s Envir<strong>on</strong>mentProgramme <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> 2001: The Scientific Basis69


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal DraftAPPENDICES70


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal DraftAPPENDIX 1: GLOSSARY OF TERMSAlbedo effectIncreased reflectivity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ground surface following a change <str<strong>on</strong>g>of</str<strong>on</strong>g> it characteristics or cover <strong>the</strong>rebychanging <strong>the</strong> heat balance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> surface-atmosphere system.Beaufort GyreBeaufort gyre is a circulati<strong>on</strong> system swirling <strong>the</strong> waters <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Arcitc basin <strong>and</strong> turning <strong>the</strong> ice cap withit.Greenhouse GasesGreenhouse gases are comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> atmosphere that c<strong>on</strong>tribute to <strong>the</strong> greenhouse effect, <strong>the</strong>yinclude water vapor, carb<strong>on</strong> dioxide, methane, nitrous oxide, <strong>and</strong> oz<strong>on</strong>eMilankovitch cyclesThe variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Earth's exposure to <strong>the</strong> sun's rays, or insolati<strong>on</strong>, that results from variati<strong>on</strong>s in <strong>the</strong>orbit <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Earth <strong>and</strong> <strong>the</strong> tilt <str<strong>on</strong>g>of</str<strong>on</strong>g> its axis, <strong>and</strong> that might affect climate, sea level <strong>and</strong> sedimentati<strong>on</strong> (timeperiod in <strong>the</strong> order <str<strong>on</strong>g>of</str<strong>on</strong>g> thous<strong>and</strong>s years).Transpolar Drift (or Trans Arctic Drift)Transpolar Drift is a circulati<strong>on</strong> system carrying water <strong>and</strong> ice from Siberia across <strong>the</strong> pole <strong>and</strong> down to<strong>the</strong> east coast <str<strong>on</strong>g>of</str<strong>on</strong>g> Greenl<strong>and</strong>.71


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal DraftAPPENDIX 2: LIST OF ACRONYMSACIAAOCPREAWRENSOEUGCMGMESIPCCIPCIPYIUCNJNCCMOCNACNAMNAONHTSSTTHCWFDArctic <str<strong>on</strong>g>Climate</str<strong>on</strong>g> Imapct AssessmentArctic Oscillati<strong>on</strong>C<strong>on</strong>tinuous Plankt<strong>on</strong> RecorderEast Atlantic-West RussiaEl Niño-Sou<strong>the</strong>rn Oscillati<strong>on</strong><strong>European</strong> Uni<strong>on</strong>Global Circulati<strong>on</strong> ModelGlobal M<strong>on</strong>itoring for Envir<strong>on</strong>ment <strong>and</strong> SecurityIntergovernmental Panel <strong>on</strong> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g>Iberian Polward CurrentInternati<strong>on</strong>al Polar YearInternati<strong>on</strong>al Uni<strong>on</strong> for <strong>the</strong> C<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Nature <strong>and</strong> Natural ResourcesJoint Nature C<strong>on</strong>servati<strong>on</strong> CouncilMeridi<strong>on</strong>al Overturning Circulati<strong>on</strong>North Atlantic CurrentNor<strong>the</strong>rn Hemisphere Annual ModeNorth Atlantic Oscillati<strong>on</strong>Nor<strong>the</strong>rn Hemisphere TemperatureSea Surface TemperatureThermohaline Circulati<strong>on</strong>Water Framework Directive72


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal DraftAPPENDIX 3: GLOSSARY OF LARGE-SCALE MONITORING PROGRAMMESAND RESEARCH ACTIVITIES RELATED TO CLIMATE CHANGE IMPACTS ONTHE EUROPEAN MARINE AND COASTAL ENVIRONMENTCIESM: The Mediterranean ScienceCommissi<strong>on</strong> integrates a broad spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g>marine disciplines, encompassing geophysical,chemical <strong>and</strong> biological processes,al<strong>on</strong>g with high-resoluti<strong>on</strong> mapping <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> seabottom.Today, changes are occurring at a fast,unprecedented pace in <strong>the</strong> Mediterranean Sea.CIESM tracks <strong>and</strong> analyses <strong>the</strong>se changes at<strong>the</strong> scale <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> whole Basin, from <strong>the</strong> impact <str<strong>on</strong>g>of</str<strong>on</strong>g>global warming <strong>on</strong> sea level <strong>and</strong> water massesto changes in marine biodiversity; frommorphological changes in coastlines to <strong>the</strong>accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> trace metals in marine foodchains (www.ciesm.org).CIRCLE: <str<strong>on</strong>g>Climate</str<strong>on</strong>g> change is increasingly seenas <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> greatest issues facing <strong>the</strong> worldin <strong>the</strong> 21st century, <strong>and</strong> Europe is taking aleading role in resp<strong>on</strong>ding to its challenges.Whatever <strong>the</strong> success <str<strong>on</strong>g>of</str<strong>on</strong>g> mitigating climatechange may be, certain impacts areunavoidable <strong>and</strong> <strong>European</strong> countries will needto adapt to those impacts driven by certainvulnerabilities <strong>and</strong> exposures in <strong>the</strong> regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g>Europe. Their adaptati<strong>on</strong> resp<strong>on</strong>se must beinformed by a coherent body <str<strong>on</strong>g>of</str<strong>on</strong>g> research <strong>and</strong> itis <strong>the</strong> prime objective <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> ImpactResearch Coordinati<strong>on</strong> for a Larger Europe toc<strong>on</strong>tribute to such efforts by aligning nati<strong>on</strong>alresearch programmes. This process will be astr<strong>on</strong>g support for <strong>the</strong> overall goal:Implementing a <strong>European</strong> Research Area(ERA) for <strong>the</strong> field <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change(www.circle-era.net).CLIVAR: The specific objective <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>Climate</str<strong>on</strong>g>Variability <strong>and</strong> Predictability researchprogramme are i) to describe <strong>and</strong> underst<strong>and</strong><strong>the</strong> physical processes resp<strong>on</strong>sible for climatevariability <strong>and</strong> predictability at different timescales,through <strong>the</strong> collecti<strong>on</strong> <strong>and</strong> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g>observati<strong>on</strong>s <strong>and</strong> <strong>the</strong> development <strong>and</strong>applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> models <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> coupled climatesystem, ii) to extend <strong>the</strong> record <str<strong>on</strong>g>of</str<strong>on</strong>g> climatevariability over <strong>the</strong> time-scales <str<strong>on</strong>g>of</str<strong>on</strong>g> interestthrough <strong>the</strong> assembly <str<strong>on</strong>g>of</str<strong>on</strong>g> quality-c<strong>on</strong>trolledpaleoclimatic <strong>and</strong> instrumental data sets, iii) toextend <strong>the</strong> range <strong>and</strong> accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> seas<strong>on</strong>al tointerannual climate predicti<strong>on</strong> through <strong>the</strong>development <str<strong>on</strong>g>of</str<strong>on</strong>g> global coupled predictivemodels, <strong>and</strong> iv) to underst<strong>and</strong> <strong>and</strong> predict <strong>the</strong>resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> climate system to increases <str<strong>on</strong>g>of</str<strong>on</strong>g>radiatively active gases <strong>and</strong> aerosols(www.clivar.org).DEDUCE: Spatial analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> particular habitatsproject using GIS (e.g. Corine <strong>Coastal</strong> Erosi<strong>on</strong>)that may lead to <strong>the</strong> development <str<strong>on</strong>g>of</str<strong>on</strong>g> o<strong>the</strong>rindicators. This work will c<strong>on</strong>tribute to anassessment <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> state <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>European</strong> Coaststhat is planned to be published by <strong>the</strong> EEA in2006 <strong>and</strong> will be taken forward at a <strong>European</strong>scale (www.eurosi<strong>on</strong>.org).DIVERSITAS: An internati<strong>on</strong>al programme <str<strong>on</strong>g>of</str<strong>on</strong>g>biodiversity science to promote an integrativebiodiversity science, linking biological,ecological <strong>and</strong> social disciplines in an effort toproduce socially relevant new knowledge; <strong>and</strong>provide <strong>the</strong> scientific basis for <strong>the</strong> c<strong>on</strong>servati<strong>on</strong><strong>and</strong> sustainable use <str<strong>on</strong>g>of</str<strong>on</strong>g> biodiversity.DIVERSITAS achieves <strong>the</strong>se goals bysyn<strong>the</strong>sizing existing scientific knowledge,identifying gaps <strong>and</strong> emerging issues, <strong>and</strong>promoting new research initiatives, while alsobuilding bridges across countries <strong>and</strong>disciplines. The Programme also investigatespolicy implicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> biodiversity science, <strong>and</strong>communicates <strong>the</strong>se to policy fora, includinginternati<strong>on</strong>al c<strong>on</strong>venti<strong>on</strong>s (www.diversitasinternati<strong>on</strong>al.org).EEA: The <strong>European</strong> Envir<strong>on</strong>ment Agency aimsto support sustainable development <strong>and</strong> to helpachieve significant <strong>and</strong> measurableimprovement in Europe's envir<strong>on</strong>ment through<strong>the</strong> provisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> timely, targeted, relevant <strong>and</strong>reliable informati<strong>on</strong> to policy making agents<strong>and</strong> <strong>the</strong> public. The EEA has developed a set<str<strong>on</strong>g>of</str<strong>on</strong>g> indicators with regard to climate change(greenhouse gasses <strong>and</strong> temperature), <strong>and</strong> for<strong>the</strong> marine envir<strong>on</strong>ment (nutrients <strong>and</strong>chlorophyll) (www.eea.europa.eu).ERA-NET: The objective <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ERA-NETscheme (funded by <strong>the</strong> <strong>European</strong> Uni<strong>on</strong> SixthFramework Programme – FP6) is to step up<strong>the</strong> cooperati<strong>on</strong> <strong>and</strong> coordinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> researchactivities carried out at nati<strong>on</strong>al or regi<strong>on</strong>al levelin <strong>the</strong> Member States <strong>and</strong> Associated Statesthrough <strong>the</strong> networking <str<strong>on</strong>g>of</str<strong>on</strong>g> research activitiesc<strong>on</strong>ducted at nati<strong>on</strong>al or regi<strong>on</strong>al level, <strong>and</strong> <strong>the</strong>mutual opening <str<strong>on</strong>g>of</str<strong>on</strong>g> nati<strong>on</strong>al <strong>and</strong> regi<strong>on</strong>alresearchprogrammes(cordis.europa.eu/coordinati<strong>on</strong>/era-net.htm).EuroBIS: Within <strong>the</strong> MarBEF network, <strong>the</strong><strong>European</strong> Ocean Biogeographic Informati<strong>on</strong>System is <strong>the</strong> <strong>European</strong> regi<strong>on</strong>al node <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>Ocean Biogeographic Informati<strong>on</strong> System is73


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal Draftdeveloped. This distributed system to presentbiogeographic informati<strong>on</strong> will integrateindividual datasets <strong>on</strong> marine organisms into<strong>on</strong>e large c<strong>on</strong>solidated database, <strong>and</strong> can<strong>the</strong>refore provide a better underst<strong>and</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g>l<strong>on</strong>g-term, large-scale patterns in <strong>European</strong>marinewaters(www.marbef.org/data/eurobis.php).with state-<str<strong>on</strong>g>of</str<strong>on</strong>g>-<strong>the</strong> art models <str<strong>on</strong>g>of</str<strong>on</strong>g> global oceancirculati<strong>on</strong>. In <strong>the</strong> past few years, a suite <str<strong>on</strong>g>of</str<strong>on</strong>g>GODAE systems have been developed toproduce global <strong>and</strong> basin-scale ocean analysis<strong>and</strong> short-term forecasts. GODAE products arealso being used for ecosystem applicati<strong>on</strong>s <strong>and</strong>to provide lateral open boundary c<strong>on</strong>diti<strong>on</strong>s forregi<strong>on</strong>al <strong>and</strong> coastal systems(www.bom.gov.au/bmrc/ocean/GODAE).EuroCoML: The <strong>European</strong> Census <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Marine</strong>Life is a regi<strong>on</strong>al implementati<strong>on</strong> committee <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong> Census <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Marine</strong> Life, a growing globalnetwork <str<strong>on</strong>g>of</str<strong>on</strong>g> researchers in more than 70 nati<strong>on</strong>sengaged in a 10-year initiative to assess <strong>and</strong>explain <strong>the</strong> diversity, distributi<strong>on</strong>, <strong>and</strong>abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> marine life in <strong>the</strong> oceans - past,present, <strong>and</strong> future (www.eurocoml.org).GCOS: <strong>the</strong> Global <str<strong>on</strong>g>Climate</str<strong>on</strong>g> Observing Systemaims to ensure that <strong>the</strong> observati<strong>on</strong>s <strong>and</strong>informati<strong>on</strong> needed to address climate-relatedissues are obtained <strong>and</strong> made available to allpotential users. GCOS stimulates, encourages,coordinates <strong>and</strong> o<strong>the</strong>rwise facilitates <strong>the</strong> taking<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> needed observati<strong>on</strong>s by nati<strong>on</strong>al orinternati<strong>on</strong>al organizati<strong>on</strong>s in support <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>irown requirements as well as <str<strong>on</strong>g>of</str<strong>on</strong>g> comm<strong>on</strong> goals.It provides an operati<strong>on</strong>al framework forintegrating, <strong>and</strong> enhancing as needed,observati<strong>on</strong>al systems <str<strong>on</strong>g>of</str<strong>on</strong>g> participating countries<strong>and</strong> organizati<strong>on</strong>s into a comprehensivesystem focussed <strong>on</strong> <strong>the</strong> requirements forclimate issues (www.wmo.ch/web/gcos).GLOBEC: Global Ocean Ecosystem Dynamicswas initiated by SCOR <strong>and</strong> <strong>the</strong> IOC <str<strong>on</strong>g>of</str<strong>on</strong>g>UNESCO in 1991, to underst<strong>and</strong> how globalchange will affect <strong>the</strong> abundance, diversity <strong>and</strong>productivity <str<strong>on</strong>g>of</str<strong>on</strong>g> marine populati<strong>on</strong>s c<strong>on</strong>stituting amajor comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> oceanic ecosystems. Theaim <str<strong>on</strong>g>of</str<strong>on</strong>g> GLOBEC is to advance ourunderst<strong>and</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> structure <strong>and</strong> functi<strong>on</strong>ing<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> global ocean ecosystem, its majorsubsystems, <strong>and</strong> its resp<strong>on</strong>se to physicalforcing so that a capability can be developed t<str<strong>on</strong>g>of</str<strong>on</strong>g>orecast <strong>the</strong> resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> marineecosystem to global change (www.globec.org).GMES: The Global M<strong>on</strong>itoring for Envir<strong>on</strong>ment<strong>and</strong> Security represents a c<strong>on</strong>certed effort tobring data <strong>and</strong> informati<strong>on</strong> providers toge<strong>the</strong>rwith users, so <strong>the</strong>y can better underst<strong>and</strong> eacho<strong>the</strong>r <strong>and</strong> agree <strong>on</strong> how to make envir<strong>on</strong>mental<strong>and</strong> security-related informati<strong>on</strong> available to <strong>the</strong>people who need it (www.gmes.info).GODAE: Global Ocean Data Assimilati<strong>on</strong>Experiment is an internati<strong>on</strong>al program thataims to advance ocean data assimilati<strong>on</strong> bysyn<strong>the</strong>sizing satellite <strong>and</strong> in-situ observati<strong>on</strong>s(e.g. from satellite altimeters <strong>and</strong> ARGO floats)GOOS: The Global Ocean Observing Systemis global system for sustained observati<strong>on</strong>s,modelling <strong>and</strong> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> marine <strong>and</strong> oceanvariables to support operati<strong>on</strong>al ocean servicesworldwide observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ocean,comprising <strong>the</strong> oceanographic comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong> Global Earth Observing System <str<strong>on</strong>g>of</str<strong>on</strong>g> Systems(GEOSS). GOOS provides descripti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>present state <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> oceans, including livingresources; c<strong>on</strong>tinuous forecasts <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> futurec<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sea, <strong>and</strong> basic informati<strong>on</strong> forforecasts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change (www.iocgoos.org).HELCOM: The Helsinki Commissi<strong>on</strong> works toprotect <strong>the</strong> marine envir<strong>on</strong>ment <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> BalticSea from all sources <str<strong>on</strong>g>of</str<strong>on</strong>g> polluti<strong>on</strong> throughintergovernmental co-operati<strong>on</strong> betweenDenmark, Est<strong>on</strong>ia, <strong>the</strong> <strong>European</strong> Community,Finl<strong>and</strong>, Germany, Latvia, Lithuania, Pol<strong>and</strong>,Russia <strong>and</strong> Sweden. They provide informati<strong>on</strong>about i) <strong>the</strong> state <str<strong>on</strong>g>of</str<strong>on</strong>g> trends in <strong>the</strong> marineenvir<strong>on</strong>ment, ii) <strong>the</strong> efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> measures toprotect it, <strong>and</strong> iii) comm<strong>on</strong> initiatives <strong>and</strong>positi<strong>on</strong>s which can form <strong>the</strong> basis for decisi<strong>on</strong>makingin o<strong>the</strong>r internati<strong>on</strong>al fora(www.helcom.fi).HERMES: Funded by <strong>the</strong> <strong>European</strong> Uni<strong>on</strong>Sixth Framework Programme – FP6, HotspotEcosystem Research <strong>on</strong> <strong>the</strong> Margins <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><strong>European</strong> Seas brings toge<strong>the</strong>r expertise inbiodiversity, geology, sedimentology, physicaloceanography, microbiology <strong>and</strong>biogeochemistry so that <strong>the</strong> genericrelati<strong>on</strong>ship between biodiversity <strong>and</strong>ecosystem functi<strong>on</strong>ing can be understood.Study sites extend from <strong>the</strong> Arctic to <strong>the</strong> BlackSea <strong>and</strong> include biodiversity hotspots such ascold seeps, cold-water coral mounds <strong>and</strong> reefs,cany<strong>on</strong>s <strong>and</strong> anoxic envir<strong>on</strong>ments, <strong>and</strong>communities found <strong>on</strong> open slopes. Theseimportant systems require urgent studybecause <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir possible biological fragility,unique genetic resources, global relevance tocarb<strong>on</strong> cycling <strong>and</strong> susceptibility to globalchange <strong>and</strong> human impact (www.euhermes.net).ICES: The Internati<strong>on</strong>al Council for Explorati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Sea is an intergovernmental organisati<strong>on</strong>that deals with fishing <strong>and</strong> fishing assessments74


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal Draftin <strong>the</strong> North Atlantic. This includes adjacentseas such as <strong>the</strong> Baltic Sea <strong>and</strong> North Sea.Scientists working through ICES ga<strong>the</strong>rinformati<strong>on</strong> about <strong>the</strong> marine ecosystem. Aswell as filling gaps in existing knowledge, thisinformati<strong>on</strong> is also developed into unbiased,n<strong>on</strong>-political advice, <strong>and</strong> <strong>the</strong>n used by <strong>the</strong> 19member countries, which fund <strong>and</strong> supportICES, to help <strong>the</strong>m manage <strong>the</strong> North AtlanticOcean <strong>and</strong> adjacent seas (www.ices.dk).provide an integrated service <str<strong>on</strong>g>of</str<strong>on</strong>g> global <strong>and</strong>regi<strong>on</strong>al ocean m<strong>on</strong>itoring <strong>and</strong> forecasting tointermediate users <strong>and</strong> policy makers insupport <str<strong>on</strong>g>of</str<strong>on</strong>g> safe <strong>and</strong> efficient <str<strong>on</strong>g>of</str<strong>on</strong>g>fshore activities,envir<strong>on</strong>mental management, security, <strong>and</strong>sustainable use <str<strong>on</strong>g>of</str<strong>on</strong>g> marine resources. Thesystem to be developed will be a keycomp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Ocean <strong>and</strong> <strong>Marine</strong> serviceselement <str<strong>on</strong>g>of</str<strong>on</strong>g> GMES (www.mersea.eu.org).IGBP: Internati<strong>on</strong>al Geosphere-BiosphereProgramme to provide scientific knowledge toimprove <strong>the</strong> sustainability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> living Earth.IGBP studies <strong>the</strong> interacti<strong>on</strong>s betweenbiological, chemical <strong>and</strong> physical processes<strong>and</strong> human systems IGBP collaborates witho<strong>the</strong>r programmes to develop <strong>and</strong> impart <strong>the</strong>underst<strong>and</strong>ing necessary to resp<strong>on</strong>d to globalchange (www.igbp.kva.se).MGE: <strong>Marine</strong> Genomics Europe is a Network<str<strong>on</strong>g>of</str<strong>on</strong>g> Excellence project funded by <strong>the</strong> <strong>European</strong>Uni<strong>on</strong> Sixth Framework Programme (FP6)devoted to <strong>the</strong> development, utilizati<strong>on</strong> <strong>and</strong>spreading <str<strong>on</strong>g>of</str<strong>on</strong>g> high-throughput approaches for<strong>the</strong> investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> biology <str<strong>on</strong>g>of</str<strong>on</strong>g> marineorganisms. Moreover, MGE will establishdatabases <str<strong>on</strong>g>of</str<strong>on</strong>g> marine resources through largescalebiodiversity studies (www.marinegenomics-europe.org).IHDP: The Internati<strong>on</strong>al Human Dimensi<strong>on</strong>sProgramme <strong>on</strong> Global Envir<strong>on</strong>mental <str<strong>on</strong>g>Change</str<strong>on</strong>g>is an internati<strong>on</strong>al, interdisciplinary, n<strong>on</strong>governmentalscience programme dedicated topromoting, catalyzing <strong>and</strong> coordinatingresearch <strong>on</strong> <strong>the</strong> human dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> globalenvir<strong>on</strong>mental change. IHDP takes a socialscience perspective <strong>on</strong> global change <strong>and</strong> itworks at <strong>the</strong> interface between science <strong>and</strong>practical applicati<strong>on</strong>s (www.ihdp.uni-b<strong>on</strong>n.de).IMBER: The Integrated <strong>Marine</strong>Biogeochemistry <strong>and</strong> Ecosystem Researchproject was initiated by <strong>the</strong> IGBP/SCOR OceanFutures Planning Committee in 2001 to identify<strong>the</strong> most important science issues related tobiological <strong>and</strong> chemical aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ocean’srole in global change <strong>and</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> globalchange <strong>on</strong> <strong>the</strong> ocean, with emphasis <strong>on</strong>important issues that are not majorcomp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> existing internati<strong>on</strong>al projects(www.imber.info).MedCLIVAR: A programme which aims tocoordinate <strong>and</strong> promote research <strong>on</strong> <strong>the</strong>Mediterranean climate. The main goals includerec<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> past evoluti<strong>on</strong>, descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>patterns <strong>and</strong> mechanisms characterizingspace-time variability, <strong>and</strong> identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>forcing resp<strong>on</strong>sible for <strong>the</strong> observed changes.Emphasis is <strong>on</strong> identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> trends inobservati<strong>on</strong>al records as well as <strong>on</strong> climatepredicti<strong>on</strong>s under future emissi<strong>on</strong> scenarios.The study <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> extreme events<strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change impacts is also includedinMedCLIVAR(clima.casaccia.enea.it/medclivar).MERSEA: The strategic objective <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Marine</strong>Envir<strong>on</strong>ment <strong>and</strong> Security for <strong>the</strong> <strong>European</strong>Area project (funded by <strong>the</strong> <strong>European</strong> Uni<strong>on</strong>Fifth Framework Programme – FP5) is toOSPAR: The C<strong>on</strong>venti<strong>on</strong> for <strong>the</strong> Protecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong> <strong>Marine</strong> Envir<strong>on</strong>ment <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> North-EastAtlantic. In 2000, <strong>the</strong> OSPAR Commissi<strong>on</strong>published <strong>the</strong> first comprehensive QualityStatus Report <strong>on</strong> <strong>the</strong> quality <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> marineenvir<strong>on</strong>ment <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> North-East Atlantic. Thiswas supported by five reports <strong>on</strong> <strong>the</strong> differentparts <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> OSPAR maritime area. In 2003, <strong>the</strong>Ministerial Meeting <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Commissi<strong>on</strong> adopteda new Strategy for <strong>the</strong> Joint Assessment <strong>and</strong>M<strong>on</strong>itoring Programme (JAMP). This providesfor <strong>the</strong> work to support <strong>and</strong> produce a series <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong>matic assessments, leading to a fur<strong>the</strong>rcomprehensive assessment in 2010(www.ospar.org).SCOPE: Scientific Committee <strong>on</strong> Problems <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong> Envir<strong>on</strong>ment is an interdisciplinary body <str<strong>on</strong>g>of</str<strong>on</strong>g>natural <strong>and</strong> social science expertise focused <strong>on</strong>global envir<strong>on</strong>mental issues, operating at <strong>the</strong>interface between scientific <strong>and</strong> decisi<strong>on</strong>makinginstances, <strong>and</strong> a worldwide network <str<strong>on</strong>g>of</str<strong>on</strong>g>scientists <strong>and</strong> scientific instituti<strong>on</strong>s developingsyn<strong>the</strong>ses <strong>and</strong> reviews <str<strong>on</strong>g>of</str<strong>on</strong>g> scientific knowledge<strong>on</strong> current or potential envir<strong>on</strong>mental issues(www.icsu-scope.org).SCOR: Scientific Committee <strong>on</strong> OceanicResearch is <strong>the</strong> leading n<strong>on</strong>-governmentalorganizati<strong>on</strong> for <strong>the</strong> promoti<strong>on</strong> <strong>and</strong> coordinati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> internati<strong>on</strong>al oceanographic activities. SCORscience activities focus <strong>on</strong> promotinginternati<strong>on</strong>al cooperati<strong>on</strong> in planning <strong>and</strong>c<strong>on</strong>ducting oceanographic research, <strong>and</strong>solving methodological <strong>and</strong> c<strong>on</strong>ceptualproblems that hinder research(www.jhu.edu/~scor).WCRP: The World <str<strong>on</strong>g>Climate</str<strong>on</strong>g> ResearchProgramme objectives are to develop <strong>the</strong>75


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal Draftfundamental scientific underst<strong>and</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>physical climate system <strong>and</strong> climate processesneeded to determine to what extent climate canbe predicted <strong>and</strong> <strong>the</strong> extent <str<strong>on</strong>g>of</str<strong>on</strong>g> human influence<strong>on</strong> climate. The programme encompassesstudies <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> global atmosphere, oceans, sea<strong>and</strong> l<strong>and</strong> ice, <strong>and</strong> <strong>the</strong> l<strong>and</strong> surface, whichtoge<strong>the</strong>r c<strong>on</strong>stitute <strong>the</strong> Earth's physical climatesystem. WCRP studies are specifically directedto provide scientifically founded quantitativeanswers to <strong>the</strong> questi<strong>on</strong>s being raised <strong>on</strong>climate <strong>and</strong> <strong>the</strong> range <str<strong>on</strong>g>of</str<strong>on</strong>g> natural climatevariability, as well as to establish <strong>the</strong> basis forpredicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> global <strong>and</strong> regi<strong>on</strong>al climaticvariati<strong>on</strong>s <strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> changes in <strong>the</strong> frequency <strong>and</strong>severity <str<strong>on</strong>g>of</str<strong>on</strong>g> extreme events(www.wmo.ch/web/wcrp).76


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal DraftAPPENDIX 4: EXTRACT FROM NAVIGATING THE FUTURE III ON CLIMATECHANGEThe following text is extracted from Navigating <strong>the</strong> Future2004.III, <strong>the</strong> latest positi<strong>on</strong> paper from <strong>the</strong> <strong>Marine</strong> Board <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><strong>European</strong> Science Foundati<strong>on</strong> (MB-ESF). It outlines <strong>the</strong> mostimportant marine <strong>the</strong>matic research priorities for Europe,taking into account <strong>the</strong> priorities not <strong>on</strong>ly for FP7, but also <strong>the</strong>objectives <str<strong>on</strong>g>of</str<strong>on</strong>g> nati<strong>on</strong>al research programmes, <strong>the</strong> <strong>European</strong><strong>Marine</strong> Envir<strong>on</strong>ment Strategy <strong>and</strong> <strong>the</strong> Galway Declarati<strong>on</strong>For general background informati<strong>on</strong>, <strong>the</strong> secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Navigating <strong>the</strong> Future IIIdealing with ocean-climate interacti<strong>on</strong>s <strong>and</strong> feedback has been extracted <strong>and</strong> slightlyedited to be added to this report.Navigating <strong>the</strong> Future III can be downloaded <strong>on</strong> <strong>the</strong> <strong>Marine</strong> Board website(www.esf.org/marineboard), paper copies are available up<strong>on</strong> request to <strong>the</strong><strong>Marine</strong> Board secretariat.77


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal DraftPart 4- Ocean climate interacti<strong>on</strong>s <strong>and</strong> feedback<str<strong>on</strong>g>Climate</str<strong>on</strong>g> change4.1 The ocean is a crucial comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>Earth’s climate system. It is <strong>the</strong> driver <str<strong>on</strong>g>of</str<strong>on</strong>g>many important climate processes <strong>on</strong> arange <str<strong>on</strong>g>of</str<strong>on</strong>g> time scales. Although <strong>the</strong>re canbe no certainty regarding <strong>the</strong> precisenature <strong>and</strong> rates <str<strong>on</strong>g>of</str<strong>on</strong>g> change in <strong>the</strong> marineenvir<strong>on</strong>ment due to alterati<strong>on</strong>s in climate,in <strong>the</strong> absence <str<strong>on</strong>g>of</str<strong>on</strong>g> policies <strong>and</strong> measures toprepare for <strong>the</strong>se changes, even <strong>the</strong> moremoderate <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> predicted scenariosindicate major social <strong>and</strong> ec<strong>on</strong>omicimpacts. The 2001 Report <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>Intergovernmental Panel <strong>on</strong> <str<strong>on</strong>g>Climate</str<strong>on</strong>g><str<strong>on</strong>g>Change</str<strong>on</strong>g> states that “global climate changewill affect <strong>the</strong> physical, biological <strong>and</strong>biogeochemical characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>oceans <strong>and</strong> coasts, modifying <strong>the</strong>irecological structure, <strong>the</strong>ir functi<strong>on</strong>s <strong>and</strong> <strong>the</strong>goods <strong>and</strong> services that <strong>the</strong> oceansprovide”. The Stern Review <strong>on</strong> <strong>the</strong>Ec<strong>on</strong>omics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> (2006Report to <strong>the</strong> UK Government) fur<strong>the</strong>rreiterates this predicti<strong>on</strong>, stating thatclimate change will have serious impacts<strong>on</strong> ec<strong>on</strong>omic growth <strong>and</strong> development,<strong>and</strong> that <strong>the</strong> failure to address globalwarming will cost <strong>the</strong> global ec<strong>on</strong>omy 3.68trilli<strong>on</strong> pounds sterling (5,500 billi<strong>on</strong> euros)by 2050, triggering a catastrophicrecessi<strong>on</strong>, unless it is tackled within adecade. Thus, it is estimated that <strong>the</strong>effects <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change would cost <strong>the</strong>world between 5% <strong>and</strong> 20% <str<strong>on</strong>g>of</str<strong>on</strong>g> GDP.Increasing dialogue between scientists <strong>and</strong>policy makers is necessary to allowassessment <str<strong>on</strong>g>of</str<strong>on</strong>g> whe<strong>the</strong>r <strong>the</strong>re is sufficientsound scientific evidence <strong>on</strong> which to basenew policies. Specialist workshops arerequired to address not <strong>on</strong>ly <strong>the</strong>envir<strong>on</strong>mental challenges that <strong>the</strong>scientists <strong>and</strong> policy makers face, but also<strong>the</strong> inevitable socio-ec<strong>on</strong>omicrepercussi<strong>on</strong>s associated with risingtemperatures. To support <strong>the</strong> development<str<strong>on</strong>g>of</str<strong>on</strong>g> knowledge-based policies, <strong>the</strong>re is arequirement for validated methods to turndata into informati<strong>on</strong>, in <strong>the</strong> form <str<strong>on</strong>g>of</str<strong>on</strong>g>integrated assessments <strong>and</strong> indicators,<strong>and</strong> for improved methods to assimilatedata into climate models. This wouldimprove reanalysis <str<strong>on</strong>g>of</str<strong>on</strong>g> climate variability inclimate evoluti<strong>on</strong> over past decades. Theglobal nature <strong>and</strong> scale <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>envir<strong>on</strong>mental <strong>and</strong> ec<strong>on</strong>omic impacts<str<strong>on</strong>g>of</str<strong>on</strong>g> climate change emphasise <strong>the</strong> needfor <strong>European</strong> research programmes tocoordinate <strong>and</strong> integrate with <strong>the</strong>climate comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> internati<strong>on</strong>alresearch programmes, includingCLIVAR, GLOBEC <strong>and</strong> IMBER.4.2 Palaeoclimate records provide animportant tool for analysing <strong>the</strong> resp<strong>on</strong>se<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> climate system to internal <strong>and</strong>external forcing (e.g. greenhouse gases,volcanic activity <strong>and</strong> solar energy), <strong>and</strong> forunderst<strong>and</strong>ing <strong>the</strong> physical, chemical <strong>and</strong>biological processes resp<strong>on</strong>sible for <strong>the</strong>changes. Ga<strong>the</strong>ring <strong>the</strong> vast amount <str<strong>on</strong>g>of</str<strong>on</strong>g>palaeoclimate records into databases<strong>and</strong> <strong>the</strong>ir spatial <strong>and</strong> temporal analysisis necessary. In order to place <strong>the</strong> presentstatus <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Earth’s climate within anhistoric perspective <str<strong>on</strong>g>of</str<strong>on</strong>g> climate variability,<strong>the</strong> ability to develop numerical models <str<strong>on</strong>g>of</str<strong>on</strong>g>past climatic events requires fur<strong>the</strong>rimprovement <strong>and</strong> refinement. Thecombined use <str<strong>on</strong>g>of</str<strong>on</strong>g> palaeoclimate data <strong>and</strong>palaeoclimate models with fine spatial <strong>and</strong>temporal resoluti<strong>on</strong> will facilitate <strong>the</strong>recreati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> past ocean climate scenarios,which will advance <strong>the</strong> underst<strong>and</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong> mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change.Research is required to improve <strong>the</strong>temporal resoluti<strong>on</strong> in <strong>the</strong>rec<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> climate history <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ocean in scales from tens to hundreds<str<strong>on</strong>g>of</str<strong>on</strong>g> years. C<strong>on</strong>tinuous development <str<strong>on</strong>g>of</str<strong>on</strong>g>geochemical proxies is required forrec<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> past surface CO 2c<strong>on</strong>tent, temperature, salinity, pHvalues <strong>and</strong> nutrients.4.3 One <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> potential effects <str<strong>on</strong>g>of</str<strong>on</strong>g> climatechange is <strong>the</strong> change in intensity,frequency <strong>and</strong> locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> extreme events,such as storms, tidal surges <strong>and</strong> extremewave heights. Improved definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>extreme events, <strong>the</strong>ir statisticalanalysis, definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> proxies for pastevents, identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> processes atplay in <strong>the</strong>ir generati<strong>on</strong>, <strong>and</strong> <strong>the</strong>identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir variability <strong>and</strong>trends, all need to be developed.Observing networks provide crucialc<strong>on</strong>tributi<strong>on</strong>s to m<strong>on</strong>itoring <strong>and</strong>forecasting extreme events, <strong>and</strong> requirefur<strong>the</strong>r development.4.4 As well as <strong>the</strong> development <str<strong>on</strong>g>of</str<strong>on</strong>g> improvedsimulati<strong>on</strong> models <str<strong>on</strong>g>of</str<strong>on</strong>g> climate variability <strong>and</strong>its effects, <strong>the</strong>re is a requirement for <strong>the</strong>development <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g-term capabilities forclimate observati<strong>on</strong>. Detecting <strong>the</strong> actualphenomena, underst<strong>and</strong>ing in moredetail <strong>the</strong> processes at play, such as<strong>the</strong> Pacific El Niño Sou<strong>the</strong>rn Oscillati<strong>on</strong>(ENSO) <strong>and</strong> North Atlantic Oscillati<strong>on</strong>(NAO) <strong>and</strong> <strong>the</strong>ir potential change infrequency <strong>and</strong> intensity, is critical. Tosupport climate change research, newobservati<strong>on</strong>al <strong>and</strong> measurementsensors <strong>and</strong> systems need to be78


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal Draftdesigned, including sensors for air-seainteracti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> specific substances.With observati<strong>on</strong> networks in place, <strong>the</strong>rewill be a requirement for new methods toassimilate data into Atlantic <strong>and</strong>Mediterranean circulati<strong>on</strong> <strong>and</strong> climateimpact models.4.5 There is a need to improve <strong>the</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g>existing data <strong>on</strong> physical, chemical <strong>and</strong>biological status in <strong>the</strong> field <str<strong>on</strong>g>of</str<strong>on</strong>g> operati<strong>on</strong>aloceanography modelling tools. To supportdevelopment <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change models,an open data policy is needed,facilitating timely <strong>and</strong> improved accessto data. Data access should include nearreal-time, high frequency sea level datafrom tide gauges, satellite missi<strong>on</strong>s, <strong>and</strong> insitu observati<strong>on</strong> systems, includingpictures <str<strong>on</strong>g>of</str<strong>on</strong>g> changes in plankt<strong>on</strong>assemblage compositi<strong>on</strong>s <strong>and</strong> oceancolour data. Efforts in data archaeology, toretrieve <strong>and</strong> make accessible historical sealevel records, should also be supported.4.6 The impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong>functi<strong>on</strong>al biodiversity are unknown.Developing <strong>the</strong> capability to predict <strong>the</strong>resp<strong>on</strong>se <strong>and</strong> feedbacks <str<strong>on</strong>g>of</str<strong>on</strong>g> marine biota toclimate change is required. Research isneeded to assess how marine ecosystems’structure (e.g. foodwebs, populati<strong>on</strong> size<strong>and</strong> distributi<strong>on</strong>) <strong>and</strong> functi<strong>on</strong>ing (e.g.biomass, producti<strong>on</strong>, decompositi<strong>on</strong>) willchange under current predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g>climate change. Experimental <strong>and</strong>numerical studies using climatesimulatingmesocosms are required tounravel <strong>the</strong> basic biogeochemical links<strong>and</strong> resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g> climate-criticalplankt<strong>on</strong> species (e.g. diatoms,coccolithophorids, N 2 fixers, DMSproducers, bacteria, viruses, archaea)to physical <strong>and</strong> chemical drivers <str<strong>on</strong>g>of</str<strong>on</strong>g>climate change (e.g. temperature, pH,CO 2 , solar radiati<strong>on</strong>) <strong>and</strong> <strong>the</strong> associatedbiogeographic c<strong>on</strong>sequences.Ocean-atmosphere coupling <strong>and</strong> <strong>the</strong> ocean <strong>the</strong>rmohaline circulati<strong>on</strong>4.7 The ocean circulati<strong>on</strong> in <strong>the</strong> North Atlanticplays a fundamental role in <strong>the</strong> coupledocean-atmosphere system which results in<strong>the</strong> present temperate climate <str<strong>on</strong>g>of</str<strong>on</strong>g> WesternEurope. The Atlantic ThermohalineCirculati<strong>on</strong> (THC), or North Atlantic Current(<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> str<strong>on</strong>gest ocean currents in <strong>the</strong>world), refers to a key regi<strong>on</strong>al heat enginemechanism partly resp<strong>on</strong>sible for allowingsome areas <str<strong>on</strong>g>of</str<strong>on</strong>g> Europe to experience aclimate 10°C higher than areas at similarlatitudes. There are indicati<strong>on</strong>s that thissystem can change dramatically <strong>on</strong> a timescale <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e to two decades, with farreachingc<strong>on</strong>sequences. Observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g>decadal changes in <strong>the</strong> THC, <strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>subsurface heat fluxes in <strong>the</strong> NorthAtlantic, have been described. Models <strong>and</strong>recent observati<strong>on</strong>s suggest that <strong>the</strong> THCmay be weakening in resp<strong>on</strong>se togreenhouse forcing. It has already beenshown that <strong>the</strong> circulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> NorthAtlantic Current has slowed by 30% over<strong>the</strong> last 12 years, <strong>and</strong> that part <str<strong>on</strong>g>of</str<strong>on</strong>g> thiscurrent came to a 10 day halt duringNovember 2004, <strong>the</strong> most abrupt change<strong>on</strong> record. Prototype observati<strong>on</strong>alexperiments should be transformedinto multidisciplinary l<strong>on</strong>g-termobservati<strong>on</strong>al networks to m<strong>on</strong>itor <strong>the</strong>evolving dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> system.Research effort is required to focus <strong>on</strong>key Arctic <strong>and</strong> sub-Arctic deep waterformati<strong>on</strong>s, gateways <strong>and</strong> pathways for<strong>the</strong> out-flows <str<strong>on</strong>g>of</str<strong>on</strong>g> cold dense water, <strong>and</strong>return flows <str<strong>on</strong>g>of</str<strong>on</strong>g> warm surface currentsin <strong>the</strong> world ocean.4.8 Over <strong>the</strong> last two decades climate modelshave predicted that <strong>the</strong> impact <str<strong>on</strong>g>of</str<strong>on</strong>g> globalwarming caused by elevated atmosphericCO 2 would be str<strong>on</strong>ger <strong>and</strong> faster in <strong>the</strong>Arctic. <str<strong>on</strong>g>Climate</str<strong>on</strong>g> simulati<strong>on</strong> models currentlyshow that with a doubling <str<strong>on</strong>g>of</str<strong>on</strong>g> atmosphericCO 2 (predicted to happen by 2080) Arcticsea-ice could disappear in <strong>the</strong> summerm<strong>on</strong>ths. During <strong>the</strong> winter m<strong>on</strong>ths, <strong>the</strong>reducti<strong>on</strong> in sea-ice may be up to 20%,resulting in <strong>the</strong> opening <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> nowseas<strong>on</strong>ally ice-covered Barents Sea toshipping. <str<strong>on</strong>g>Climate</str<strong>on</strong>g> change will thus inducedramatic changes to <strong>the</strong> ec<strong>on</strong>omy <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>areas bordering <strong>on</strong> regi<strong>on</strong>al seas,impacting <strong>on</strong> local communities, fishingpractices, maritime transport <strong>and</strong> oilexploitati<strong>on</strong>. Efforts should be directedtowards research <strong>on</strong> impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climatechange <strong>on</strong> regi<strong>on</strong>al seas (e.g. <strong>the</strong> Artic,Nordic, Baltic <strong>and</strong> <strong>the</strong> MediterraneanSeas) as <strong>the</strong>se are areas where <strong>the</strong>effects <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change would impactmost immediately <strong>on</strong> Europe. Globalmodels <str<strong>on</strong>g>of</str<strong>on</strong>g> ocean-climate coupling <strong>and</strong><strong>the</strong> THC should be downscaled toincorporate: i) flux-critical processes <str<strong>on</strong>g>of</str<strong>on</strong>g>subducti<strong>on</strong>, c<strong>on</strong>vecti<strong>on</strong>, overflows <strong>and</strong>boundary currents; ii) telec<strong>on</strong>necti<strong>on</strong>sbetween <strong>the</strong> Pacific El Niño <strong>and</strong> <strong>the</strong>NAO, <strong>and</strong> between <strong>the</strong> NAO-IO (NorthAtlantic Oscillati<strong>on</strong> - Indian Ocean)dipole <strong>and</strong> Mediterranean climate; <strong>and</strong>iii) greenhouse forcing: <strong>the</strong> resp<strong>on</strong>ses<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>European</strong> seas, <strong>and</strong> its local <strong>and</strong>regi<strong>on</strong>al impacts. As <strong>the</strong> MediterraneanSea is a regi<strong>on</strong> in between <strong>the</strong> Atlantic <strong>and</strong><strong>the</strong> Indian climate regi<strong>on</strong>s, capturing <strong>the</strong>specific modes <str<strong>on</strong>g>of</str<strong>on</strong>g> climate variability in thisregi<strong>on</strong> is necessary. The impact <str<strong>on</strong>g>of</str<strong>on</strong>g> outflow<str<strong>on</strong>g>of</str<strong>on</strong>g> Mediterranean waters into <strong>the</strong> Atlantic79


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal Draft<strong>and</strong> <strong>the</strong>ir behaviour in <strong>the</strong> Atlantic Iberianregi<strong>on</strong> requires particular attenti<strong>on</strong>.4.9 The ARGO experiment, with its in situglobal array <str<strong>on</strong>g>of</str<strong>on</strong>g> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iling floats recordingoceanographic data, dem<strong>on</strong>strates <strong>the</strong>feasibility <str<strong>on</strong>g>of</str<strong>on</strong>g> providing a world-scale nearreal-time tri-dimensi<strong>on</strong>al observati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>ocean hydrographic parameters. ThroughEURO-ARGO Europe should activelyc<strong>on</strong>tribute to <strong>the</strong> global ARGOexperiment to provide hydrographicobservati<strong>on</strong>s in <strong>the</strong> l<strong>on</strong>g term, both foroperati<strong>on</strong>al oceanography <strong>and</strong> form<strong>on</strong>itoring climate change. Thedevelopment <str<strong>on</strong>g>of</str<strong>on</strong>g> more cost-effectivepr<str<strong>on</strong>g>of</str<strong>on</strong>g>ilers would help to extend <strong>the</strong> ARGOarray <str<strong>on</strong>g>of</str<strong>on</strong>g> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iling floats <strong>and</strong> to implement<strong>the</strong> ARGO system.Ocean biogeochemical impacts <strong>and</strong> feedbacks in a greenhouse ocean4.10 Estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> current absorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>anthropogenic CO 2 into <strong>the</strong> ocean arestill uncertain <strong>and</strong> have recently been reevaluated;<strong>the</strong> ocean is <strong>the</strong> dominantsink for anthropogenic CO 2 , as it hastaken up 50% <str<strong>on</strong>g>of</str<strong>on</strong>g> anthropogenic CO 2 .Greenhouse scenarios predict a globallywarmer, more stratified <strong>and</strong> more acidicupper-ocean that could significantlyreduce both c<strong>on</strong>vective <strong>and</strong>biogeochemical export sinks <str<strong>on</strong>g>of</str<strong>on</strong>g>atmospheric CO 2 into <strong>the</strong> deep ocean.This would accelerate accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>CO 2 in <strong>the</strong> atmosphere, with anassociated risk <str<strong>on</strong>g>of</str<strong>on</strong>g> acceleratedgreenhouse warming. Increasing CO 2levels are leading to a decline inseawater pH to levels that have notexisted in at least 20 milli<strong>on</strong> years, so<strong>the</strong> oceans are becoming increasinglyacidic. Ocean acidificati<strong>on</strong> not <strong>on</strong>lychanges <strong>the</strong> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dissolvedcarb<strong>on</strong> species but also impacts <strong>on</strong>plankt<strong>on</strong>, which could affect carb<strong>on</strong>uptake by primary producti<strong>on</strong>. Plankt<strong>on</strong>absorb CO 2 from <strong>the</strong> atmosphere, <strong>and</strong> inso doing help to counter global warming.With a decrease in plankt<strong>on</strong> diversity<strong>and</strong> populati<strong>on</strong> density, <strong>the</strong> oceans willabsorb less CO 2 from <strong>the</strong> Earth’satmosphere. Research to pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile status<str<strong>on</strong>g>of</str<strong>on</strong>g> phytoplankt<strong>on</strong> assemblages isrequired. To reliably predict future CO 2levels, research is necessary t<str<strong>on</strong>g>of</str<strong>on</strong>g>ur<strong>the</strong>r elucidate <strong>the</strong>se mechanisms,<strong>and</strong> to estimate absorpti<strong>on</strong> limits <strong>and</strong>oceanic budgets for anthropogenicCO 2 under greenhouse scenarios.4.11 The United States Japan, UK <strong>and</strong> Norwayare developing experiments to assesswhe<strong>the</strong>r deep ocean disposal <str<strong>on</strong>g>of</str<strong>on</strong>g>liquefied CO 2 (carb<strong>on</strong> sequestrati<strong>on</strong>) <strong>and</strong>ir<strong>on</strong> fertilisati<strong>on</strong>, can be used for largescale removal <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 into <strong>the</strong> deepocean. Europe should c<strong>on</strong>ductindependent studies <strong>and</strong> evaluati<strong>on</strong>s,so that <strong>the</strong>re can be an objectivedebate <strong>on</strong> <strong>the</strong> envir<strong>on</strong>mentalfeasibility, usefulness, ethics <strong>and</strong>impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> ocean carb<strong>on</strong>sequestrati<strong>on</strong>. Interacti<strong>on</strong>s betweendecisi<strong>on</strong> makers, scientists,envir<strong>on</strong>mental NGOs <strong>and</strong> <strong>the</strong> publicshould be promoted to facilitate <strong>the</strong>development <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> most appropriateapproaches towards such sensitiveissues.Ventilati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> marine biogases <strong>and</strong> fertilisati<strong>on</strong> feedbacks4.12 Research is needed <strong>on</strong> current air-seafluxes <str<strong>on</strong>g>of</str<strong>on</strong>g> climatically critical biogases(CO 2 , DMS, N 2 O, CH 4 ), particularly <strong>on</strong><strong>the</strong>ir regi<strong>on</strong>al <strong>and</strong> seas<strong>on</strong>al variability, toenable a global assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir rolein climate change. The biogenicsources, distributi<strong>on</strong>s <strong>and</strong> pathwaysresp<strong>on</strong>sible for producti<strong>on</strong>,transformati<strong>on</strong> <strong>and</strong> flux <str<strong>on</strong>g>of</str<strong>on</strong>g> climaticallyreactive marine biogas compoundsshould be investigated <strong>and</strong> modelledunder present <strong>and</strong> future climatec<strong>on</strong>diti<strong>on</strong>s. This effort should bedeveloped as a c<strong>on</strong>tributi<strong>on</strong> to <strong>the</strong>SOLAS internati<strong>on</strong>al programme.4.13 There is a requirement to fur<strong>the</strong>rdevelop coupled physicalbiogeochemical ocean climate modelsthat incorporate carb<strong>on</strong> speciati<strong>on</strong><strong>and</strong> nutrient dynamics. This wouldallow predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> changes <strong>and</strong>feedbacks in global <strong>and</strong> regi<strong>on</strong>al oceanproductivity under various greenhousescenarios. In particular, in view <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>importance <str<strong>on</strong>g>of</str<strong>on</strong>g> medium- <strong>and</strong> small-scalephenomena for primary productivity, it isnecessary to assess how <strong>the</strong>ir inclusi<strong>on</strong>in climate models could be made.4.14 Single-celled marine organisms(archaea, bacteria, phytoplankt<strong>on</strong>, etc.)are abundant, diverse <strong>and</strong> productive<strong>and</strong> are <strong>the</strong> principal drivers <str<strong>on</strong>g>of</str<strong>on</strong>g> marine<strong>and</strong> global biogeochemistry. Supportshould be directed towards adaptingbiogeochemical gene probes, coupledwith phylogenetic probes, to enable<strong>the</strong> applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> high-throughputbioanalytic technologies (e.g.analytical flow cytometry,microarrays) for use <strong>on</strong>board ship80


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal Draftduring large-scale oceanographicexpediti<strong>on</strong>s for explorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>microbial biodiversity, <strong>and</strong>assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> food web dynamics<strong>and</strong> biogeochemical feedbacks indiverse oceanic envir<strong>on</strong>ments.81


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal DraftAPPENDIX 5. MEMBERS OF THE WORKING GROUPChairCatharina J.M. Philippart (chair)Ne<strong>the</strong>rl<strong>and</strong>s Institute for Sea Research, P.O. Box 59, 1790 AB Den Burg, The Ne<strong>the</strong>rl<strong>and</strong>sT: +31 222 369 563, F: +31 222 319 674, E: katja@nioz.nlMembers:Ricardo AnadónDep. de Biología de Organismos y Sistemas, Universidad de Oviedo, 33071 Oviedo, SpainT: + 34 985104790, E: +34 985104777, E: ranad<strong>on</strong>@uniovi.esRoberto DanovaroDipartimento di Scienze del Mare, via Brecce Bianche – 60100, Anc<strong>on</strong>a, ItalyT: + 39 71 220 4654, E: danovaro@univpm.itJoachim W. DippnerBaltic Sea Research Institute Warnemünde, Seestrasse 15, D-18119 Rostock, GermanyT: +49 381 5197 229, F: +49 381 5197 114, E: joachim.dippner@io-warnemuende.deKenneth F. DrinkwaterInstitute <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Marine</strong> Research, P.O. Box 1870 Nordnes, N-5817 Bergen, NorwayT: +47 55 23 69 90, E: ken.drinkwater@imr.noStephen J. Hawkins<strong>Marine</strong> Biological Associati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> UK, Citadel Hill, Plymouth, PL1 2PB, UKT: +44 01752 633331, F: +44 1752 633 102, E: sjha@mba.ac.ukGe<str<strong>on</strong>g>of</str<strong>on</strong>g>frey O’Sullivan<strong>Marine</strong> Institute, 80 Harcourt Street, Dublin 2, Irel<strong>and</strong>T: +353 1 4766500, F: +353 1 4784988, E: ge<str<strong>on</strong>g>of</str<strong>on</strong>g>frey.osullivan@marine.ieTemel OguzInstitute <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Marine</strong> Sciences, P.O. Box 28, 33731 Erdemli, Icel, TurkeyT: +90 324 521 2406, F: +90 324 521 2327, E: oguz@ims.metu.edu.trPhilip C. ReidSAHFOS, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UKT: +44 1752 633288 / 281, F: +44 1752 600015, E: pcre@sahfos.ac.uk82


<strong>Marine</strong> Board – <strong>European</strong> Science Foundati<strong>on</strong>Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>European</strong> <strong>Coastal</strong> <strong>and</strong> <strong>Marine</strong> Envir<strong>on</strong>mentFinal Draft<strong>Marine</strong> Board – ESF Member Organisati<strong>on</strong>sLOGOS1, quai Lezay-MarnésiaBP 9001567080 Strasbourg Cedex FranceTel : +33(0)3 88 76 71 00Fax : +33(0)3 88 25 19 54

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!